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Department of Computer Science, University of California at Santa Barbara,
Santa Barbara, CA 93106, USA
toth@cs.ucsb.edu

Abstract. It is shown that a set of n disjoint line segments in the plane can always be
illuminated by �(n + 1)/2� light sources, improving an earlier bound of �2n/3� due to
Czyzowicz et al. It is also shown that �4(n + 1)/5� light sources are always sufficient and
sometimes necessary to illuminate the free space and both sides of n disjoint line segments
for every n ≥ 2.

1. Introduction

Illumination of convex sets was first studied by L. Fejes Tóth [8] who proved that 4n−7
light sources are always sufficient and sometimes necessary to illuminate the boundaries
of n disjoint compact sets in the plane for every n ≥ 3. He also proved that 2n − 2 light
sources are always sufficient and sometimes necessary to illuminate the boundaries of
n disjoint disks for every n ≥ 3. Ever since, this illumination problem has been studied
for several subclasses of compact sets. Tight bounds are not known for any other cases.
For n disjoint homothetic triangles, there are almost matching upper and lower bounds
of n + 1 and n [6]. For n disjoint axis-parallel rectangles, the maximum number of
necessary light sources is between n − 1 and n + 1 in the worst case [11], [20]. Urrutia
conjectures [20] that n + c light sources always suffice to monitor n disjoint convex
quadrilaterals or n disjoint triangles in the plane, c is a constant.

Given a set D of objects in the plane, a set S of points (light sources) collectively
illuminate a point set P if for every point p ∈ P there is a light source s ∈ S such that the
open line segment sp is disjoint from all objects in D. They illuminate the object set D
if they illuminate the boundary of every object in D. This reflects Valentine’s notion of
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illumination [21]. (We note that Hadwiger [9] defined a different notion of illumination
for convex sets with non-empty interiors. See [16] for a survey on Hadwidger’s problem.)

Illumination in the presence of disjoint objects can refer to two problems which
differ in their target sets: (1) illumination of the set of objects and (2) illuminating the
free space of objects (that is, the complement of the union of the objects, E2\⋃ D).
Interestingly enough, all known bounds for objects with non-empty interiors equally
apply to both problems. Our two main theorems show that this is not the case for disjoint
line segments in general position. The line segments are in general position if there are
no three collinear segment endpoints and no two parallel segments.

Theorem 1 (Illuminating Segments). For any set L of n disjoint line segments in the
plane in general position, there are �(n+1)/2� light sources inE2\⋃ L that collectively
illuminate

⋃
L .

For the illumination of n line segments, the best known construction, due to Zaks [22],
requires 4n/9 − 2 light sources. Theorem 1 improves upon the best previously known
upper bound, 	2n/3
, which is due to Czyzowicz et al. [7]. An asymptotics of n/2+O(1)
was conjectured by Czyzowicz et al. [5].

Theorem 2 (Strong Illumination of the Free Space). For any set L of n, n ≥ 2, disjoint
line segments in the plane in general position, there are �4(n + 1)/5� light sources in
E

2\⋃ L that collectively illuminate E2\⋃ L . This bound is tight.

If every object is a curve, then each point on the boundary of an object can be
illuminated from either side of the curve: this leads to a problem of illuminating line
segments from both sides, suggested by Welzl. Here every point of every given line
segment needs to be illuminated by at least two light sources, one on each side of the
supporting line of the segment.

Theorem 3 (Illuminating Segments from Both Sides). For any set L of n, n ≥ 2, dis-
joint line segments in the plane in general position, there are �4(n+ 1)/5� light sources
in E2\⋃ L that collectively illuminate every point p ∈ �, � ∈ L , from both sides of �.
This bound is tight.

Our theorems give combinatorial bounds on the worst case number of necessary light
sources. Determining the minimal number of light sources for given sets of segments is
NP-hard [18], like many other art gallery type optimization problems.

Other Variants of Illumination in the Presence of Line Segments. O’Rourke [17] con-
sidered the model of weak illumination: The open segment sp between a light source s
and a target point p can contain a segment of L , but it cannot properly cross any segment
of L . He proved that �2n/3� light sources are always sufficient and sometimes necessary
to illuminate the free space of n disjoint segments weakly, if the light sources can be
anywhere in E2 and n > 5. Tóth [19] showed that �2(n+1)/3� light sources in E2\⋃ L
are always sufficient and sometimes necessary to illuminate the free space weakly.
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Czyzowicz et al. [7] required that every line segment be entirely illuminated by one
light source. They have shown that for that problem 	2n/3
 light sources in E2\⋃ L are
always sufficient and sometimes necessary.

Jennings and Lenhart [12] allowed one to place an arbitrary number of light sources
on selected line segments. They proved that there are always at most �n/2� segments
from L such that light sources placed at those segments can illuminate all the other
segments, and this bound is tight.

Proof Technique. Our allocation of light sources extends the so-called matching tech-
nique, which yields tight bounds for some illumination problems [17], [19]. Usually, the
free space E2\⋃ D of the set D of disjoint objects is partitioned into convex cells. A
dual graph is associated to the partition where the nodes represent convex cells, and two
nodes are connected by an edge if a common light source can illuminate both cells. A
small covering set (or, many times, simply a matching) of convex cells with common
boundary points then provides a small set of light sources.

The key observation for our proofs is that the dual graph of a convex partitioning of
disjoint segments (defined below) can be decomposed into paths of three or more nodes
(such a decomposition is called a {P≥3}-factor). Theorem 1 is based on a weaker property,
namely, the dual graph has a partition into paths of two or three nodes (a {P1, P2}-factor).

We apply Kaneko’s characterization of graphs with {P≥3}-factors [13]. Recently,
Kano et al. [14] gave a simple proof to Kaneko’s theorem, and Hartvigsen and Hell [10]
presented a polynomial algorithm which finds an actual {P≥3}-factor or states that none
exists. {P2, P3}-factors were characterized by Akiyama et al. [1]. We remark that finding
a maximum P3 packing (i.e., a set of disjoint induced paths of three nodes) in a given
graph is known to be NP-hard [15] even for planar graphs [4].

Organization. We define a simple (dual) graph on a convex partitioning of the free
space in Section 2. Then, in Section 3, we show that the dual graph has a {P≥3}-factor
applying Kaneko’s theorem. Finally, we use a {P≥3}-factor of the dual graph to allocate
light sources and prove our Theorems 1–3 in Sections 4 and 5.

2. Convex Partitioning and Dual Graphs

In this section we describe a simple method to partition the free space of disjoint segments
into convex pieces. Then we define two graphs on the convex partition such that the
interiors of two cells represented by adjacent nodes in the graph can be illuminated by
one light source.

Let L be a set of n disjoint line segments in the plane. Consecutively, extend every
line segment e1e2 ∈ L beyond its endpoint e1 (and e2) until it hits the relative interior of
another line segment or a previously drawn extension at point τ(e1) (and τ(e2)). If the
extension does not hit anything then τ(ei ) is a ray pointing to infinity. Starting with n
pairwise disjoint and non-collinear line segments, we obtain a partition of the plane into
n + 1 convex open regions [17].

The convex partitioning induced by L is not unique. It depends on the order in which
the segments are extended. For our purposes, any partition is just fine. (It was shown in
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Fig. 1. A convex partitioning and the corresponding planar graph H .

[19] that the line segments can be extended while keeping them disjoint such that the
partitioning algorithm run on the extended segments returns a unique partition.) If the
partitioning algorithm extends a segment � = e1e2 beyond e1 to a (possibly previously
extended) segment, then we call the point τ(e1) a T -junction. If it extends e1e2 beyond
e1 to infinity, then we call the ray τ(e1) an I -junction.

We define the graph H of the convex partition as follows: The node set V (H) cor-
responds to the set of convex cells. To either endpoint of every segment e1e2 ∈ L , we
associate an edge in H : the edge associated to ei , i = 1, 2, connects the two nodes
corresponding to the two cells which lie along eiτ(ei ) on opposite sides and which are
incident to τ(ei ). (See Fig. 1.) Since every segment gives rise to exactly two edges, the
graph H has exactly 2n edges. Notice that H may have double edges if the extension
τ(e1e2) of a line segment e1e2 ∈ L lies completely in the common boundary of two
cells. Observe that H is a planar graph without loops.

We obtain a simple graph K from H by replacing every double edge by a single edge.
For a node v ∈ V (H) = V (K ), we denote by Rv the closure of the cell corresponding
to v. Similarly, for a set of nodes S ⊆ V (K ), let RS =

⋃ {Rv : v ∈ S}.

3. The Graph K Has a {P≥3}-Factor

We write Pi as a shorthand for a path consisting of i , i ∈ N, nodes. A partition of a simple
graph G into P3’s, P4’s, and P5’s is a {P3, P4, P5}-factor of G. Every path of more than
five nodes has a {P3, P4, P5}-factor, this justifies the shorthand notation {P≥3}-factor for
{P3, P4, P5}-factors. We can now formulate the main lemma of this paper.

Lemma 4. The graph K has a {P≥3}-factor if |V (K )| ≥ 3.

In our illumination problems, it will suffice to apply the following two immediate
corollaries.
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Corollary 5. K has a P3-packing which covers at least 3	|V (K )|/5
 nodes if |V (K )|
≥ 3.

Corollary 6. K has a {P2, P3}-factor if |V (K )| ≥ 1.

3.1. Kaneko’s Theorem

The main tool for the proof of Lemma 4 is Kaneko’s theorem [13] which characterizes
{P≥3}-factors.

Theorem 7 (Kaneko’s Theorem). A simple graph G has a {P≥3}-factor if and only if

sun(G − S) ≤ 2|S|, for every S ⊆ V (G). (1)

The term sun(G − S) requires further explanation.

Definition 8. A graph F is factor-critical if for every v ∈ V (F), F −{v} has a perfect
matching (1-factor).

A single node is a sun graph. All other sun graphs can be obtained from a factor-
critical graph F with V (F) = {v1, v2, . . . , vk}, by adding new vertices u1, u2, . . . , uk

and new edges v1u1, v2u2, . . . , vkuk . (Figure 2 depicts four suns.)
Let sun(G) denote the number of connected sun components of a simple graph G.

A factor-critical graph with k nodes has at least k edges if k > 1. To see this, observe
that every factor-critical graph is connected, and it has no leaves. Note that a single node
is also factor-critical and the corresponding sun graph is a path P2. Consequently, a sun
with 2k nodes, k > 1, has at least 2k edges.

3.2. Proof of Lemma 4

Before we proceed with the proof of Lemma 4, we need some definitions. The wheel
subgraphs (defined below) will have special role if they form the factor-critical core of
a sun subgraph of K .

Definition 9. For a graph G and S ⊆ V (G), denote the degree of S in G by degG(S)
(i.e., degG(S) is the number of edges connecting nodes of S to nodes of V (G)\S).

Fig. 2. Four sun graphs.
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Fig. 3. Three wheels with all their outgoing edges.

Let G(S) be the subgraph of G induced by S, and let G − S be the subgraph induced
by V (G)\S. Denote by EG(S) = E(G(S)) the set of edges induced by S in G.

Definition 10. A vertex set S ⊂ V (G) of a graph G is a wheel in G, if S induces a
connected graph, |EG(S)| = |S|, degG(S) = |S|, and degG(v) > 2 for every v ∈ S
(Fig. 3).

The key step to the application of Kaneko’s theorem is the following lemma. The
rather technical proof is postponed to the next subsection.

Lemma 11. Let W be a proper subset of V (K ). Then

|EK (W )| ≤ 2|W | − p(W )− r(W ), (2)

where p(W ) is the number of nodes in W whose degree is 2 in both K and K (W ), and
r(W ) is the maximum number of disjoint subsets of W which are wheels in both K and
K (W ).

Now we are ready to establish our main lemma and show that K admits a {P≥3}-factor.

Proof of Lemma 4. Suppose that inequality (1) does not hold for the graph K of the
convex partitioning. Choose a subset of nodes S ⊂ V (K ), where sun(K − S)− 2|S| is
maximal.

If S = ∅, then K − S = K . K has only one connected component, and does not have
any leaves if |V (K )| > 2. Therefore, sun(K ) > 0 implies |V (K )| ≤ 2.

Now assume that S is non-empty. Delete from K all components of K − S which are
not sun and denote the resulting graph by K ′ (Fig. 4). We wish to apply Lemma 11 and,
in particular, inequality (2) with W = V (K ′). For this reason, we introduce parameters
for the number of certain types of sun components of K − S. The P1’s, P2’s, and all
other suns are considered separately.

Let c2 and c3 be the number of single node components v ∈ V (K )\S with degK (v) =
2 and degK (v) ≥ 3, respectively. (Note that here degK ′(v) = degK (v).)

Let d2, d3, and d4 be the number of P2 components P ⊂ V (K )\S such that degK (P) =
2, degK (P) = 3, and degK (P) ≥ 4, respectively. Observe that degK (P) = 2 (resp.,
degK (P) = 3) means that P contains two (resp., one) nodes with degK (v) = 2.

Consider the sun components of K−S with more than two nodes. Let the total number
of their nodes be 2k. They have k leaves. Let f2 and f3 be the total number of their leaves
v with degK (v) = 2 and degK (v) > 2, respectively. Let r1 and r2 be the number sun
components of K − S with more than two nodes, whose factor-critical subgraph is wheel
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S

K �K 0

K 0
� S

Fig. 4. Illustration for the proof of Lemma 4.

and non-wheel, respectively. These components have at least 2k + r2 interior edges and
at least 2k − f2 edges connect them to S.

Using these parameters, we can give a lower bound to the number of edges in K ′ by
|E(K ′)| ≥ degK ′(S)+ (d2+ d3+ d4)+ (2k+ r2) where degK ′(S) ≥ 2c2+ 3c3+ 2d2+
3d3 + 4d4 + (2k − f2). The number of nodes having degree 2 in both K ′ and K is at
least c2 + 2d2 + d3 + f2.

Inequality (2) with W = V (K ′) is written as

2c2 + 3c3 + 3d2 + 4d3 + 5d4 + 4k + r2 − f2

≤ 2(|S| + c2 + c3 + 2d2 + 2d3 + 2d4 + 2k)− (c2 + 2d2 + d3 + f2)− r1,

c2 + c3 + d2 + d3 + d4 + r1 + r2 ≤ 2|S|.

The number of sun components is at most 2|S|. According to Kaneko’s theorem, K
has a {P≥3}-factor.

3.3. The Structure of Graphs H and K

Recall that K is the graph obtained from H by replacing double edges by simple edges,
furthermore, |V (K )| = n + 1 and |E(K )| ≤ |E(H)| = 2n. If H has d double edges,
then |E(K )| ≤ 2n − d = 2|V (K )| − 2− d.

Denote by q the number of line segments which are extended to a complete line by
the convex partitioning algorithm. Assuming general position, q ∈ {0, 1}. Denote this
line by �0 ∈ L if it exists. Observe that there is no cutting edge in H or in K if n > 1.

Lemma 12. The number of 2-edge cuts in H is q .

Proof. Consider a proper subset S ⊂ V (H). The region RS is connected if S induces
a connected subgraph. The boundary of RS is composed of pieces of the extended line
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segments of L . We distinguish two cases:

Case 1: RS or E2\RS is a bounded region. Every bounded polygonal domain has at
least three vertices. Every vertex corresponds to a T-junction. Every T-junction on the
boundary of RS , in turn, corresponds to an edge of H in degH (S), hence degH (S) ≥ 3.

Case 2: Both RS and E2\RS are unbounded regions. There are at least two I-junctions
on the boundary of RS . If there are at least two line segments on the boundary of RS ,
then there is also at least one T-junction on the boundary (there are no collinear line
segments) and therefore, degH (S) ≥ 3.

A set S ⊂ V (H) for which both RS andE2\RS are unbounded can have degH (S) = 2
if and only if there is exactly one line segment on the boundary of RS . In this case the
line segment � on the boundary of RS is extended to infinity in both directions, and
� = �0.

Corollary 13. For every node v with degH (v) = 2, Rv is a half-plane of �0.

Corollary 14. If S ⊆ V (G) such that degH (S) = 2, then RS is a half-plane of �0.

Lemma 15. Let S be a proper subset of V (H) such that S induces a connected sub-
graph. Then

2|S| ≤ |EH (S)| + degH (S). (3)

Proof. Let x be the number of the line segments e1e2 ∈ L such that relint(τ (e1)τ (e2)) ⊂
int(RS). Note that either endpoint of a segment e1e2 ⊂ int(RS) corresponds to an edge
in EH (S). Let y be the number of segment endpoints which corresponds to an edge in
EH (S) but whose segment relint(τ (e1)τ (e2)) is not fully in int(RS). Finally, let z be
the number of segments on the boundary of RS completely disjoint from int(RS). Using
these parameters, we estimate |S|, |EH (S)|, and degH (S).

For estimating |S|, we keep track of how RS is partitioned by our convex partitioning
algorithm when the segment extensions e1τ(e1), e2τ(e2), . . . , e2nτ(e2n) are added one-
by-one. Let R(0) = RS\

⋃
L . Denote by h the number of holes of R(0). In particular,

every segment of L fully in int(RS) forms a hole, hence h ≥ x . Moreover if E2\RS is
bounded, then h ≥ x + 1. Put RS( j) := RS\

⋃ j
i=1 eiτ(ei ), for j = 1, 2, . . . , 2n. By

deleting one more segment eiτ(ei ) intersecting int(RS), either the number of connected
components of RS( j + 1) increases by one, or the the total number of holes in all
components of RS( j + 1) drops by one. As RS(2n) has no holes and at least 2x + y
extensions intersect the interior of RS , there must be 2x + y − h steps increasing the
number of connected components by one each.
|EH (S)| = 2x + y follows from the definition of parameters x and y. For estimating

degH (S), consider the consecutive line segments along every connected component of
the boundary of RS . Every pair of consecutive line segments on the boundary forms
a T-junction and corresponds to an edge in degH (S). The extensions of the first and
the last segment endpoints on the boundary of an unbounded component correspond to
two I-junctions. This implies that degH (S) ≥ z + y if RS or E2\RS is bounded, and
degH (S) ≥ z + y + 1 if both are unbounded.
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We can summarize the cases as follows. If the complement E2\RS is bounded, then
|S| ≤ x+ y and |EH (S)|+degH (S) ≥ 2x+2y+ z, so our proof is complete. Otherwise
we have |S| ≤ x + y + 1. If RS is bounded, then the convex hull conv(RS) has at least
three sides. On every curve on the boundary of RS between two endpoints of a side
of conv(RS), there is a segment on the boundary of RS disjoint from int(RS), hence
z ≥ 3. This implies that |EH (S)| + degH (S) ≥ 2x + 2y + 3. If both RS and E2\RS are
unbounded, then |EH (S)| + degH (S) ≥ 2x + 2y + z + 1 and z ≥ 1 since conv(RS) has
at least one side.

Corollary 16. If S ⊂ V (K ) is a wheel in K and |EH (S)| = |S|, then either E2\RS is
bounded or RS is a half-plane of �0.

Proof. Suppose that S is a wheel with k nodes and S induces at most k edges in H .
Clearly, S �= V (H). We have

2k = |EH (S)| + degK (S) ≤ |EH (S)| + degH (S) ≤ k + |S| = 2k.

That is, inequality (3) holds with equality. It follows from the argument of the previous
proof that either E2\RS is bounded or both RS and E2\RS are unbounded and z = 1.

Proof of Lemma 11. We know that |E(H)| = 2|V (H)| − 2. Applying Lemma 15 to
every component of H −W , we have |EH (W )| ≤ 2|W | − 2.

It suffices to show that W induces at least p(W )+ r(W )−2 double edges in H . Note
that the nodes of the wheels do not have degree 2 in K . According to Corollary 16, every
wheel S ⊂ W induces a double edge of H unless RS is a half-plane of �0 or E2\RS is
bounded. According to Corollary 13, every node v ∈ W with degK (v) = 2 is incident
to a double edge of H unless Rv is a half-plane of �0. It is possible, however, that two
nodes v ∈ W and w ∈ W with deg(v) = deg(w) = 2 are incident to the same double
edge of H . Consider a path P ⊆ W with degK (v) = 2 and degH (v) > 2 for every
v ∈ P , and note that degK (P

′) = 2 for every subpath P ′ ⊆ P . Therefore, the nodes of
P are incident to |P| double edges of H unless RP contains a half-plane of �0. Since �0

have only two half-planes, and neither is disjoint from a region RS whose complement
is bounded, we concluded that H(W ) must have at least p(W ) + r(W ) − 2 double
edges.

4. Illumination of the Free Space and Illuminating Both Sides of Segments

4.1. P3-Packings of the Graph K

First we introduce the notion of bad P3 to highlight a few exceptional cases. Then we
proceed with Lemma 17 which states that two light sources can basically illuminate Ra ,
Rb, and Rc whenever (a, b, c) forms a P3 in K .

Fix a convex partition of a set L of disjoint line segments. Let e = ab be an edge of H
between the nodes a and b. Assume that e corresponds to a T-junction τ(e). We associate
a small region rε(a, e) to the directed edge e(a, b), where ε is a small positive constant.
Let rε(a, e) be the intersection of the closed cell Ra and the closed disk centered at τ(e)
of radius ε.
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Consider a P3 (a, b, c) of K . Assume that the lines through the line segments e1e3 ∈ L
and e2e4 ∈ L form the common boundary of Ra, Rb and Rb, Rc, respectively, such that
the segment endpoints e1 and e2 correspond to edges ab and bc, respectively. We say
that (a, b, c) is a bad P3 if τ(e3) ∈ τ(e2)τ (e4) or symmetrically if τ(e4) ∈ τ(e1)τ (e3).
The region rε(b, e3) or rε(b, e4), respectively, is called the bad ε-corner of the bad P3

(see Fig. 6).

Lemma 17. There is a positive constant ε0 = ε0(L) such that for all ε, 0 < ε < ε0,
and every P3 (a, b, c) of K , we can place two light sources in int(Ra)∪ int(Rb)∪ int(Rc)

with the following properties:

(i) They illuminate all portions of
⋃

L on the boundaries of Ra , Rb, and Rc.
(ii) If (a, b, c) is not bad, then they illuminate all portions of

⋃
L on the boundaries

of Ra , Rb, and Rc from the side of Ra , Rb, and Rc (from two sides on the common
boundaries); and they illuminate Rabc\

⋃
L .

(iii) If (a, b, c) is bad, then they illuminate all portions of
⋃

L on the boundaries of
Ra, Rb, and Rc from the side of Ra , Rb, and Rc (from two sides on the common
boundaries), except for the portions in the bad ε-corner from the side of Rb; and
they illuminate Rabc\

⋃
L except for the bad ε-corner.

(iv) They illuminate every r2ε(d, e) where d ∈ V (H)\{a, b, c} and e corresponds to
an edge of H between d and (a, b, c).

Proof. Let e1 and e2 denote the segment endpoints which correspond to edges ab and
bc, respectively. If τ(e1) (resp., τ(e2)) is a T-junction, then letw1 = τ(e1) (w2 = τ(e2)).
If τ(e1) (resp., τ(e2)) is an I-junction, then let w1 (w2) be the intersection point of the
common boundary of Ra and Rb (Rb and Rc) and a bounding box of

⋃
L .

We place two light sources s1 and s2 into int(Ra) ∪ int(Rb) ∪ int(Rc) in the δ-
neighborhood of w1 and w2, where δ > 0 is a sufficiently small positive constant
depending on L and ε. If e1e2 is not a segment of L , then we place the two light sources
in the interior of Ra and Rb (Fig. 5, left). If e1e2 ∈ L , then we place them on opposite
sides of the line through e1e2, say, into the interior of Ra and Rb (Fig. 5, right).

Each light source illuminates the cell in which it is lying and the boundary of this
cell. If e1e2 ∈ L , then the light source s2 illuminates the cell Rc, except for the cone

*

*

*
*Ra

Rb

Rc

Ra

Rb

Rc

Fig. 5. Two examples where the two light sources are located in Ra ∪ Rb ∪ Rc if (a, b, c) is not a bad P3.
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*

*

Ra

Rb

Rc

e3

e1

e2

e4

r"(b; e4)

Fig. 6. Two light source do not illuminate a bad ε-corner of a bad P3.

between the rays −→e1e2 and −→s2e2 and the portion of e1e2 on the boundary of Rc. Both are
illuminated by s1 if δ is sufficiently small.

If e1e2 �∈ L , then let e1e3 ∈ L and e2e4 ∈ L . The light source s1 ∈ int(Ra) also
illuminates cell Rb; except for the cone between the rays−→e1e3 and−→s1e1 and the portion of
e1e3 on the boundary of Rb from side Rb. The light source s2 ∈ int(Rc) also illuminates
cell Rb; except for the cone between the rays −→e2e4 and −→s2e2, and the portion of e2e4 on
the boundary of Rb from side Rb. They together illuminate Rb and its boundary except
if (a, b, c) is bad. In that case the intersection of the non-illuminated pieces are all in the
bad corner if δ is sufficiently small with respect to ε.

Finally s1 and s2 illuminate the regions r2ε(D, V ) in adjacent cells if ε is sufficiently
small. We note only one particular case: if (a, b, c) is a bad P3, then the corner r2ε(d, e3)

(resp., r2ε(d, e4)) of the neighboring cell opposite to the bad ε-corner of (a, b, c) is also
illuminated by the light source s1 (resp., s2) (Fig. 6). Note that the upper bound on ε
depends only on L and not on δ.

For the sake of completeness, we make the following observation about the bad
corners.

Proposition 18. There is a positive constant ε1 = ε0(L) such that for all ε, 0 < ε < ε1,
and every a ∈ V (K ), we can place a light source in int(Ra)with the following properties:

(i) It illuminates Ra ; and it illuminates all portions of
⋃

L on the boundary of Ra .
(ii) It illuminate every r2ε(d, e(a, d)) where v ∈ V (H)\{a} and e(a, d) ∈ E(H).

4.2. Proof of Theorems 2 and 3

(Sufficiency) According to Corollary 5, K contains a P3-packing which covers at least
3	(n + 1)/5
 nodes. Place two light sources for every P3 as described in the proof of
Lemma 17 and one light source in the interior of every cell not covered by a P3 as
described in Proposition 18. The two light sources in a P3 illuminate the interior and the
boundaries of the three cells except for a bad corner in the case of bad P3’s. The bad
corners are illuminated from the opposite side: On the other side there is either another
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Fig. 7. A construction of n = 26 line segments requiring 21 light sources.

P3 of our P3-packing and the bad corner is illuminated by Lemma 17(iv), or there is a
single cell in our P3-packing and the bad corner is illuminated by Proposition 18(ii). The
total number of light sources is

2

⌈
n + 1

5

⌉
+
(
(n + 1)− 3

⌈
n + 1

5

⌉)
=
⌊

4 · n + 1

5

⌋
.

(Necessity) Figure 7 depicts a construction of 5k + 1 line segments requiring 4k +
1 = �4(n + 1)/5� light sources. Observe that each line segment in the interior of
a shaded region requires two distinct light sources. (The maximum P3-packing of the
corresponding unique graph K (Fig. 8) covers 3(k+1) nodes out of the total of |V (K )| =
5k + 2.)

We obtain a construction on n = 5k + 2, 5k + 3, or 5k + 4 line segments by adding
one, two, or three segments shown as dashed lines in Fig. 7.

Theorem 3 says that the light source placement based on a maximum P3-packing of K
is best possible in the worst case. Note, however, that there is no one-to-one correspon-
dence between maximum P3-packings of K and optimal solutions to this illumination
problem.

5. Illuminating Segments

5.1. First Approach

We wish to find a set of light sources in the free space that collectively illuminate every
point of the line segments (from one side at least). We show first how an upper bound of
�2(n + 1)/3� can be deduced from Corollary 6 (i.e., a maximum matching of G covers
at least 2	(n + 1)/3
 nodes).
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Fig. 8. The corresponding graph K .
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Let ab be a P2 in K . We say that ab is a bad P2 if two edges of H connects a and b
(i.e., ab is a double edge in H ). Let e1e2 be the segment whose two endpoints correspond
to the two edges of H between a and b. We call bad points of the bad P2 the two points
τ(e1) and τ(e2).

Lemma 19. There is a positive constant ε0 = ε0(L) such that for all ε, 0 < ε < ε0,
and every P2 of K , we can place a light source in int(Ra) ∪ int(Rb) with the following
properties.

(i) If ab is not bad, then it illuminates all portions of
⋃

L on the boundaries of Ra

and Rb.
(ii) If ab is bad, then it illuminates all portions of

⋃
L on the boundaries of Ra and

Rb; except for parts of one of the following four disjoint intervals on the boundary
of Rab: each interval has length ε and they lie in an ε-neighborhood of the two
bad points of ab but do not include the bad points.

Proof. Assume that the lines through e1e2 ∈ L form the common boundary of Ra and
Rb such that the segment endpoint e1 corresponds to an edge ab ∈ E(H). If e1 is a
T-junction, then let w1 = τ(e1); if e1 is an I-junction, then let w1 be the intersection of
e1τ(e1) and a bounding box of

⋃
L .

If ab is not bad, then we place a light source s into int(Ra) ∪ int(Rb) in the δ-
neighborhood ofw1, where δ > 0 is a sufficiently small positive constant. If s ∈ int(Ra)

(s ∈ int(Rb)), then s illuminates Ra (Rb) and it also illuminates the boundary of the
other cell, except for the interior of the cone Cb (Ca) between the rays−→e1e2 and−→se1. The
interior of either Ca or Cb contains no line segments on the boundary ∂Rab (Fig. 9, left).

If ab is a bad P2, then the segment endpoint e2, too, corresponds to an edge of H
between a and b. We place a light source in the interior of Ra or Rb, in the δ-neighborhood
of w1 or w2. Thus we have four disjoint regions for locating a light source s. In all four
cases, the only portion of the boundaries ∂Ra∪∂Rb non-illuminated by s is the projection
of e1e2 to the boundary ∂Rab from center s. The non-illuminated portion of the boundary
can be in four disjoint intervals around the two bad points τ(e1) or τ(e2) depending on
the four possible location of s. This portion can be smaller than ε, if δ is sufficiently
small with respect to ε (Fig. 9, right).

*

*

*

Ra

Ra

RbRb

e1 e2

e1

�(e1) �(e2)

�(e1)

Fig. 9. A light source next to v1 or v2 cannot always illuminate the entire boundary of Rab .
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Theorem 20. For any set L of n disjoint line segments in the plane in general position,
there are �2(n + 1)/3� light sources in E2\⋃ L that collectively illuminate

⋃
L .

Proof. Let M be a maximum matching of K . Place one light source into every pair of
M as described in Lemma 19, and one light source in the interior of every cell not covered
by M . By Corollary 6, we used no more than 	(n + 1)/3
 + (n + 1− 2	(n + 1)/3
) =
�2(n + 1)/3� light sources. For every bad pair ab ∈ M , there is a short interval which
is not illuminated by the light source assigned to ab. All non-illuminated small intervals
can be illuminated from the other side by choosing ε sufficiently small in Lemma 19.

5.2. Proof of Theorem 1

Let F be a {P2, P3}-factor of K granted by Corollary 6. Consider a P3 (a, b, c) of F .
Let γ (a) = ∂R(a,b,c) ∩ ∂Ra and γ (c) = ∂R(a,b,c) ∩ ∂Rc (i.e., two connected polygonal
curves). Denote the two endpoints of γ (a) and γ (c) by p1, p2 and q1, q2, respectively, in
clockwise order along ∂R(a,b,c). Let κ(a) be the polygonal path along ∂R(a,b,c) from p1

to q1, and let κ(c) be the polygonal path along ∂R(a,b,c) from q1 to p1 in clockwise order.
As a result, ∂R(a,b,c) = κ(a)∪ κ(c), ∂Ra ∩ ∂R(a,b,c) ⊂ κ(a), and ∂Rc ∩ ∂R(a,b,c) ⊂ κ(c)
(Fig. 10).

We define a graph JF . Let the node set V (JF ) be the set of all two extremal nodes
from every P3 ∈ F . Two nodes u, v ∈ V (JF ) are connected by an edge if and only if at
least one of the following conditions is satisfied (see Fig. 11):

– u and v are in the same P3 of F ,
– κ(u) ∩ κ(v) contains infinitely many points (this includes the case where the cells

Ru and Rv have common boundary points),
– Ru and Rv lie at the opposite side of two bad points of a bad P2 in F .

Observe that JF is planar: We can draw JF as follows. Place a point p(a) in int(Ra)

for every a ∈ V (JF ), and connect the points corresponding to adjacent nodes of JF by
curves without crossings: For a P3 (a, b, c) of F , the two points, p(a) and p(c), can be
connected by a curve within R(a,b,c). If κ(u1) ∩ κ(v1) contains a segment, then p(u1)

Ra

Ra

Rb

Rb

RcRc

p1

p2

p2
q1

q1

q2p1 = q2

Fig. 10. Denote the two endpoints of α = ∂R(a,b,c) ∩ ∂Ra and γ = ∂R(a,b,c) ∩ ∂Rc by p1, p2 and q1, q2,
respectively.
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Fig. 11. Edges of graph JF defined on the extremal nodes of P3’s of F .

and p(v1) can be connected to this segment within R(u1,u2,u3) and R(v1,v2,v3), respectively,
where (u1, u2, u3) ∈ F and (v1, v2, v3) ∈ F . Finally, if Ru and Rv lie at the opposite
sides of the bad points τ(e1) and τ(e2) of a bad P2 ab of F , then p(u) and p(v) can be
connected to τ(e1) and τ(e2) within Ru and Rv , respectively; and τ(e1) and τ(e2) can
be connected in Rab.

According to the four color theorem [2], [3], JF has an independent set IF ⊂ V (JF )

of size |IF | ≥ 	|V (JF )|/4
. Putting TF = V (JF )\IF , we have |TF | ≤ �3|V (JF )|/4�.
TF has one or two nodes in every P3 of F . Indeed, IF cannot contain both nodes from

a P3 of F , because they are connected by an edge in JF . Hence, at least half of the P3’s
of F contain only one node of TF , and at most half of them contain two.

We create a new decomposition F̂ of V (K ) by splitting some of the P3’s of F into a
P2 and a single node: If (a, b, c) is a P3 of F and c ∈ IF (therefore a ∈ TF ), then we
split (a, b, c) into (a, b) and c. All other P3’s and all P2’s of F are put into F̂ intact. Let
q1, q2, and q3 be the number of single nodes, P2’s, and P3’s in F̂ , respectively. Clearly,
q1 + 2q2 + 3q3 = n+ 1. Every single node is obtained from a P3 of F with one node in
IF , hence q3 ≤ q1.

Now we define a set of light sources S(F̂). Place two light sources into each P3 of
F̂ as described in Lemma 17. Place one light source into each P2 of F̂ as described in
Lemma 19. (The proof of Lemma 19 suggests four possibilities for the location of a light
source in a bad pair. We use the freedom of choice in the proof of Lemma 21.) There are
no light sources in the single nodes of F̂ . All in all, we used at most �(n + 1)/2� light
sources.

Lemma 21. The light sources of S(F̂) can be arranged so that they collectively illu-
minate every point of

⋃
L .

Proof. We prove that every portion of
⋃

L on the boundary of every convex cell of the
convex partition is illuminated by some light source of S(F̂).

The portions of
⋃

L in and on the boundaries of R(a,b,c), where (a, b, c) is a P3 of F̂ ,
are illuminated according to Lemma 17(i). Likewise the portions in and on the boundary
of Rab, where ab is a good P2 of F̂ . If ab is a bad pair of F̂ , then one of four arbitrarily
short segments in the neighborhood of one of its bad points is not illuminated from the
side of Rab. The boundary of Ra where a ∈ IF is not illuminated from the side of Ra .
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Ra

Rb

Rc

Rd Re

Fig. 12. A bad P2, (c, d), is part of the P3 (c, d, e).

We need to show that the boundaries of cells corresponding to single nodes of F̂ and
the short segments at bad points of bad pairs of F̂ are illuminated from the opposite side.
There are three cases to consider:

(1) If a and b are single nodes of F̂ , then a and b are vertices of the graph JF , and
a, b ∈ IF . The cells Ra and Rb cannot have more than one common boundary points,
because then JF has an edge between a and b.

(2) If ab and bc are two bad pairs of F̂ and Rab and Rcd have a common boundary,
then the light sources sab ∈ S(F̂) and scd ∈ S(F̂) can always be arranged so that every
point in ∂Rab ∩ ∂Rcd is illuminated by at least one of them.

(3) Suppose that a and b are single nodes (so a, b ∈ IF ) and cd is a bad P2 of F̂ ,
furthermore, Ra and Rb are located at the other side of the bad points of cd. (See Fig. 12.)

cd cannot be a bad P2 of F , because then the nodes a and b are connected by an
edge in the graph JF , therefore a and b cannot be in IF . Therefore, cd was obtained by
splitting a P3 (c, d, e) of F into a pair cd and a singleton e. This implies that e is also a
node of the graph JF and e ∈ IF .

Now observe that the two bad points of cd are also the two endpoints of the curve
γ (c) defined for (c, d, e). Since Ra and Rb are at the other side of the two bad points of
cd, either ∂Ra or ∂Rb contains a common segment with κ(e). Therefore, JF has an edge
between e and, say, b, so they cannot be in an independent set of JF , a contradiction.
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