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Abstract. In this paper we investigate different questions concerning Mazur sets in
normed spaces, which point out the close connections between geometric functional analy-
sis and discrete geometry. Motivated by a result of Chen and Lin, we study the relationship
between Mazur disks and weak* denting points of the dual unit ball. We prove that the only
Mazur sets of the spaces �n

1 are points and closed balls. Finally, a new stability property for
the family of all sets which are intersections of closed balls is found.

1. Introduction

Some families of convex sets play a central role in questions related to the geometry
of normed spaces, on the one hand, and to Minkowski’s convexity theory and discrete
geometry, on the other. This is the case ofM, the family of all intersections of closed
balls, and P , the family of all Mazur sets, introduced in [4]. A closed, convex and
bounded set C is called a Mazur set provided the following strong separation property
is satisfied: for every hyperplane H with dist(C, H) > 0, there is a ball D such that
C ⊂ D and D ∩ H = ∅. As a consequence of the separation theorem, P ⊂ M and
normed spaces satisfying P =M are called Mazur spaces. Convex bodies of constant
width are probably the most interesting examples of Mazur sets. Recall that a bounded,
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closed and convex set C is said to have constant width λ if sup f (C)− inf f (C) = λ for
every norm-one functional f . Throughout this paper X denotes a normed space and B
its unit ball. As usual, X∗ stands for the dual space of X .

Remark 1.1. Every closed, bounded and convex set of constant width is a Mazur set.

Detail. Consider such a set C with constant width λ. Let f be a norm-one functional,
let ε > 0 and let H = {x ∈ X : f (x) = sup f (C) + ε}. We are looking for a ball
containing C but missing H . Since sup f (C) − inf f (C) = λ, there are x, y ∈ C
satisfying f (x) − f (y) ≥ λ − ε/2. Now consider the ball y + λB, which obviously
contains C since diam(C) = λ. If there is z ∈ H ∩ (y + λB), then

f (z)− f (y) = sup f (C)+ ε − f (y) ≥ λ+ ε/2,

which is a contradiction. Though most books on convexity have classical results about
convex bodies of constant width, a rigorous and comprehensive treatment of this topic
(in finite-dimensional spaces) can be found in [1]. For the infinite-dimensional case, refer
to [6] and [7].

By a disk in X we mean the intersection of a hyperplane with a ball centered on
the hyperplane. Chen and Lin [2] used the notion of a semi-denting point to obtain
the following characterization of disks which are intersections of balls: the disk K f =
B∩ (ker f ) ∈M if and only if the norm-one functional f is a semi-denting point of B∗,
that is, for every ε > 0, there is a weak* slice S = S(x, δ) = {g ∈ B∗ : g(x) ≥ 1− δ}
where x ∈ X , ‖x‖ = 1 and δ > 0 such that diam({ f } ∪ S) < ε. The Chen–Lin
characterization suggests the possibility of characterizing Mazur disks in a similar way,
namely replacing semi-denting points by a suitable stronger condition of dentability.
Section 2 is devoted to showing that a functional which defines a Mazur disk is necessarily
a weak* denting point. However, in the opposite direction, even if f is a strongly exposed
point of B∗ the disk B ∩ (ker f ) need not be a Mazur set.

A normed space satisfies the binary intersection property (BIP) if every collection
of mutually intersecting closed balls has nonempty intersection. In Section 2 of [4]
we proved that when a normed space has the BIP then every nonempty intersection
of closed balls C = ⋂

i Bi satisfies
⋂

i Bi + λB = ⋂
i (Bi + λB) for every λ > 0.

However, in the general case, the question of whether C + λB ∈M whenever C ∈M
remains open. Since adding a ball λB to the convex set C is, in a sense, the opposite
of performing C ∼ λB = {x ∈ C : dist(x, X \C) ≥ λ}, it is natural to ask whether
C ∼ λB ∈M whenever C ∈M and C ∼ λB is nonempty. We prove in Section 3 that,
quite surprisingly, this is always the case.

In every normed space, points and (closed) balls are the easiest examples of Mazur
sets and, for this reason, we can call them trivial Mazur sets. In Section 3 we are also
concerned with the following question: are there normed spaces with only trivial Mazur
sets? We prove that, for every n ≥ 3, this is the case for the spaces �n

1. We do not know if,
in a finite-dimensional setting, the property of having only trivial Mazur sets is actually
a characterization for these spaces when dim X ≥ 3. For the case of two-dimensional
spaces, Theorem 6.5 in [4] implies that every intersection of balls in �2

1 is a Mazur set.
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2. Mazur Disks and Weak* Denting Points

Recall that a disk is a set of the form {x ∈ y + λB: f (x) = f (y)}, where f ∈ X∗\{0},
y ∈ X and λ > 0. Let K f = {x ∈ B : f (x) = 0}, let L f = {x ∈ B: f (x) ≥ 0} and let
Mf = {x ∈ B: f (x) ≤ 0}. The following two geometric results will be of use for the
proof of Proposition 2.3.

Lemma 2.1 [5], [4]. If f ∈ X∗ \{0}, y ∈ X , λ > 0 and the ball B ′ contains the disk
y + λK f , then B ′ also contains one of the two “half-balls” y + λMf or y + λL f .

Lemma 2.2 [3]. The norm-one functional f is a weak* denting point of B∗ if and only
if for every bounded subset C in X with inf f (C) > 0, there is a ball B ′ containing C
such that inf f (B ′) > 0

Proposition 2.3. If f ∈ S∗ and there is a Mazur set C ⊂ ker f with nonempty (relative)
interior, then f is a weak∗ denting point of B∗. This applies, in particular, when the disk
K f = f −1(0) ∩ B is a Mazur set.

Proof. From the Chen–Lin characterization of weak∗ denting points described in
Lemma 2.2 above, it suffices to show that given a bounded nonempty subset A ⊂ X
such that inf f (A) > 0, there exists a ball B ′ containing A such that inf f (B ′) > 0.
Suppose that M = sup{‖x‖: x ∈ A}, choose a ∈ X such that 0 < f (a) < inf f (A)
and let λ > M + ‖a‖ + f (a). Finally, let D be a homothetic image of C contain-
ing the set a + λK f . Now, D is also a Mazur set, with inf f (D) = f (a) > 0,
so there exists a ball B ′ ⊃ D ⊃ a + λK f such that inf f (B ′) > 0. By Lemma
2.1, B ′ must contain either a + λMf or a + λL f . The former is impossible, since
inf f (a + λMf ) = f (a) − λ < 0. Moreover, if x ∈ A, then f (x) > f (a) and
‖x − a‖ ≤ M + ‖a‖ < λ, so x ∈ a + λL f ⊂ B ′, which was to be shown.

Corollary 2.4. In the dual of a Mazur space, every semi-denting point of the unit ball
is a weak* denting point.

It is clear that every element in the closure of the set of weak*-denting points of B∗

is a semi-denting point of B∗. By Corollary 2.4, if X is a Mazur space, then the set of
semi-denting points of B∗ is precisely the closure of the set of weak*-denting points of
B∗. It would be interesting to determine whether this property is a characterization of
Mazur spaces.

It is not difficult to construct a ball D in R3 for which there exist nonextreme points
x which are in the closure of the exposed points (consider, for instance, the euclidean
unit ball B2 in the hyperplane z = 0 and the c0 unit ball B0 in y = 0 and define
D = conv{B2 ∪ B0} ). Any such x is an example of a semi-denting point which is not
a denting point. Moreover, notice that the set of semi-denting points of the unit ball is
always closed, while this is not the case for the set of denting points.
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Example. The converse to the proposition above is not valid. Indeed, let X be the space
R

3 with the �1 norm and let f be the functional in three-dimensional �∞ defined by the
element (1, 1, 1). This vertex is a strongly exposed point of the dual unit ball. The disk
D = B ∩ f −1(0) obviously contains the points (− 1

2 ,
1
2 , 0) and (− 1

2 , 0, 1
2 ). Moreover,

for each element u ∈ D we have u1 ≥ − 1
2 . Indeed, if u1 < − 1

2 , then 1
2 < u2 + u3,

so
∑ |ui | ≥ −u1 + u2 + u3 > 1, a contradiction. Let g be the functional defined by

the element (1, 0, 0). We have inf g(D) = − 1
2 > −1. We will show that for any ball

B ′ = x + λB containing D, we have inf g(B ′) ≡ g(x)− λ ≤ −1, which implies that D
is not a Mazur set. Indeed, if B ′ = x + λB ⊃ D, then both (− 1

2 , 0, 1
2 ) and (− 1

2 ,
1
2 , 0)

are in B ′, which is equivalent to

| − 1
2 − x1| + |x2| + | 12 − x3| ≤ λ and | − 1

2 − x1| + | 12 − x2| + |x3| ≤ λ.
It follows that

1
2 + x1 + x2 + 1

2 − x3 ≤ λ and 1
2 + x1 + 1

2 − x2 + x3 ≤ λ.
Adding these two inequalities, transposing and dividing by 2 yields g(x)−λ ≡ x1−λ ≤
−1, which completes the proof. Note that, according Proposition 3.9, any hyperplane in
the space �n

1 does not contain Mazur sets with nonempty relative interior, while the dual
ball B�n∞ contains weak* denting points.

3. Spaces with Only Trivial Mazur Sets

The purpose of this section is to show that the above example is only a particular case of
a more general situation, as the next proposition shows. Three useful lemmas, the first
of them stated without proof, are in order before proving our next result. We include the
proof of the third lemma for the sake of completeness.

Lemma 3.1. If T : X → Y is a linear isometry and y ∈ Y is fixed, then C ∈ P in X if
and only if (y + T (C)) ∈ P in Y .

In particular, if C is a Mazur set, then so is ψ(C), for every linear onto isometry ψ
of X and also, for every x ∈ X and λ > 0, the homothetic image x + λC of C is again
a Mazur set.

Lemma 3.2. If K f = ker f ∩ B /∈M, then, for every C ∈M, the (relative) interior
of Cf = {x ∈ C : f (x) = sup f (C)} is empty.

Proof. By a homothetic transformation, we can assume that sup f (C) = 0 and that the
relative interior of Cf contains K f . By hypothesis, there exists a point x with f (x) > 0
such that every ball containing K f contains x . However, then the same is true of every
ball containing Cf .

Lemma 3.3 [4]. Given two Mazur sets C and D, the set C+̂D = C + D is always a
Mazur set.
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Proof. Let C and D be two Mazur subsets of a Banach space X . Consider a functional
f ∈ X∗ and λ ∈ R such that sup f (C+̂D) < λ. Denote α = sup f (C) and β =
sup f (D). Clearly, sup f (C+̂D) = sup f (C)+ sup f (D) and so α+β < λ. Therefore,
there are two real numbers α′ and β ′ satisfying α < α′, β < β ′ and α′ + β ′ < λ. Now,
since C and D are Mazur sets, there are two closed balls B1 and B2 such that C ⊂ B1

and D ⊂ B2 satisfying sup f (B1) < α′ and sup f (B2) < β ′. The sum of the two balls
B1 and B2 is again a ball B3 that obviously contains C+̂D and satisfies

sup f (B3) = sup f (B1)+ sup f (B2) < α′ + β ′ < λ.

Proposition 3.4. The only Mazur sets in �3
1 are points and balls.

Proof. If C ⊂ �3
1 is a Mazur set, it is also an intersection of balls. Then, according to

Proposition 4.1 in [4], we know that C =⋂4
i=1 f −1

i ([ai , bi ])where ai ≤ bi , i = 1, . . . , 4,
and

f1(x1, x2, x3) = x1 + x2 + x3, f2(x1, x2, x3) = −x1 + x2 + x3,

f3(x1, x2, x3) = −x1 − x2 + x3, f4(x1, x2, x3) = x1 − x2 + x3.

We assume that C is a Mazur set which is neither a point nor a closed ball, which leads
us to a contradiction. To that end, we consider three different cases.

Case 1: C is a three-dimensional set. As a first step, we prove that for each of the
coordinate functionals gj (x) = xj , j = 1, 2, 3, each of the sets C+j = {x ∈ C : gj (x) =
sup gj (C)} and C−j = {x ∈ C : gj (x) = inf gj (C)} consists of a single point. We write
the argument for C+3 , since other cases are analogous. Lemma 3.2 ensures that C+3 cannot
have dimension two. Indeed, the disk ker g3 ∩ B is not an intersection of balls since g3

is not a semi-denting point of the unit ball of (R3, ‖ · ‖∞) (actually, g3 is not even an
extreme point). Consequently, C+3 is either a point or a segment. Supposing it were the
latter, consider the set D = ψ(C), where ψ is a π/2 rotation with respect to the z axis.
By Lemma 3.1, we know that D ∈ P and, by Lemma 3.3, also that C+D ∈ P . However,
the set {x ∈ C + D: sup g3(x) = sup g3(C + D)} contains the set C+3 + D+3 , which has
nonempty (relative) interior. Again, Lemma 3.2 implies that C+D is not an intersection
of balls, which is a contradiction, so C+3 must be a point.

The second step is to prove that C+3 =
⋂4

i=1 f −1
i (bi ), C+1 = f −1

1 (b1) ∩ f −1
2 (a2) ∩

f −1
3 (a3) ∩ f −1

4 (b4), C+2 = f −1
1 (b1) ∩ f −1

2 (b2) ∩ f −1
3 (a3) ∩ f −1

4 (a4) and C−3 =⋂4
i=1 f −1

i (ai ). Since all the cases can be proved in a similar way, we only prove the
first of them. First, since C+3 is an extreme point of

⋂4
i=1 f −1

i ([ai , bi ]), it is the inter-
section of at least three hyperplanes from { f −1

i (ai ), f −1
i (bi ), i = 1, . . . , 4} (and at most

four of them).

Claim 1. It is not possible that C+3 ∈ f −1
1 (a1) ∩ f −1

3 (a3) nor that C+3 ∈ f −1
2 (a2) ∩

f −1
4 (a4).

Indeed, assume that C+3 ∈ f −1
1 (a1) ∩ f −1

3 (a3). Since x1 + x2 + x3 ≥ a1 and −x1 −
x2 + x3 ≥ a3 for every x = (x1, x2, x3) ∈ C , adding these two inequalities, we obtain
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2x3 ≥ a1 + a3, with equality if {x} = C+3 . Thus

g3(C
+
3 ) ≡ sup g3(C) ≥ inf g3(C) ≥ (a1 + a3)/2 = g3(C

+
3 ),

which implies that C is not a three-dimensional set, since it would be contained in the
hyperplane g3(x) = g3(C

+
3 ). The proof that C+3 /∈ f −1

2 (a2) ∩ f −1
4 (a4) is analogous.

Claim 2. C+3 is the intersection of three hyperplanes from the set { f −1
i (bi ), i =

1, . . . , 4}.

To prove the claim, we just need to show that fi (C
+
3 ) > ai , for every i = 1, . . . , 4.

Suppose that this is not so and, for instance, f1(C
+
3 ) = a1. The following argument

can be easily followed by sketching the plane H defined by {x : g3(x) = g3(C
+
3 )}.

Let L+i = H ∩ f −1
i (bi ) and L−i = H ∩ f −1

i (ai ). Since C is a three-dimensional set,
ai < bi for every i = 1, . . . , 4 and thus L−1 , L+1 , L−4 and L+4 define a rectangle R with
C+3 contained in one of its sides (precisely, in the side of R which is contained in L−1 ).
Consider now the set R′ = R ∩ f −1

3 ([a3, b3]). Claim 1 stated that f3(C
+
3 ) > a3 and this

implies that R′ is again a rectangle. Indeed, by looking at the definition of the fi ’s, one
sees that the line L−3 —which is the intersection of H and f −1

3 (a3)—and the line L+3 are
parallel to the lines L−1 and L+1 . Finally, R′′ = R′ ∩ f −1

2 ([a2, b2]) is either a rectangle or
a segment but it cannot be a single point, which is a contradiction.

We assume now that the three hyperplanes whose intersection is proved in Claim 2
to be the point C+3 are { f −1

i (bi ), i = 1, 2, 3}. We just need to show that f4(C
+
3 ) = b4.

To do that, we continue in much the same way as in Claim 2. The intersection S = H ∩
f −1
1 ([a1, b1])∩ f −1

2 ([a2, b2])∩ f −1
3 ([a3, b3]) is a segment (otherwise, H ∩ f −1

i ([ai , bi ])
cannot be a point). Hence S ∩ f −1

4 ([a4, b4]) reduces to a point only if f4(C
+
3 ) = b4.

In the third step, by a translation, we may assume that the point C+3 is (0, 0, 1). As a
consequence, bi = 1 for every i = 1, . . . , 4. Moreover, by a suitable homothety relative
to the point (0, 0, 1), we may assume that C+1 = f −1

1 (1)∩ f −1
2 (a2)∩ f −1

3 (a3)∩ f −1
4 (1) =

(1, 0, 0). This implies that a2 = a3 = −1. Now C+2 = f −1
1 (1) ∩ f −1

2 (1) ∩ f −1
3 (a3) ∩

f −1
4 (a4) = f −1

1 (1) ∩ f −1
2 (1) ∩ f −1

3 (−1) = (0, 1, 0) and so a4 = −1. Reasoning with
C−3 in the same form, we obtain that a4 = −1. In other words, C is the unit ball, which
is a contradiction.

Case 2: C is a two-dimensional set. Let f be a norm-one functional and let α be a real
number such that C ⊂ f −1(α). By Proposition 5.1 of [4], if C is a Mazur set, then the
vector sum of C with the unit ball must be a three-dimensional Mazur set. If we prove
that C + B is not a ball, then we have a contradiction. Clearly, inf f (C + B) = α − 1
and sup f (C + B) = α+ 1. This implies that the only possibility is that C + B is a ball
of radius 1. However, since C is a two-dimensional set, there is a norm-one functional g
satisfying inf g(C) < sup g(C). Then

sup g(C + B)− inf g(C + B) = (sup g(C)+ 1)− (inf g(C)− 1) > 2,

which implies that C + B cannot have radius 1. Consequently, C + B is not a ball and
we have found a contradiction.
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Case 3: C is a one-dimensional set. Since C is an interval, by a homothetic transformation
we may assume that it has the form C = [−x, x] for some x of norm one. Writing
x = (x1, x2, x3), at least one of the components—say x1—is nonzero. Define y =
(−x1, x2, x3) and let D = [−y, y]. Since D is an isometric copy of C , it is a Mazur set
and hence, by Lemma 3.3, C + D is a Mazur set. However, since C and D are linearly
independent, their sum is two-dimensional, contradicting Case 2.

An argument somewhat similar to the one employed in Case 2 can be used to obtain
a more general result in this direction.

Proposition 3.5. Let X be a Banach space in which every Mazur set which has
nonempty interior is a ball. Then the only Mazur sets in X are points and balls.

Proof. The idea of the proof is fairly simple: if C is a Mazur set which is neither a
point nor a ball, then C + B is a Mazur set with nonempty interior which is not a ball,
contradicting the hypothesis. The only thing to be explained is why C + B is not a ball.
In Case 2, since C had dimension two, we knew of the existence of two functionals f
and g satisfying sup f (C)− inf f (C) = 0 and sup g(C)− inf g(C) > 0 which led to a
contradiction with the fact that C + B was a ball. However, in the general case, how do
we ensure the existence of such a pair of functionals? We simply cannot: if D is a convex
set of constant width λ, then sup f (D) − inf f (D) = λ for every norm-one functional
f . We try to avoid this difficulty by using the equivalence of the following two facts:

(i) The set C is a ball or a point.
(ii) There is λ > 0 such that C + λB is a ball.

Obviously, we only need to prove that (ii) implies (i). To this end, given any set D and
any λ > 0, denote D ∼ λB = {x ∈ D : dist(x, X \D) ≥ λ}. On the one hand, if D is
a ball of radius µ and λ ≥ µ, then D ∼ λB is a ball of radius µ − λ, if λ > µ, and a
single point when λ = µ. On the other hand, (C + λB) ∼ λB = C . Indeed, it is clear
that C ⊂ (C + λB) ∼ λB. To prove the reverse inclusion suppose, on the contrary, that
there is a point x ∈ (C + λB) ∼ λB which is not in C . Consider a norm-one functional
f such that sup f (C) < f (x). Then

sup f (C + λB) = sup f (C)+ λ < f (x)+ λ ≤ sup f (C + λB)

(the last inequality due to the fact x + λB ⊂ (C + λB)), which is a contradiction.

In Section 2 of [4], we proved that when a normed space has the binary intersection
property then every nonempty intersection of closed balls C =⋂i Bi satisfies

⋂
i Bi +

λB = ⋂
i (Bi + λB) for every λ > 0. However, in the general case, the question of

whether C + λB ∈M whenever C ∈M remains open. Since adding a ball λB to the
convex set C is, in a sense, the opposite of performing the “subtraction” C ∼ λB, it is
natural to ask whether C ∼ λB ∈M whenever C ∈M and C ∼ λB is nonempty. The
next proposition, which is a bit surprising in view of the above-mentioned result from
[4], shows that this is indeed always the case.
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Proposition 3.6. In every normed space, every intersection of closed balls C =⋂ Bi

with diameter d > 0 satisfies
⋂

i Bi ∼ λB = ⋂
i (Bi ∼ λB) for every 0 < λ < d/2.

Consequently, C ∼ λB is also inM.

Proof. For each i , let ri > 0 be the radius of the ball Bi . Our hypothesis about λ
and d guarantees that each Bi ∼ λB is a ball with the same center as Bi and radius
ri − λ. To show that

⋂
i Bi ∼ λB ⊂ ⋂i (Bi ∼ λB), suppose that x ∈ Bi for each i and

dist(x, X\C) ≥ λ. Since X\Bi ⊂ X\C , we have dist(x, X\Bi ) ≥ λ. Thus, x ∈ Bi ∼ λB
for all i . For the reverse inclusion, if x ∈⋂i (Bi ∼ λB), then x ∈ Bi for all i , so x ∈ C ;
moreover, for any y ∈ X\C , we have y ∈ X\Bi for some i , hence ‖x − y‖ ≥ λ and
therefore x ∈ C ∼ λB.

Lemma 3.7. Let X = (�1(I ), ‖ · ‖1), and let {gi } be the usual coordinate functionals.
If there is i ∈ I such that the ball B ′ contains the disk y + λKgi , then B ′ also contains
the ball y + λB. More generally, this same assertion is valid for any set which is an
intersection of balls.

Proof. Since the statement is invariant under a homothetic transformation, we may
assume that B ′ is the unit ball B. Consequently, we want to prove that if, for some fixed
i0 and y ∈ �1(I ) and λ > 0, we know that ‖y+λx‖ ≤ 1 whenever ‖x‖ ≤ 1 and xi0 = 0,
it then follows that ‖y+λu‖ ≤ 1 whenever ‖u‖ ≤ 1. Fix i1 �= i0. Given u with ‖u‖ ≤ 1,
there is nothing to prove if ui0 = 0 so suppose first that ui0 > 0 and consider the two
cases: (I) yi1 + λui1 ≥ 0 and (II) yi1 + λui1 < 0. In case (I), define x ∈ �1(I ) by xi = ui ,
i �= i0, i1, while xi0 = 0 and xi1 = ui1 + ui0 . Then ‖x‖ ≤ 1 and xi0 = 0, hence

1 ≥ ‖y + λx‖ = |yi1 + λ(ui1 + ui0)| +
∑

i �=i1,i0

|yi + λui | + |yi0 | ≥ ‖y + λu‖,

which was to be shown. In case (II), define x ∈ �1(I ) by xi = ui , i �= i1, i0, while
xi0 = 0 and xi1 = ui1 − ui0 . Then ‖x‖ ≤ ‖u‖ ≤ 1, while xi0 = 0, hence

1 ≥ ‖y + λx‖ =
∑

i �=i1,i0

|yi + λui | + |yi0 | + |yi1 + λ(ui1 − ui0)|

=
∑

i �=i1,i0

|yi + λui | + |yi1 + λui1 | + λui0 + |yi0 |

≥ ‖y + λu‖.
An analogous argument can be used in case ui0 < 0.

Finally, if C contains the disk y + λKgi and C is an intersection of balls, then by the
foregoing result, each of these balls contains the ball y + λB, hence so does C .

Lemma 3.8. Let C be a closed, convex and bounded subset of �1(I ). Suppose that
there is a coordinate functional gi (x) = xi , i ∈ I , such that either the set C+i = {x ∈
C : gi (x) = sup gi (C)} or C−i contains a segment. Then C is not a Mazur set.

Proof. Let S be a segment of length λ which is contained in C+i and let H be the
hyperplane {x ∈ �1(I ) : gi (x) = sup gi (C) ≡ α}. If D is a ball with center y and radius
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µ > 0 which contains S, then D ∩ H is a disk in H with center z = y + (α − yi )ei

(where ei is the i th basis vector) and radius r = µ−|α− yi |, which necessarily satisfies
r ≥ λ/2. From Lemma 3.7 it follows that D contains the ball with center z ∈ H and
radius r . This implies that D always has nonempty intersection with the hyperplane
H ′ = {x ∈ �1(I ) : gi (x) = sup gi (C)+λ/2} and, therefore, that C is not a Mazur set.

Proposition 3.9. The only Mazur sets in �n
1 for every n ≥ 3 are points and balls.

Proof. The case n = 3 was already proved in Proposition 3.4 and the general case will
be proved by induction. Suppose that n > 3 and let {e1, e2, . . . , en} be the canonical
basis, let {g1, g2, . . . , gn} be the coordinate functionals (gk(x) = xk) and, finally, for any
α ∈ R let Xk(α) = g−1

k (α). By Proposition 3.5, we only need to prove that if C is a
Mazur set with nonempty interior, then C is a ball.

Step 1: For every k = 1, . . . , n and every α ∈ R, C ∩ Xk(α) is a Mazur set in Xk(α),
provided it is nonempty.

If α = inf gk(C) or α = sup gk(C), then from Lemma 3.8 we conclude that C ∩ Xk(α) is
a point. (Also, C ∩ Xk(α) is empty when α /∈ [inf gk(C), sup gk(C)].) Therefore, we can
consider the case α ∈ (inf gk(C), sup gk(C)), where the relative interior of C ∩ Xk(α)

is nonempty. Moreover, we lose no generality in assuming that k = 1.
Since the statement of Step 1 is invariant under a translation, we prove it for the case

X1(0) ≡ X1, assuming that the relative interior of X1 ∩ C is nonempty. Let β ∈ R and
let h ∈ X∗1 be a functional satisfying inf h(X1 ∩ C) > β. We want to find an X1-ball
D containing C ∩ X1 such that inf h(D) > β. The Hahn–Banach theorem ensures the
existence of an extension ĥ ∈ (�n

1)
∗ satisfying inf ĥ(C) = inf h(X1 ∩ C) > β. Since

C is a Mazur set, there is a ball B ′ containing C such that ĥ(B ′) > β. Since X1 is a
coordinate hyperplane, B ′ ∩ X1 is the (n− 1)-dimensional �1-ball we were looking for.

Step 2: If n > 3 and �n−1
1 satisfies the statement of the proposition, then so does �n

1.

We know that for each α ∈ [inf g1(C), sup g1(C)], the set Bα = C ∩ X1(α) is a Mazur
set and, by our hypothesis, it is either a ball or a point. We may assume, for instance,
that B0 = C ∩ X1 is the ball of the family {Bα}α which has the greatest radius. We
assume further that B0 is the unit ball in X1. (Recall that the problem is invariant under
homothetic transformations and translations). By the second assertion in Lemma 3.7,
we can assume that C contains the unit ball of �n

1. The proof will be accomplished by
showing that C actually equals this unit ball. We divide the argument into three steps.

Step 2.1: For every k = 2, . . . , n, the set C ∩ Xk(0) is the unit ball in Xk(0) and it is
the ball of the family {C ∩ Xk(α)}α which has the greatest radius. First, note that from
Lemma 3.7, we know that if C ∩ Xi (α) has radius r , then C contains an �n

1-ball of radius
≥ r . This implies that if there are i ∈ {1, . . . , n} and α such that C ∩ Xi (α) has radius r ,
then, for every j ∈ {1, . . . , n}, there is αj such that C ∩ X j (αj ) has radius ≥ r . Finally,
since C contains the unit ball, each of the sets C∩Xk(0) contains an (n−1)-dimensional
ball of radius 1. Suppose that for some k, α, the slice C ∩ Xk(α) contains a ball of radius
r > 1. Using Lemma 3.7 again, C must contain an �n

1-ball of radius r , contradicting the
choice of B0 = C ∩ X1(0) as having maximum radius 1.
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Step 2.2: For every i = 1, . . . , n we have [inf gi (C), sup gi (C)] = [−1, 1]. To prove
this fact, it is enough to show that Xi (1)∩C = {ei } and Xi (−1)∩C = {−ei } for every
i = 1, . . . , n. We see, for instance, that X1(1) ∩ C = {e1}. It is clear, on the one hand,
that ei ∈ Xi (1)∩C . On the other hand, X1(1)∩C is a ball in X1(1) whose intersection
with each coordinate hyperplane Xi (0), i = 2, . . . , n, reduces to the point e1. To see
that X1(1) ∩ C = {e1}, we use the fact that D ≡ X1(1) ∩ C is an � (n−1)

1 -ball. If it were
not equal to {e1}, it would have radius r > 0 and center x = e1 + x2e2 + · · · + xnen in
X1(1). We claim that at least one of the intersections D ∩ Xk(0) would contain more
than the point e1. This would obviously be the case if all the xk were 0. If some xk �= 0,
then the point e1 + xkek ∈ D ∩ X j (0) for every j /∈ {1, k} and is not equal to e1.

Step 2.3. Suppose that there is x = α1e1 + α2e2 + · · · + αnen ∈ C with ‖x‖1 > 1.
Choose an index i ∈ {1, . . . , n} such that αi �= 0. We may assume, for instance, that
α1 > 0 since the argument for the other cases is entirely similar. Consider the ball
Bα1 = C ∩ X1(α1) which has center y and radius r . Since C contains the unit ball, then
Bα1 contains the �n−1

1 -ball with center α1e1 and radius 1− α1. Now, x ∈ X1(α1) and the
estimate

‖x − α1e1‖1 = |α2| + · · · + |αn| = ‖x‖1 − α1 > 1− α1

implies that r > 1 − α1. Now, Lemma 3.7 ensures that C actually contains the �n
1-ball

with center y and radius r . As a consequence,

sup g1(C) ≥ g1(y)+ r = α1 + r > 1,

which is a contradiction.
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