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Abstract. It is proved that the shape of the typical cell of a Delaunay tessellation, derived
from a stationary Poisson point process in d-dimensional Euclidean space, tends to the
shape of a regular simplex, given that the volume of the typical cell tends to infinity. This
follows from an estimate for the probability that the typical cell deviates by a given amount
from regularity, given that its volume is large. As a tool for the proof, a stability result for
simplices is established.

1. Introduction and Main Result

Voronoi tessellations (also called Voronoi mosaics or Voronoi diagrams) and their duals,
Delaunay tessellations, are a thoroughly studied subject of discrete geometry. The book
by Okabe et al. [11] gives an impression of the richness of the theory of these tessellations
and of the variety of their applications. If the discrete point set in Rd from which such
a tessellation is derived is random, one gets a random tessellation. Important examples
are the Poisson–Voronoi and Poisson–Delaunay tessellations, which are derived from
(stationary) Poisson point processes. We refer to Chapter 5 of [11], Chapter 10 of [14],
and Chapter 6 of [13] for introductions to random tessellations.

A conjecture of D. G. Kendall initiated the study of limit shapes of large cells in
special random mosaics. In the early 1940s Kendall conjectured (as documented in
the introduction to the first edition of [14]) that the shape of the zero cell of the random
tessellation generated by a stationary and isotropic Poisson line process in the plane tends
to a circular shape given that the area of the zero cell tends to infinity. Contributions to
this problem were made by Miles [9] and Goldman [1], and Kendall’s conjecture was
finally proved by Kovalenko [3], [5]. In [2] the limit shape for zero cells and typical cells
of not necessarily isotropic, stationary Poisson hyperplane tessellations was found, and
the probability of large deviations from the limit shape was estimated. Kovalenko [4]
treated an analogue of Kendall’s problem for the typical cell of a stationary Poisson–
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Voronoi tessellation in the plane. Again, the shape tends to circularity, given that the area
tends to infinity.

The present paper is in a similar spirit. We consider the typical cell of a stationary
Poisson–Delaunay mosaic in d-dimensional space and prove, as a consequence of a
precise estimate, that its shape tends to that of a regular simplex, given that the volume
tends to infinity.

Let X̃ be a stationary Poisson point process with intensity λ > 0 in d-dimensional
Euclidean space Rd (d ≥ 2). Let Y denote the Poisson–Delaunay tessellation derived
from X̃ . The typical cell of Y (as defined in Section 6.2 of [13]) is denoted by Z
(explanations are given below in Section 2). Almost surely, Z is a simplex which is
inscribed to a sphere centered at the origin.

For the formulation of our result, we need a measure for the deviation of the shape
of a simplex from the shape of a regular simplex. For d-simplices S1, S2, we define
η(S1, S2) as the smallest number η with the property that for each vertex p of one of the
simplices there is a vertex q of the other such that ‖p − q‖ ≤ η (here ‖ · ‖ denotes the
Euclidean norm). Note that δ(S1, S2) ≤ η(S1, S2), where δ denotes the Hausdorff metric
(see Section 1.8 of [12]). For a d-simplex S, let z be the center and let r be the radius of
the sphere through the vertices of S, and set

ρ(S) := min{η(r−1(S − z), T ) : T ∈ T d},

where T d denotes the set of regular simplices inscribed to the unit sphere Sd−1.
By P we denote the underlying probability, and P(· | ·) is a conditional probability.

We write Vd for the volume in Rd .

Theorem 1. Let Y denote the Poisson–Delaunay tessellation derived from a stationary
Poisson process with intensity λ > 0 in Rd ; let Z be its typical cell. There is a constant
c0 depending only on d such that the following is true. If ε ∈ (0, 1) and I = [a, b) is
any interval ( possibly b = ∞) with aλ ≥ σ0 > 0, then

P(ρ(Z) ≥ ε | Vd(Z) ∈ I ) ≤ c exp
{−c0ε

2aλ
}
,

where c is a constant depending only on d, ε, and σ0.

As a consequence, we have

lim
a→∞P(ρ(Z) ≥ ε | Vd(Z) ≥ a) = 0

for any fixed ε > 0.
Using similar arguments as in [2], one can also deduce a corresponding result for the

zero cell Z0 (the cell containing the origin of Rd ) of Y . This will not be carried out here,
since the procedure is clear from [2].

The proof of Theorem 1 is based on a geometric stability result for simplices (The-
orem 2 in Section 3) and on two estimates, provided by Lemmas 2 and 3 in Section 4.
The derivation of these estimates is facilitated by an explicit formula for the distribution
of Z , which is due to R. E. Miles.
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2. The Typical Cell of a Poisson–Delaunay Tessellation

We recall briefly the notion of a Poisson–Delaunay tessellation and its typical cell (details
can be found, e.g., in [13]). Let X̃ be a stationary Poisson process in Rd , with intensity
λ > 0. With probability one, no d + 1 points of X̃ are in a hyperplane, and no d + 2
points lie on a sphere. If d + 1 points x1, . . . , xd+1 of X̃ lie on a sphere that contains no
point of X̃ in its interior, then the convex hull of x1, . . . , xd+1 is called a cell. The set Y
of all such cells is a tessellation of Rd by simplices, the Poisson–Delaunay tessellation
derived from X̃ . (This construction of a Delaunay tessellation is equivalent to the usual
one as the dual of a Voronoi tessellation.) Since Y can be considered as a stationary
particle process (of intensity λ′ = [(d + 1)a(d)]−1λ, where a(d) is given by (1) below),
one can associate with it a shape distribution (see Section 4.2 of [13]). It can be described
as follows. For a d-simplex S, we denote by z(S) the center of the sphere through the
vertices of S. Let 
0 be the set of all d-simplices S in Rd with z(S) = 0. Let Cd be the
cube [− 1

2 ,
1
2 ]d . The shape distribution of Y is the probability measure Q0 on 
0 with

the property that

Q0(A) = (1/λ′)E card{S ∈ Y : z(S) ∈ Cd , S − z(S) ∈ A}

for Borel sets A ⊂ 
0; here E denotes mathematical expectation. The typical cell of
the Poisson–Delaunay tessellation Y is defined as a random polytope with distribution
Q0. A more intuitive interpretation of this distribution is possible due to the fact that
stationary Poisson–Delaunay tessellations are mixing and hence ergodic [13, Satz 6.4.2].
This entails that, for A as before,

Q0(A) = lim
r→∞

card{S ∈ Y : z(S) ∈ rCd , S − z(S) ∈ A}
card{S ∈ Y : z(S) ∈ rCd}

holds with probability one.
For example, suppose we are interested in P(Vd(Z) ≥ a), the probability that the

typical cell has volume at least a > 0. Then we can take an arbitrary realization of the
tessellation Y and a large number r and consider, among the cells S of the realization with
center z(S) in the cube rCd , the relative frequency of those with volume at least a. This
proportion will almost surely be a good approximation to the probability P(Vd(Z) ≥ a).

We make use of the explicit integral representation of the distribution Q0 given by
Lemma 1. It is due to Miles [8, formula (76)]; the proof can also be found in [10,
Theorem 7.5] and [13, Satz 6.2.10]. Let σ denote the spherical Lebesgue measure on the
unit sphere Sd−1, and let κd be the volume of the d-dimensional unit ball.

Lemma 1. Let Y be the Delaunay tessellation derived from a stationary Poisson process
of intensity λ > 0 in Rd , and let Q0 be the distribution of its typical cell. Let A ⊂ 
0

be a Borel set. Then

Q0(A) = a(d)λd
∫ ∞

0

∫
Sd−1
· · ·

∫
Sd−1

1A(conv{ru0, . . . , rud})e−λκdrd
r d2−1

× Vd(conv{u0, . . . , ud}) dσ(u0) · · · dσ(ud) dr
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with

a(d) := d2

2d+1π(d−1)/2

�(d2/2)

�((d2 + 1)/2)

[
�((d + 1)/2)

�(d/2+ 1)

]d

. (1)

3. A Stability Result for Simplices

For a d-dimensional simplex S ⊂ Rd we say that S is inscribed to the unit sphere Sd−1

if the vertices of S lie on Sd−1. Let S be such a simplex and suppose that it has maximal
volume among all simplices inscribed to Sd−1. Then it is easy to see that S is a regular
simplex (e.g., p. 317 of [7]). Here we need an improved version of such a ‘uniqueness’
result, in the form of a stability estimate.

In the following, T d is a regular simplex inscribed to Sd−1.

Theorem 2. There is a positive constant c(d) such that the following is true for any
ε ∈ [0, 1]. If S is a simplex inscribed to Sd−1 and if ρ(S) ≥ ε, then

Vd(S) ≤ (1− c(d)ε2)Vd(T
d). (2)

Proof. First we consider the case d = 2, where we show that c(2) = 1
12 is a possible

choice.
Let S be a triangle inscribed to S1 and satisfying V2(S) > (1 − ε2/12)V2(T 2); here

V2(T 2) = 3
√

3/4. Then 0 ∈ int S. Let 2α, 2β, and 2γ be the angles at 0 spanned by the
edges of S. Then

V2(S) = sinα cosα + sinβ cosβ + sin γ cos γ

andα+β+γ = π . We can choose the notation in such a way that the anglesϕ := α−π/3
and ψ := β − π/3 are either both non-negative or both non-positive. An elementary
calculation gives

V2(S)−V2(T
2) = (

√
3/2)[cos2 ϕ+cos2 ψ−2]− sin(ϕ+ψ)[sinϕ sinβ+ sinψ sinα].

Since either ϕ ≥ 0, ψ ≥ 0 or ϕ ≤ 0, ψ ≤ 0 (and |ϕ + ψ | < π ), we get

sin(ϕ + ψ)[sinϕ sinβ + sinψ sinα] ≥ 0.

We deduce that

− ε
2

12

3
√

3

4
< V2(S)− V2(T

2) ≤
√

3

2
(cos2 ϕ − 1),

hence, observing that −π/3 ≤ ϕ ≤ π/6,

1− 1
2ϕ

2 ≥ cos2 ϕ > 1− 1
8ε

2.

Thus |ϕ| < ε/2, and similarly |ψ | < ε/2, hence |2α− 2π/3| < ε and |2β− 2π/3| < ε.
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Let p be the vertex of S common to the edges spanning the angles 2α and 2β. Let
T be the regular triangle inscribed to S1 with one vertex at p. Then η(S, T ) < ε. This
proves the assertion for d = 2.

Now let d ≥ 3, and assume that the assertion has been proved in dimension d − 1.
Let S be a d-simplex inscribed to Sd−1 and satisfying

Vd(S) > (1− α)Vd(T
d)

for some given number α > 0. First we assume that 0 ∈ int S. The inradius r(S) of
S satisfies r(S) ≤ 1/d (see, e.g., Satz 1 of [6], or Lemma 13.2.2 of [7]). Hence, there
is at least one facet of S, say F , which has a distance at most 1/d from 0. Therefore,
there is a vector u ∈ Sd−1 and a number t ∈ (0, 1/d] such that aff F = H(u, t) :=
{z ∈ Rd : 〈u, z〉 = t}. Let p be the vertex of S not in F , and let q be the point in Sd−1

with maximal distance from H(u, t). Let a be the distance between the hyperplanes
through p and q parallel to H(u, t). The (d− 1)-volume of F is less than or equal to the
(d − 1)-volume of a regular (d − 1)-simplex inscribed to H(u, t)∩ Sd−1. Moreover, the
function x �→ (1− x2)(d−1)/2(1+ x) attains a unique maximum on the interval [0, 1] at
1/d. All this implies

Vd(S) = 1

d
Vd−1(F)(1+ t − a)

≤ 1

d
Vd−1(T

d−1)(1− t2)(d−1)/2(1+ t − a)

≤ 1

d
Vd−1(T

d−1)(1− t2)(d−1)/2(1+ t)

≤ 1

d
Vd−1(T

d−1)

(
1− 1

d2

)(d−1)/2 (
1+ 1

d

)
= Vd(T

d)

< Vd(S)+ αVd(T
d).

From this chain of inequalities, we draw three conclusions. In this proof, c1, c2, . . .

denote positive constants depending only on the dimension d .
The first conclusion is that

(1/d)Vd−1(T
d−1)(1− t2)(d−1)/2a < αVd(T

d).

Here t ≤ 1/d , hence a < c1α. Since ‖p − q‖2 = 2a, we get

‖p − q‖ < c2
√
α. (3)

The second conclusion is that

1

d
Vd−1(T

d−1)

[(
1− 1

d2

)(d−1)/2 (
1+ 1

d

)
− (1− t2)(d−1)/2(1+ t)

]
< αVd(T

d).

(4)



508 D. Hug and R. Schneider

Let

g(x) := (1− x2)(d−1)/2(1+ x) for x ∈ [0, 1].

The first two derivatives are given by

g′(x) = −(1− x2)(d−3)/2(dx2 + (d − 1)x − 1)

and

g′′(x) = (d − 1)(1− x2)(d−5)/2(dx3 + (d − 2)x2 − 3x − 1),

for x ∈ [0, 1). Since g′(1/d) = 0, we get

g(x) = g

(
1

d

)
+ 1

2
g′′(ξ)

(
x − 1

d

)2

, x ∈
[

0,
1

d

]
, (5)

with a suitable ξ ∈ [x, 1/d]. We estimate g′′ from above by a negative constant. For this,
we set

f (x) := dx3 + (d − 2)x2 − 3x − 1.

An elementary discussion shows that f is strictly decreasing in [0, 1/d]. In particular,
we deduce that

f (x) ≤ f (0) = −1 for x ∈ [0, 1/d].

This shows that, for x ∈ [0, 1/d],

g′′(x) ≤ −(d − 1)(1− x2)(d−5)/2 ≤
{
−(d − 1), d ∈ {3, 4},
−(d − 1)(1− d−2)(d−5)/2, d ≥ 5,

hence

1
2 g′′(x) ≤ −c3 for x ∈ [0, 1/d]

with c3 > 0. Now (5) gives

c3(t − 1/d)2 ≤ g(1/d)− g(t),

and from (4) we conclude that

|t − 1/d| < c4
√
α. (6)

Our third conclusion is that

(1/d)[Vd−1(T
d−1)(1− t2)(d−1)/2 − Vd−1(F)](1+ t − a) < αVd(T

d). (7)

Here 1+ t − a > 1+ 1/d − c4
√
α − c1α > 1, if we assume that

c4
√
α + c1α < 1/d. (8)



Large Cells in Poisson–Delaunay Tessellations 509

The (d − 1)-simplex F ′ := (1− t2)−1/2(F − tu) is inscribed to H(u, 0)∩ Sd−1 and, as
a consequence of (7) and of t ≤ 1/d, satisfies

Vd−1(F
′) > Vd−1(T

d−1)− αdVd(T
d)(1− d−2)(1−d)/2

= (1− c5α)Vd−1(T
d−1). (9)

Let c(d − 1) be the constant appearing in the induction hypothesis. We assume that

c5α/c(d − 1) ≤ 1 (10)

and put c5α/c(d−1) =: γ . Then (9) and the induction hypothesis imply that η(T d−1, F ′)
<
√
γ for a suitably chosen regular (d−1)-dimensional simplex T d−1 ⊂ H(u, 0)∩Sd−1.

Let

T := (
1− 1/d2

)1/2
T d−1 + 1

d
u

and T d := conv (T ∪ {q}). Then T d is a regular d-simplex, inscribed to Sd−1. The two
(d − 1)-simplices F and T have the property that to each vertex v of one of them there
is a vertex w of the other such that

‖v − w‖ <
√
(1− t2)γ + 1√

1− 1/d2

∣∣∣∣t − 1

d

∣∣∣∣
≤

√
c5α/c(d − 1)+ c6

√
α ≤ c7

√
α

by (6). Together with (3), this shows that

η(S, T d) < c8
√
α. (11)

Now we choose c(d) > 0 so small that c8
√

c(d) ≤ 1 and that α ≤ c(d) implies (8) and
(10).

Let ε ∈ (0, 1] be given, and put α := c(d)ε2. Then

Vd(S) > (1− c(d)ε2)Vd(T
d)

implies

η(S, T d) < ε.

Finally, we can decrease c(d), if necessary, so that 0 /∈ int S implies

Vd(S) ≤ (1− c(d))Vd(T
d).

The induction step is now finished, hence the proof of Theorem 2 is complete.

Remark. The estimate (2) is of optimal order, that is, ε2 cannot be replaced by a smaller
power of ε. This is easily seen by appropriately moving one vertex of a regular simplex.
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4. Proof of Theorem 1

In the following, we set τd := Vd(T d). By c1, . . . , c5 we denote positive constants
depending only on d or on d and ε, as indicated. We write c1 = c1(d) for the constant
c(d) in Theorem 2 and c2 = c2(d) for the constant a(d) of Lemma 1 in Section 2.

Lemma 2. For each ε ∈ (0, 1), there is a constant c3 = c3(d, ε) such that, for 0 <
h ≤ h0 := (c1/(c1 + 12))ε2 and aλ > 0,

P(Vd(Z) ∈ a[1, 1+ h]) ≥ c3h(aλ)d exp{−(κd/τd)(1+ (c1/4)ε
2)aλ}.

Proof. Let ε ∈ (0, 1), h ∈ (0, h0] and a > 0, λ > 0 be given. For x0, . . . , xd ∈ Rd , we
set Vd(x0, . . . , xd) := Vd(conv{x0, . . . , xd}). From Lemma 1, we obtain

P(Vd(Z) ∈ a[1, 1+ h])

= c2λ
d
∫ ∞

0

∫
Sd−1
· · ·

∫
Sd−1

1{rd Vd(u0, . . . , ud) ∈ a[1, 1+ h]}

× exp{−λκdrd}rd2−1Vd(u0, . . . , ud) dσ(u0) · · · dσ(ud) dr.

Substituting s = λκdrd , we get

P(Vd(Z) ∈ a[1, 1+ h])

= c2

dκd
d

×
∫

Sd−1
· · ·

∫
Sd−1

∫ ∞
0

1 {s ∈ aλκd/Vd(u0, . . . , ud)[1, 1+ h]}

× e−ssd−1 dsVd(u0, . . . , ud) dσ(u0) · · · dσ(ud).

For fixed u0, . . . , ud ∈ Sd−1 in general position, we apply to the inner integral the mean
value theorem for integrals. This gives the existence of some

ξ(u0, . . . , ud) ∈ aλκd/Vd(u0, . . . , ud)[1, 1+ h] (12)

such that

P(Vd(Z) ∈ a[1, 1+ h])

= c2

dκd−1
d

haλ
∫

Sd−1
· · ·

∫
Sd−1

exp{−ξ(u0, . . . , ud)}

× ξ(u0, . . . , ud)
d−1 dσ(u0) · · · dσ(ud)

≥ c2

dκd−1
d

haλ
∫
· · ·

∫
︸ ︷︷ ︸

R(d,ε)

exp{−ξ(u0, . . . , ud)}

× ξ(u0, . . . , ud)
d−1 dσ(u0) · · · dσ(ud),
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where

R(d, ε) := {(u0, . . . , ud) ∈ (Sd−1)d+1 : Vd(u0, . . . , ud) ≥ (1+ (c1/12)ε2)−1τd}.
For (u0, . . . , ud) ∈ R(d, ε) we can estimate

ξ(u0, . . . , ud) ≥ aλκd/τd

and
ξ(u0, . . . , ud) ≤ (1+ h0)(1+ (c1/12)ε2)aλκd/τd .

Since σ d+1(R(d, ε)) depends only on d and ε, this gives

P(Vd(Z) ∈ a[1, 1+ h])

≥ c3(d, ε)h(aλ)
d exp{−(κd/τd)(1+ h0)(1+ (c1/12)ε2)aλ}.

Now

(1+ h0)(1+ (c1/12)ε2) ≤ 1+ (c1/4)ε
2,

hence the assertion follows.

Lemma 3. For each ε ∈ (0, 1), there is a constant c5 = c5(d, ε) such that, for aλ > 0
and h > 0,

P(Vd(Z) ∈ a[1, 1+ h], ρ(Z) ≥ ε) ≤ c5haλ exp{−(κd/τd)(1+ (c1/2)ε
2)aλ}.

Proof. As in the proof of Lemma 2, we get

P(Vd(Z) ∈ a[1, 1+ h], ρ(Z) ≥ ε)

= c2λ
d
∫ ∞

0

∫
Sd−1
· · ·

∫
Sd−1

1{rd Vd(u0, . . . , ud) ∈ a[1, 1+ h]}

× 1{ρ(conv{u0, . . . , ud}) ≥ ε}
× exp{−λκdrd}rd2−1Vd(u0, . . . , ud) dσ(u0) · · · dσ(ud) dr

= c2

dκd
d

×
∫

Sd−1
· · ·

∫
Sd−1

∫ ∞
0

1{s ∈ aλκd/Vd(u0, . . . , ud)[1, 1+ h]}e−ssd−1 ds

× 1{ρ(conv{u0, . . . , ud}) ≥ ε}Vd(u0, . . . , ud) dσ(u0) · · · dσ(ud)

= c2

dκd−1
d

haλ
∫

Sd−1
· · ·

∫
Sd−1

exp{−ξ(u0, . . . , ud)}ξ(u0, . . . , ud)
d−1

× 1{ρ(conv{u0, . . . , ud}) ≥ ε} dσ(u0) · · · dσ(ud),

where again (12) holds. By Theorem 2, the inequality ρ(conv{u0, . . . , ud}) ≥ ε implies

Vd(u0, . . . , ud) ≤ (1− c1ε
2)τd .
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Hence, if 1{ρ(conv{u0, . . . , ud}) ≥ ε} �= 0, then

ξ(u0, . . . , ud) ≥ κdaλ(1− c1ε
2)−1τ−1

d ≥ (κd/τd)(1+ c1ε
2)aλ. (13)

Moreover, there is a constant c4 = c4(d, ε) such that, for ξ ≥ 0,

exp(−ξ)ξ d−1 ≤ c4 exp

{
−

(
1− c1

2(1+ c1)
ε2

)
ξ

}
. (14)

The estimates (13) and (14) imply, for ξ = ξ(u0, . . . , ud) as above, that

exp(−ξ)ξ d−1 ≤ c4 exp

{
−κd

τd
(1+ c1ε

2)

(
1− c1

2(1+ c1)
ε2

)
aλ

}

≤ c4 exp

{
−κd

τd

(
1+

(c1

2

)
ε2

)
aλ

}
.

Therefore,

P(Vd(Z) ∈ a[1, 1+ h], ρ(Z) ≥ ε)

≤ c2

dκd−1
d

haλ(dκd)
d+1c4 exp

{
−κd

τd

(
1+

(c1

2

)
ε2

)
aλ

}

= c5(d, ε)haλ exp

{
−κd

τd

(
1+

(c1

2

)
ε2

)
aλ

}
,

as asserted.

The proof of Theorem 1 is now similar to the final argument in [2]. Let ε ∈ (0, 1),
a > 0 and λ > 0 with aλ ≥ σ0 > 0 be given, and let h0 be as in Lemma 2. Let I = [a, b)
be a given interval. The constants c6, . . . , c9 below depend only on d, ε, and σ0.

If h0 > (b−a)/a, we put h1 := (b−a)/a, then a[1, 1+h1) = [a, b) = I . Lemma 2
gives

P(Vd(Z) ∈ I ) ≥ c6(d, ε, σ0)h1aλ exp{−Aaλ} with A := (κd/τd)(1+ (c1/4)ε
2),

and Lemma 3 gives

P(Vd(Z) ∈ I, ρ(Z) ≥ ε) ≤ c5(d, ε)h1aλ exp{−Baλ}
with B := (κd/τd)(1+ (c1/2)ε

2).

Both estimates together yield

P(ρ(Z) ≥ ε | Vd(Z) ∈ I ) ≤ c7(d, ε, σ0) exp{−(B − A)aλ}
with B − A = κdτ

−1
d (c1/4)ε2.

Suppose now that h0 ≤ (b − a)/a. Then 1 + h0 ≤ b/a and a[1, 1 + h0) ⊂ [a, b).
Lemma 2 gives

P(Vd(Z) ∈ I ) ≥ c6(d, ε, σ0)h0aλ exp{−Aaλ}. (15)
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For i ∈ N0, Lemma 3 (together with a(1+ h0)
iλ ≥ σ0) gives

P(Vd(Z) ∈ a(1+ h0)
i [1, 1+ h0], ρ(Z) ≥ ε)

≤ c5(d, ε)h0(1+ h0)
i aλ exp{−Ba(1+ h0)

iλ}
= c5(d, ε)h0(1+ h0)

i aλ exp{−Aa(1+ h0)
iλ} exp{−(B − A)a(1+ h0)

iλ}
≤ c5(d, ε)h0aλ exp{−Aaλ} exp{−((B − A)/2)aλ}
× (1+ h0)

i exp{−((B − A)/2)σ0(1+ h0)
i }.

From [a, b) ⊂⋃∞
i=0 a(1+ h0)

i [1, 1+ h0] we now get

P(Vd(Z) ∈ I, ρ(Z) ≥ ε)
≤ c5(d, ε)h0aλ exp{−Aaλ} exp{−((B − A)/2)aλ}

×
∞∑

i=0

(1+ h0)
i exp{−((B − A)/2)σ0(1+ h0)

i }

= c8(d, ε, σ0)h0aλ exp{−Aaλ} exp{−((B − A)/2)aλ}.

Together with (15), this gives

P(ρ(Z) ≥ ε | Vd(Z) ∈ I ) ≤ c9(d, ε, σ0) exp{−((B − A)/2)aλ}.

This completes the proof of Theorem 1.
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