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Abstract. We prove that the infinite process of iterated barycentric subdivision, when
applied to a tetrahedron, produces a dense set of shapes of smaller tetrahedra.

1. Introduction

The barycentric subdivision of an n-dimensional simplex � is a certain collection of
(n+1)! smaller n-simplices whose union is�. The construction is defined by induction
on n. If n = 0, then� is a single point, and the barycentric subdivision of� is this same
point. In general, if �′ is one of the simplices in the barycentric subdivision of �, then
�′ is the convex hull of a set of the form v∪ F ′, where v is the center of mass of�—i.e.,
the barycenter—and F ′ is one of the simplices in the barycentric subdivision of one of
the top dimensional faces F of�. See p. 123 of [S] or Section 2 below for more details.

Consider the following dynamical process: Start with an n-simplex � and barycen-
trically subdivide � into simplices �1, . . . , �(n+1)!. Next, subdivide �j into simplices
�j1, . . . , �j (n+1)!, for each j , and so forth. This process produces an infinite collection
C of simplices. A natural question is: Does C consist of a dense set of shapes? By shape
we mean a simplex modulo similarities.

In [BBC] this question was raised and answered in the two-dimensional case. Part
of the idea works in all dimensions. Let T be the collection of matrices of the form
T = L/|det(L)|1/n , where L is the linear part of an affine map from � to a member of
C . The affine naturality of barycentric subdivision forces T to be a semigroup of SLn(R),
the group of n × n determinant-1 matrices.

When n = 2, a calculation in [BBC] shows that T contains some infinite-order
elliptic elements. (In general, an elliptic element of SLn(R) is a matrix which generates
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a subgroup having compact closure, which happens iff the matrix is diagonalizable over
C with all eigenvalues unit complex numbers.) The set of powers of an infinite-order
elliptic element is dense in a compact subgroup of SL2(R) and these dense sets are used
to show that T is dense in SL2(R). Hence, in the two-dimensional case, C contains a
dense set of triangles.

Using a computer search, which we detail in the next section, we found some infinite-
order elliptic elements in the three-dimensional case. This seems like a lucky accident,
because the set of elliptic elements in SLn(R) has measure zero for n ≥ 3. Using these
elliptic elements, some basic Lie group theory, and Mathematica [W], we prove

Theorem 1.1. The three-dimensional barycentric subdivision process produces a
dense set of shapes of tetrahedra.

A similar computer search failed to turn up any elliptic elements in the case n = 4,
though we certainly would have liked to make a deeper search using a more powerful
computer. We think that the density result should be true in all dimensions, whether or
not T contains elliptic elements.

2. The Proof

Here we give a concrete description of barycentric subdivision in the three-dimensional
case. Let � be the convex hull of points v0, v1, v2, v3 ∈ R3. Let S4 be the group of
permutations of the set {0, 1, 2, 3}. Given σ = (i0, i1, i2, i3) ∈ S4, let ck be the center of
mass of the points vi0 , . . . , vik . Let�σ be the convex hull of the points c0, c1, c2, c3. The
union

⋃
σ∈S4

�σ is the barycentric subdivision of �.
To begin our dynamical process, we take the initial tetrahedron � to be the convex

hull of the vertices e0, e1, e2, e3. Here e0 is the origin and {e1, e2, e3} is the standard basis
of R3. Let Aσ be the affine map such that Aσ (ek) = ck for k = 0, 1, 2, 3. Let Lσ be the
linear part of Aσ . Finally, let Tσ = Lσ /|det(Lσ )|1/3. By construction, Aσ (�) = �σ and
therefore Tσ ⊂ T , the semigroup discussed in Section 1.

We order the 24 elements of S4 lexicographically. For instance, σ1 = (0123) and
σ2 = (0132). We define

F(i, j, k) = Tσk ◦ Tσj ◦ Tσi .

Say that the triple (i, j, k) is good if F(i, j, k) is an infinite-order elliptic element. A
computer search reveals 39 good sequences. Here is the list, modulo cyclic permutations:

(2, 15, 19); (5, 8, 23); (5, 19, 18); (5, 20, 16); (7, 17, 8); (8, 18, 9); (8, 18, 20);
(8, 23, 16); (9, 19, 23); (15, 19, 16); (16, 16, 19); (16, 19, 18); (19, 23, 20).

We had hoped to see a divine pattern in this list, but did not.
Our density proof uses only the elements

S = F(23, 20, 19); M1 = F(5, 20, 16); M2 = F(20, 16, 5).

Another triple of elements from the list would probably work just as well. In the Appendix
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we include a short Mathematica program which computes

S = 1

24

[ 54 48 39
−6 −32 −35
−78 −32 −23

]
; M1 = 1

72

[−60 −68 −27
36 12 81
−60 4 27

]
;

M2 = 1

24

[ 18 12 21
−54 −68 −71
54 52 43

]
.

Lemma 2.1. S, M1, and M2 are infinite-order elliptic elements of SL3(R).

Proof. The eigenvalues of S and Mj respectively are {1, α, ᾱ} and {1, β, β̄}, where
α = −25/48+ i

√
1679/48 and β = −31/48+ i

√
1343/48. Both α and β have norm

1, so S and Mj are elliptic. If S had finite order, then α would be a primitive nth root
of unity for some n. Then α would have ϕ(n) distinct Galois conjugates, where ϕ is
the Euler phi-function. Since α is a quadratic irrational, we have ϕ(n) = 2. The forces
n ≤ 6. Clearly, α is not an nth root of unity for n ≤ 6. Hence S has infinite order. The
same argument works for Mj .

Let 〈S〉 be the closure of the semigroup generated by S. Since S is infinite-order
elliptic, 〈S〉 is a closed one-parameter compact subgroup. Let G ⊂ SL3(R) be the closed
subgroup generated by the eight compact subgroups Gi j = M j

i 〈S〉M− j
i . Here i ∈ {1, 2}

and j ∈ {1, 2, 3, 4}.

Lemma 2.2. G = SL3(R).

Proof. The lie algebra to SL3(R) is sl3(R), the space of traceless 3×3 matrices. Below
we justify the claim that

s =
[ 70 54 57
−114 −107 −104

18 52 37

]
∈ sl3(R)

generates 〈S〉. By this we mean that

〈S〉 = {exp(ts) | t ∈ R}.
For i and j as above we define gi j = M j

i sM− j
i . By construction

Gi j = {exp(tgi j ) | t ∈ R}.
Let G be the vector space spanned by the eight vectors gi j .

For any lie algebra vectors a and b we have the well-known formula

exp(a+ b) = lim
k→∞

(
exp

(a

k

)
· exp

(
b

k

))k

.

(See Exercise 8.38 of [FH].) This formula easily implies that exp(G) ⊂ G. Since
dim(sl3(R)) = 8, all we need to prove is that dim(G) = 8. There is a natural map
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P: sl3(R)→ R8. We simply string out the coordinates of a trace-zero matrix g, leaving
off g(3, 3). It is easy to see that P is a vector space isomorphism. Let M be the 8 × 8
matrix whose rows are P(gi j ). We compute

det(M) = 1574679337686718881331462994390117

159739999685311463424
�= 0.

This is only possible if the vectors P(gi j ) span R8.

Let T̄ be the closure of T in SL3(R). By construction 〈S〉 ⊂ T̄ . Since Mj is an
infinite-order elliptic element, M± j

i ∈ T̄ for all relevant i and j . Therefore the group
Gi j is contained in the semigroup T̄ . This implies that G ⊂ T̄ . However, G = SL3(R).
Therefore T is dense in SL3(R). Our theorem follows immediately from this.

Our only piece of unfinished business is to justify the formula for s. By computing
the eigenspaces of S we find that the matrix

U =
[−21 0 2
−34 −1 −3
58 2 0

]

conjugates S to block triangular form:

U−1SU =
[

1 0
0 B

]
; B = 1

48

[−14 −60
30 −36

]
.

Note that B ∈ SL2(R) is infinite-order elliptic. Let 〈B〉 be the closure of the group
generated by B. We claim that the matrix

b = 48B − 24 trace(B)I =
[

11 −60
30 −11

]
∈ sl2(R)

generates 〈B〉 in the sense that 〈B〉 = {exp(tb) | t ∈ R}. To prove this, we note that
b and B commute, when multiplied together as matrices. Hence, for any t ∈ R the
element βt = exp(tb) commutes with any element of 〈B〉. As is well known SL2(R)
acts isometrically on the hyperbolic plane H2 by linear fractional transformations. The
group 〈B〉, which consists entirely of elliptic elements, acts as the group of isometric
rotations about some fixed point x ∈ H2. Since βt commutes with all elements of 〈B〉, it
must also act as an isometric rotation about x . Hence βt ⊂ 〈B〉 for all t . Our claim now
follows easily.

Since b generates 〈B〉,

s = U

[
0 0
0 b

]
U−1

generates 〈S〉 in the sense of Lemma 2.1. Expanding this product gives the formula
for s used in Lemma 2.1.
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Appendix. A Mathematica File

We refer the reader to [W] for details on the implementation of Mathematica. A copy of
this file produced our calculations.

e[0]={0,0,0}; e[1]={1,0,0}; e[2]={0,1,0}; e[3]={0,0,1};
S4=Permutatations[{0,1,2,3}];

T[n ]:=(sigma=S4[[n]];
c0=(e[sigma[[1]]])/1;
c1=(e[sigma[[1]]]+e[sigma[[2]]])/2;
c2=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]])/3;
c3=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]]

+e[sigma[[4]]])/4;
L=Transpose[c1-c0,c2-c0,c3-c0];
L/Power[Abs[Det[L]],1/3])

F[a ,b ,c ]:=Simplify[T[a].T[b].T[c]]
S=F[23,20,19]; M1=F[5,20,16]; M2=F[20,16,5];
s={{70, 54, 57}, {-114, -107, -104}, {18, 52, 37}}
U={{-21, 0, 2}, {-34, -1, -3}, {58, 2, 0}}

Ad[x ,y ]:=x.y.Inverse[x];

g11=Ad[M1,s];
g12=Ad[M1.M1,s];
g13=Ad[M1.M1.M1,s];
g14=Ad[M1.M1.M1.M1,s];
g21=Ad[M2,s];
g22=Ad[M2.M2,s];
g23=Ad[M2.M2.M2,s];
g24=Ad[M2.M2.M2.M2,s];

P[x ]:=Take[Flatten[x],8]
M={P[g11],P[g12],P[g13],P[g14], P[g21],P[g22],P[g23],P[g24]}
Det[M]
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