The Density of Shapes in Three-Dimensional Barycentric Subdivision*

Richard Evan Schwartz
Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA
res@math.umd.edu

Abstract

We prove that the infinite process of iterated barycentric subdivision, when applied to a tetrahedron, produces a dense set of shapes of smaller tetrahedra.

1. Introduction

The barycentric subdivision of an n-dimensional simplex Δ is a certain collection of $(n+1)$! smaller n-simplices whose union is Δ. The construction is defined by induction on n. If $n=0$, then Δ is a single point, and the barycentric subdivision of Δ is this same point. In general, if Δ^{\prime} is one of the simplices in the barycentric subdivision of Δ, then Δ^{\prime} is the convex hull of a set of the form $v \cup F^{\prime}$, where v is the center of mass of Δ-i.e., the barycenter-and F^{\prime} is one of the simplices in the barycentric subdivision of one of the top dimensional faces F of Δ. See p. 123 of [S] or Section 2 below for more details.

Consider the following dynamical process: Start with an n-simplex Δ and barycentrically subdivide Δ into simplices $\Delta_{1}, \ldots, \Delta_{(n+1)!}$. Next, subdivide Δ_{j} into simplices $\Delta_{j 1}, \ldots, \Delta_{j(n+1)!}$, for each j, and so forth. This process produces an infinite collection C of simplices. A natural question is: Does C consist of a dense set of shapes? By shape we mean a simplex modulo similarities.

In [BBC] this question was raised and answered in the two-dimensional case. Part of the idea works in all dimensions. Let \mathcal{T} be the collection of matrices of the form $T=L /|\operatorname{det}(L)|^{1 / n}$, where L is the linear part of an affine map from Δ to a member of C. The affine naturality of barycentric subdivision forces \mathcal{T} to be a semigroup of $S L_{n}(\boldsymbol{R})$, the group of $n \times n$ determinant -1 matrices.

When $n=2$, a calculation in [BBC] shows that \mathcal{T} contains some infinite-order elliptic elements. (In general, an elliptic element of $S L_{n}(\boldsymbol{R})$ is a matrix which generates

[^0]a subgroup having compact closure, which happens iff the matrix is diagonalizable over \boldsymbol{C} with all eigenvalues unit complex numbers.) The set of powers of an infinite-order elliptic element is dense in a compact subgroup of $S L_{2}(\boldsymbol{R})$ and these dense sets are used to show that \mathcal{T} is dense in $S L_{2}(\boldsymbol{R})$. Hence, in the two-dimensional case, C contains a dense set of triangles.

Using a computer search, which we detail in the next section, we found some infiniteorder elliptic elements in the three-dimensional case. This seems like a lucky accident, because the set of elliptic elements in $S L_{n}(\boldsymbol{R})$ has measure zero for $n \geq 3$. Using these elliptic elements, some basic Lie group theory, and Mathematica [W], we prove

Theorem 1.1. The three-dimensional barycentric subdivision process produces a dense set of shapes of tetrahedra.

A similar computer search failed to turn up any elliptic elements in the case $n=4$, though we certainly would have liked to make a deeper search using a more powerful computer. We think that the density result should be true in all dimensions, whether or not \mathcal{T} contains elliptic elements.

2. The Proof

Here we give a concrete description of barycentric subdivision in the three-dimensional case. Let Δ be the convex hull of points $v_{0}, v_{1}, v_{2}, v_{3} \in \boldsymbol{R}^{3}$. Let S_{4} be the group of permutations of the set $\{0,1,2,3\}$. Given $\sigma=\left(i_{0}, i_{1}, i_{2}, i_{3}\right) \in S_{4}$, let c_{k} be the center of mass of the points $v_{i_{0}}, \ldots, v_{i_{k}}$. Let Δ_{σ} be the convex hull of the points $c_{0}, c_{1}, c_{2}, c_{3}$. The union $\bigcup_{\sigma \in S_{4}} \Delta_{\sigma}$ is the barycentric subdivision of Δ.

To begin our dynamical process, we take the initial tetrahedron Δ to be the convex hull of the vertices $e_{0}, e_{1}, e_{2}, e_{3}$. Here e_{0} is the origin and $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of \boldsymbol{R}^{3}. Let A_{σ} be the affine map such that $A_{\sigma}\left(e_{k}\right)=c_{k}$ for $k=0,1,2,3$. Let L_{σ} be the linear part of A_{σ}. Finally, let $T_{\sigma}=L_{\sigma} /\left|\operatorname{det}\left(L_{\sigma}\right)\right|^{1 / 3}$. By construction, $A_{\sigma}(\Delta)=\Delta_{\sigma}$ and therefore $T_{\sigma} \subset \mathcal{T}$, the semigroup discussed in Section 1.

We order the 24 elements of S_{4} lexicographically. For instance, $\sigma_{1}=(0123)$ and $\sigma_{2}=(0132)$. We define

$$
F(i, j, k)=T_{\sigma_{k}} \circ T_{\sigma_{j}} \circ T_{\sigma_{i}}
$$

Say that the triple (i, j, k) is good if $F(i, j, k)$ is an infinite-order elliptic element. A computer search reveals 39 good sequences. Here is the list, modulo cyclic permutations:
$(2,15,19) ;(5,8,23) ;(5,19,18) ;(5,20,16) ;(7,17,8) ;(8,18,9) ;(8,18,20)$;
$(8,23,16) ;(9,19,23) ;(15,19,16) ;(16,16,19) ;(16,19,18) ;(19,23,20)$.
We had hoped to see a divine pattern in this list, but did not.
Our density proof uses only the elements

$$
S=F(23,20,19) ; \quad M_{1}=F(5,20,16) ; \quad M_{2}=F(20,16,5)
$$

Another triple of elements from the list would probably work just as well. In the Appendix
we include a short Mathematica program which computes

$$
\begin{aligned}
S & =\frac{1}{24}\left[\begin{array}{ccc}
54 & 48 & 39 \\
-6 & -32 & -35 \\
-78 & -32 & -23
\end{array}\right] ; \quad M_{1}=\frac{1}{72}\left[\begin{array}{ccc}
-60 & -68 & -27 \\
36 & 12 & 81 \\
-60 & 4 & 27
\end{array}\right] \\
M_{2} & =\frac{1}{24}\left[\begin{array}{ccc}
18 & 12 & 21 \\
-54 & -68 & -71 \\
54 & 52 & 43
\end{array}\right] .
\end{aligned}
$$

Lemma 2.1. S, M_{1}, and M_{2} are infinite-order elliptic elements of $S L_{3}(\boldsymbol{R})$.
Proof. The eigenvalues of S and M_{j} respectively are $\{1, \alpha, \bar{\alpha}\}$ and $\{1, \beta, \bar{\beta}\}$, where $\alpha=-25 / 48+i \sqrt{1679} / 48$ and $\beta=-31 / 48+i \sqrt{1343} / 48$. Both α and β have norm 1 , so S and M_{j} are elliptic. If S had finite order, then α would be a primitive nth root of unity for some n. Then α would have $\varphi(n)$ distinct Galois conjugates, where φ is the Euler phi-function. Since α is a quadratic irrational, we have $\varphi(n)=2$. The forces $n \leq 6$. Clearly, α is not an nth root of unity for $n \leq 6$. Hence S has infinite order. The same argument works for M_{j}.

Let $\langle S\rangle$ be the closure of the semigroup generated by S. Since S is infinite-order elliptic, $\langle S\rangle$ is a closed one-parameter compact subgroup. Let $G \subset S L_{3}(\boldsymbol{R})$ be the closed subgroup generated by the eight compact subgroups $G_{i j}=M_{i}^{j}\langle S\rangle M_{i}^{-j}$. Here $i \in\{1,2\}$ and $j \in\{1,2,3,4\}$.

Lemma 2.2. $\quad G=S L_{3}(\boldsymbol{R})$.
Proof. The lie algebra to $S L_{3}(\boldsymbol{R})$ is $\mathfrak{s} l_{3}(\boldsymbol{R})$, the space of traceless 3×3 matrices. Below we justify the claim that

$$
\mathfrak{s}=\left[\begin{array}{ccc}
70 & 54 & 57 \\
-114 & -107 & -104 \\
18 & 52 & 37
\end{array}\right] \in \mathfrak{s l}_{3}(\boldsymbol{R})
$$

generates $\langle S\rangle$. By this we mean that

$$
\langle S\rangle=\{\exp (t \mathfrak{s}) \mid t \in \boldsymbol{R}\}
$$

For i and j as above we define $\mathfrak{g}_{i j}=M_{i}^{j} \mathfrak{s} M_{i}^{-j}$. By construction

$$
G_{i j}=\left\{\exp \left(t \mathfrak{g}_{i j}\right) \mid t \in \boldsymbol{R}\right\} .
$$

Let \mathfrak{G} be the vector space spanned by the eight vectors $\mathfrak{g}_{i j}$.
For any lie algebra vectors \mathfrak{a} and \mathfrak{b} we have the well-known formula

$$
\exp (\mathfrak{a}+\mathfrak{b})=\lim _{k \rightarrow \infty}\left(\exp \left(\frac{\mathfrak{a}}{k}\right) \cdot \exp \left(\frac{\mathfrak{b}}{k}\right)\right)^{k}
$$

(See Exercise 8.38 of $[\mathrm{FH}]$.) This formula easily implies that $\exp (\mathfrak{G}) \subset G$. Since $\operatorname{dim}\left(\mathfrak{s l}_{3}(\boldsymbol{R})\right)=8$, all we need to prove is that $\operatorname{dim}(\mathfrak{G})=8$. There is a natural map
$P: \mathfrak{s l}_{3}(\boldsymbol{R}) \rightarrow \boldsymbol{R}^{8}$. We simply string out the coordinates of a trace-zero matrix \mathfrak{g}, leaving off $\mathfrak{g}(3,3)$. It is easy to see that P is a vector space isomorphism. Let M be the 8×8 matrix whose rows are $P\left(\mathfrak{g}_{i j}\right)$. We compute

$$
\operatorname{det}(M)=\frac{1574679337686718881331462994390117}{159739999685311463424} \neq 0
$$

This is only possible if the vectors $P\left(\mathfrak{g}_{i j}\right)$ span \boldsymbol{R}^{8}.
Let $\overline{\mathcal{T}}$ be the closure of \mathcal{T} in $S L_{3}(\boldsymbol{R})$. By construction $\langle S\rangle \subset \overline{\mathcal{T}}$. Since M_{j} is an infinite-order elliptic element, $M_{i}^{ \pm j} \in \overline{\mathcal{T}}$ for all relevant i and j. Therefore the group $G_{i j}$ is contained in the semigroup $\overline{\mathcal{T}}$. This implies that $G \subset \overline{\mathcal{T}}$. However, $G=S L_{3}(\boldsymbol{R})$. Therefore \mathcal{T} is dense in $S L_{3}(\boldsymbol{R})$. Our theorem follows immediately from this.

Our only piece of unfinished business is to justify the formula for \mathfrak{s}. By computing the eigenspaces of S we find that the matrix

$$
U=\left[\begin{array}{ccc}
-21 & 0 & 2 \\
-34 & -1 & -3 \\
58 & 2 & 0
\end{array}\right]
$$

conjugates S to block triangular form:

$$
U^{-1} S U=\left[\begin{array}{cc}
1 & 0 \\
0 & B
\end{array}\right] ; \quad B=\frac{1}{48}\left[\begin{array}{cc}
-14 & -60 \\
30 & -36
\end{array}\right]
$$

Note that $B \in S L_{2}(\boldsymbol{R})$ is infinite-order elliptic. Let $\langle B\rangle$ be the closure of the group generated by B. We claim that the matrix

$$
\mathfrak{b}=48 B-24 \operatorname{trace}(B) I=\left[\begin{array}{ll}
11 & -60 \\
30 & -11
\end{array}\right] \in \mathfrak{s l}_{2}(\boldsymbol{R})
$$

generates $\langle B\rangle$ in the sense that $\langle B\rangle=\{\exp (t \mathfrak{b}) \mid t \in \boldsymbol{R}\}$. To prove this, we note that \mathfrak{b} and B commute, when multiplied together as matrices. Hence, for any $t \in \boldsymbol{R}$ the element $\beta_{t}=\exp (t \mathfrak{b})$ commutes with any element of $\langle B\rangle$. As is well known $S L_{2}(\boldsymbol{R})$ acts isometrically on the hyperbolic plane \boldsymbol{H}^{2} by linear fractional transformations. The group $\langle B\rangle$, which consists entirely of elliptic elements, acts as the group of isometric rotations about some fixed point $x \in \boldsymbol{H}^{2}$. Since β_{t} commutes with all elements of $\langle\boldsymbol{B}\rangle$, it must also act as an isometric rotation about x. Hence $\beta_{t} \subset\langle B\rangle$ for all t. Our claim now follows easily.

Since \mathfrak{b} generates $\langle B\rangle$,

$$
\mathfrak{s}=U\left[\begin{array}{ll}
0 & 0 \\
0 & \mathfrak{b}
\end{array}\right] U^{-1}
$$

generates $\langle S\rangle$ in the sense of Lemma 2.1. Expanding this product gives the formula for \mathfrak{s} used in Lemma 2.1.

Acknowledgment

I thank Bill Goldman for some interesting discussions about Lie groups and Lie algebras.

Appendix. A Mathematica File

We refer the reader to [W] for details on the implementation of Mathematica. A copy of this file produced our calculations.

```
e[0]={0,0,0}; e[1]={1,0,0}; e[2]={0,1,0}; e [3]={0,0,1};
S4=Permutatations[{0,1,2,3}];
T[n_]:= (sigma=S4[[n]];
c0=(e[sigma[[1]]])/1;
c1=(e[sigma[[1]]]+e[sigma[[2]]])/2;
c2=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]])/3;
c3=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]]
    +e[sigma[[4]]])/4;
L=Transpose[c1-c0,c2-c0,c3-c0];
L/Power [Abs [Det [L] ],1/3])
F[\mp@subsup{a}{-}{},\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{}]:=Simplify[T[a].T[b].T[c]]
S=F[23,20,19]; M1=F[5,20,16]; M2=F[20,16,5];
S}={{70,54,57},{-114,-107,-104},{18, 52, 37}
U={{-21, 0, 2}, {-34, -1, -3}, {58, 2, 0}}
Ad[\mp@subsup{X}{-}{\prime},\mp@subsup{Y}{-}{\prime}]:=x.Y.Inverse[x];
g11=Ad[M1,s];
g12=Ad[M1.M1,s];
g13=Ad[M1.M1.M1,s];
g14=Ad[M1.M1.M1.M1 , s];
g21=Ad[M2, s];
g22=Ad[M2.M2, s ] ;
g23=Ad[M2.M2.M2 , s ] ;
g24 =Ad [M2 .M2 . M2 . M2 , s ] ;
P[\mp@subsup{x_]}{~}{]}:=Take[Flatten[x], 8]
M={P[g11], P[g12], P[g13],P[g14], P[g21], P[g22],P[g23], P[g24]}
Det [M]
```


References

[BBC] I. Bárány, A.F. Beardon, and T.K. Carne, Barycentric subdivision of triangles and semigroups of Mobius maps, Mathematika 43 (1996).
[FH] W. Fulton and J. Harris, Representation Theory, A First Course, GTM 129, Springer-Verlag, New York, 1991.
[S] E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.
[W] S. Wolfram, The Mathematica Book, fourth edition, Cambridge University Press, Cambridge, 1999.
Received June 17, 2001, and in revised form August 7, 2002. Online publication August 6, 2003.

[^0]: * This research was supported by N.S.F. Research Grant DMS-0072607.

