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Abstract. Bourgain [1] showed that every embedding of the complete binary tree of
depth n into l2 has metric distortion ≥ �(

√
log n). An alternative proof was later given by

Matousek [3]. This note contains a short proof for this fact.

A mapping ϕ: X → Y between metric spaces (X, d) and (Y, ρ) has distortion ≤ γ if
there is a real a > 0, such that

∀x1, x2 ∈ X, γ a · ρ(ϕ(x1), ϕ(x2)) ≥ d(x1, x2) ≥ a · ρ(ϕ(x1), ϕ(x2)).

Every graph G induces a metric dG on its vertex set, where dG(u, v) is the length of the
shortest path in G joining u and v. In this note, ‖ · ‖ denotes the l2 norm.

Here we give a short proof of:

Theorem 1 [1]. Every mapping of Tn , the complete binary tree of depth n, into l2 has
distortion ≥ �(

√
log n).

This was previously proved (in a more general form) in [1] and [3]. The bound is tight; an
l2-embedding of Tn with distortion O(

√
log n) appears in [1]. For a broader discussion

of graph embeddings and distortion see, e.g., [2].
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Our key tool is a simple geometric inequality. For a positive integer n, define � = �n

to be the set {(p, q): 0 ≤ p < q ≤ n, q − p = 2i for some i ≥ 1}.

Lemma 1. Let x0, . . . , xn be real vectors. Then

∑
(p,q)∈�

‖xp − 2x(p+q)/2 + xq‖2

(p − q)2
≤

n−1∑
p=0

‖xp+1 − xp‖2.

Proof. For real vectors, a, b, c the parallelogram identity P(a, b, c) says ‖a − 2b +
c‖2 + ‖a − c‖2 = 2‖a − b‖2 + 2‖b − c‖2. Summing (1/(p − q)2)P(xp, x(p+q)/2, xq)

over (p, q) ∈ � yields

∑
(p,q)∈�

(‖xp − 2x(p+q)/2 + xq‖2

(p − q)2
+ ‖xp − xq‖2

(p − q)2

)

=
∑

(p,q)∈�

(
2‖xp − x(p+q)/2‖2

(p − q)2
+ 2‖x(p+q)/2 − xq‖2

(p − q)2

)
.

For a, b with 1 ≤ a < b ≤ n, the first summand on the right is ‖xa − xb‖2/2(b − a)2 if
and only if (p, q) = (a, 2b − a) ∈ � and the second summand is ‖xa − xb‖2/2(b − a)2

if and only if (p, q) = (2a − b, b) ∈ �. In each case, b − a must be a power of 2.
Therefore, the right-hand side does not exceed

∑
(‖xa − xb‖2/(a − b)2) where the sum

is over pairs (a, b) such that b−a is a power of 2. Separating the terms where b = a +1,
we bound the right-hand side from above by

n−1∑
a=0

‖xa+1 − xa‖ +
∑

(a,b)∈�

‖xa − xb‖2

(a − b)2
.

Comparing this with the summation on the left-hand side yields the lemma.

Proof of Theorem 1. Let f map V (Tn) into l2. We may assume f is nonexpansive, i.e.,
for every two vertices ‖ f (x) − f (y)‖ ≤ dT (x, y). We seek a pair of vertices w, w′

for which ‖ f (w) − f (w′)‖/dT (w, w′) is small. A fork in T is a quadruple of vertices
� = (u, v, w, w′), where v is a descendant of u, the least common ancestor of w, w′ is
v and dT (u, v) = dT (v, w) = dT (v, w′). We let

δ(�) = ‖ f (u) − 2 f (v) + f (w)‖
dT (u, w)

and δ′(�) = ‖ f (u) − 2 f (v) + f (w′)‖
dT (u, w′)

.

By the triangle inequality:

‖ f (w) − f (w′)‖
dT (w, w′)

≤ δ(�) + δ′(�).

As in [1] and [3], the theorem follows by exhibiting a fork � for which δ(�)+δ′(�) ≤
O(1/

√
log n). We do this by a simple averaging argument. We define a probability distri-

bution over forks � and show that the expectation E[(δ(�))2 + (δ′(�))2] ≤ O(1/log n).
Hence, min(‖ f (w) − f (w′)‖/dT (w, w′)) ≤ O(1/

√
log n), as claimed.
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As usual, we identify the vertices of Tn with binary strings of length ≤ n. (The root
is the empty string and the two children of vertex α are α0 and α1.) Let β( j) denote the
j th prefix of β ∈ {0, 1}n , the j th node on the path from the root to the leaf β.

To select a fork randomly, independently choose β uniformly from {0, 1}n and (p, q)

uniformly from �n . Define the fork � = (β(p), β((p + q)/2), β(q), β ′(q)), where
β ′(q) is obtained from β(q) by complementing the bit indexed by 1 + (p + q)/2. By
symmetry, δ(�) and δ′(�) are identically distributed. For any α ∈ {0, 1}n , Lemma 1
with xi = f (α(i)) implies

E[(δ(�))2 | β = α] ≤ 1

|�n|
n−1∑
i=0

‖ f (α(i + 1)) − f (α(i))‖2 ≤ O

(
1

log n

)
.

The last inequality follows since f is nonexpansive and |�n| = �(n log n). Averaging
over α gives E[(δ(T ))2 + (δ(T ′))2] = O(1/ log n), as required.
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