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Abstract. Let G be a finite set of points in the plane. A line M is a (k, k)-line if M is
determined by G, and there are at least k points of G in each of the two open half-planes
bounded by M . Let f (k, k) denote the maximum size of a set G in the plane, which is not
contained in a line and does not determine a (k, k)-line.

In this paper we improve previous results of Yaakov Kupitz ( f (k, k) ≤ 3k), Noga Alon
( f (k, k) ≤ 2k + O(

√
k)), and Micha A. Perles ( f (k, k) ≤ 2k + O(log k)). We show that

f (k, k) ≤ 2k + O(log log k).

1. Introduction

Let G be a set of n points in the real affine plane. A line M is said to be determined by
G if it contains two different points of G.

A line M , determined by G, is called a (k, l)-line if the two open half-planes bounded
by M include at least k and l points of G, respectively.

Clearly, if the set G is contained in a line, then G has only one (0, 0)-line and no other
spanned lines. It turns out that if G is large enough and is not contained in a line, then it
must posses a (k, l)-line. In this paper we improve previous results of Alon, Kupitz [K1],
[K2], and Perles regarding the upper bound for a size of a set which is not contained in a
line and does not determine a (k, k)-line. The same method yields an upper bound also
for the size of a set which does not determine a (k, l)-line (see the concluding remarks
at the end of this paper).
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Definition 1.1. Let k, l be nonnegative integers. Define f (k, l) to be the maximum
size of a finite set G in the plane, not contained in a line, which does not determine a
(k, l)-line.

We wish to prove the following theorem.

Theorem 1.2. f (k, k) ≤ 2k + O(log log k).

A closely related problem to the one discussed in this paper is the following which was
raised by Perles: let G be a finite set in the plane. How well can we evenly divide this set
by a line which is determined by G? To be more precise, for every line M , determined by
G, denote by d(M) (the absolute value of) the difference between the number of points
of G in the two open half-planes bounded by M . Define D(G) = minM d(M). Finally
define µ(n) = max|G|=n D(G). Are there any good upper bounds for µ(n)?

Clearly, if G is a set of odd number of points in general position (no three on a line) in
the plane, then D(G) = 1 which means that in general it is not always possible to divide
the set of points equally. However, maybe one can always do as good as that, namely, is
it possible that µ(n) ≤ 1 for every n?

An example by Alon [A] shows that this is not the case. Alon found a construction
of a set G of 12 points so that D(G) = 2 (see Fig. 1). In fact based on this construction
one can find arbitrary large sets G with D(G) = 2.

Theorem 1.2 implies thatµ(n) = O(log log n). Indeed, let C be the absolute constant
so that f (k, k) ≤ 2k + C log log k. Given a set G of n points in the plane take k =
n/2−C log log n. Then n ≥ 2k+C log log k. We may assume, of course, that G is not
contained in a line for otherwise D(G) = 0. Therefore, by Theorem 1.2, there exists a
line M determined by G so that in each open half-plane bounded by M , there are at least
k = n/2 − C log log n points of G. It follows that the difference between the number
of points of G in the two open half-planes is at most 2C log log n. In other words we
showed that for every set G of n points in the plane D(G) = O(log log n).
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Fig. 1. A set G with D(G) = 2.
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In Section 2 we describe the method of flip arrays, invented by Goodman and Pollack
(see [GP1] and [GP2] for a survey and applications), which encodes a set of n points in
the plane as a sequence of permutations on n elements. Throughout the rest of the paper
we use this method to derive an upper bound for f (k, k) (for other intensive uses of this
method in a similar way see [U] and [PP]).

2. Flip Arrays

Let G be a set of n points in the plane. Let L be a directed line through the origin which
is not perpendicular to any of the lines determined by G. We arrange the points of G in
a sequence x1, . . . , xn by the order of their projections on L from left to right. For every
0 ≤ θ ≤ π , let L(θ) be the line through the origin which arises from L by a rotation at
angle θ (in the positive direction). Let 0 < θ1 < · · · < θm < π be all angles in [0, π ], so
that each of L(θ1), . . . , L(θm) is perpendicular to some line determined by G. Denote
for convenience, θ0 = 0, θm+1 = π .

For every 0 ≤ θ ≤ π which is not one of {θ1, . . . , θm}, let Pθ denote the permutation
on {1, . . . , n} so that the projections of xPθ (1), . . . , xPθ (n) on L(θ) are in that order from
left to right.

It is important to note that we think of a permutation P as a sequence of n elements,
namely, (P(1), . . . , P(n)). We then say that the element P(i) is at the place i in the
permutation P . The relative order of two elements i, j depends on whether P−1(i) is
greater than or less than P−1( j). If P−1(i) < P−1( j) we say that i is to the left of j and
that j is to the right of i .

Let xi and xj be two points of G and let α < β be two angles which are not from
{θ1, . . . , θm}. The relative order of i and j in the permutations Pα and Pβ is the same
iff the vector −→xi xj is not perpendicular to any of the lines {L(θ)|α < θ < β}. It follows
that if 0 ≤ k ≤ m and θk < α < β < θk+1, then Pα = Pβ . This justifies the following
notation.

Notation 2.1. For every 0 ≤ j ≤ m, denote by Qj the permutation Pα where α is any
angle such that θj < α < θj+1.

Clearly, Q0 is the identity permutation, and for every two indices 1 ≤ i < j ≤ n, the
relative order between i and j changes exactly for one value of k (0 ≤ k < m) when
going from Qk to Qk+1. Eventually, Qm is the permutation (n, n − 1, . . . , 1).

Fix k such that 0 ≤ k < m. We want to find out how exactly Qk+1 arises from Qk .
For every 1 ≤ i < j ≤ n, the relative order between i and j in the permutation Qk+1

is different from that in Qk iff the vector −→xi xj is perpendicular to L(θk+1). Let M be a
line spanned by points of G which is perpendicular to L(θk+1). Let xi1 , . . . , xis be all the
points of G ∩ M , we assume that i1 < i2 < · · · < is . Since for every 1 ≤ u < v ≤ s the
relative order between iu and iv changes when going from Qk to Qk+1, we conclude that
in Qk the relative order of i1, . . . , is is the same as in Q0, namely, the natural order. Let j
be an index which is not from {i1, . . . , is}. When going from Qk to Qk+1 we do not change
the relative order between j and i1 and between j and is . Therefore, in the permutation
Qk , j cannot be between i1 and is , or in other words either Q−1

k ( j) < Q−1
k (i1) or
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Q−1
k ( j) > Q−1

k (is). This shows that in Qk the elements i1, . . . , is come one after the
other and form a monotone increasing sequence. It then follows that in Qk+1 those same
elements form a monotone decreasing sequence. In other words, some subsequence of
consecutive elements in Qk appear flipped in Qk+1.

Definition 2.2. A block in a permutation P is a sequence of consecutive elements in P .
We some times refer to the block as a region (containing certain places in a permutation)
and some times we refer to its content (the elements which are in that region). We say
that a block B is monotone increasing if the elements in that block form a monotone
increasing sequence from left to right. We define a monotone decreasing block similarly.

Notation 2.3. Let 1 ≤ a < b ≤ n. We denote by [a, b] the block which consists of the
places a, a+1, . . . , b in a general permutation (considered as a sequence of n elements).

In view of Definition 2.2, Qk+1 arises from Qk by flipping blocks in Qk . Every such
block represents a line, determined by the points of G, which is perpendicular to L(θk+1).
Every pair of blocks that flip when going from Qk to Qk+1 represent two parallel lines,
and therefore are disjoint, so we can treat them as if they were flipped one after the other.

To summarize, given a set G of n points in the plane, we derive from it a sequence
of permutations on the numbers 1, . . . , n, with the following properties. The first per-
mutation is the identity permutation, the last one is the permutation (n, n − 1, . . . , 1),
and each permutation arises from its predecessor by flipping a block which is monotone
increasing (right before the flip). Every such block which flips represents a line which
is determined by the points of G.

3. Notation and Terminology

Let G be a set of n points in the plane. A flip array of G is a sequence of permutations on
the elements {1, 2, . . . , n} derived from G as described above. Each permutation arises
from its predecessor by a flip T of a block B. For every element x ∈ B, we say that x
takes part in the flip T .

Remark. The same set G can have several different flip arrays. The flip array depends
on the initial choice of the direction L , the direction of rotation of L , and the order in
which we flip blocks that represent parallel spanned lines.

Let SG be a flip array of the set G. Assume σ ∈ SG is a permutation in the flip array
SG . For two elements 1 ≤ x < y ≤ n, we say that x and y change order in σ , if, in σ , x
is to the right of y (that is σ−1(x) > σ−1(y)) and in the permutations which are prior to
σ in SG , x is to the left of y.

If P1, P2 ∈ SG are two consecutive permutations so that P2 is obtained from P1 by a
flip F , then we denote P−F = P1 and P+F = P2.

We say that two elements x, y ∈ {1, 2, . . . , n} change order in a flip F if x and y
change order in P+F .
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Let SG be a flip array of a finite set G. For P1, P2 ∈ SG , we say that P1 is previous to
P2 if P1 comes before P2 in SG . We then say that P2 is later to P1.

Similarly, we say that a flip F1 is previous to a flip F2 if P+F1
is previous to P+F2

. We
then say that F2 is later to F1. We say that a flip F occurs between a flip F1 and a flip
F2 (where F1 is previous to F2) if F is later to F1 and F2 is later to F . In this case we
sometimes say that F is between F1 and F2.

For P1, P2 ∈ SG . We denote by [P1, P2] the permutations in SG which are not previous
to P1 and not later to P2.

For a flip F and P1, P2 ∈ SG , we say that F is between P1 and P2 if there are two
consecutive permutations σ, σ ′ ∈ [P1, P2] so that σ ′ is obtained from σ by the flip F .

Note the following two simple observations.

Observation 3.1. Let SG be a flip array of a set G. Every two elements change order at
some point (permutation) in the flip array SG . From that point on (i.e., in all permutations
that come afterwards in SG) they are always in inverted order.

Observation 3.2. Let SG be a flip array of a set G of n points in the plane. If a line
M , determined by G, is represented by a flip of the block [a, b], then there are exactly
a − 1 points of G in one open half-plane bounded by M , and n − b points in the other
half-plane bounded by M .

4. Getting Started

Since we are interested only in asymptotic bounds we make some assumptions that will
simplify the presentation of the proof and will cause a loss of a constant number of
units in the bound. We thus assume that G ⊂ R2 is a finite set of points in the plane,
aff G = R2 (i.e., G is not contained in a line), and that it does not determine a (k, k)-line.
We denote by n the size of the set G and assume that n − 2k ≡ 2 (mod 4). Let d denote
the integer so that n = 2k + 2(2d − 1). We denote c = 2d − 1. Therefore,

|G| = n = 2k + 2c = 2k + 2(2d − 1).

When needed we assume (without explicitly saying so) that d is large enough. Under
those assumptions we will show that if G does not determine a (k, k)-line, then k ≥ 22O(c)

.
The proof is based on observing a flip array of G. Let SG be such a flip array.

Notation 4.1. For a permutation σ ∈ SG , let ZONE denote the block [k + 1, n − k].
We denote by LZONE the block [k+1, n/2] and by RZONE the block [n/2+1, n− k].

Observe (using Observation 3.2) that the assumption that G does not determine a
(k, k)-line is equivalent to assuming that no permutation in SG arises from its predecessor
by a flip whose block is included in ZONE.

Definition 4.2. A transfer is a flip whose block includes both places n/2 and n/2+ 1.
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Fig. 2. Distinguished regions and places in a permutation.

Let Ti (i ≥ 0) denote the i th transfer in the flip array SG . We call the block [1, n/2]
the left side, and the block [n/2+ 1, n] is called the right side. Note that the block of a
flip, which is not a transfer, is fully included either in the right side or in the left side, in
particular this is true for all the flips between Ti and Ti+1.

Note. Assume that an element x moves from the left side to the right side (or vice
versa) by a flip F . Then, clearly, F must be a transfer (for the block of F must include
a place from the left side as well as from the right side).

Claim 4.3. If T is a transfer, then the block of T includes either LZONE or RZONE
(or both).

Proof. Let B = [a, b] be the block of T . Since T is a transfer, a ≤ n/2 and b ≥ n/2+1.
If B does not include RZONE, then b < n/2+c and if B does not include LZONE, then
a > n/2 − c + 1. It follows that in this case B ⊆ ZONE contradicting the assumption
on G.

Remark. Similarly, if B is a block of a flip which is included in the left side (right
side) and includes the place a ∈ ZONE, then it includes the block [k, a] ([a, n− k+1]),
for otherwise B is fully contained in ZONE.

Lemma 4.4. Let i ≥ 0, and consider only the permutations in [P+Ti
, P−Ti+1

]. Then one
of the following four statements is true:

1. (a) In P+Ti
, LZONE is monotone decreasing and in some later permutation σ ∈

[P+Ti
, P−Ti+1

] it is monotone increasing.
(b) In some permutation σ ∈ [P+Ti

, P−Ti+1
], LZONE is monotone decreasing and in

P−Ti+1
it is monotone increasing.

2. (a) In P+Ti
, RZONE is monotone decreasing and in some later permutation σ ∈

[P+Ti
, P−Ti+1

] it is monotone increasing.
(b) In some permutation σ ∈ [P+Ti

, P−Ti+1
], RZONE is monotone decreasing and in

P−Ti+1
it is monotone increasing.

Proof. By Claim 4.3, the block of Ti includes either LZONE or RZONE. Assume that the
block of Ti includes LZONE. Then in P+Ti

, LZONE is monotone decreasing. If the block
of Ti+1 includes LZONE, then in P−Ti+1

, LZONE is monotone increasing and thus 1(a) is
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true. Assume that the block of Ti+1 includes RZONE. In P−Ti+1
, [n/2, n− k] (⊃ RZONE)

is monotone increasing, however, in P+Ti
, the elements at the places n/2, n/2+ 1, which

we denote by x and y, respectively, are in monotone decreasing order. Therefore, either
x or y must take part in a flip S which is between Ti and Ti+1. If x takes part in S, then the
block of S must include LZONE. It follows that in P−S , LZONE is monotone increasing
and then 1(a) is true. If y takes part in S, then the block S must include RZONE. It
follows that in P+S , RZONE is monotone decreasing and then 2(b) is true.

We argue similarly if the block of Ti includes RZONE.

Lemma 4.4 justifies the following definition.

Definition 4.5. If in Lemma 4.4 either 1(a) or 1(b) is true, we say that Ti+1 is a left-
transfer. Otherwise (then either 2(a) or 2(b) is true), we say that Ti+1 is a right-transfer.

Note. Definition 4.5 does not apply for T0.

The following Claim 4.6 shows that if Ti+1 is a left-transfer, then there must be many
(a number which is exponential in c) flips, whose block intersects with LZONE, between
Ti and Ti+1 to prepare the ground for the flip Ti+1. From this observation alone we can
easily show that c = O(log n), which in turn implies f (k, k) = 2k + O(log k).

Claim 4.6. Assume that Ti+1 is a left-transfer. Then the number of flips which occur
between Ti and Ti+1, the block of which includes the place n/2 − s (0 < s < c), is at
least 2s−1.

Proof. We prove the claim by showing the following more general lemma.

Lemma 4.7. Let σ1 ∈ SG . Let m ≥ 1, t > 0 and assume that the block [m,m + t] of
σ1 is monotone decreasing. Let σ2 ∈ SG be the first permutation later to σ1, in which the
block [m,m+ t] is monotone increasing. Assume that the block of every flip F , between
σ1 and σ2, is of the form [a, b], where a < m or a > m + t . Then the number of flips
between σ1 and σ2, the block of which includes the place m, is at least 2t − 1.

Proof. For every σ ∈ [σ1, σ2], we define a weight function g(σ ), according to the
content of the block [m,m+ t] in σ . Let the elements in the block [m,m+ t] from left to
right be x0, . . . , xt . We define g(σ ) =∑

0≤i<t,xi<xi+1
2i . Observe that if P1, P2 ∈ [σ1, σ2]

are two consecutive permutations and F is the flip by which P2 is obtained from P1,
then g(P1) �= g(P2) only if the block of F includes the place m. Also observe that in
this case g(P2) ≤ g(P1) + 1 (because the elements in the block of F are in monotone
increasing order in P1 and are in monotone decreasing order in P2).

g(σ1) = 0 because the block [m,m + t] is monotone decreasing, in σ1. In σ2 the
block [m,m + t] is monotone increasing and therefore g(σ ′2) = 2t − 1. This concludes
the proof.
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We now return to the proof of Claim 4.6. Since Ti+1 is a left-transfer (recall Defini-
tion 4.5), there existσ1, σ2 ∈ [P+Ti

, P−Ti+1
], so thatσ2 is later toσ1 and LZONE is monotone

decreasing in σ1 and is monotone increasing in σ2. Observe that if B = [a, b] is a block
of a flip which occurs between Ti and Ti+1, then either a > n/2 or a < n/2 − c + 1.
This is because no flip which occurs between Ti and Ti+1 is a transfer and thus if
n/2 − c ≤ a ≤ n/2, then B ⊂ LZONE ⊂ ZONE, contradicting our assumptions. We
can now apply Lemma 4.7 with m = n/2− s, t = s, and σ1, σ2, and conclude that there
are at least 2s − 1 ≥ 2s−1 flips between Ti and Ti+1, the block of which includes the
place n/2− s.

Remark. We can argue similarly when Ti+1 is a right-transfer and prove the following
analogous claim.

Claim 4.8. Let s be an integer such that 0 < s < c. Assume that Ti+1 is a right-
transfer. Then the number of flips between Ti and Ti+1, the block of which includes the
place n/2+ 1+ s, is at least 2s−1.

Recall that d = �c/2�. Therefore, k + d is the middle place in LZONE and n/2+ d
is the middle place in RZONE. Observe that if B is a block of a flip which is included
in the left side (right side), then the center of B is to the left of the place k + d (right to
the place n/2+ d), for otherwise B ⊆ ZONE.

Definition 4.9. Let i ≥ 0. If Ti+1 is a left-transfer, denote byAi+1 the set of all elements
which are at the place k + d, in some σ ∈ [P+Ti

, P−Ti+1
]. If Ti+1 is a right-transfer, denote

byAi+1 the set of all elements which are at the place n/2+ d, in some σ ∈ [P+Ti
, P−Ti+1

].

Remark. The following lemmata and claims, until the end of this section, are formu-
lated for the left side. The reader should have no difficulty in formulating and proving
the analogue for the right side.

In Lemma 4.10, Corollaries 4.11 and 4.12, and Claim 4.13 we show that for every
i ≥ 0, the set Ai+1, associated with the transfer Ti+1, contains at least 2d−2 elements,
every two of which change order between Ti and Ti+1. This will encode the information
that there must be many flips between every two consecutive transfers.

Lemma 4.10. Let i ≥ 0 and 0 ≤ s < d. Consider only the flips which occur between
Ti and Ti+1. Let a0 denote the element at the place k+d+ s in P+Ti

. Denote by aj ( j ≥ 1)
the element at the place k + d + s right after the j th flip whose block includes the place
k + d + s. Then {aj }j≥0 is a strictly monotone decreasing sequence.

Proof. Let S be the ( j +1)th flip whose block B = [a, b] includes the place k+d+ s.
The center of B is to the left of the place k + d and therefore to the left of k + d + s.
It follows that the element which is at the place k + d + s in P+S is smaller than the
element at the place k + d + s in P−S (for B is monotone increasing in P−S ). In other
words, aj+1 < aj .
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Corollary 4.11. Let i ≥ 0 and let Ti+1 be a left-transfer. Then |Ai+1| ≥ 2d−2.

Proof. By Claim 4.6 (taking s = d−1), there are at least 2d−2 flips, between Ti and Ti+1,
the block of which includes the place k+d. Denote by aj ( j ≥ 0) the element at the place
k + d right before the j th flip whose block includes the place k + d. By Lemma 4.10,
{aj }j≥0 is a strictly monotone decreasing sequence and therefore its elements are all
different.

Corollary 4.12. Let i ≥ 0 and let σ ∈ [P+Ti
, P−Ti+1

]. Assume that in σ the element x is
in the block [k + d, n/2]. Let σ ′ ∈ [P+Ti

, P−Ti+1
] be any permutation later to σ , in which

x is in the block [k + d, n/2]. Then x does not take part in any flip between σ and σ ′.

Proof. Assume to the contrary that x takes part in a flip S which is between σ and σ ′,
and that S is the first such flip. The center of the block of S is to the left of the place
k + d , and, in P−S , x is in the block [k + d, n/2]. Therefore, in P+S , x is in the block
[1, k + d − 1], and the element y at the place k + d in P+S satisfies y < x . In σ ′, x is
in the block [k + d, n/2]. Hence, there must be a flip S′, later to S, such that, in P−S′ , x
is in the block [1, k + d − 1], and, in P+S′ , x is in the block [k + d, n/2]. It follows that
in P−S′ the element y′ at the place k + d is greater than x . In particular y′ > y. This is a
contradiction to Lemma 4.10 with s = 0.

Claim 4.13. Let i ≥ 0 and assume that Ti+1 is a left-transfer. Then every two elements
of Ai+1 change order in some σ ∈ [P+Ti

, P−Ti+1
].

Proof. Let x, y ∈ Ai+1 be two different elements. Let σ1 ∈ [P+Ti
, P−Ti+1

] be the first
permutation in which x is at the place k+d. Let σ2 ∈ [P+Ti

, P−Ti+1
] be the first permutation

in which y is at the place k + d . Without loss of generality assume that σ1 is previous to
σ2. We claim that in σ1, y is to the left of x . Indeed, assume to the contrary that in σ1, y
is inside the block [k + d + 1, n/2]. By Corollary 4.12, taking σ = σ1 and σ ′ = σ2, y
does not take part in any flip between σ1 and σ2. This is impossible because y is at the
place k + d in σ2.

We now claim that, in σ2, x is to the left of y. Assume to the contrary that, in σ2, x
is in the block [k + d + 1, n/2]. By Corollary 4.12, taking σ = σ1 and σ ′ = σ2, x does
not take part in any flip between σ1 and σ2. This is impossible because x is at the place
k + d in σ1. This shows that x and y change order in some σ ∈ [P+Ti

, P−Ti+1
].

The following claim will be very important in what follows.

Claim 4.14. Let i ≥ 0 and assume Ti+1 is a left-transfer. Let x be an element which
is inside the block [k + d, n/2], in some σ ∈ [P+Ti

, P−Ti+1
]. If x does not take part either

in Ti or in Ti+1, then x changes order with at least 2d−3 elements of Ai+1, in the flips
which occur between Ti and Ti+1.

Proof. We consider only the flips which occur between Ti and Ti+1, the block of which
includes the place k + d , and number them by order of occurrence (starting at 1). For
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every element y, let Tin(y) denote the number of the flip which takes y into the block
[k + d, n/2] (we set Tin(y) = 0, if such a flip does not exist). Denote by Tout(y) the
number of the flip which takes y outside the block [k + d, n/2] (we set Tout(y) = 0, if
such a flip does not exist).

We claim that Tin(y) and Tout(y) are well defined. We show this only for Tin(y), the
argument for Tout(y) is similar. Assume to the contrary that there are two flips S1, S2

which take y inside the block [k + d, n/2]. Without loss of generality, S1 is previous to
S2. Both in P+S1

and in P+S2
, y is in the block [k+d, n/2]. This contradicts Corollary 4.12,

as y takes part in S2.

Lemma 4.15. Let y and z be two different elements and assume that both Tin(y) and
Tout(z) are different from 0. If Tin(y) ≥ Tout(z), then y and z change order in some
σ ∈ [P+Ti

, P−Ti+1
].

Proof. Let F1 denote the flip whose number is Tout(z). Let F2 denote the flip whose
number is Tin(y). We know that F2 is equal to or later to F1. In P−F1

, z is inside the block
[k+d, n/2] and y is not, for otherwise Tin(y) < Tout(z). In other words, in P−F1

, z is to the
right of y. In P+F2

, y is inside the block [k+d, n/2] and z is not, because Tout(z) ≤ Tin(y).
In other words, in P+F2

, y is to the right of z. It follows that y and z change order in some
σ ∈ [P+F1

, P+F2
].

We now go back to the proof of Claim 4.14: since Ti+1 is a left-transfer, let P1 ∈
[P+Ti

, P−Ti+1
] be the first permutation in which LZONE is monotone decreasing (see Def-

inition 4.5). Denote the elements in LZONE, from left to right, by a1, . . . , ac. Let
P2 ∈ [P+Ti

, P−Ti+1
] be the last permutation in which LZONE is monotone increasing.

Denote the elements on LZONE in P2 from left to right by b1, . . . , bc. Clearly, Tin(bc−1)

and Tout(ac−1) are different from 0, and Tin(bc−1) ≥ Tout(ac−1).
If Tin(x) ≥ Tout(ac−1), then, by Lemma 4.15, every y ∈ Ai+1 which satisfies Tout(y) ≤

Tout(ac−1), changes order with x , in some flip between Ti and Ti+1. Let S1 denote the flip
whose number is Tout(ac−1). In P−S1

the block [k + d, n/2− 1] is monotone increasing.
By Lemma 4.7, taking σ1 = P1, σ2 = P−S1

, m = k + d, and t = d − 2, there are at least
2d−2 − 1 flips, between P−P1

and S1, the block of which includes the place k + d. S1 is
another such flip. Every such flip takes a unique element y ∈ Ai+1 out from the place
k+ d ∈ [k+ d, n/2]. Therefore, there are at least 2d−2 elements y ∈ Ai+1 which satisfy
Tout(y) ≤ Tout(ac−1).

If Tout(x) ≤ Tin(bc−1), then, by Lemma 4.15, every y ∈ Ai+1 which satisfies Tin(y) ≥
Tin(bc−1), changes order with x at some flip between Ti and Ti+1. Let S2 denote the flip
whose number is Tin(bc−1). In P+S2

the block [k+1, n/2−1] is monotone decreasing. By
Lemma 4.7, taking σ1 = P+S2

, σ2 = P2, m = k+ d, t = d − 2, there are at least 2d−2− 1
flips, between P+S2

and P2, the block of which includes the place k+d. S2 is another such
flip. Every such flip takes a unique element y ∈ Ai+1 into the place k+d ∈ [k+d, n/2].
Therefore, there are at least 2d−2 elements y ∈ Ai+1 which satisfy Tin(y) ≥ Tin(bc−1).

It is enough to show that every element x which is in the block [k + d, n/2], in some
σ ∈ [P+Ti

, P−Ti+1
], and does not take part in Ti or Ti+1, satisfies either Tin(x) ≥ Tout(ac−1)

or Tout(x) ≤ Tin(bc−1). Recall that S1 is the flip whose number is Tout(ac−1). S1 is the
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flip which takes ac−1 out of [k + d, n/2]. In P−S1
, ac−1 is at the place n/2− 1 and hence

the block of S1 includes [k + d, n/2 − 1]. If, in P+S1
, x is inside [k + d, n/2], then

either x takes part in S1 or x is at the place n/2 in P−S1
, that is, x = ac. In the first case

Tin(x) = Tout(ac−1).
Letπ ∈ [P+Ti

, P−Ti+1
] denote the first permutation in which x is in the block [k+d, n/2].

If, in P+S1
, x is not inside [k + d, n/2], then we consider two cases.

Case 1: π is previous to P+S1
. In this case Tout(x) ≤ Tout(ac−1) ≤ Tin(bc−1).

Case 2: π is later to P−S1
. Then Tin(x) > Tout(ac−1).

Therefore, we may conclude that either Tin(x) ≥ Tout(ac−1) or Tout(x) ≤ Tin(bc−1)

or x = ac. We show that if none of the two first cases happens, then x = ac = bc.
Indeed, assume that x = ac. Recall that S2 is the flip whose number is Tin(bc−1). S2 is
the flip which takes bc−1 into the block [k + d, n/2] (to the place n/2 − 1). The block
of S2 includes [k + d, n/2 − 1]. In P1, x is inside the block [k + d, n/2]. It follows
from Corollary 4.12 that either, in P+S2

, x is not inside [k + d, n/2] or if it is, then x
does not take part in S2, in which case x is at the place n/2, in P−S2

. In the first case
Tout(x) ≤ Tin(bc−1). In the latter case x = bc. Therefore, either Tin(x) ≥ Tout(ac−1) or
Tout(x) ≤ Tin(bc−1) or x = ac = bc.

However, in the latter case x takes part either in Ti or in Ti+1. Indeed, this follows
from Definition 4.5, as either a1, . . . , ac are the element in LZONE in P+Ti

or b1, . . . , bc

are the elements in LZONE in P−Ti+1
.

5. Studying Bad Transfers

Definition 5.1. For every element x ∈ {1, 2, . . . , n}, define

ηi (x) = max{ j ≤ i | x takes part in Tj }.

If x does not take part in Tj for any j ≤ i , define ηi (x) = −1.

Notation 5.2. It will be convenient to denote M(c) = 2d−3, as this number will be
used extensively in the rest of the proof. Observe that M(c) indeed depends on c, since
c = 2d − 1.

Remark. In view of the above notation we should note that (by Corollary 4.11) for every
transfer Ti+1, |Ai+1| ≥ M(c). Moreover, by Claim 4.14, if Ti+1 is a left-transfer (right-
transfer), then every element x which is inside the block [k+d, n/2] ([n/2+1, n/2+d])
in some σ ∈ [P+Ti

, P−Ti+1
] and does not take part in Ti+1 or Ti , changes order with at least

M(c) elements of Ai+1.

Definition 5.3. Let 0 ≤ a ≤ b be two integers. La,b is defined to be the set of all
elements that do not take part in any transfer Tv for v = a, a+ 1, . . . , b. In other words,
La,b = {x | ηb(x) < a}.
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Definition 5.4. Let i ≥ 0. We say that Ti+1 is good if |Ai+1 ∩ L0,i | ≥ 1
2 M(c). If Ti+1

is not good it is said to be bad.

Definition 5.5. If Ti is a bad transfer. We define Qi = Ai\L0,i and Ii = {ηi−1(x) |
x ∈ Qi }.

Let Ti be any bad transfer. If x, y ∈ Qi , then clearly ηi−1(x), ηi−1(y) ≥ 0. We
claim that ηi−1(x) �= ηi−1(y). To see this, assume to the contrary that ηi−1(x) =
ηi−1(y) = a ≤ i − 1. This means that x and y take part (and hence also change
order) in Ta . This is a contradiction for they are both in Ai and hence, by Claim 4.13,
change order in some flip between Ti−1 and Ti . Since |Qi | ≥ 1

2 M(c), it follows now that
|Ii | ≥ 1

2 M(c).

Definition 5.6. If Ti is a bad transfer, then we define pi to be the ( 1
4 M(c) + 1)th

largest number in Ii , and Yi = {x ∈ Qi | ηi−1(x) ≤ pi }. Clearly, Yi ⊂ Qi ⊂ Ai and
|Yi | ≥ 1

4 M(c).

The idea behind the definition of a good transfer is that if Ti is a good transfer (say
left), then many (at least 1

2 M(c)) elements from {1, 2, . . . , n/2} are in Ai . This is very
good for us because we know that eventually all these elements should be in the right
side and therefore there must be many transfers which carry them there (every transfer
may carry at most one element from Ai to the right side, as every two elements from
Ai change order already before Ti ). However, then we get more transfers and more sets
Aj and so forth. We will eventually see that the portion of the good transfers among
all transfers should be very small. It will follow that most of the transfers must be bad
transfers, but for these we will obtain a nice upper bound in terms of the total number of
transfers, roughly (r/M(c)) log r where r is the total number of transfers. It then follows
that log r should be as big as M(c). This shows roughly that r > 22c

, but we know that
r <

(n
2

)
, as every transfer represents a line which is determined by G. This will prove

Theorem 1.2.
From now until the end of Claim 5.10, Ti is a fixed bad left-transfer. (However, in

what follows one can easily state and prove the corresponding statements when Ti is a
bad right-transfer. Actually, there is a complete symmetry between left and right in this
paper and we eventually use it without any loss of generality.)

Claim 5.7. Assume pi < j < i , ηi−1(x) = j , y ∈ Yi . If x and y change order in some
flip between Tj and Ti , then, in P−Ti

, y is to the right of x .

Proof. In P+Tj
the elements which take part in Tj are to the right of all other elements

in the left side. Let s = ηi−1(y). y takes part in Ts but not in any Ts ′ for s < s ′ < i and it
follows that y is in the left side in every σ ∈ [P+Ts

, P−Ti
]. y ∈ Yi and hence s ≤ pi . Since

s ≤ pi < j < i , then in particular, in P+Tj
, y is in the left side. Therefore, in P+Tj

, x is to
the right of y. If x and y change order at some point after Tj , then clearly y moves to the
right of x .
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Claim 5.8. Let pi < j < i − 1 and assume ηi (x) = j and that, in P+Ti
, x is in the

left side. Then x changes order with at least 1
4 M(c) elements of Yi , throughout the flips

which occur between Tj and Ti .

Proof. Since ηi (x) = j and, in P+Ti
, x is in the left side, it follows that x is in the left side

for every σ ∈ [P+Tj
, P+Ti

]. If x is inside the block [k + d, n/2], in some σ ∈ [P+Ti−1
, P−Ti

],
then, by Claim 4.14, x changes order with at least M(c) elements ofAi and therefore with
at least 1

2 M(c) elements of Qi and thus with at least 1
4 M(c) elements of Yi , throughout

the flips which occur between Ti−1 and Ti .
Assume then that x is outside the block [k + d, n/2], for every σ ∈ [P+Ti−1

, P−Ti
].

x is one of the elements in the block of Tj . In P+Tj
, those elements are the rightmost

elements in the left side. Let y ∈ Yi and s = ηi−1(y). y takes part in Ts and not in
any Ts ′ for s < s ′ < i . Therefore, in every σ ∈ [P+Ts

, P−Ti−1
], y is in the left side. Since

s ≤ pi < j < i − 1, then in particular, in P+Tj
, y is in the left side, to the left of x .

y ∈ Yi ⊂ Ai and therefore y visits the place k + d at some point between Ti−1 and Ti .
When this happens, y is to the right of x . It follows that x and y change order in some
flip between Tj and Ti . This is true for every y ∈ Yi and |Yi | ≥ 1

4 M(c).

Combining Claims 5.7 and 5.8, we immediately deduce the following corollary.

Corollary 5.9. Let pi < j < i − 1 and assume ηi (x) = j and that, in P+Ti
, x is in the

left side. Then in P−Ti
at least 1

4 M(c) elements of Yi , which already changed order with
x , are to its right, in the left side.

Claim 5.10. Let 0 < s < 1
4 M(c)− d and assume that Ti+s is a bad left-transfer. Then

pi − pi+s ≥ 1
4 M(c)− s − 1.

Proof. Fix j such that pi < j < i − 1, we show that j /∈ Ii+s . Assume to the contrary
that j ∈ Ii+s , then there is an element x ∈ Ai+s such that ηi+s−1(x) = j . Since j < i
it follows that ηi (x) = j and that x is in the left side in P+Ti

. By Corollary 5.9, in P−Ti
, at

least 1
4 M(c) elements of Yi , which changed order with x before Ti , are to the right of x on

the left side. Denote the set of these elements by W . For every l such that i ≤ l ≤ i + s,
at most one element of Yi takes part in Tl , for every two elements of Yi ⊂ Ai change
order before Ti . It follows that in P+Ti+s−1

there are at least 1
4 M(c) − s > d elements of

W (to the right of x) in the left side. Since x ∈ Ai+s , x is at the place k + d, in some
σ ∈ [P+Ti+s−1

, P−Ti+s
]. In σ every element of W which is in the left side must be to the right

of x . This is impossible since when x is at the place k + d there are only d − 1 places
in the left side to the right of x .

We thus showed that if pi < j < i − 1, then j /∈ Ii+s . In Ii+s there are 1
4 M(c) of

the numbers pi+s + 1, pi+s + 2, . . . , i + s − 1. It follows that pi − pi+s ≥
1
4 M(c)− s − 1.

Lemma 5.11. Let 1 ≤ q ≤ p be given integers and let W be a set of m elements from
{1, . . . , n}. Assume P1, P2 ∈ SG and in every σ ∈ [P1, P2] the elements of W are all
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in the block [1, p]. Moreover, assume that for every x ∈ W there is Px ∈ [P1, P2] such
that x is inside the block [q, p], in Px . Then at least

(m−(p−q)
2

)
pairs of elements from W

change order in one of the permutations in [P1, P2].

Proof. For every x ∈ W , let Px ∈ [P1, P2] denote the last permutation in which x is
inside the block [q, p]. Write the elements of W in a sequence a1, a2, . . . , am according
to the order of Pa1 , . . . , Pam in SG . That is, if i < j , then Pai is not later to Paj .

Fix t such that 1 ≤ t ≤ m. at must change order (in some σ ∈ [P1, P2]) with
every element which is later to at in the list and is inside the block [1, q − 1], in
Pat . The number of these elements is at least m − t − (p − q). The number of pairs
from {aj }j≥1 which change order in one of the permutations in [P1, P2] is thus at
least

(m − 1− (p − q))+ (m − 2+ (p − q))+ · · · =
(

m − (p − q)

2

)
.

Lemma 5.12. Assume u ≤ t1 < t2 < · · · < ts and for every 1 ≤ i ≤ s, Tti is a
left-transfer. For every 1 ≤ i ≤ s, let Hi ⊂ Ati ∩ Lu,ti . Then for every t ≥ t1,

∣∣∣∣∣
(⋃

ti≤t

Hi

)
∩ Lu,t

∣∣∣∣∣ ≥
∑
ti≤t

(|Hi | − d)− (t − t1)d. (1)

Proof. We prove the lemma by induction on t . For t = t1 the claim just says that
|H1| ≥ |H1| − d . Assume the lemma is true for t − 1, we prove it for t . We need the
following auxiliary claim:

Claim 5.13. Let m > u be an integer. At most d elements from (
⋃

ti≤m−1 Hi )∩ Lu,m−1

may take part in Tm , and at most d elements from this set may belong to Am .

Proof. Let W be any subset of (
⋃

ti≤m−1 Hi )∩Lu,m−1 which consists of d+1 elements.
W satisfies the conditions of Lemma 5.11 with p = n/2, q = k + d, P1 = P+Tu

, and
P2 = P−Tm−1

. Therefore, by Lemma 5.11, there is at least

(
d + 1− (p − q)

2

)
=

(
2

2

)
= 1

pair of elements from W which change order before Tm−1. Those two elements cannot
both take part in Tm and cannot both be in Am .

By Claim 5.13, at most d elements of (
⋃

ti≤t−1 Hi )∩ Lu,t−1 take part in Tt . Therefore,

∣∣∣∣∣
( ⋃

ti≤t−1

Hi

)
∩ Lu,t−1

∖ ( ⋃
ti≤t−1

Hi

)
∩ Lu,t

∣∣∣∣∣ ≤ d. (2)
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We consider two cases.

Case 1: t = ta for some 1 ≤ a ≤ s. By Claim 5.13,

∣∣∣∣∣Ata ∩
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta−1

∣∣∣∣∣ ≤ d.

Ha ⊆ Ata and Lu,ta ⊆ Lu,ta−1. Hence

∣∣∣∣∣Ha ∩
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta

∣∣∣∣∣ ≤ d.

It follows that

∣∣∣∣∣
(⋃

ti≤ta

Hi

)
∩ Lu,ta

∣∣∣∣∣ ≥
∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta

∣∣∣∣∣+ |Ha| − d. (3)

Using (2), we get

∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta

∣∣∣∣∣ =
∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta−1

∣∣∣∣∣
−

∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta−1

∖ ( ⋃
ti≤ta−1

Hi

)
∩ Lu,ta

∣∣∣∣∣
≥

∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta−1

∣∣∣∣∣− d.

Combining this with (3), we conclude that

∣∣∣∣∣
(⋃

ti≤ta

Hi

)
∩ Lu,ta

∣∣∣∣∣ ≥
∣∣∣∣∣
( ⋃

ti≤ta−1

Hi

)
∩ Lu,ta−1

∣∣∣∣∣− d + |Ha| − d.

Using now the induction hypothesis, we obtain

∣∣∣∣∣
(⋃

ti≤ta

Hi

)
∩ Lu,ta

∣∣∣∣∣ ≥
( ∑

ti≤ta−1

|Hi | − d

)
− (ta − 1− t1)d

− d + |Ha| − d

=
(∑

ti≤ta

|Hi | − d

)
− (ta − t1)d.
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Case 2: t �= ta for every 1 ≤ a ≤ s. Similar to the previous case we have∣∣∣∣∣
(⋃

ti≤t

Hi

)
∩ Lu,t

∣∣∣∣∣ =
∣∣∣∣∣
( ⋃

ti≤t−1

Hi

)
∩ Lu,t

∣∣∣∣∣ =
∣∣∣∣∣
( ⋃

ti≤t−1

Hi

)
∩ Lu,t−1

∣∣∣∣∣
−

∣∣∣∣∣
( ⋃

ti≤t−1

Hi

)
∩ Lu,t−1

∖ ( ⋃
ti≤t−1

Hi

)
∩ Lu,t

∣∣∣∣∣
≥

∣∣∣∣∣
( ⋃

ti≤t−1

Hi

)
∩ Lu,t−1

∣∣∣∣∣− d.

Using the induction hypothesis we get∣∣∣∣∣
(⋃

ti≤t

Hi

)
∩ Lu,t

∣∣∣∣∣ ≥
( ∑

ti≤t−1

|Hi | − d

)
− (t − 1− t1)d − d

=
(∑

ti≤t

|Hi | − d

)
− (t − t1)d.

6. The Final Analysis

In this section we conclude the proof of Theorem 1.2. The crucial step is to give a good
upper bound to the number of bad transfers. We will show (Lemma 6.1 and Claims 6.2
and 6.3) that the number of bad transfers is at most (roughly) (r/M(c)) log r , where r
is the total number of transfers. We will also bound the number of good transfers and
show roughly that it is at most r/M(c).

Let r > 0 be the number of transfers in the flip array SG . We define a matrix A =
(ai, j )i, j of size r × r in the following way. Whenever Tt (0 < t ≤ r − 1) is a bad left-
transfer we set at,pt = 1. We set A to be 0 at every place which is not set to be 1. It follows
from the definition of pt that if Tt is a bad transfer, then pt+ 1

4 M(c) ≤ t . Hence all the 1-
entries in A are located within the lower triangle of A of height r− 1

4 M(c). Let Lower(A)
denote that part of A, in other words, Lower(A) = {(i, j) ∈ A | i − 1

4 M(c) ≥ j}.

Lemma 6.1. Assume that ai, j = 1, and let B be a rectangular sub-matrix of height h
which is included in Lower(A), and whose lower right corner is (i − 1, j − 1). Then
there are at most 10hd/ 1

4 M(c) 1-entries in B.

Proof. Since ai, j = 1, Ti is a bad left-transfer and pi = j . Therefore there is an element
x ∈ Qi ⊂ Ai such that ηi−1(x) = j . Let g(B) denote the number of 1-entries inside B.
Let t1 < t2 < · · · < tg(B) be all the indices of the lines in B (as a sub-matrix of A) which
include 1 entries.

Fix s such that 1 ≤ s ≤ g(B). Since B ⊂ Lower(A) and the place (ts, pts ) is within
B, it follows that pts < j < ts − 1 (recall that (i − 1, j − 1) is the lower right corner of
B). Moreover, we have j < ts ≤ i−1 and thus ηi−1(x) = j implies also that ηts (x) = j .
Since x ∈ Ai it follows that x is in the left side in P−Ti

and therefore it is in the left side
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also in P−ts (as ηi−1(x) = j < ts). We can now use Corollary 5.9 by which, in P−Tts
, at

least 1
4 M(c) elements of Yts , which have already changed order with x , are to the right

of x in the left side. Denote that set of elements by Hs . For every 1 ≤ s ≤ g(B), pts < j
and therefore Yts ⊂ L j,s−1. This implies Hs ⊂ L j,s−1, for every 1 ≤ s ≤ g(B).

H1, . . . , Hg(B) satisfy the conditions of Lemma 5.12 for Tt1 , . . . , Tts and u = j . Using
Lemma 5.12 with t = i − 1 we obtain∣∣∣∣∣

( ⋃
ts≤i−1

Hs

)
∩ L j,i−1

∣∣∣∣∣ ≥
∑

ts≤i−1

(|Hs | − d)− (i − 1− t1)d

≥ g(B)( 1
4 M(c)− d)− hd. (4)

Since x ∈ Yi ⊂ Ai , x is at the place k + d in some σ ∈ [P+Ti−1
, P−Ti

]. In P+Ti−1
all the

elements of the set (
⋃

ts≤i−1 Hs) ∩ L j,i−1 are to the right of x on the left side, and they
have already changed order with x . Since this is also true in σ , in which x is at the place
k + d , we must have |(⋃ts≤i−1 Hs) ∩ L j,i−1| ≤ d − 1.

Therefore, using (4),

g(B)( 1
4 M(c)− d)− hd ≤ d − 1.

In other words,

g(B) ≤ hd + d − 1
1
4 M(c)− d

≤ 10hd
1
4 M(c)

.

Claim 6.2. No two 1-entries in A are included within a sub-square of A of size 1
8 M(c).

Proof. This is an immediate corollary of Claim 5.10. Indeed, let (t, pt ) and (s, ps) be
the coordinates of any two different 1-entries in A, representing two bad left-transfers
Tt and Ts . If |t − s| < 1

8 M(c), then, by Claim 5.10, |pt − ps | ≥ 1
4 M(c)− |t − s| − 1 ≥

1
8 M(c).

Denote N (c) = 1
8 M(c). We introduce a new matrix D = (di, j )i, j of size �r/N (c)�×

�r/N (c)�. We set di, j = 1 iff there is a 1-entry in the corresponding sub-square of A of
size N (c)×N (c), namely, the one whose upper left corner is (i N (c), j N (c)). Otherwise
we set di, j = 0.

Let Lower(D) denote the lower triangle of D without the main diagonal and the
two diagonals beneath it. In other words, Lower(D) = {(i, j) | 0 ≤ i, j < �r/N (c)�,
j + 2 < i}.

By Claim 6.2, the number of 1-entries in A equals the number of 1-entries in D. The
following is just a reformulation, in terms of the matrix D, of what we already know
about the matrix A:

1. All 1-entries in D are either in Lower(D) or on the diagonal above it.
2. If di, j = 1, then every rectangular sub-matrix of height h which is included in

Lower(D) and whose right lower corner is (i − 1, j − 1) has at most 5d(h+ 1) ≤
10dh 1-entries (follows from Lemma 6.1).
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Claim 6.3. Let B be an m×l rectangular sub-matrix included in Lower(D), then inside
B there are at most (10d + 1)m + l 1-entries.

Proof. We prove the claim by induction on m + l. If m = 1 or l = 1 the claim
is obvious. We think of B as an m × l matrix. Let j be the rightmost column which
includes a 1-entry in B. Let (i, j) be the coordinates of the lowest 1-entry in the j th
column of B. Let B ′ ⊂ B be the rectangular sub-matrix whose lower right corner is
(i − 1, j − 1) and whose upper left corner is (0, 0). Let B ′′ ⊂ B be the rectangular sub-
matrix whose upper left corner is (i, 0) and whose lower right corner is (m − 1, j − 1).
Clearly, all 1-entries in B are included either in B ′ or in B ′′ or in the j th column of
B. B ′ is of size i − 1 × j − 1. Since B ⊂ LowerD and there is a 1-entry at the place
(i, j) in B, then there are at most 10d(i −1) 1-entries in B ′. By the induction hypothesis
there are at most (10d + 1)(m − (i − 1)) + j − 1 1-entries in B ′′. Moreover, there
are at most i + 1 1-entries in the j th column of B. We conclude that there are at most
10d(i−1)+(10d+1)(m−(i−1))+ j−1+i+1 = (10d+1)m+ j+1 ≤ (10d+1)m+l
1-entries in B.

In what follows log stands for log2. Recall that r is the number of transfers in the flip
array SG . Let r ′ = 2�log r�. r ′ is the integer power of 2 which satisfies r ≤ r ′ < 2r .

Claim 6.4. There are at most 20d�r ′/N (c)�(log�r ′/N (c)� + 1) 1-entries in D.

Proof. We first show that Lower(D) includes at most (10d+2)�r ′/N (c)�(log�r ′/N (c)�+
1) 1-entries. Let D′ be the (�r/N (c)� − 3) × (�r/N (c)� − 3) lower triangular matrix
whose lower triangle equals Lower(D). In Claim 6.3 we proved the following property
of D′:

(*) If B is a sub-matrix of D′ of size a × b which is included in the lower triangle of
D′, then B has at most (10d + 1)a + b 1-entries.

Let g(m) denote the maximum number of 1-entries in a matrix D′ of size m × m
which satisfies (*). Let E be any 2m × 2m lower triangular matrix which satisfies (*).
Let E1 denote the m × m sub-matrix of E whose lower right corner is (m − 1,m − 1)
and whose upper left corner is (0, 0). Let E2 denote the m × m sub-matrix of E whose
lower right corner is (2m − 1, 2m − 1) and whose upper left corner is (m,m). Let B
denote the m × m sub-matrix of E whose lower right corner is (m − 1, 2m − 1) and
whose upper left corner is (0,m). B is included in the lower triangle of E and there-
fore, by (*), it has at most (10d + 1)m + m = (10d + 2)m 1-entries. Clearly, E1 and
E2 also satisfy (*), because the lower triangles of both matrices are included in the
lower triangle of E . Since every 1-entry inside E is either in E1 or in E2 or in B, we
conclude that

g(2m) ≤ 2g(m)+ (10d + 2)m.

Using the boundary condition g(1) = 1, it follows that if m is a power of 2, then
g(m) ≤ (2 + 10d)m(log m + 1). Since g(m) is monotone in m, then the number of
1-entries in D′ (which is the same as the number of 1-entries in Lower(D)) is at most
(2+ 10d)�r ′/N (c)�(log�r ′/N (c)� + 1).
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Every 1-entry in D is either in Lower(D) or in the three diagonals above it. Therefore,
the number of 1-entries in D is at most

(2+ 10d)

⌈
r ′

N (c)

⌉ (
log

⌈
r ′

N (c)

⌉
+ 1

)
+ 3

⌈
r ′

N (c)

⌉

≤ 20d

⌈
r ′

N (c)

⌉ (
log

⌈
r ′

N (c)

⌉
+ 1

)
.

Recall that r (the size of A) is the number of transfers in the flip array. We claim that
r > 1. For assume to the contrary that there is only one transfer T0 in the flip array,
then it must be that T0 takes all the elements {1, 2, . . . , n/2} to the right side and all the
elements {n/2 + 1, n/2 + 2, . . . , n} to the left side. Therefore the block of T0 consists
of the whole n elements. This implies that G is contained in a line, contradicting our
assumption.

Without loss of generality assume that T1 is a left transfer. The setA1 consists of at least
M(c) elements. We claim that at most one of these elements is not from {1, 2, . . . , n/2}.
Indeed, every element x > n/2, which is in the left side in P−T1

, must take part in T0,
hence every two such elements already change order in T0. If those elements were inA1,
they would also change order at some point between T0 and T1, by Claim 4.13.

In P+Tr−1
the elements 1, 2, . . . , n/2 are in the right side, because an element can move

from the left side to the right side only by a transfer, the last of which is Tr−1. In each
transfer Ti (i > 1) at most one element of A1 takes part. It follows that there must be at
least M(c) transfers in SG . Hence r ≥ M(c) and in particular �r ′/N (c)� = r ′/N (c).

By Claim 6.4 there are at most 20d(r ′/N (c))(log(r ′/N (c)) + 1) 1-entries in D,
and hence at most that number of 1-entries in A. This shows that there are at most
20d(r ′/N (c))(log(r ′/N (c)) + 1) bad left-transfers in the flip array SG . By symmetry,
this is also true for the number of bad right-transfers. (This is because all claims and
lemmata proved above also apply to the right side. One way to see this is by reflecting
the set G through a line perpendicular to initial direction L with which we defined the
flip array. All right-transfers become left-transfers and vice versa.) We conclude that the
number of bad transfers in the flip array is at most 40d(r ′/N (c))(log(r ′/N (c))+ 1).

Let a and b denote the number of good transfers and the number of bad transfers,
respectively. Without loss of generality we assume that there are at least 1

2 a good left-
transfers.

Definition 6.5. Let Ti1 , . . . , Tig be all the good left-transfers in SG . For every 1 ≤ j ≤ g
define Ej = Ai j ∩ L0,i j . By the definition of a good transfer, |Ej | ≥ 1

2 M(c) for every j .

The sets E1, E2, . . . , Eg satisfy the conditions of Lemma 5.12 with u = 0. Using
Lemma 5.12 with t = r − 1, we get∣∣∣∣∣

(⋃
s

Es

)
∩ L0,r−1

∣∣∣∣∣ ≥
∑

s

(|Es | − d)− (r − 1)d

≥ 1
2 a( 1

2 M(c)− d)− rd

≥ aN (c)− rd. (5)
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In P+Tr−1
the elements 1, 2, . . . , n/2 are in the right side. Therefore (

⋃
s Es)∩L0,r−1 =

∅. Consequently, by (5),

r ≥ aN (c)

d
, (6)

a + b = r − 1, and

b ≤ 40d
r ′

N (c)

(
log

r ′

N (c)
+ 1

)
< 40d

2r

N (c)

(
log

2r

N (c)
+ 1

)
.

Therefore,

a ≥ r − 40d
2r

N (c)

(
log

2r

N (c)
+ 1

)
. (7)

Using (6) and (7) we obtain

r ≥ N (c)

d

(
r − 40d

2r

N (c)

(
log

2r

N (c)
+ 1

))
,

from which we get

log
2r

N (c)
+ 1 ≥ (1− d/N (c))N (c)

80d
.

We recall that N (c) = 1
8 M(c) = 2d−5 and c = 2d − 1. From here we can easily

conclude that c < O(log log r). The number of lines determined by G is at most
(n

2

)
.

Every transfer represents a line which is determined by G. Therefore,(
n

2

)
=

(
2k + 2c

2

)
≥ r.

Hence, c < O(log log k).

7. Concluding Remarks

In this paper we gave an upper bound for f (k, k), however, using the same proof except
the final analysis one can give an upper bound for f (k, l), namely,

f (k, l) = O(log(|k − l| + log(k + l))). (8)

For small l (for example, l = 0) this bound is asymptotically tight, as was shown by
Kupitz and Perles [KP].

The following conjecture of Kupitz and Perles is thus still open.

Conjecture 7.1. f (k, k) ≤ 2k + C , where C is an absolute constant.

Perles showed, by construction, that f (k, k) ≥ 2k+4, which is the best known lower
bound.
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