
DOI: 10.1007/s00454-003-0813-8

Discrete Comput Geom 31:627–642 (2004) Discrete & Computational

Geometry
© 2003 Springer-Verlag New York Inc.

Finding the Sink Takes Some Time:
An Almost Quadratic Lower Bound for Finding the
Sink of Unique Sink Oriented Cubes∗

Ingo Schurr and Tibor Szabó

Theoretical Computer Science, ETH Zürich,
CH-8092 Zürich, Switzerland
{schurr,szabo}@inf.ethz.ch

Abstract. We give a worst-case �(n2/log n) lower bound on the number of vertex eval-
uations a deterministic algorithm needs to perform in order to find the (unique) sink of
a unique sink oriented n-dimensional cube. We consider the problem in the vertex-oracle
model, introduced in [18]. In this model one can access the orientation implicitly, in each
vertex evaluation an oracle discloses the orientation of the edges incident to the queried
vertex. An important feature of the model is that the access is indeed arbitrary, the algo-
rithm does not have to proceed on a directed path in a simplex-like fashion, but could “jump
around”. Our result is the first superlinear lower bound on the problem. The strategy we
describe works even for acyclic orientations. We also give improved lower bounds for small
values of n and fast algorithms in a couple of important special classes of orientations to
demonstrate the difficulty of the lower bound problem.

1. Introduction

Notation, Definitions. For our purposes a cube is the power set of a set. More precisely,
for A ⊆ B finite sets the cube C = C[A,B] is the edge labeled graph with vertex set
V(C) := [A, B] := {X | A ⊆ X ⊆ B }, edge set

E(C) := {{v, v ⊕ {l}} | v ∈ V(C), l ∈ B\A }

∗ An extended abstract of this paper appeared in the Proceedings of ESA 2002. Both authors were supported
by the joint Berlin/Zürich graduate program Combinatorics, Geometry, and Computation (CGC), financed by
German Science Foundation (DFG) and ETH Zurich, and Tibor Szabó was also supported by NSF Grant DMS
99-70270.

628 I. Schurr and T. Szabó

and edge labeling

λ({v, v ⊕ {l}}) := l,

where the symbol⊕ denotes the symmetric difference of two sets. We say that an edge e
is l-labeled if λ(e) = l, and for a subset L of the labels we say L-labeled edges to refer
to the set of all edges which are l-labeled with some l ∈ L .

From a purely combinatorial point of view, the cube C[A,B] is sufficiently described by
its label set carr C[A,B] := B\A. Up to graph-isomorphism even dim C[A,B] := |B\A|, the
dimension, determines the cube. For most of the time we work with cubes CB := C[∅,B],
i.e. power sets. In cases where carr C does not play any role we even abandon the
superscript and write C.

The additional parameter A is helpful in naming the subcubes of a cube. A subcube
of a cube C[A,B] is a cube C[X,Y] with A ⊆ X ⊆ Y ⊆ B. These subcubes correspond to
the faces of a geometric realization of C[A,B].

Instead of writing X and Y it is often more convenient to describe a subcube by a
vertex and a set of labels generating it: we write C(v, L) for the smallest subcube of C

containing v and v⊕ L . In fact, for X = v∩ L̄ and Y = v∪ L we have C(v, L) = C[X,Y],
where L̄ denotes the complement of L with respect to carr C.

Given an orientation of a cube (i.e. an orientation of its edges), a vertex is called a
sink if all its incident edges are incoming. An orientation ψ of C is called a unique sink
orientation or USO if ψ restricted to any subcube has a unique sink. We usually do not
distinguish between a USO and the cube equipped with that USO, and refer to the cube
as USO as well. An orientation is called acyclic if it contains no directed cycle. Acyclic
unique sink orientations are abbreviated by AUSO.

The Problem. Easily stated: find the sink of a USO. Following [18] we assume that the
orientation is given implicitly, i.e. we can access an arbitrary vertex of the USO through
an oracle, which then reveals the orientation of the edges incident to the requested
vertex. This basic operation is called vertex evaluation (sometimes we refer to it as step
or query), and we are interested in evaluating the (unique) sink of a cube by as few vertex
evaluations as possible. Formally, let eval(A, ψ) be the number of vertex evaluations it
takes for a deterministic algorithm A to evaluate the sink of a USO (or an AUSO) ψ ,
and define t (n) (or tacyc(n)) to be minA maxψ eval(A, ψ). Obviously, t (n) ≥ tacyc(n). Let
t̃(n) and t̃acyc(n) be the corresponding functions for randomized algorithms; the expected
number of evaluations a fastest randomized algorithm takes until it finds the sink of any
USO (or AUSO).

USOs provide a common framework for several seemingly different problems. Re-
lated abstractions were considered earlier, mainly to deal with geometric problems.
LP-type problems, Abstract Objective Functions and Abstract Optimization Problems
[3], [9]–[12], [14] have a rich literature and provide the fastest known algorithms for
several geometric problems in the unit cost model. As is always the case with abstrac-
tions, it is very well possible that the model of unique sink orientations is in fact too
general to be of any use, but there are a number of results suggesting otherwise.

At first it is not even clear how to find the sink of a USO in o(2n) evaluations; whether
USOs have enough structure, which distinguishes them from just any orientation of the

Finding the Sink Takes Some Time 629

cube. Indeed, in order to find the sink in an arbitrary orientation (with a sink), one needs
at least 2n−1 + 1 vertex evaluations [19].

In [18] a deterministic algorithm running in 1.61n evaluations and a randomized
algorithm running in 1.44n evaluations (using that t̃(3) = 4074633/1369468 [16]) were
given for evaluating the sink of a USO. These algorithms indicate that USOs have some,
actually quite rich, structure. Another result, quantitatively pointing to this direction,
is due to Matoušek [13]; he showed that the number of USOs is 2
(log n2n), which is
significantly less than 2n2n−1

, the number of all orientations. A bonus for optimists is
that within the class of orientations providing the matching lower bound for Matoušek’s
upper bound the sink can be found in five(!) steps.

Motivation. The most obvious and actually quite widely investigated appearance of
USOs is the special case of linear programming; i.e. when the polyhedron in question is
a slanted geometric cube. Then a linear objective function (in general position) canon-
ically defines an AUSO on the cube and finding the sink of this orientation obviously
corresponds to finding the minimum of the objective function on the polyhedron. The
importance of this question is well demonstrated by the number of papers investigating
the running time of specific randomized simplex-like (edge-following) algorithms, like
RandomEdge or RandomFacet, on (sometimes even specific) acyclic orientations. The
RandomEdge algorithm proceeds on a directed path by choosing uniformly at random
among the outgoing edges at each vertex. The RandomFacet algorithm chooses a ran-
dom facet of the cube where the smaller-dimensional algorithm is run and after finding
the sink of the facet (and in case that sink is not the global sink) it proceeds to the antipodal
facet to find its sink by another smaller-dimensional RandomFacet algorithm. Gärtner
[4],[5] showed that the expected number of evaluations it takes for the RandomFacet
algorithm to evaluate the sink of an AUSO is at most e2

√
n . Gärtner et al. [7] analyzed

the behavior of RandomEdge and RandomFacet on a specific, particularly interesting
orientation, the so-called Klee–Minty cubes.

USOs also appear in less obvious ways, where the correspondence between the prob-
lem and the orientation is more abstract. Stickney and Watson [17] defined a combina-
torial correspondence between the solution of certain linear complementarity problems
[2] (defined by P-matrices) and finding the sink in an appropriate USO. In this corre-
spondence the appearance of cycles in the USO is possible.

Similarly, certain quadratic optimization problems, like finding the smallest enclos-
ing ball of d + 1 affinely independent points in the Euclidean d-space can be reduced
to finding the sink in an appropriate USO. For each such point set, there is a corre-
sponding USO, where the sink corresponds to the smallest enclosing ball of the point
set [8]. Here again cycles can arise. The general problem of n points in d-space is
known to be reducible to the case when n is small (i.e. around d2) compared with d.
Then one can place the ambient d-space into Rn−1 and perturb the points for affine
independence.

Finally, Gärtner [6] showed that every linear program with n variables and m con-
straints can be translated into a unique sink orientation of dimension 2(n + m) via
certain convex programs. Through this detour unique sink orientations can be seen as an
abstraction of linear programming in general (not only for cubelike polyhedra).

630 I. Schurr and T. Szabó

Results. The main finding of our paper is a lower bound of order n2/log n for the
number of evaluations a deterministic algorithm needs in order to find the sink of an
n-dimensional AUSO. Our result is the first nonlinear lower bound for the function t (n).
On the way we organize our current knowledge about producing USOs. We also prove
better lower bounds for small values of n. To motivate our results we look at a couple of
simpler classes of orientations.

Lower bounds were found earlier for several related problems or special cases. Al-
dous [1] considered orientations given canonically by an ordering of the vertices of
the cube, which have a unique sink (but not necessarily a unique sink on every sub-
cube). These orientations are acyclic by definition. For them he proves an exponential

lower bound of
√

2
n(1+o(1))

on the running time of randomized algorithms, using the
hitting times of a random walk on the cube. He also provides a simple randomized
algorithm which is essentially best possible. Since his model is in some sense weaker
and in some sense stronger than our USOs, his results do not imply anything for our
problem.

Other known lower bounds are related to specific randomized simplex-like algorithms,
for example, RandomEdge or RandomFacet. On AUSOs Matoušek [12] proved an
e�(
√

n) lower bound for the expected running time of RandomFacet, which nicely
complements the eO(

√
n) upper bound of Gärtner [4], [5]. Gärtner et al. [7] showed that

the expected running time of RandomEdge on the Klee-Minty cubes is �(n2/log n).
A negative result of Morris [15] could also be interpreted as a lower bound for general
USOs. He constructs USOs on which the expected running time of RandomEdge is
((n − 1)/2)!, more than the number of vertices.

Our paper is organized as follows. In Section 2 we collect notations, definitions and
several known facts about USOs that we will make use of. In Section 3 we establish
our basic building blocks: two different ways of obtaining new USOs from old ones.
In Lemma 3 we define a certain product construction of USOs, while in Lemma 5 we
describe circumstances under which a local change in an existing USO produces another
USO. In order to motivate our lower bound on the general problem, in Section 4 we
discuss two important smaller classes of USOs for which very fast algorithms exist. De-
composable orientations are built recursively by taking two decomposable orientations
of dimension n−1 on two disjoint facets of an n-cube and orient all edges between them
in the same direction. Williamson Hoke [20] gave a O(n2) simplex-like algorithm for
them. In Proposition 7 we observe that our extra power of being able to “jump around”
lets us find the sink in only n + 1 evaluations. We also observe that this is best possible;
i.e. on the class of decomposable orientations we know a fastest algorithm. In Proposi-
tion 8 we consider the class of the so-called matching-flip orientations. This class was
introduced by Matoušek and Wagner to give a lower bound for the number of all USOs.
Matoušek [13] proved that the number of all USOs is 2O(log n2n). The class of matching-
flip orientations is in fact so rich that it provides a lower bound with the same order of
magnitude in the exponent. Thus it is somewhat surprising that for this class there is an
algorithm finding the sink in five steps.

In Section 5 we provide a strategy which forces every deterministic algorithm to at
least �(n2/log n) evaluations while finding the unique sink of an n-dimensional cube
with an AUSO. We also give a matching lower bound for the four-dimensional algorithm
of [18].

Finding the Sink Takes Some Time 631

In Section 6 we list several open problems.

2. Preliminaries

For an orientation ψ of a cube C[A,B] the outmap sψ of ψ is the map assigning to every
vertex v the set of labels of outgoing edges, i.e. sψ : V(C)→ 2carr C with

sψ(v) = {l | {v, v ⊕ {l}} is outgoing from v } .
Obviously, a vertex v0 is a sink iff sψ(v0) = ∅.

An important property of outmaps of USOs was proved in [18].

Lemma 1 [18, Lemma 2.2]. Let ψ be a USO. Then sψ is a bijection.

Its proof relies on a simple observation, which is also a tool to produce new USOs
from old ones. Ifψ is an orientation of C and L ⊆ carr C, then letψ(L) be the orientation
of C which agrees with ψ on L̄-labeled edges and differs on L-labeled edges.

Lemma 2 [18, Lemma 2.1]. For any L ⊆ carr C, if ψ is a USO, then ψ(L) is a USO
as well.

We remark here that acyclicity does not necessarily survive this ‘‘label-flip”; there
are examples of AUSOs ψ and labels l ∈ carr C (already for dim C = 3), such that ψ({l})

is not an AUSO.
In Lemma 2.3 of [18] outmaps of USOs were characterized; s: V(C)→ 2carr C is the

outmap of a USO, iff

(s(v)⊕ s(w)) ∩ (v ⊕ w) �= ∅ for all v �= w ∈ V(C).

We call such outmaps unique sink outmaps and—as the acronyms conveniently
coincide—we abbreviate them by USO as well. This usually does not cause any confusion
since orientations and outmaps determine each other uniquely.

Note that for cubes CB every outmap is a permutation of 2B . An important example
of a unique sink outmap on every CB is the identity. More generally, for everyw ∈ V(C)
the map ιw on V(C) defined by ιw(v) := v⊕w is a USO (note that ι∅ is the identity). The
corresponding orientation directs every edge towards w. We refer to such orientations
as uniform orientations. Note that the sink of ιw is w and the source is w̄ = B\w.

3. Basic Constructions

Take a USO and replace every vertex by a USO cube of a fixed dimension. This con-
struction defines a product structure for USOs. Figure 1 tries to illustrate that: in a
three-dimensional USO the vertices are replaced by two-dimensional USOs.

Figure 1 suggests thinking about the product construction as a bunch of identical
frame-orientations glued together at the hypervertices by arbitrary USOs. As an alterna-
tive, one can also visualize the construction by taking a bunch of different USOs on the

632 I. Schurr and T. Szabó

b

b

b

b

b

b

b

b

�

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

=

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Fig. 1. A product of a three-dimensional USO with two-dimensional ones.

frame glued together by identical USOs in the hypervertices. In the proof of our main
result, both approaches are helpful.

The statement of the next lemma provides the formal definition of this product con-
struction, and shows that it indeed produces a USO.

Lemma 3. Let A be a set of labels, B ⊆ A and B̄ = A\B. For a USO s̃ on CB and for
USOs su on CB̄ , u ∈ V(CB), the map s on CA defined by

s(v) = s̃(v ∩ B) ∪ sv∩B(v ∩ B̄)

is a USO. Furthermore, if s̃ and all su are acyclic, then so is s.

Proof. Let L ⊆ A be a subset of the label set and let v ∈ V(CA) be an arbitrary vertex.
We show that the subcube C(v, L) containing v and generated by the set of labels L
has exactly one sink. We note that a vertex w ∈ V(C(v, L)) is a sink of the subcube iff
s(w) ∩ L = ∅. Therefore, by definition of s, w is a sink of C(v, L) iff

1. s̃(w ∩ B) ∩ L = ∅, i.e. w ∩ B is the sink of the subcube C(w ∩ B, B ∩ L) with
respect to s̃; and

2. sw∩B(w∩ B̄)∩ L = ∅, i.e.w∩ B̄ is the sink of the subcube C(w∩ B̄, B̄ ∩ L) with
respect to sw∩B .

Since s̃ is a unique sink outmap, there is a unique sink u1 of the subcube C(v∩ B, B∩
L) = C(w∩ B, B ∩ L). Thus u1 = w∩ B is determined uniquely. Also, su1 has a unique
sink u2 = w ∩ B̄ on the subcube C(w ∩ B̄, B̄ ∩ L) = C(v ∩ B̄, B̄ ∩ L). Therefore
w = u1 ∪ u2 is the unique sink of C(v, L).

For the second part of the lemma note that a path v1, . . ., vk in CA with respect to s
induces a walk v1 ∩ B, . . ., vk ∩ B in CBwith respect to s̃. If v1, . . ., vk would form a
cycle, i.e. v1 = vk , then the induced walk v1 ∩ B, . . ., vk ∩ B either contains a cycle in
s̃ or v1 ∩ B = v2 ∩ B = · · · = vk ∩ B = u. Since s̃ is acyclic, we must have the second
case. However, then v1 ∩ B̄, . . ., vk ∩ B̄ forms a cycle in CB̄ with respect to su . This is a
contradiction to su being acyclic, i.e. s has to be acyclic.

For |B| = 1, Lemma 3 says that two (n − 1)-dimensional USOs can be combined to
an n-dimensional one by placing them in two disjoint facets and directing all edges in
between in the same direction.

Finding the Sink Takes Some Time 633

The other extreme case |B̄| = 1 shows that if a cube contains two opposite facets
with the same (n− 1)-dimensional USO, the edges between these facets can be directed
arbitrarily.

It is easy to see that we can direct all edges of one label arbitrarily only if the USOs
in the two facets not containing edges with this label are the same. On the other hand,
by placing a USO in one facet and the orientation which has all edges flipped in the
other facet, we are forced to direct all edges in between in the same direction. Therefore
Lemma 3 is best possible in some sense, one cannot expect to get a more general product
construction without further exploring s̃ and/or some su .

A simple consequence of Lemma 3 is that in an AUSO the sink and source could be
placed anywhere, independently of each other. This fact is stated in the next corollary
and will be utilized in the proof of our main result.

Corollary 4. For any two distinct vertices u, v ∈ V(CA), there is an acyclic unique
sink outmap with sink u and source v.

Proof. Choose a label l ∈ u ⊕ v and set B = {l}. Without loss of generality l ∈ v.
Choose two uniform USOs, ιu and ιv̄ , on C[n]\{l} with sink u and source v\{l}, respectively.
Let s̃ be the uniform outmap ι∅ on C{l} with sink ∅. As uniform orientations are acyclic,
the application of Lemma 3 yields an acyclic unique sink outmap with sink u and
source v.

Another way to construct new USOs is by local modification. Given an n-dimensional
USO one can replace the orientation of a subcube under certain conditions. It is clear
that the replacing orientation has to be a USO, but that does not suffice.

Lemma 5. Let s be a unique sink outmap on a cube CA and let C0 be a subcube with
label set B ⊆ A. If s(v) ∩ B̄ = ∅ for all v ∈ V(C0) and s0 is a unique sink outmap
on CB , then the map s ′ : 2A → 2A defined by s ′(v) = s0(v ∩ B) for v ∈ V(C0) and
s ′(v) = s(v) otherwise is a unique sink outmap on CA.

If s and s0 are acyclic, then s ′ is acyclic as well.

For example, in Fig. 2 the lower three-dimensional subcube can be directed arbitrarily,
since all edges incident to it are incoming.

Proof. Let v ∈ V(CA) be a vertex and let L ⊆ A be a set of labels. We show that the
subcube C(v, L) has exactly one sink with respect to s ′.

If the subcubes C(v, L) and C0 have an empty intersection, then s ′ induces the same
orientation on C(v, L) as s does. Therefore C(v, L) has a unique sink.

If C(v, L) and C0 do intersect, then the intersection is a subcube C′ of C0 and thus has
a unique sink u0 with respect to s0. We claim u0 is the unique sink of C(v, L) as well. It
is clear that u0 is a sink since (s ′(u0)∩ L)\B = ∅ as u0 is in C0, and (s ′(u0)∩ L)∩ B = ∅
since u0 is the sink of C′ = C(u0, L ∩ B).

634 I. Schurr and T. Szabó

Fig. 2. Three-dimensional flippable subcube.

On the other hand, no w ∈ V(C(v, L))\V(C0) is the sink of C(v, L) according to s,
and since s(w) = s ′(w), they do not become sinks in s ′ either. Thus the sink of C(v, L)
lies in C0, where it is unique.

Now let s and s0 be acyclic. Note that no directed path in CA can leave C0. Therefore
a potential cycle of s ′ is contained either in C0 and therefore is a cycle with respect to s0

or in CA\C0, when it is a cycle with respect to s. Consequently, if s0 and s are acyclic,
s ′ is acyclic as well.

Corollary 6. Let s be a unique sink outmap on a cube CA and let C0 be a subcube with
label set B ⊆ A. Suppose that s(v)∩ B̄ = s(v′)∩ B̄ for all v, v′ ∈ V(C0). If s0 is a unique
sink outmap on CB , then the map s ′ : 2A → 2A defined by s ′(v) = s0(v∩ B)∪ (s(v)∩ B̄)
for v ∈ V(C0) and s ′(v) = s(v) otherwise is a unique sink outmap on CA.

Proof. Apply Lemma 2 for L = s(v) ∩ B̄ (v ∈ V(C0)). The obtained outmap s(L) is
thus a USO with all B̄-labeled edges incoming into C0. Thus Lemma 5 applies and the
change of s(L) on C0 to s0 results in a USO. Now switching all L-labeled edges back we
obtain s ′, which is therefore a USO.

We remark that unlike in Lemma 5, here acyclicity does not necessarily carry over
to s ′.

Again, the special case |B| = 1 is of some interest. In this scenario C0 is a single
edge and by the preceding corollary, we see that an edge can be flipped, if the outmaps
of the two adjacent vertices only differ in the label of the edge. Since flipping an edge
solely affects the outmap of the adjacent vertices the converse also holds. Therefore an
edge {v,w} is flippable iff s(v)⊕ s(w) = v ⊕ w.

In particular, if ιw is the outmap of a uniform orientation, then one can flip the edges
of an arbitrary matching of the cube and the result is still a USO. As we shall see in the
next section this construction is particularly interesting.

Finding the Sink Takes Some Time 635

4. Interlude: Two Simple Classes

Recall that in the special case |B| = 1 of Lemma 3 we obtained an n-dimensional USO
out of two (possibly distinct) (n− 1)-dimensional USOs. The new orientation is special
in the sense that all edges of one label point in the same direction. This leads us to the
notion of combed orientations; an orientation is called combed if there is a label l for
which all l-labeled edges are oriented towards the same facet.

Iterating the construction we get the class of decomposable USOs. Let D1 be the
class of all one-dimensional USOs and denote by Dn+1 the class of all orientations
constructed from two orientations from Dn using Lemma 3. We call Dn the class of
decomposable USOs in dimension n. Equivalently, an orientation is decomposable iff
every nonzero-dimensional subcube is combed.

In general, it is not easy to check whether a USO is decomposable or even combed
(one has to to evaluate half of the vertices), but in the class of decomposable USOs it is
easy to find the sink.

Proposition 7. For a decomposable USO of dimension n one needs at most n + 1
vertex evaluations to evaluate the sink. Moreover, n + 1 is best possible; i.e. for every
deterministic algorithm there is a decomposable USO on which the algorithm needs at
least n + 1 evaluations.

Proof. The following algorithm works in at most n+1 evaluations. Start by evaluating
an arbitrary vertex v0, then perform the following procedure. For any i , if s(vi) = ∅,
then stop, vi is the sink. Otherwise set vi+1 = vi ⊕ s(vi) and repeat.

We show by induction that for each i the sink u of the orientation and vi are both in
the same subcube C(u, Li), where |Li | = n − i and s(vi) ⊆ Li . This implies that vn is
the sink itself.

The claim is definitely true for i = 0 with L0 = A, the entire label set of the cube.
Suppose now that it is true for i . Since the orientation is decomposable it is combed
on C(u, Li) and splits it into two facets C1,C2 along a label l, with all edges between
C1 and C2 oriented in the same direction. We set Li+1 = Li \{l}. Since s(vi) ⊆ Li ,
vi+1 = vi ⊕ s(vi) is in C(u, Li) as well.

We assume that u ∈ C1. If vi �∈ C1, then the l-labeled edge incident to vi is outgoing.
Thus vi+1 = vi ⊕ s(vi) ∈ C1.

If vi ∈ C1, then the l-labeled edge incident to vi is incoming, i.e. l �∈ s(vi). Thus vi+1

stays in C1.
In both cases vi+1 is in the same facet as u, thus vi+1 ∈ C(u, Li+1) and s(vi+1) ⊆ Li+1.
For the other direction, suppose an algorithm first requests the vertex u0. We (the

oracle) return the source, s(u0) = A. Let u1 be the second request and let l ∈ u0 ⊕ u1.
Thus u1 is in the other facet C′ with respect to label l as u0. We reveal to the algorithm that
the first combed label is l, thus the sink is in C′. There we follow a strategy (existing by
induction) which forces the algorithm to n evaluations in C′. That means n+1 evaluations
altogether.

Note that when applied to nondecomposable orientations, the algorithm in the proof
does not even need to terminate.

636 I. Schurr and T. Szabó

Our second example in this section arises from Corollary 6. Consider a uniform
orientation and a matching of the cube. According to Corollary 6 every edge in our
matching is flippable. Since flipping one of them does not affect the flippability of other
edges of the matching, we can flip any number of them simultaneously.

In consequence, for every matching and every uniform orientation we obtain different
USOs. These “matching-flip” USOs were first constructed by Matoušek and Wagner.
By counting perfect matchings of the hypercube one obtains a very good lower bound
for the number of USOs, which has the same order of magnitude in the logarithm as the
number of all USOs.

Thus it is somewhat surprising (and encouraging for the general problem) that it is
very easy to find the sink of an orientation from this very large class.

Proposition 8. For a USO coming from a uniform orientation by flipping a matching
one needs at most five steps to find the sink. The value five here is best possible.

Proof. Let s be a unique sink outmap coming from a uniform orientation ιu by flipping
a matching. Then at every vertex s differs from ιu in at most one label.

If we knew the sink u of ιu , then we would find the sink of s with at most two queries.
Either it is u or there is one flipped edge at u, when the neighbor along this edge is the
sink. In other words the sink is either u or u ⊕ s(u).

First we evaluate an arbitrary vertex v1. Our second inquiry, the vertex v2 = v1⊕s(v1)

has distance at most one from u, since s(v1) and ιu(v1) = u ⊕ v1 differ in at most one
label. Therefore ιu(v2) has at most one element and |s(v2)| ≤ 2.

If |s(v2)| = 0 we have found the sink in two steps.
For |s(v2)| = 1, we ask v3 = v2 ⊕ s(v2) next. If v2 was u, v3 has to be the sink. If

not, v3 = u and either v3 is the sink or v4 = v3 ⊕ s(v3). Therefore after at most four
queries we found the sink.

For |s(v2)| = 2 we know that v2 is a neighbor of u and so is v3 = v2 ⊕ s(v2). Either
v3 is the sink or v4 = v3⊕ (s(v3)∩ s(v2)) is the original u and we need one more query
to find the sink. This makes five queries altogether.

We leave the optimality of five to the reader.

5. The Strategy

In this section we prove the main result of the paper. In order to show lower bounds
on t (n) we consider ourselves the oracle playing against a deterministic algorithm, we
call Al. We try to make sure that our answers to Al’s evaluation requests (i) force Al to
evaluate many vertices before the sink, and (ii) could be extended to an AUSO of the
whole cube.

Given a sink-finding algorithm Al, we construct an AUSO for which Al needs an
almost-quadratic number of queries. For the first n − �log2 n� inquiries we maintain a
partial outmap s: W → carr C[n] on the set W ⊆ V(C[n]) of queried vertices, containing
the answers we gave Al so far. We also maintain a set L of labels and an acyclic unique
sink outmap s̃ on CL . This smaller-dimensional outmap s̃ is our “building block” which
enables us to extend our answers to a global USO at any time.

Finding the Sink Takes Some Time 637

Before the first inquiry we set L = W = ∅. After each inquiry we answer Al by
revealing the value of the outmap s at the requested vertex. Then we update L and s̃,
such that the following conditions hold:

(a) |L| ≤ |W |,
(b) w′ ∩ L �= w′′ ∩ L for every w′ �= w′′ ∈ W and
(c) s(w) = s̃(w ∩ L) ∪ L̄ for every w ∈ W .

Informally, condition (b) means that the projections of the queried vertices to CL are
all distinct. This we shall achieve by occasionally adding a label to L if the condition
would be violated. Condition (c) exhibits two properties of our answers to the inquiries
of Al. First that our answers are consistent with s̃ on L-labeled edges, and then that all
L̄-labeled edges, i.e. the edges leaving C(w, L), are outgoing.

Suppose now that Al requests the evaluation of the next vertex u. We can assume that
u �∈ W . Depending on whether there is a w ∈ W with u ∩ L = w ∩ L or not we have to
distinguish two cases.

Case 1: For everyw ∈ W we havew∩L �= u∩L . Then we answer s(u) = s̃(u∩L)∪ L̄
and leave L and s̃ unchanged. (a)-(c) all hold trivially by the definition of the updates
and the assumption of Case 1.

Case 2: There is a v ∈ W , such that u ∩ L = v ∩ L . Let us immediately note that by
condition (b), there is exactly one such v ∈ W . The assumption of Case 2 and u �= v
implies that we can fix a label l ∈ L̄ such that l ∈ u ⊕ v.

We answer s(u) = s(v)\{l}. Note that as l �∈ L , l ∈ s(v).
Now we have to update L and s̃. We get our new L by adding l. To define the new

orientation s̃ we take two copies of the old s̃ on the two facets determined by l. Then,
by Lemma 3, we can define the orientation of the edges going across arbitrarily, so we
make them such that condition (c) is satisfied. More formally, let

s̃(z) =

s̃(v ∩ L) if z = u ∩ (L ∪ {l}),
s̃(w ∩ L) ∪ {l} if z = w ∩ (L ∪ {l}),

for some w ∈ W, w �= u,
s̃(z) ∪ (z ∩ {l}) otherwise.

Next we have to check conditions (a)–(c) for our new W , L and s̃. Condition (a) still
holds, because we added one element to each of W and L . Since L just got larger, we
only need to check condition (b) for the pairs of vertices containing u. By the uniqueness
of v, it is actually enough to check (b) for the pair u, v. Since l was chosen from u ⊕ v
and is now included in L , u ∩ L �= v ∩ L . Condition (c) is straightforward from the
definitions.

We proceed until |W | = n−�log2 n�, and then change the strategy. By condition (a),
|L| ≤ n − �log2 n�. We choose an arbitrary superset L ′ ⊇ L of L such that |L ′| =
n−�log2 n�. The set of labels L̄ ′ determines at least 2|L̄ ′| ≥ n disjoint subcubes generated
by L ′. As |W | < n, we can select one of them, say C0, which does not contain any point
evaluated so far.

Our plan is to apply Lemma 5 with C0 and an orientation s, which is consistent with
the outmaps of the vertices evaluated so far. The lemma will then enable us to reveal s
on V(C[n])\V(C0) to Al and still be able to start a completely “new game” on a cube of

638 I. Schurr and T. Szabó

relatively large dimension. To construct s satisfying the conditions of Lemma 5 we use
Lemma 3 twice.

First we define an orientation s̄ of CL ′ using Lemma 3 with A = L ′, B = L , s̃ as
defined above, and outmaps su on CL ′\L with the property that for every w ∈ W the map
sw∩L has its source at w ∩ (L ′\L). This last requirement can be fulfilled because of
condition (b).

Thus the resulting outmap s̄ is consistent with the evaluated vertices in the sense that
s(w) ∩ L ′ = s̄(w ∩ L ′) for each w ∈ W .

Next we apply Lemma 3 again with B = L ′, so we have to construct USOs su of
CL̄ ′ for every u ∈ V(CL ′). In doing so, we only take care that the sinks of all these
orientations are in C0, and if u = w∩ L ′ for somew ∈ W thenw∩ L̄ ′ is the source of su .
(By condition (b) there can be at most one such vertex w for each u.) The appropriate su

is constructed in Corollary 4. Now Lemma 3, applied with L ′, s̄ and these su’s, provides
us with an orientation s which agrees with our answers given for the evaluated vertices,
and all L̄ ′-labeled edges are incoming into C0.

By Lemma 5 we can reveal s on V(C[n])\V(C0) to Al, and still be able to place any
orientation on C0, a subcube of dimension n − �log2 n�. Therefore we just proved

tacyc(n) ≥ n − �log2 n� + tacyc(n − �log2 n�).

Theorem 9. A deterministic algorithm needs �(n2/log n) many steps to find the sink
of an AUSO on an n-dimensional cube.

Proof. We prove by induction for n ≥ 2,

tacyc(n) ≥ n2

2�log2 n� −
n

2
.

We do not make an attempt to optimize the constants.
First note that tacyc(2) ≥ 1 = 4

2 − 2
2 and tacyc(3) ≥ 1 ≥ 9

4 − 3
2 , i.e. for n = 2, 3 the

inequality holds.
Now let n ≥ 4, such that for 2 ≤ k < n we have tacyc(k) ≥ k2/2�log2 k�− k/2. Since

n − �log2 n� ≥ 2 we get

tacyc(n) ≥ n − �log2 n� + tacyc(n − �log2 n�)

≥ n − �log2 n� + (n − �log2 n�)2
2�log2(n − �log2 n�)� −

1
2 (n − �log2 n�)

≥ 1
2 n − 1

2�log2 n� + n2 − 2n�log2 n� + �log2 n�2
2�log2 n�

= n2

2�log2 n� −
n

2

and the inequality also holds for n.

For small dimensions t (n) is easy to check; t (0) = 1, t (1) = 2, t (2) = 3 and
t (3) = 5. Here we give a lower bound complementing the SevenStepsToHeaven

Finding the Sink Takes Some Time 639

algorithm of [18] to prove t (4) = 7. During the course of the argument we also show
t (2) = 3 and t (3) = 5 in a stronger sense.

Proposition 10. Every deterministic algorithm needs three queries to find the sink of
a two-dimensional USO, even if there is a fixed vertex which is known not be the sink.

Proof. The strategy answers with the source for the first query of Al. Then all remaining
three unqueried vertices are still potential sinks. Even if Al has a knowledge that one of
them is not the sink, there are two possibilities left. That is no deterministic algorithm
can evaluate the sink in two steps.

Proposition 11. Every deterministic algorithm needs five queries to find the sink of a
three-dimensional USO, even if it is known that the vertex antipodal to its first query is
not the sink.

Proof. For the first query u1 of Al we answer with the source. By our assumption the
orientation we are about to construct cannot have the antipodal u1 as its sink.

There are two cases according to the second query u2 of Al.

Case 1: u1 and u2 are not antipodal. Then there is a facet C′ of the cube containing
both u1 and u2. We construct a combed USO by placing an arbitrary two-dimensional
USO on C′ with source u1 and directing all edges outward from C′ into the antipodal
facet C′′. Then, in order to evaluate the sink of C, Al needs to find the sink of C′′. For that,
by the previous proposition, Al needs three more evaluations even though he knows that
u1 ⊕ [3] is not the sink.

Case 2: u1 and u2 are antipodal. By evaluating the vertex which is known not to
be the sink, Al loses its edge and the problem reduces to a usual three-dimensional
problem. (A strategy forcing five steps in the usual three-dimensional game could be
obtained similarly to the four-dimensional strategy of Proposition 12; just the role of
Proposition 11 should be substituted with Proposition 10.)

Remark 1. One can prove even stronger statements. For example, it is true that even
the knowledge that two fixed points of distance either three or one are not the sink would
not help Al: it would still need to evaluate five vertices. Curiously, if it is known about
two vertices of distance two that they are not the sink, an algorithm finding the sink in
four steps exists.

Proposition 12. t (4) = 7.

Proof. To the first query u1 we answer the source, s(u1) = [4]. If next Al does not
ask the vertex antipodal to u1, it is easy to enforce seven steps. The first two queries are
then in a common facet C′, on which we choose and reveal an arbitrary USO. We also
tell Al that the label separating C′ from its antipodal facet C′′ is combed and all edges
are oriented out of facet C′ into C′′. On C′′ then we can play a three-dimensional strategy
and force Al into five more queries.

640 I. Schurr and T. Szabó

If Al’s second query u2 = u1 is the antipodal vertex to u1 we choose an arbitrary
label, say 4, and split the cube into two facets C1 and C2 with respect to 4 (ui ∈ Ci).
Except maybe in an answer to the sixth query u6, we always orient 4-labeled edges from
C1 into C2. On C2 we play the advanced version of the three-dimensional game, namely
we avoid that u1 ⊕ {4} (which is the antipodal vertex to u2 in C2) is the sink. By the
previous proposition, even with this extra information Al needs five steps to find the
local sink of C2. If Al asks a vertex in C1 before he evaluated the sink of C2, we reveal
the orientation of C1 and direct all 4-labeled edges away from C1. This makes the local
sink in C2 the global sink, and Al needs five queries altogether in C2 to find it. Since he
already used two in C1, he needed seven steps altogether.

If Al is patient enough to first find the sink v of C2 without further looking at C1,
then this will happen in step 6 the earliest. Then we answer s(v) = {4} and reveal an
orientation in C1, such that u1 is the source and v ⊕ {4} is the sink of C1 (Corollary 4).
The edge between the sinks v, v ⊕ {4} of C1 and C2 is flippable (Corollary 6), so our
answer s(v) = {4} does not prevent an extension of our answers to a USO of the whole
cube. Therefore Al needs one more query to evaluate the global sink v ⊕ {4}, which
gives seven queries altogether.

Remark 2. We note that with similar methods a lower bound of 2n− 1 could be given
in any dimension, which is better for small values than our asymptotic lower bound from
Theorem 9. Since the result is not known to be sharp for any value n ≥ 5 and the analysis
is somewhat delicate, we omit the proof for n ≥ 5.

6. Comments and Open Problems

Of course in an ideal world one could hope to determine the functions t (n), t̃(n), tacyc(n)
and t̃acyc(n) exactly. There are more realistic goals, though, for the near future. A natural
question concerning the strategy in our paper is whether the AUSOs we use (i.e. the
orientations arising from Lemmas 3 and 5 can be realized geometrically, i.e. as a linear
program. A positive answer would be of great interest.

The lone lower bound we are able to give for t̃(n) is a mere n/2, which works even on
the set of decomposable orientations. Any nonlinear lower bound would be interesting.
An extension of our method for the deterministic lower bound seems plausible.

There is ample space for improvement on the upper bounds as well. The fastest
known deterministic algorithm does work for general USOs; a first goal would be to
exploit acyclicity in order to separate t (n) and tacyc(n) from each other.

The only known nontrivial randomized algorithms for the general USO problem work
in a product-like fashion. An improvement of t̃(n) for a small value of n implies better
algorithms for large n. Unfortunately the determination of t̃(n) becomes unmanageable
relatively soon; the determination of t̃(3) by Rote [16] already presented a significant
computational difficulty, and t̃(4) is still not known. It would be really desirable to create
nontrivial randomized algorithms working by an idea different from the Product Algo-
rithm of [18]. A possible approach would be to find a way to randomize the deterministic
FibonacciSeesaw algorithm [18].

Finding the Sink Takes Some Time 641

RandomEdge andRandomFacet are very natural randomized algorithms, their anal-
ysis is extremely inviting but might be hard. The behavior of RandomFacet is well
understood for AUSO, for general USOs nothing is known. By the construction of Mor-
ris [15] RandomEdge is not a good choice to find the sink of a general USO, but for
AUSOs not much is known about its behavior.

Acknowledgments

We are grateful to Alan Frieze, Jirka Matoušek, Uli Wagner and Emo Welzl for useful
comments and conversations. We also thank Emo Welzl for suggesting the algorithm for
decomposable orientations in Proposition 7.

References

1. David Aldous. Minimization algorithms and random walk on the d-cube. The Annals of Probability,
11:403–413, 1983.

2. Richard W. Cottle, Jong-Shi Pang, and Richrad E. Stone. The Linear Complementary Problem. Academic
Press, New York, 1992.

3. Bernd Gärtner. A subexponential algorithm for abstract optimization problems. SIAM Journal on Com-
puting, 24:1018–1035, 1995.

4. Bernd Gärtner. Combinatorial linear programming: geometry can help. In Proceedings of the 2nd
International Workshop on Randomization and Approximation Techniques in Computer Science, volume
1518 of Lecture Notes in Computer Science, pages 82–96. Springer-Verlag, Berlin, 1998.

5. Bernd Gärtner. The random-facet simplex algorithm on combinatorial cubes. Random Structures &
Algorithms, 20(3):353–381, 2002.

6. Bernd Gärtner. Linear programming via unique sinks. Manuscript in preparation, 2002.
7. Bernd Gärtner, Martin Henk, and Günter M. Ziegler. Randomized simplex algorithms on Klee–Minty

cubes. Combinatorica, 18(3):349–372, 1998.
8. Bernd Gärtner. Combinatorial structure in convex programs, Manuscript, 2001.

http://www.ti.inf.ethz.ch/ew/workshops/01-lc/cp.html.
9. Bernd Gärtner and Emo Welzl. Linear programming–randomization and abstract frameworks. In Pro-

ceedings of the 13th Annual ACM Symposium on Theoretical Aspects of Computer Science, volume 1046
of Lecture Notes in Computer Science, pages 669–687. Springer-Verlag, Berlin, 1996.

10. Bernd Gärtner and Emo Welzl. Explicit and implicit enforcing–randomized optimization. In Lectures of
the Graduate Program Computational Discrete Mathematics, volume 2122 of Lecture Notes in Computer
Science, pages 26–49. Springer-Verlag, Berlin, 2001.

11. Gil Kalai. Linear programming, the simplex algorithm and simple polytopes. Mathematical Programming,
79:217–233, 1997.

12. Jiřı́ Matoušek. Lower bounds for a subexponential optimization algorithm. RSA: Random Structures &
Algorithms, 5(4):591–607, 1994.

13. Jiřı́ Matoušek. The number of unique-sink orientations of the hypercube, to appear in Combinatorica.
14. Jiřı́ Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear programming. Algorith-

mica, 16:498–516, 1996.
15. Walter D. Morris. Randomized principal pivot algorithms for P-matrix linear complementarity problems.

Mathematical Programming, Series A, 92:285–296, 2002.
16. Günter Rote. Personal communication.
17. Alan Stickney and Layne Watson. Digraph models of bard-type algorithms for the linear complementary

problem. Mathematics of Operations Research, 3:322–333, 1978.

642 I. Schurr and T. Szabó

18. Tibor Szabó and Emo Welzl. Unique sink orientations of cubes. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, pages 547–555, 2001.

19. Emo Welzl. Personal communication.
20. Kathy Williamson Hoke. Completely unimodal numberings of a simple polytope. Discrete Applied

Mathematics, 20:69–81, 1988.

Received October 28, 2002, and in revised form February 4, 2003. Online publication October 6, 2003.

