
DOI: 10.1007/s00454-003-2846-4

Discrete Comput Geom 30:467–487 (2003) Discrete & Computational

Geometry
© 2003 Springer-Verlag New York Inc.

Tilings of the Sphere with Isosceles Triangles∗

Robert J. MacG. Dawson

Department of Mathematics and Computing Science, St. Mary’s University,
Halifax, Nova Scotia, Canada B3H 3C3
rdawson@smu.ca

Abstract. The spherical triangles which tile the sphere in an edge-to-edge fashion have
been known for some time. However, if we relax the requirement that the triangles must
meet edge-to-edge, other tilings are possible. This paper begins the classification of these
tilings by characterizing all isosceles triangles that tile the sphere. One infinite family and
three sporadic tiles that tile only edge-to-edge are exhibited.

1. Introduction

A homohedral tiling is one in which all tiles are congruent. (Grünbaum and Shepherd
have “monohedral” [5], but this suggests more that the tiling has a single tile rather than
a single prototile.) In 1923 Sommerville [11] classified the edge-to-edge homohedral
tilings of the sphere with isosceles triangles, and those with scalene triangles in which the
angles meeting at any one vertex are congruent. Davies [3] completed the classification
of edge-to-edge homohedral tilings by triangles in 1965 (apparently without knowledge
of Somerville’s work), allowing any combination of angles at a vertex. Davies’ paper
left some details to the reader; these have been supplied recently in the very detailed and
complete work of Ueno and Agaoka [12]. In another related paper [1], Azavedo Breda
has classified edge-to-edge triangulations of the sphere with certain conditions on the
patterns of angles at each vertex.

If the restriction to edge-to-edge tilings is removed, a number of new tilings may be
found. Some of these (see below) use tiles that also tile edge-to-edge; there are also some
triangles that tile only in a non-edge-to-edge fashion. This paper is a first step towards
the enumeration of these triangles, dealing with the isosceles case. The equilateral case
will be dealt with briefly at the beginning of the third section; elsewhere, we always
assume “isosceles” to mean “isosceles and not equilateral.”

∗ This research was supported by a grant from NSERC.
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In Section 3 we examine the isosceles triangles that tile edge-to-edge, to determine
which also permit a non-edge-to-edge tiling; in Sections 4 and 5 we enumerate the
triangles which permit only a non-edge-to-edge tiling. We do not always determine in
how many ways such a triangle tiles the sphere; however, we shall determine in each
case whether it tiles in a non-edge-to-edge fashion.

2. Definitions, Notation, and Preliminaries

Throughout this paper we represent the measure of the large angle of the triangle by α
and that of the small angle by β. We call any isosceles triangle with two large angles tall,
and one with two small angles short. It is convenient to treat these two cases indepen-
dently.

A maximal arc of a great circle that is contained in the union of the edges, and is
longer than any edge contained in it, is called an extended edge. A triangle with angles
(θ, 90◦, 90◦) is called a right semilune, and one with angles (θ, θ, 180◦ − θ) is called an
isosceles semilune. (It should be noted that this is a slight abuse of notation, as the right
semilunes are also isosceles, but with the equal edges oriented differently with respect
to the lune.) In either case, the angle θ is called the lune angle.

We call the lengths of the edges opposite the large and small angles L and S (“long”
and “short”), respectively. It is highly plausible that, except for a few cases such as
equilateral triangles and right semilunes, L/S is always irrational when the angles (in
degrees) are rational, from which it would follow that the numbers of long and short
edges on one side of an extended edge must equal those on the other side. However,
this brings in deep and difficult questions of transcendence theory that we should like to
avoid. We will occasionally need special cases of this hypothesis that can be verified by
direct calculation.

We make a great deal of use of the vertex equations satisfied by a given triangle.
These are the equations aα+ bβ = 360◦ satisfied by the angles of a triangle, regardless
of whether any vertex with these angles actually appears in a tiling. For brevity, such an
equation is represented by the vertex vector (a, b). A non-edge-to-edge tiling must also
have split vertices: vertices surrounded by two or more triangle angles and a straight angle,
on the relative interior of an edge. The angles at such a vertex satisfy aα+bβ = 180◦; we
call this a split equation, and abbreviate it as (2a, 2b)/2. For instance, a (90◦, 60◦, 60◦)
triangle has (among others) the vertex vectors (2, 3) and (4, 0), and the split vector
(4, 0)/2. The following result is trivial, and is stated for later reference:

Lemma 1 (Angle Comparison Lemma). If a triangle has the vertex vector (a, b), then
it cannot have a vertex vector (c, b) with c �= a, a vertex vector (a, d) with d �= b, or a
vertex vector (c, d) with (c + d − a − b)(c − a) > 0.

The excess, ε, of a spherical triangle is defined to be the sum of the angles minus 180◦;
in our notation, 2α+ β − 180◦ for a tall triangle and α+ 2β − 180◦ for a short triangle.
Recall that ε > 0 for any spherical triangle, and that N = 720◦/ε, where N is (here and
henceforth) the number of triangles in the tiling. The following result simplifies testing
sphericity.
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Lemma 2 (Sphericity Lemma). If a spherical triangle has two vertex vectors (a, b)
and (c, d) with a > c, then

(a − 4)(d − 2) < (c − 4)(b − 2) (1)

if the triangle is tall, and

(a − 2)(d − 4) < (c − 2)(b − 4) (2)

if the triangle is short.

Proof. If a > c, we have b < d , and ad − bc > 0. By Cramer’s rule we have

α = 360◦(d − b)/(ad − bc),

β = 360◦(a − c)/(ad − bc),

whence (in the tall case) 4(d − b) + 2(a − c) > (ad − bc). Rearranging, we get
4d + 2a − ad > 4b + 2c − bc; adding 8 to each side and factoring, the result follows.
The short case works in the same way.

Another elementary result which is occasionally useful is obtained by observing that
if a triangle has angles (α, β, γ ) (here, in no particular order), and we extend the sides
opposite α and β until they intersect again, they create a second triangle with sides
(180◦ − α, 180◦ − β, γ ); and the excess of that triangle must be positive as well:

Lemma 3. For any spherical triangle, the sum of any two angles is less than 180◦ plus
the third.

3. New Tilings from Old Tiles

The equilateral triangles that tile the sphere are those with angles (180◦, 180◦, 180◦)
(degenerate), (120◦, 120◦, 120◦), (90◦, 90◦, 90◦), and (72◦, 72◦, 72◦). The edge-to-edge
tilings of the first and third type of triangle have extended edges that are great circles.
Any such tiling can be converted into any of a continuum of non-edge-to-edge tilings
by rotating one hemisphere relative to the other. (We call tilings obtained in this way
from edge-to-edge tilings twisted.) These are the only non-edge-to-edge tilings with
equilateral triangles; the other two are easily seen only to tile in an edge-to-edge fashion,
as their angles do not divide 180◦.

The nonequilateral isosceles triangles that tile edge-to-edge are given in Table 1. Their
edge-to-edge tilings are catalogued in [3]; some of them also permit non-edge-to-edge
tilings. The triangles of the form (θ, 180◦ − θ/2, 180◦ − θ/2) for 90◦ < θ < 180◦ have
ε = 180◦ and only four of them cover the sphere. They only tile edge-to-edge, although
in the degenerate cases θ = 90◦, 180◦, the tile is a 90◦ lune and there are twisted tilings.

Proposition 1. The triangles (120◦, 36◦, 36◦), (72◦, 60◦, 60◦) tile only edge-to-edge
and the triangle (120◦, 45◦, 45◦) tiles only edge-to-edge or in twisted tilings derived
from the edge-to-edge tiling.



470 R. J. M. Dawson

Table 1. Isosceles triangles that tile the sphere.∗

Triangle N ETE Non-ETE Figure

(θ, 180◦ − θ/2, 180◦ − θ/2) 4 1 0
(120◦, 60◦, 60◦) 12 7 c
(120◦, 45◦, 45◦) 24 1 c
(120◦, 36◦, 36◦) 60 1 0
(90◦, 60◦, 60◦) 24 1 c
(72◦, 60◦, 60◦) 60 1 0
(360◦/n, 90◦, 90◦)

n even 2n 2 c 9
n odd 2n 1 c

(360◦/n, (90−90/n)◦, (90− 90/n)◦)
n even 4n 1 0
n odd 4n 2 0 1

((180− 360/n)◦, (360/n)◦, (360/n)◦)
n ≡ 0 mod 4 2n 1 c 8
n ≡ 2 mod 4 2n 2 c
n odd 2n 0 many

(80◦, 60◦, 60◦) 36 0 3 14
(100◦, 60◦, 60◦) 18 0 1 16
(150◦, 60◦, 60◦) 8 0 1 20

∗Numbers of ETE tilings are taken from [3]. The entry “c” indicates a continuous
family of tilings.

Proof. Each triangle has only vertex vectors of the forms (a, 0) and (0, b), in which
the single vertex appears an odd number of times. It follows that every triangle in a
tiling with one of these must be part of a supertile of three or five triangles. In the first
two cases the supertile (and thus the original tile) tiles only edge-to-edge; in the third
case the supertile is a (90◦, 90◦, 90◦) triangle that, as observed above, permits a twisted
tiling.

The (120◦, 60◦, 60◦) triangle can tile in several ways. Two of them make up a 60◦

lune, or a regular quadrilateral with 120◦ angles (the face of a spherical cube). Both of
these tile the sphere, as does a combination of two quadrilaterals and four lunes; and, in
either case, the symmetry group of the union is larger than that of the configuration, and
permits multiple tilings. Many of these are non-edge-to-edge.

The (120◦, 60◦, 60◦) triangle is the n = 3 case of the infinite family of triangles of
the form (360◦/n, (90− 90/n)◦, (90− 90/n)◦) (see the left of Fig. 1; when n = 5 we
get the icosahedron). All these triangles tile the sphere edge-to-edge, with n small angles
(or large angles for n = 3, 4) meeting at each pole, and an equatorial belt of triangles
pointing alternately up and down. As shown by Sommerville and Davies, if n is odd
there is a second tiling (Fig. 1, right) in which half the tiles are rotated relative to the
rest. If n = 5 the action of the rotation is trivial.

Proposition 2. A triangle of the form (360◦/n, (90 − 90/n)◦, (90 − 90/n)◦), n > 3,
tiles only edge-to-edge.
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Fig. 1. The only tilings with the (360◦/n, (90− 90/n)◦, (90− 90/n)◦) triangle.

Proof. First, we consider the special case n = 4. This triangle is short and has only the
vertex vectors (4, 0) and (1, 4). It tiles only edge-to-edge; this follows from the following
lemma, which we will also need elsewhere.

Lemma 4. A short triangle whose only split vertex vector is (4, 0)/2 has no tilings that
are not edge-to-edge.

Proof. The only possible split vertex configuration would have two 90◦ angles meeting
(Fig. 2).

The resulting extended edge would contain two short edges AB, with a small angle at
either end; as no split vertex contains a small angle, the extended edge would be precisely
B B. This can only be filled on the other side by two other short edges, so that A is not a
split vertex.

The equilateral case n = 5 is easily ruled out as having no split vertices. For n > 5 the
triangle is tall and has the vertex vectors (4, 1) and (0, n). If n ≡ 1 mod 4, the triangle
has precisely the vertex vectors (4, 1), (2, (n+ 1)/2), and (0, n). As none of these split,
a non-edge-to-edge tiling is immediately ruled out.

If n is even, the triangle has only the vertex vectors (4, 1) and (0, n). The twoα corners
of any triangle must both be at (4, 1) vertices. As there are no split vectors using α, long
edges must be matched with long edges; this forces a (4, 1) vertex to be as at A in Fig. 3.
The neighborhoods of the vertices B B are now in turn forced, and the unique tiling,
which is edge-to-edge (“Isosceles case IIb” on page 49 of [3]), results by induction.

If, on the other hand, n ≡ 3 mod 4, there is a split vector of the form (2, (n+1)/2)/2.
We will show that no split vertex of this type can exist. Firstly, the large angle cannot
be between two small angles (Fig. 4(a)). For then the short side of that triangle would

Fig. 2. The neighborhood of a hypothetical split vertex.
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Fig. 3. The (4, 1) vertex figure.

be paired with a long side, and triangles 1, 1 would be forced at B. One of these would
overhang at C , forcing triangle 2; and 2 in turn would overhang at D, forcing 3. However,
3 would overhang at X , requiring a split vertex with two large angles, which does not
exist.

Next, the large angle of the split vertex must have its long edge paired with the (long)
edge of the adjacent small corner, not with the extended edge (Fig. 4(b)). Otherwise
triangles 1 and 2 are forced, and again an impossible split vertex is required. Now, the
edge AB of Fig. 4(c) cannot extend past B; otherwise triangle 1 is forced and again an
illegal split vertex is required.

Finally, the edge A′B cannot extend past A′ (Fig. 4(d)); otherwise there is a split vertex
at A′ forcing triangles 1 · · · 1. As just shown, the extended edge B ′B cannot continue
past B ′; so it has length 2L+ S. This must be paired with three edges of the same lengths
on the other side of B ′B; and as we have seen, the short edge must be in the middle. Thus
the vertices A′, A are not split. We thus rule out any configuration for the neighborhood
of a hypothetical split vertex except for that of Fig. 5.

Now, vertex B of Fig. 6 must have a neighborhood as shown. In the case n ≥ 11,
this follows immediately from the presence of two α corners at each adjacent vertex
(Fig. 6(a)). For n = 7, triangle 1 is forced in that way, but the next vertex has a β corner.
However, if the configuration were not as in Fig. 6(a), triangles 2 and 3 of Fig. 6(b)
would be forced; and we would then have a split vertex at D with the α angle oriented
incorrectly (recall Fig. 4(b)).

We now consider what angles might fill the gap at A in Fig. 6(a), along the edge AC .
If (triangle 1 in Fig. 7(a)) it were an α with the short edge on AC , triangles 2 and 3 would
be forced, and there would be an impossible configuration at X .

Fig. 4. Some impossible configurations for split vertices.
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Fig. 5. The neighborhood of a hypothetical split vertex.

If (triangle 1′ in Fig. 7(b),(c)) it were a β corner, the remaining gap at A could be filled
by an α corner in one of two ways. In Fig. 7(b) the short edge of triangle 2 is against
AF ; triangle 3 is forced. The gap at vertex F needs to be filled with β corners, but this
cannot be done due to the reflex angle at C . If, on the other hand, we have a triangle 2′

with a long edge against G A (Fig. 7(c)), it forces a triangle 3 as shown; but we have seen
that a split vertex cannot have the configuration at G. Finally, we might have a triangle
such as 1′′ in Fig. 7(d). This forces triangles 2 and 3, and the gap at vertex H cannot be
filled.

We conclude that the split vertex (2, (n + 1)/2)/2 cannot occur in a tiling of the
entire sphere with such a triangle. Thus, this triangle cannot tile in a non-edge-to-edge
fashion.

Triangles of the forms (90◦, 60◦, 60◦), (360◦/n, 90◦, 90◦), and (180◦/n, 180◦ −
180◦/n, 180◦ − 180◦/n) also have edge-to-edge tilings of the sphere in which great
circles are contained in the union of the edges. As above, these yield a continuum of
twisted tilings.

Triangles of the form (180◦/n, (180 − 180/n)◦, (180 − 180/n)◦) tile the sphere as
shown in Fig. 8, with 2n lunes each divided into two triangles. Any of these lunes can
be replaced by its mirror image to yield a non-edge-to-edge packing. We may call these
tilings flippant. Enumerating them is equivalent to enumerating the labelings of each of
the 2n lunes with one of the marks \ or /. This is done most easily using Burnside’s
theorem. The number is always approximately 22n−2/n; details are omitted (but see
Proposition 11 for a similar calculation).

Fig. 6. A forced neighborhood configuration.
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Fig. 7. A gap that cannot be filled.

Triangles of the form (360◦/n, 90◦, 90◦) also tile in pairs that make up lunes, but the
lunes are invariant under reflection. However, if n is even, the triangle (360◦/n, 90◦, 90◦)
tiles a lune with angle 90◦, in a “fan” centered on the midpoint of one side. Three of the
four essentially distinct ways of arranging these fans are non-edge-to-edge (Fig. 9, left).

The edge-to-edge tiling by the triangle (90◦, 60◦, 60◦) divides into six asymmetric
lunes of four triangles each; each of these can be independently flipped.

Finally, if n is divisible by 4, the triangle (360◦/n, 90◦, 90◦) tiles the triangle (90◦, 90◦,
90◦) in a fan. There are 252 essentially different ways of orienting these fans within a
regular “octahedral” tiling (Fig. 9, right), of which two are edge-to-edge . All of these
tilings have twisted variants as well.

Triangles of the forms (90◦, 60◦, 60◦), (180◦/n, 180◦ − 180◦/n, 180◦ − 180◦/n),
(360◦/n, 90◦, 90◦) for n even, also have non-edge-to-edge tilings in which the tiles of

Fig. 8. Edge-to-edge and non-edge-to-edge lune tilings.
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Fig. 9. Tilings with right semilunes.

one or more lunes are rearranged into two congruent convex polygons, one at each pole,
and the remaining lunes fill in the supplement of each angle (Fig. 10). We call these swirl
tilings; again, the numbers of these tilings are large.

4. Classification of Tilings: Short Triangles

Lemma 5. If a short triangle has the vertex vector (a, b), then:

(i) if a > 1, then a + b ≤ 5;
(ii) a ≤ 5.

Proof. If a+ b ≥ 5 and a ≥ 2 we would have 2α+ 4β < aα+ bβ = 360◦, and hence
α + 2β > 180◦.

We also note that (2, 0) and (1, 0)yield degenerate triangles, (1, 1)yields a reflex trian-
gle with excess greater than 180◦ which cannot tile the sphere, and (1, 2) yields a triangle
with excess 180◦, four copies of which tile in an edge-to-edge fashion. Vertex vectors
(0, 1) and (0, 2) are impossible with α > β, and (0, 3) requires α > β = 120◦. Thus the
spherical excess is greater than 180◦, making the number of tiles, n, at most three. How-
ever, this requires α = 360◦, and the triangle is degenerate. We may thus restrict our atten-
tion to the vertex vectors (5, 0), (4, 1), (4, 0), (3, 2), (3, 1), (3, 0), (2, 3), (2, 2), (2, 1),
(1, b) for b ≥ 3, and (0, b) for b ≥ 4.

Fig. 10. A swirl tiling.
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Proposition 3. The only short triangle that tiles the sphere and has a (5, 0) vertex
vector is the (72◦, 60◦, 60◦) triangle, which only tiles edge-to-edge.

Proof. A triangle with the vertex vector (5, 0) must also have at least one other vertex
vector. The Angle Comparison Lemma (ACL) rules out every vector with a + b ≤ 5;
consulting Table 1, we find that the only possibilities are (1, b), b ≥ 5, and (0, b), b ≥ 6.
If (5, 0) and (1, 2n + 1) are vertex vectors, they are the only ones, and neither splits; if
(5, 0) and (1, 2n) are vertex vectors, so is (3, n)which we have already ruled out. Finally,
if (5, 0) and (0, b) are vertex vectors, the Sphericity Lemma (SL) requires 3(b−4) < 8;
so b = 6. This gives the (72◦, 60◦, 60◦) triangle. This tiles edge-to-edge [3], [11], but
(Proposition 1) does not tile in any other way.

Proposition 4. No short triangle that tiles the sphere has a (4, 1) vertex vector.

Proof. First, we note that there are no short triangles that tile edge-to-edge and have this
vertex vector [3], [11], [12]. The vector (4, 1) rules out any other vector with a+ b ≤ 5;
we are thus left only with the options (1, b), b ≥ 5, and (0, b), b ≥ 6, for a second vertex
vector.

If (1, b) is a vertex vector, the SL implies 2(b − 4) < 3, and so b = 5. The vectors
(4, 1) and (1, 5) are not consistent with any others, and neither splits; so this option is
ruled out.

If (0, b) is a vertex vector, the SL implies 2(b− 4) < 6, whence b < 7; so the vector
must be (0, 6). This splits, but yields no other vertex vectors. The triangle has angles of
(75◦, 60◦, 60◦) and an excess of 15◦; its area is thus 1/48 of the sphere.

The large angle of each triangle must belong to a (4, 1) vertex, which must have
the configuration of vertex A in Fig. 11. The three other triangles at B are forced; it
therefore follows that any tiling of the sphere with these triangles can be divided into
such eight-element supertiles, disjoint from each other.

However, we shall see that these supertiles cannot tile the sphere. If the reflex angle
at C is filled by anything other than the vertex C ′ of another supertile, a reflex angle

Fig. 11. The (4,1) supertile
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Fig. 12. How supertiles fit together.

of 60◦ is created at D that cannot be filled by any vertex of a supertile. However, when
supertiles fit together in this way, one edge E E is left exposed at the top and bottom
(Fig. 12).

These edges form a polygonal path with all edges of length L , and all angles 120◦;
the region bounded by this path cannot be a supertile. We conclude that the vertex vector
(4, 1) is not compatible with any others. As it clearly cannot be used on its own, it is not
used in any tilings.

Note. If two more triangles are added to the top and bottom of a supertile, their apices
are antipodal. Moreover, the union of these ten tiles can be considered as a 75◦ lune with
zigzag edges, which fit together. Four such near-lunes can be fitted together, covering
40/48 of the sphere; and (Fig. 13) six more triangles can be added, leaving only eight
exposed edges, two partial. The figure shows the tiling and a “360◦ fisheye” view from
inside.

It is interesting to note that in this partial tiling, one tile (shown as the outside of the
fisheye view) has three complete layers of tiles around it, though there does not exist a full

Fig. 13. A near miss.



478 R. J. M. Dawson

tiling; the Heesch number of this tile is thus 3 [6]. In the Euclidean plane, nonconvex tiles
with Heesch number 5 are known [7]. Mann conjectures [8] that no convex Euclidean
tile has a Heesch number greater than 1.

Alternatively, 240 (75◦, 60◦, 60◦) triangles can be formed into 24 zigzag lunes, which
yield an exact fivefold tiling of the sphere.

Proposition 5. The only short triangle that tiles the sphere and has a (4, 0) vertex
vector is the (90◦, 60◦, 60◦) triangle, which can tile edge-to-edge.

Proof. Such a triangle (i.e., a right triangle) must also have at least one other vertex
vector; the ACL rules out (5, 0), (4, 1), and all vertex vectors with a + b ≤ 4. In
conjunction with (3, 2), the resulting triangle is not spherical. With (2, 3), we obtain the
(90◦, 60◦, 60◦) triangle.

If (4, 0) is the only vertex vector with a > 1, there cannot be a vector of the form
(0, 2n), which would imply the existence also of (2, n). Vectors of the forms (1, b)
and (0, 2n + 1) do not split; thus, the only split vector would be (4, 0)/2. However,
then (Lemma 4) any such tiling would be edge-to-edge; and [3], [11] there are no such
tilings.

Proposition 6. The triangle (80◦, 60◦, 60◦) is the only short triangle with a (3, 2)
vertex vector that tiles the sphere; and it does not do so in an edge-to-edge fashion.

Proof. The ACL and SL rule out all vertex vectors with a ≥ 2. If a triangle has vertex
vectors (3, 2) and (1, 2n + 1), that triangle has no vertex vector that splits; if b = 2n,
the triangle also has a vertex vector (2, n + 1) and these have already been ruled out.
The vertex vector (0, b) is ruled out by the ACL for b ≤ 5, and by the SL for b ≥ 8.
For b = 7 neither vector splits, and there are no others. For b = 6 we get the triangle
(80◦, 60◦, 60◦), which tiles the sphere with 36 tiles (Fig. 14) but does not do so in an
edge-to-edge fashion.

In fact, this triangle tiles in three essentially distinct ways; it is shown in [4] that these
are the only ways in which it tiles. In Davies’ classification [3], it was a particularly
refractory case, requiring the construction of a net of 18 triangles before a vertex was
found that could not be completed within an edge-to-edge tiling. This may perhaps have

Fig. 14. A tiling with the triangle (80◦, 60◦, 60◦).
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something to do with the fact that the tiling comes so close to being edge-to-edge, and
tiles in multiple ways that are not edge-to-edge.

It is also noteworthy that this triangle has three acute angles; as we see from Table 1,
obtuse and right triangles predominate among isosceles triangles that tile the sphere. The
only other acute isosceles triangles that tile the sphere are the (72◦, 60◦, 60◦) triangle
and the infinite family ((360/n)◦, (90−90/n)◦, (90− 90/n)◦) for n > 4.

As before, bisection yields a scalene right triangle (90◦, 60◦, 40◦) that tiles the sphere
but not edge-to-edge; there is not any obvious extension to an infinite family of scalene
triangles that tile.

Proposition 7. The triangle (100◦, 60◦, 60◦) is the only short triangle with a (3, 1)
vertex vector that tiles the sphere; and it does not do so in an edge-to-edge fashion.

Proof. The ACL rules out any other vertex vector with a ≥ 3 or a + b ≤ 4, as well as
(2, 1); so a triangle with (3, 1) has no vector of the form (2, b). Nor can it have a vector
of the form (1, b); if b is even, there are only two vectors, neither of which splits; and if
b = 2n + 1, then (2, n + 1) would also be a vector. We note that [3], [11], [12] none of
these triangles without split vectors actually tile the sphere.

If a short triangle with vertex vectors (3, 1) and (0, b) is spherical, the SL requires
that b < 10. If the tiling is not edge-to-edge, b must be even; hence we have b = 6 or
b = 8. In either case, the triangles must form six-triangle supertiles (Fig. 15).

If b = 6, we have the triangle (100◦, 60◦, 60◦), and the supertiles fit together uniquely
to form a tiling of the sphere (Fig. 16). If, on the other hand, b = 8, the reflex angles of
this supertile have measure 360◦ − 3β and the gap cannot be filled by the 2β angles of
the supertile; we conclude that this triangle does not tile the sphere.

Note. Bisecting this triangle yields a scalene right triangle, (90◦, 60◦, 50◦) that tiles
the sphere (with 36 tiles) but does not tile edge-to-edge. Moreover, the (100◦, 60◦, 60◦)
triangle is a member of a countably infinite family of (otherwise scalene) triangles with
angles (120◦ − 60◦/n, 60◦, 180◦/n), n > 3, which tile the sphere in a similar pattern
with n supertiles meeting at each pole. (Interestingly, all the tilings in this family are
two-colorable!)

Fig. 15. The supertiles forced for (3, 1), (0, b).
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Fig. 16. The tiling with the triangle (100◦, 60◦, 60◦)

Proposition 8. Any short triangle that tiles the sphere and has the vertex vector (3, 0)
can tile edge-to-edge.

Proof. The vector (3, 0) rules out any other vector with a ≥ 3, and also (2, 1). With
(2, 2), it yields the triangle (120◦, 60◦, 60◦), which tiles edge-to-edge [3], [11], [12]. The
triangle with vertex vectors (3, 0) and (2, 3) also has (1, 6) and (0, 9), but none of these
split, so it has no non-edge-to-edge tiling (and, in fact, does not tile at all). The vertex
vectors (3, 0) and (2, 3) yield the triangle (120◦, 30◦, 30◦), which tiles edge-to-edge.

A triangle with vertex vectors (3, 0) and (1, 2n + 1) has only those vectors, neither
of which splits. With vertex vectors (3, 0) and (1, 2n), we also have (2, n), so these
triangles have already been dealt with.

Finally, if a spherical triangle has vertex vectors (3, 0) and (0, b), we must have
b < 12 by the SL. If b is divisible by 3 there are other vertex vectors, already dealt with;
if b = 2n we obtain the triangles (120, 180◦/n, 180◦/n), n = 2, 3, 4, 5, all of which tile
edge-to-edge; and for b = 5, 7, 11 no vector splits and the triangle fails to tile.

Proposition 9. Any short triangle that has the vertex vector (2, 3) and tiles the sphere
also has some vertex vector with a > 2.

Proof. Table 1 shows that the only short triangle that tiles edge-to-edge and has the
vertex vector (2, 3) is the (90◦, 60◦, 60◦) triangle; and this has the vertex vector (4, 0).
Any other triangle with (2, 3) and tiling the sphere must therefore have a split vertex
vector. A triangle with (2, 3) and (1, n) also has (0, 2n − 3), and none of these split; we
can thus restrict our attention to the triangles with (2, 3) and (0, 2n), n > 3. (If n = 2
the triangle is not short; if n = 3 we obtain the (90◦, 60◦, 60◦) triangle.)

If n > 3, then α > 90◦ and there are no other vertex vectors; in particular, the only
split vector is (0, 2n)/2. Consider, then, the neighborhood of a (2, 3) vertex A. However
the edges are paired, there must be at least one short edge AB paired with a long edge
(Fig. 17).

Either vertex B at the other end of the short edge has an angle of measure α and
cannot be completed (Fig. 17(a)), or it has the split vector (0, 2n)/2. This split vertex
cannot be related in the same way to any other (2, 3) vertex; so there must be at least as
many (0, 2n)/2 split vertices as there are (2, 3) vertices. However, this requires at least
7/3 times as many β angles as there are α angles, which is impossible.



Tilings of the Sphere with Isosceles Triangles 481

Fig. 17. Typical neighborhoods of a (3, 2) vertex A.

Proposition 10. Any short triangle that has the vertex vector (2, 2) tiles the sphere
if and only if it also has another vector, of the form (0, n) for some n; and it tiles
edge-to-edge if and only if n is even.

Proof. As a tiling of the sphere with short triangles requires twice as many small vertices
as large vertices, the triangle must have another vertex vector with a < 2 < b. If it has
(1, b) it also has (0, 2b − 2); so in any case it has a vertex vector of the form (0, n). It
is easily verified that, for any n, 2n copies of the ((180− 360/n)◦, (360/n)◦, (360/n)◦)
triangle tile the sphere; pairs of them form lunes with an angle of (360/n)◦), and n of
these lunes tile the sphere.

These triangles are the isosceles semilunes. They tile in a large number of ways: two
examples are shown in Fig. 8.

Proposition 11. If n is odd, the ((180 − 360/n)◦, (360/n)◦, (360/n)◦) triangle tiles
the sphere in

1

4n

{
n∑

i=1

2gcd(n,i) + n2(n+1)/2

}
(3)

essentially distinct ways.

Proof. As n is odd, the triangle has only the vertex vectors (2, 2) and (0, n), and the
latter does not split. We have ε = (360/n)◦, so there are 2n tiles. Let p be the number of
(2, 2) vertices plus half the number of (2, 2)/2 split vertices, and let q be the number of
(0, n) vertices; we have 2p = n large angles and 2p + nq = 2n small angles. Solving,
we find that p = n/2 and q = 2.

Around either of the (0, n) vertices is an irregular rosette of triangles. Each of these
triangles has one entire short edge not covered by other triangles of the rosette (Fig. 18).
The small angle of the exposed short edge must either be on a partially exposed long
edge (AC in the diagram) or at a vertex shared by two small angles as at E . Therefore,
no edge may overhang that angle, as in one case it would leave an exposed segment of
length L − S that could not be covered, and in the other case it would require a split
vertex with two or more small angles (impossible for odd n). We conclude that each
exposed short edge must be covered by the short edge of another triangle. Moreover, as
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Fig. 18. Typical neighborhood of a (0, n) vertex A.

we cannot put a second large angle at the split vertex B or a third at D, every triangle of
the rosette must form half of a lune.

The sphere is thus divided into n lunes, each subdivided into two triangles (recall
Fig. 8). We enumerate the essentially distinct ways of performing this subdivision using
Burnside’s theorem:

|tilings| = 1

|G|

{∑
f ∈G

|Fix( f )|
}
, (4)

where G is the symmetry group of the lune tiling and, for any element f of G, Fix( f )
is the number of subdivisions fixed by f .

The symmetry group of the lune tiling consists of n rotations about the axis through
its vertices (including the identity), n rotations about axes in the equatorial plane (one
through the center of each longitudinal edge), n rotatory reflections, and n reflections.
As there are an odd number of lunes, it is not possible for each orbit of an isometry to
have even length; therefore, as the action of a reflection on a subdivision is nontrivial, it
follows that no reflecting isometry can fix any subdivision. Hence |Fix( f )| = 0 for all
reflecting isometries.

If f is a proper isometry, it is either a rotation through (360i/n)◦ about the polar
axis, or through 180◦ about an axis in the equatorial plane. In the former case, there are
gcd(i, n) orbits in its action on the n lunes; and in the latter case, there is always one
singleton orbit and (n − 1)/2 two-element orbits. Each orbit may be subdivided in two
ways, and (3) follows.

Note. For n = 3, 5, 7, 9, 11, 13, 15, . . . , the numbers of distinct tilings are 1, 4, 9,
23, 63, 190, 612, . . . . This sequence is closely related to the sequence 2, 4, 8, 20, 60,
188, . . . , which enumerates binary necklaces of odd length [10].

Note. Calculation for even n is more complicated for two reasons. Firstly, there are
reflecting isometries whose orbits on the set of lunes are all of even length, and which
therefore can fix subdivisions. Secondly, and more seriously, the vertex vector (0, n)
splits, and there is a third vertex vector (1, (n + 2)/2). (When n = 6, we have the
(120◦, 60◦, 60◦) triangle, which has a fourth vertex vector, namely (3, 0).) These give
rise to “swirl” tilings such as that shown in Fig. 10. We shall not attempt to enumerate
these here.
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Fig. 19. Supertiles of triangles with vertex vector (2, 1).

Proposition 12. The triangle (150◦, 60◦, 60◦) is the only short triangle with the vertex
vector (2, 1) that tiles the sphere; and it does not do so edge-to-edge.

Proof. If a triangle has the vertex vector (2, 1) it cannot have any other vertex vector
with a ≥ 2; if it has any vector (1, n) it also has (0, 2n − 1), and none of these split. As
no short triangle with a (2, 1) vertex vector tiles the sphere edge-to-edge, these triangles
do not tile at all.

We need thus consider only triangles with (2, 1) and (0, 2n). These have no other
vertex vectors, and necessarily form supertiles as shown in Fig. 19.

When n = 3, the angle A of the supertile fits the reflex angle B, and two supertiles
tile the sphere (Fig. 20). For even n, A does not divide B; for odd n > 3 two or more
angles A are required for each angle B, and this is impossible as each supertile has the
same number of each.

Note. Bisecting the large angle of the (150◦, 60◦, 60◦) triangle yields a scalene right tri-
angle that tiles the sphere only in a non-edge-to-edge fashion, with angles (90◦, 75◦, 60◦).

Note. The (150◦, 60◦, 60◦) triangle is part of a continuum family of triangles, otherwise
scalene, with angles (180◦ − θ/2, θ, (180◦ − θ)/2) for π/4 < θ < π/2.

Finally, we consider the triangles that have no vertex vector (a, b) with a > 2.
As noted above, the vector (1, 2) gives a continuous family of triangles, all of which
tile the sphere edge-to-edge with four copies; and any other such equation, alone or in
combination with other such equations, requires more than twice as many β angles as

Fig. 20. The tiling with the triangle (150◦, 60◦, 60◦).
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α angles. We have thus completely classified the short triangles that tile the sphere in a
non-edge-to-edge fashion.

5. Classification of Tilings: Tall Triangles

In the tall case, many fewer vertex vectors are ruled out by angle-sum considerations.
Locally, (5, 0), (4, 0), (4, 1), and all vectors with a ≤ 3, a + b ≥ 3 are realizable.
However, while there are non-edge-to-edge tilings with tall triangles, there are no new
tiles.

Proposition 13. Any tall triangle that tiles the sphere does so in an edge-to-edge
fashion.

Proof. A triangle with the vertex vector (5, 0) cannot have a + b ≤ 5 in any other
vector, hence any such vector has a ≤ 3. A triangle with (5, 0) and (3, 2n + 1) has only
(1, 4n + 2) as an alternative vector, and none of these split. Vertex vectors (5, 0) and
(3, 2n) imply (4, n) which has already been ruled out. Thus a ≤ 2 in any other vector.
However, it is not possible to pair long edges with long edges and short edges with short
edges all around a (5, 0) vertex, and pairing two edges of different lengths requires a
(1, n) split vertex. Thus a tall triangle with (5, 0) that tiles the sphere must also have
some vertex vector (2, 2n). Now, (2, 2) is ruled out by angle inequalities, and n ≥ 3
yields a nonspherical triangle. This leaves only (2, 4) as a potential second vertex vector.
These vectors give us the (72◦, 72◦, 54◦) triangle; but we shall show that this fails to tile.

We say that a (5, 0) vertex owns any (1, 2) or (2, 4) vertex that is joined to it by a
short edge, and any (2, 4) vertex that is joined to it by a long edge passing through the
middle of four β angles. Thus, in Fig. 21, A owns X outright, and shares ownership of
Y with B; but C does not own Y . A (1, 2) vertex can be owned by at most one (5, 0),
and a (2, 4) by at most two.

Looking at the ways of arranging five α angles around a point, we see that either a
(5, 0) vertex A owns at least two (in fact, three) (1, 2) vertices, or it owns one and has
the configuration of Fig. 22(a). In the latter case, we will show that A at least shares a
(2, 4) vertex.

Suppose A to own neither B nor C ; it follows that they must be (5, 0). If there were
a split vertex on the edge B D, there would be an overhang at D, requiring an α corner

Fig. 21. Ownership of vertices.
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Fig. 22. Neighborhood of a (5, 0) vertex A that owns only one (1, 2) vertex.

to fill it. Then C D would be a long edge with an α at each corner, which is impossible
(Fig. 22(b)). We therefore conclude that BD is a long edge shared by two triangles,
�BDA and �BDE, and that ∠BDE = β (Fig. 22(c)). By the same argument, ∠CDF is
as shown and equals β. We conclude that D is a (2, 4) owned at least in part by A.

Now, if every (5, 0) owns at least two (1, 2) vertices outright, or owns one and shares
ownership of a (2, 4) with at most one other (5, 0), it follows that the total number of β
angles would have to be at least 4/7 times the number of α vertices, which is impossible.
Thus no tall triangle has vertex vectors (5, 0) and (2, 4).

It should be noted that the (72◦, 72◦, 54◦) triangle, which has (5, 0) and (2, 4) as
vertex vectors, does “locally” tile the sphere, in that it permits a triple cover of the sphere
with 20 small vertices meeting at each pole (Fig. 23).

If a triangle has (4, 0) as a vertex vector and tiles the sphere, it must also have a second
vertex vector (a, b). If a = 0, 2, or 3 it follows immediately that β divides 360◦; if a = 1,
β divides 270◦. However, as α = 90◦, the area of the triangle is β, so β also divides
720◦; it follows that β divides 90◦. We thus have, in either case, a (90◦, 90◦, 360◦/n)
triangle, discussed in Section 3.

A tall triangle with the vertex vector (4, 1) must have some other vertex vector as
well. If there were only one other equation with a = 1 neither would split, and the tiling
would be edge-to-edge; but there is [3], [11], [12] no such tiling. Any second vector with
a = 3 or a = 2 implies a third with a = 0. As β < α, we have b > 5; and for every
such b there exists (Section 3) an edge-to-edge tiling with vertex equations (4, 1), (0, b).
These are known to tile edge-to-edge, and (Proposition 2) do not tile in any other way.

Fig. 23. Three-tenths of the triple cover with (72◦, 72◦, 54◦) triangles.
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A triangle with vertex vector (3, 0) has β > 60◦ (by Lemma 3) and thus cannot have
any vertex vector of the form (2, b). Thus there could be no split vertex including an
angle with measure α. Thus triangles would have to meet short edge to short edge, in
pairs, implying N to be even. However, ε > 120◦, so we have N < 6 (and thus N = 4),
which requires β = 120◦ = α. The triangle is equilateral, and forms the faces of a
spherical tetrahedron. It does not tile non-edge-to-edge.

Next, the vector (3, 1) implies that α > 90◦, and thus that any vector with a < 3 will
have b > a. Any such tiling would therefore have to contain at least one (3, 1) vertex.
Such a vertex would have three short edges and five long edges, and thus a short edge
paired with a long edge. This would imply a split vertex joined to the (3, 1) by a short
edge; as above, we say that the (3, 1) owns the split vertex; and it is easily verified that
no split vertex is owned by more than one (3, 1).

Now, (3, 1) rules out (2, 2) as a vertex vector, so any split vertex would have the split
vector (2, 2b)/2, b > 1. If (3, 1) owns n vertices, they have between them 3+ n angles
with measure α and 1 + 2n with measure β. As (3 + n) < 2(1 + 2n) for n > 0, and
as any other vertices that exist have a < 2b, no combination of such vertices will give∑

a = 2
∑

b as required.
Finally, any vector with a = 3, b ≥ 2, a = 2, b ≥ 2, or a = 1 fails to satisfy a ≥ 2b,

and forces any other vertex vector with smaller a to do the same. Again, we cannot obtain∑
a = 2

∑
b by combining such vertices. This leaves only (2, 1); triangles with this

vector belong to the same continuous family as the short triangles with (1, 2), and the
same argument shows that they tile only edge-to-edge.

6. Conclusion

We have seen that several of the isosceles spherical triangles which tile the sphere
edge-to-edge can also tile it in a non-edge-to-edge fashion, while others can only tile
edge-to-edge. We have also exhibited three “sporadic” cases, and one (obvious) infinite
family, of spherical triangles that can only tile in a non-edge-to-edge fashion.

This is a first step towards the eventual classification of all triangles that tile the
sphere. In future work it will be possible to assume that any as yet undiscovered triangle
that tiles the sphere is scalene. Moreover, three new scalene tiles have been discov-
ered, the right triangles obtained by bisection of the triangles of Figs. 14, 16, and 20;
and two infinite families of tiles, of which the triangles of Figs. 16 and 20 are special
cases.

Two interesting open questions are suggested by this work. Firstly, one may ask
whether any spherical tile has a Heesch number exceeding 3. Figure 13 shows that the
(75◦, 60◦, 60◦) triangle comes tantalizingly close to a Heesch number of 4, but apparently
does not achieve it—though a better partial tiling cannot be ruled out.

Secondly, we have seen some examples of multiple covers of the sphere with isosceles
triangles. There are several other easy examples, such as all semilunes whose lune angles
are rational multiples of π . This class of examples shows, incidentally, that we may
achieve an n-tuple cover for any n. Schwarz [9] (see also Chapter 6 of [2]) has classified
the triangles that yield finite-density multiple covers of the sphere by reflection; they
consist of the right semilunes with rational lune angle, and a finite number of others. It
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would be interesting—but probably very difficult—to classify all finite-density tilings,
or even just the finite-density edge-to-edge tilings.
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