The Euclidean Distortion of Complete Binary Trees*

Nathan Linial ${ }^{1}$ and Michael Saks ${ }^{2}$
${ }^{1}$ Institute of Computer Science, Hebrew University,
Jerusalem 91904, Israel
nati@cs.huji.ac.il
${ }^{2}$ Department of Mathematics, Rutgers University, Hill Center, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
saks@math.rutgers.edu

Abstract

Bourgain [1] showed that every embedding of the complete binary tree of depth n into l_{2} has metric distortion $\geq \Omega(\sqrt{\log n)}$. An alternative proof was later given by Matousek [3]. This note contains a short proof for this fact.

A mapping $\varphi: X \rightarrow Y$ between metric spaces (X, d) and (Y, ρ) has distortion $\leq \gamma$ if there is a real $a>0$, such that

$$
\forall x_{1}, x_{2} \in X, \quad \gamma a \cdot \rho\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) \geq d\left(x_{1}, x_{2}\right) \geq a \cdot \rho\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right) .
$$

Every graph G induces a metric d_{G} on its vertex set, where $d_{G}(u, v)$ is the length of the shortest path in G joining u and v. In this note, $\|\cdot\|$ denotes the l_{2} norm.

Here we give a short proof of:
Theorem 1 [1]. Every mapping of T_{n}, the complete binary tree of depth n, into l_{2} has distortion $\geq \Omega(\sqrt{\log n})$.

This was previously proved (in a more general form) in [1] and [3]. The bound is tight; an l_{2}-embedding of T_{n} with distortion $O(\sqrt{\log n})$ appears in [1]. For a broader discussion of graph embeddings and distortion see, e.g., [2].

[^0]Our key tool is a simple geometric inequality. For a positive integer n, define $\Gamma=\Gamma_{n}$ to be the set $\left\{(p, q): 0 \leq p<q \leq n, q-p=2^{i}\right.$ for some $\left.i \geq 1\right\}$.

Lemma 1. Let x_{0}, \ldots, x_{n} be real vectors. Then

$$
\sum_{(p, q) \in \Gamma} \frac{\left\|x_{p}-2 x_{(p+q) / 2}+x_{q}\right\|^{2}}{(p-q)^{2}} \leq \sum_{p=0}^{n-1}\left\|x_{p+1}-x_{p}\right\|^{2}
$$

Proof. For real vectors, a, b, c the parallelogram identity $P(a, b, c)$ says $\| a-2 b+$ $c\left\|^{2}+\right\| a-c\left\|^{2}=2\right\| a-b\left\|^{2}+2\right\| b-c \|^{2}$. Summing $\left(1 /(p-q)^{2}\right) P\left(x_{p}, x_{(p+q) / 2}, x_{q}\right)$ over $(p, q) \in \Gamma$ yields

$$
\begin{aligned}
\sum_{(p, q) \in \Gamma}(& \left.\frac{\left\|x_{p}-2 x_{(p+q) / 2}+x_{q}\right\|^{2}}{(p-q)^{2}}+\frac{\left\|x_{p}-x_{q}\right\|^{2}}{(p-q)^{2}}\right) \\
& =\sum_{(p, q) \in \Gamma}\left(\frac{2\left\|x_{p}-x_{(p+q) / 2}\right\|^{2}}{(p-q)^{2}}+\frac{2\left\|x_{(p+q) / 2}-x_{q}\right\|^{2}}{(p-q)^{2}}\right)
\end{aligned}
$$

For a, b with $1 \leq a<b \leq n$, the first summand on the right is $\left\|x_{a}-x_{b}\right\|^{2} / 2(b-a)^{2}$ if and only if $(p, q)=(a, 2 b-a) \in \Gamma$ and the second summand is $\left\|x_{a}-x_{b}\right\|^{2} / 2(b-a)^{2}$ if and only if $(p, q)=(2 a-b, b) \in \Gamma$. In each case, $b-a$ must be a power of 2 . Therefore, the right-hand side does not exceed $\sum\left(\left\|x_{a}-x_{b}\right\|^{2} /(a-b)^{2}\right)$ where the sum is over pairs (a, b) such that $b-a$ is a power of 2 . Separating the terms where $b=a+1$, we bound the right-hand side from above by

$$
\sum_{a=0}^{n-1}\left\|x_{a+1}-x_{a}\right\|+\sum_{(a, b) \in \Gamma} \frac{\left\|x_{a}-x_{b}\right\|^{2}}{(a-b)^{2}}
$$

Comparing this with the summation on the left-hand side yields the lemma.

Proof of Theorem 1. Let f map $V\left(T_{n}\right)$ into l_{2}. We may assume f is nonexpansive, i.e., for every two vertices $\|f(x)-f(y)\| \leq d_{T}(x, y)$. We seek a pair of vertices w, w^{\prime} for which $\left\|f(w)-f\left(w^{\prime}\right)\right\| / d_{T}\left(w, w^{\prime}\right)$ is small. A fork in T is a quadruple of vertices $\Phi=\left(u, v, w, w^{\prime}\right)$, where v is a descendant of u, the least common ancestor of w, w^{\prime} is v and $d_{T}(u, v)=d_{T}(v, w)=d_{T}\left(v, w^{\prime}\right)$. We let

$$
\delta(\Phi)=\frac{\|f(u)-2 f(v)+f(w)\|}{d_{T}(u, w)} \quad \text { and } \quad \delta^{\prime}(\Phi)=\frac{\left\|f(u)-2 f(v)+f\left(w^{\prime}\right)\right\|}{d_{T}\left(u, w^{\prime}\right)} .
$$

By the triangle inequality:

$$
\frac{\left\|f(w)-f\left(w^{\prime}\right)\right\|}{d_{T}\left(w, w^{\prime}\right)} \leq \delta(\Phi)+\delta^{\prime}(\Phi)
$$

As in [1] and [3], the theorem follows by exhibiting a fork Φ for which $\delta(\Phi)+\delta^{\prime}(\Phi) \leq$ $O(1 / \sqrt{\log n})$. We do this by a simple averaging argument. We define a probability distribution over forks Φ and show that the expectation $\mathbf{E}\left[(\delta(\Phi))^{2}+\left(\delta^{\prime}(\Phi)\right)^{2}\right] \leq O(1 / \log n)$. Hence, $\min \left(\left\|f(w)-f\left(w^{\prime}\right)\right\| / d_{T}\left(w, w^{\prime}\right)\right) \leq O(1 / \sqrt{\log n})$, as claimed.

As usual, we identify the vertices of T_{n} with binary strings of length $\leq n$. (The root is the empty string and the two children of vertex α are $\alpha 0$ and $\alpha 1$.) Let $\beta(j)$ denote the j th prefix of $\beta \in\{0,1\}^{n}$, the j th node on the path from the root to the leaf β.

To select a fork randomly, independently choose β uniformly from $\{0,1\}^{n}$ and (p, q) uniformly from Γ_{n}. Define the fork $\Phi=\left(\beta(p), \beta((p+q) / 2), \beta(q), \beta^{\prime}(q)\right)$, where $\beta^{\prime}(q)$ is obtained from $\beta(q)$ by complementing the bit indexed by $1+(p+q) / 2$. By symmetry, $\delta(\Phi)$ and $\delta^{\prime}(\Phi)$ are identically distributed. For any $\alpha \in\{0,1\}^{n}$, Lemma 1 with $x_{i}=f(\alpha(i))$ implies

$$
\mathbf{E}\left[(\delta(\Phi))^{2} \mid \beta=\alpha\right] \leq \frac{1}{\left|\Gamma_{n}\right|} \sum_{i=0}^{n-1}\|f(\alpha(i+1))-f(\alpha(i))\|^{2} \leq O\left(\frac{1}{\log n}\right) .
$$

The last inequality follows since f is nonexpansive and $\left|\Gamma_{n}\right|=\Omega(n \log n)$. Averaging over α gives $\mathbf{E}\left[(\delta(T))^{2}+\left(\delta\left(T^{\prime}\right)\right)^{2}\right]=O(1 / \log n)$, as required.

References

1. J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), 46-52.
2. N. Linial, E. London and Yu. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica, 15 (1995), 215-245.
3. J. Matousek, On embedding trees into uniformly convex Banach spaces. Israel J. Math. 114 (1999), 221-237.

[^0]: * This work was done in part while the authors were visiting Microsoft Research, Redmond, Washington. Nathan Linial was supported in part by grants from the US-Israel Binational Science Fund and from the Israel Science Foundation. Michael Saks was supported in part by NSF Grant CCR-9988526.

