
DOI: 10.1007/s00454-002-0730-2

Discrete Comput Geom 29:139–152 (2003) Discrete & Computational

Geometry
© 2002 Springer-Verlag New York Inc.

On the Identification of Sets of Points in the Square Lattice∗

Iiro Honkala and Tero Laihonen

Department of Mathematics, University of Turku,
20014 Turku, Finland
{honkala,terolai}@utu.fi

Abstract. Identifying codes in the square lattice are considered. The motivation for these
codes is the following: if a multiprocessor system is modelled by the square lattice, then we
can locate faulty processors in the system with the aid of identifying codes. Constructions,
some of which are optimal, are given.

1. Introduction

We consider the situation in which each vertex of an undirected graph G = (V, E)

contains a processor, and E gives the set of links between the processors. In this paper
we take as our graph the two-dimensional square lattice T with the vertex set V = Z

2

and edge set E = {{u, v}: u − v = (±1, 0) or u − v = (0, ±1)}.
We wish to perform a fault diagnosis on the system. We choose a suitable subset

C ⊆ V and let each processor in C check all the processors within distance r in the
graph (where r is a given integer). Here the distance d(u, v) between the vertices u and
v means the number of edges on any shortest path from u to v. Each of these processors
then sends one bit of information to us, according to whether it has detected anything
out of order or not. Based on these answers we wish to obtain some information on F ,
the set of all the vertices in which the processors are malfunctioning.

The study of such codes was originated by Karpovsky et al. [9].
Denote by Qn the set of vertices (x, y) ∈ V with |x | ≤ n and |y| ≤ n. Then the

density of C is defined as

D(C) = lim sup
n→∞

|C ∩ Qn|
|Qn| .

In this paper we only consider the case r = 1.

∗ The research of the authors was supported by the Academy of Finland under Grants 44002 and 46186.
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Section 2 deals with the variant in which we have the additional initial assumption
that |F | ≤ k, and the answers obtained from the vertices in C completely identify F , i.e.,
its cardinality and all its elements. It turns out that this approach only works for k ≤ 3.
It is known that for k = 1, the optimal density is at least 15

43 ≈ 0.3488 (see [4] and [5])
and at most 7

20 = 0.35 (see [3]). We show that for k = 2, the optimal density is 1
2 and

for k = 3 it is 1. For the values k = 1 and r ≤ 7 consult [2]; in general, it is known
(see [1]) that for k = 1 and all r , the density must be at least 3/(8r + 4), and there is a
construction with density 2/(5r) if r is even, and 2r/(5r2 − 2r + 1) if r is odd (see [8]
and [1]).

In Section 3 we consider the case in which F is assumed to be finite, but there is no a
priori upper bound on its size. In this case we would like to identify at least one element
of F . We prove that this is only possible if the density of C equals 1.

In Section 4 we consider the case in which we have the initial assumption that |F | ≤ k,
but it is only required that based on the answers from the elements in C , we can find
at least one element of F . For any k, we give a construction with density k/(k + 1).
For k = 2, we give a construction with density 4

9 , and for k = 3, a construction with
density 7

12 .
In the case when the graph G is the Hamming space, the problems of Sections 2 and

4 have been considered, for instance, in [9], [7], [12] and [10].
The set C is called a code and its elements codewords. Denote Br (v) = {x ∈

V : d(x, v) ≤ r}. If u, v ∈ V , and d(u, v) ≤ 1, we say that u covers v (and vice
versa). A code C is called r-dominating if for every v ∈ V , there is a vertex u ∈ C such
that d(u, v) ≤ r .

For a closely related problem of locating-dominating sets, we refer to [14], [13], [11],
and [6]. A code C ⊆ V is called a locating-dominating set if the sets B1(v) ∩ C are
nonempty and different for v ∈ V \C , i.e., only for the non-codewords v. It has been
shown by Slater [14] that 3

10 is the smallest possible density of a locating-dominating set
in the square lattice.

2. On Identifying Codes

In this section we explore the density of (1, ≤ k)-identifying codes when k ≥ 2.
Let C ⊆ V . Denote for any X ⊆ V ,

Ir (X) =
(⋃

v∈X

Br (v)

)
∩ C.

We further denote I1(X) = I (X) and Ir ({x1, . . . , xs}) = Ir (x1, . . . , xs).

Definition 1. Let r and k be nonnegative integers. A code C ⊆ V is called (r, ≤ k)-
identifying if Ir (X1) �= Ir (X2) for all X1, X2 ⊆ V where X1 �= X2 and |X1|, |X2| ≤ k.

Theorem 1. The smallest density of a (1, ≤ 2)-identifying code in the square lattice
is 1

2 .
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Fig. 1. A (1, ≤ 2)-identifying code (part). Circles are codewords.

Proof. (Lower bound) Let C ⊆ V be a (1, ≤ 2)-identifying code. Obviously every
point in V is covered by at least one codeword of C . If x /∈ C , then |I (x)| ≥ 2, since
if I (x) = {c}, then I (c) = I (x, c), a contradiction. On the other hand, if x ∈ C , then
|I (x)| ≥ 3. Indeed, if I (x) = {x}, then I (a) = I (x, a) for any a ∈ B1(x)\{x}, and the
case I (x) = {x, c} (x �= c) implies that I (c) = I (x, c), a contradiction again.

We count in two ways the number N of pairs (c, x) where c ∈ C , x ∈ Qn and
d(x, c) ≤ 1. By the discussion above

5|Qn ∩ C | ≥ N ≥ |Qn−1 ∩ C | + 2|Qn−1|.
Since |Qn−1| = |Qn| − 8n and |Qn−1 ∩ C | ≥ |Qn ∩ C | − 8n, we get

|Qn ∩ C |
|Qn| ≥ 1

2
− 6n

|Qn|
and hence the density of C is at least 1

2 .
(Upper bound) The code C = {(i, j) ∈ V : j ≡ 0 mod 2} illustrated in Fig. 1 is

(1, ≤ 2)-identifying. This will be shown next.
Let x be a point in V . If x = (i, j) ∈ C , then (i − 1, j) and (i + 1, j) belong to

I (x). Similarly, if x = (i, j) /∈ C , then (i, j − 1), (i, j + 1) ∈ I (x). In both cases I (x)

cannot be covered by a single point other than x . Firstly, this shows that C is (1, ≤ 1)-
identifying. Moreover, this yields that I (F) �= I (�) for any pair F = {x, y} ⊆ V and a
singleton set � = {α} ⊆ V . This follows since we may assume that x �= α and thus α

cannot cover I (x).
Assume next that F = {x, y} ⊆ V and � = {α, β} ⊆ V where x �= y and α �= β.

Without loss of generality we can assume that x /∈ � and α /∈ F . It remains to show that
I (F) �= I (�) for any such F and �.

Let first x /∈ C and without loss of generality let x = (0, 1). By the discussion
above it is enough to examine the cases where (0, 2) is covered by α and (0, 0) by β.
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Notice that β cannot cover any point whose ordinate is more than one. There are three
possibilities we have to consider, namely, α is one of the points a = (−1, 2), b = (0, 2)

or c = (0, 3) (the case α = (1, 2) is symmetric to (−1, 2)). Let first α = a. This
implies that (−2, 2) ∈ I (�) and a ∈ I (�) and thus y must cover them both but not
(−3, 2) and hence y = α which is impossible. Suppose then α = b. Now a ∈ I (�) and
(1, 2) ∈ I (�) and hence again y = α. Assume next that α = c. Then (0, 4) ∈ I (�) and
y must cover it. However, then y �= α covers also another codeword of C which is not
contained in I (�).

Suppose then that x ∈ C and x = (0, 0). It suffices to check the cases where α

covers (−1, 0) and β covers (1, 0). It is enough to study the situations where α equals
a = (−2, 0), b = (−1, 0) or c = (−1, 1). Let first α = a. From the facts that (−3, 0) ∈
I (�) and α ∈ I (�) and that the point y must cover them but not (−4, 0) we can deduce
α = y which is not allowed. Suppose then that α = b. This implies that a ∈ I (�) and
hence y has to cover it but nothing else outside I (α) that β does not cover. Thus α = y
again. Let then α = c. Now y must cover (−1, 2) without covering anything outside
I (α) which is not covered by β. Consequently, y = α.

This leads to the conclusion that C is (1, ≤ 2)-identifying. Clearly, the density of C
is 1

2 .

We now consider the case k = 3. Notice that there cannot exist (1, ≤ k)-identifying
codes if k ≥ 4 due to the fact that even if C = V , we have the contradiction I ((−1, −1),

(0, 1), (1, 1)) = I ((−1, −1), (0, 0), (0, 1), (1, 1)). It is easy to check that if C is (1, ≤
3)-identifying, then |I (x)| ≥ 5. Therefore, we know that if there exists a (1, ≤ 3)-
identifying code, then the only choice is C = V .

In fact, the code C = V is (1, ≤ 3)-identifying. Evidently, it is (1, ≤ 2)-identifying
because C = V is a supercode of the code of Fig. 1. In the square lattice the intersection
of two spheres of radius one contains at most two elements provided that the centers are
distinct. Since every point x ∈ V is now covered by five codewords, we need at least
three points other than x to cover I (x). Any point or a pair cannot cover the same set of
codewords as a triplet; namely, in a triplet there exists a point which is not included in
the pair or the singleton set. Consequently, we only need to check that I (F) �= I (�) for
any distinct triplets F = {x, y, z} and � = {α, β, γ }.

Naturally, we can assume that x /∈ � and α /∈ F . Suppose without loss of generality
that x = (0, 0). By the discussion above we may assume that α is one of the following
points a = (0, 2), b = (0, 1) or c = (1, 1). Let α = a (the two other cases go
analogously). Then (0, 3) ∈ I (�) and therefore y or z must cover it, say y does. However,
hence I (y) contains a point whose ordinate is at least four, but no such point can be in
I (�) since β and γ must cover I (x)\{(0, 1)}. Thus we reach the following conclusion.

Theorem 2. The smallest density of a (1, ≤ 3)-identifying code in the square lattice
equals one.

Of course, if one must take the whole lattice, then the distance r = 0 is a better choice
than r = 1 in the sense that in that case the set of faulty processors of any cardinality
can be immediately found.
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3. Universally Identifying Codes

The purpose of this section is to consider codes with the following identification property.

Definition 2. Let G = (V, E) be an infinite graph. A 1-dominating subset C ⊆ V is
called a universally (1-)identifying code if it has the following property: if S ⊆ V , and
there is a finite subset F ⊆ V , F �= ∅, such that S = I (F), then there is a vertex vS ∈ V
which is contained in every finite subset F ⊆ V such that S = I (F).

The meaning of the definition is clear: a universally identifying code has the prop-
erty that—assuming that the number of malfunctioning processors is finite—it conveys
enough information so that we can locate at least one of the malfunctioning processors,
fix it and continue the process.

Example 1. In the infinite square lattice T = (V, E), the whole vertex set V is univer-
sally identifying. Indeed, given any set S ⊆ V such that S = I (F) for some (unknown)
F �= ∅, we can always determine at least one element of F in the following way. Define a
function f : Z

2 → Z by f (i, j) = 2i + j . Since S is itself finite, we can choose a vertex
v = (i, j) ∈ S with the highest value of f . Then (i, j + 1) /∈ S and (i + 1, j − 1) /∈ S.
Consequently, (i, j) /∈ F , (i, j + 1) /∈ F , (i + 1, j) /∈ F , (i, j − 1) /∈ F , and therefore
(i, j) ∈ S implies that (i − 1, j) ∈ F .

Example 2. In the infinite square lattice T = (V, E), the set C = V \{(0, j): j ∈ Z}
is universally identifying. Clearly, I (v) �= ∅ for all v ∈ V . Assume that S = I (F)

for some nonempty F . The set S is nonempty, and by symmetry we can assume that it
contains at least one vertex v = (i, j) with i > 0 (if not, reflect everything with respect
to the line x = 0). If we take v = (i, j) to be the vertex in S with the largest value of f
in the half-plane x > 0, we again see that (i − 1, j) ∈ F .

Unfortunately, we cannot do much better than in the two previous examples.

Theorem 3. Assume that C is a universally identifying code in the infinite square
lattice. Then the density of C is 1.

Proof. Consider the set N of non-codewords, which, by assumption, has a positive
density.

Assume that N contains the four points

(a, b), (a + s, b − s), (a + t, b + t), (a + s + t, b − s + t) (1)

for some a, b and s ≥ 2, t ≥ 2 (see Fig. 2). These four points form a rectangle with all
sides having slopes 1 or −1. We denote by E the set of all lattice points in the interior
(marked as squares in Fig. 2), and by B the set of all lattice points in the boundary
(marked as circles). We see that whenever F consists of all the points in E except one,
then I (F) = (B ∪ E) ∩ C : here we need the fact that the corner points do not belong to
C and that s ≥ 2 and t ≥ 2.
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Fig. 2. A forbidden pattern.

It suffices to show that such a forbidden pattern (1) always exists in N . For that
purpose, we partition the original square lattice T into eight subsets

T (v) = v + {i(2, 2) + j (2, −2): i, j ∈ Z}
for v ∈ L := {(0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (1, −1), (2, −1)}. The sets
T (0, 0) and T (1, 1) are shown in Fig. 3. If we denote

Qn(v) = v + {i(2, 2) + j (2, −2): |i | ≤ n, | j | ≤ n}

Fig. 3. The subsets T (0, 0) and T (1, 1).
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and the density of N in T (v) by

D(v) = lim sup
n→∞

|N ∩ Qn(v)|
|Qn(v)| ,

then since the density of N in T is positive, at least one of the densities D(v) is also
positive. This is clear, because

Qn ⊆ Q2n ⊆
⋃
v∈L

Qn(v),

where Qn = {(i, j): |i | ≤ n, | j | ≤ n}.
Without loss of generality, D(0, 0) is positive, and we now get the result from the

following lemma.

Lemma 1. In the infinite square lattice a subset with positive density contains four
points which are the corners of a rectangle whose sides are parallel to the coordinates
axes.

Proof. Assume that X is a subset of the square lattice which does not have any four
such points. We show that the density of X is 0.

Consider the set Qn = {(i, j): |i | ≤ n, | j | ≤ n}. We can view X ∩ Qn as a bipartite
graph G with the bipartition A = {a−n, . . . , an}, B = {b−n, . . . , bn} and the edge set
E(G) = {{ai , bj }: (i, j) ∈ X}.

If N (ai ) denotes the set of neighbours of ai , for i = −n, . . . , n and di = |N (ai )|,
the requirement that X does not contain any such forbidden pattern implies that no two
vertices ai and aj can have two neighbours in common. Hence by the Cauchy–Schwartz
inequality

(
2n + 1

2

)
≥
∑(

di

2

)
≥ 1

2(2n + 1)

(∑
di

)2
− 1

2

(∑
di

)
.

Because
∑

di = |X ∩ Qn|, we see that |X ∩ Qn| = O(n3/2), and therefore X has density
0. In fact, we are just using the well-known fact that if a graph with K vertices has no
4-cycles, then it has at most O(K 3/2) edges.

4. Weakly Identifying Codes

Even though there do not exist (1, ≤ k)-identifying codes when k ≥ 4, we can still utilize
weakly identifying codes to find malfunctioning processors from the square lattice. If
k = 2 or k = 3, then using weakly (1, ≤ k)-identifying codes instead of (1, ≤ k)-
identifying codes we can locate the faulty processors with a code that has a smaller
density. The price we have to pay is that we must be prepared to repeat the process of
getting replies from the codewords (at most) k times. The concept of weak identification
was introduced in [7].
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Fig. 4. A construction of a weakly (1, ≤ k)-identifying code for k = 4.

Definition 3. Let G = (V, E) be an infinite graph. An r -dominating subset C ⊆ V is
called a weakly (r, ≤ k)-identifying code if it has the following property: if S ⊆ V , and
there is a finite subset F ⊆ V of cardinality at most k, F �= ∅, such that S = Ir (F), then
there is a vertex vS ∈ V which is contained in every subset F ⊆ V (|F | ≤ k) such that
S = Ir (F).

The following theorem shows that for every k ≥ 2 there exists a weakly (1, ≤ k)-
identifying code with density smaller than 1.

Theorem 4. There is a weakly (1, ≤ k)-identifying code in the infinite square lattice
with density k/(k + 1).

Proof. The construction consists of simply leaving out every (k + 1)st column of
vertices, see Fig. 4.

Let F be an arbitrary set consisting of at most k vertices, and assume that we know
I (F) (but not F).

Assume that v1 = (a, b) is the point of I (F) with the highest value of the ordinate
among the points with the highest value of the abscissa. From Example 1 we know that
if for some i and j , (i, j) ∈ I (F), (i, j + 1) /∈ I (F) and (i + 1, j − 1) /∈ I (F), then
(i − 1, j) ∈ F . This implies that we can assume that none of the vertices in the (b + 1)st
column are in our code. Clearly, x1 = (a − 1, b) ∈ F or x0 = (a, b − 1) ∈ F . If
v2 = (a − 1, b + 1) /∈ I (F), then we are done (because then x1 /∈ F and hence x0 ∈ F);
hence we can only consider the patterns with v2 ∈ I (F). We can assume that of the
points in I (F), v2 has the highest value of the ordinate in its column: otherwise, we
can apply the argument of Example 1 to the point of I (F) with the highest value of the
ordinate in this column. By repeating the previous argument, v2 ∈ I (F) now implies
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that x2 = (a −2, b +1) ∈ F or x1 ∈ F . Continuing in the same way we see that for each
i = 1, 2, . . . , k, it suffices to consider the patterns in which vi = v1 + (−i + 1, i − 1) is
the point of I (F) with the highest value of the ordinate in its column. Again, vi ∈ I (F)

then implies that xi = vi + (−1, 0) ∈ F or xi−1 = vi + (0, −1) ∈ F .
If (a, b −2) /∈ I (F), then x0 /∈ F and consequently we know that x1 ∈ F . So assume

that (a, b − 2) ∈ I (F).
Denote by u1 the point of I (F) with the smallest value of the ordinate in the bth

column (so u1 = (a, b − 2) or below it), and y0 = u1 + (0, 1).
By symmetry, going down instead of going up, we see that it suffices to consider the

patterns in which for each i = 1, 2, . . . , k, ui = u1 + (−i + 1, −i + 1) is the point of
I (F) with the smallest value of the ordinate in its column, and then ui ∈ I (F) implies
that yi = ui + (−1, 0) ∈ F or yi−1 = ui + (0, 1) ∈ F .

However, |F | ≤ k implies that if k is even, then x2i−1 ∈ F and y2i−1 ∈ F for all
i = 1, 2, . . . , k/2, and if k is odd, then x0 = y0 ∈ F and x2i ∈ F and y2i ∈ F for all
i = 1, . . . , (k − 1)/2.

Theorem 5. The code

C = {(i, j): i ≡ 1 mod 2 and j �≡ i + 4 mod 9}
is weakly (1, ≤ 2)-identifying and has density 4

9 .

Proof. It is easy to verify that the code C illustrated in Fig. 5 is (1, ≤ 1)-identifying.
We show that based on I (F) we can always find (at least) one of the faulty processors
in F if |F | ≤ 2. Obviously I (F) is empty if and only if F is empty. We classify the
patterns I (F) in terms of their leaders: we define the leader of I (F) to be the unique
point in I (F) with the highest value of the ordinate among the points with the highest
value of the abscissa. We denote the leader by c throughout the proof.

The codeword c is one of the eight codewords in a tile (inside the dashed line) given
in Fig. 5. Without loss of generality we may assume that c is one of the codewords in
{(9, 5), (9, 6), . . . , (9, 12)}. Given c = (i, j) we denote a = (i −1, j) and b = (i, j −1).

(i) Let first the leader c = (9, 8) (the cases c ∈ {(9, 9), (9, 10)} go in exactly the same
way). By the definition of c, there are two positions where one of the faulty processors
must be, namely, at a or b. If (7, 8) /∈ I (F), then b ∈ F . Assume that (7, 8) ∈ I (F). If
now (9, 6) or (9, 7) does not belong to I (F), then a ∈ F . Suppose then that these points
are in I (F). One element of F covers (7, 8). If (9, 5) /∈ I (F), we know that b ∈ F , and
if (9, 5) ∈ I (F), we obtain a ∈ F (and (9, 6) ∈ F).

(ii) Let then c = (9, 7). The beginning of this case goes as (i) up to the point where
we can assume that the points (9, 5), (9, 6) and (7, 7) belong to I (F). If now none of
the points (7, 8), (5, 7) or (7, 6) lies in I (F), then a ∈ F . If I (F) contains at least one
of these points, then b ∈ F due to the fact that these point(s) in I (F) must be covered
by an element in F but the codewords (9, 5) and c still have to be covered by one point
of F .

(iii) Suppose c = (9, 5). We may assume that (7, 5) and (9, 3) are contained in I (F).
If none of the points (7, 6), (5, 5) and (7, 4) belongs to I (F), we get a ∈ F . Assume
that at least one of them does. Now the points c and (9, 3) must be covered by a single
point in F and hence b ∈ F .
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Fig. 5. A weakly (1, ≤ 2)-identifying code (part). Codewords are denoted by circles.

(iv) Assume that c = (9, 11). If b /∈ I (F) or y = (9, 9) /∈ I (F), then a ∈ I (F).
Suppose that both of them are contained in I (F). If f = (9, 8) /∈ I (F), we get that
b ∈ F . Let then f ∈ I (F). If neither (9, 7) nor (7, 8) belongs to I (F), it is clear that
y ∈ F . Assume that one of these two is in I (F). Hence there is only one point in F that
should cover both c and b and this leads to the conclusion that b ∈ F .

In the last two cases we denote by c′ the codeword, which is among the points with
the highest value of the abscissa in I (F), and has the smallest value of the ordinate such
that starting from it the consecutive points up to c are either in I (F) or in V \C .

(v) Let the leader c = (9, 12). Then a, b or c belongs to F . Suppose first that c = c′.
This yields a ∈ F . Suppose that c′ = b. Let f = (7, 12). If f /∈ I (F), one finds out that
c ∈ F . Assume therefore that f ∈ I (F). If none of the points (7, 13), (5, 12) or (7, 10)

is contained in I (F), we immediately deduce that a ∈ F . Let then one of these be in
I (F). Then c ∈ F due to the fact that only one point of F is supposed to cover both c
and b.

Assume next that c′ = (9, 10). Denote f = (7, 10). If f /∈ I (F), we obtain b ∈ F .
Suppose that f ∈ I (F). If none of the points x1 = (7, 12), x2 = (5, 10) and x3 = (7, 9)

belongs to I (F), then evidently (8, 10) ∈ F . Suppose first that x2 or x3 is in I (F). Now
all the words c, b and c′ must be covered by one element in F , thus b ∈ F . Suppose then
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that only x1 ∈ I (F). Consequently, (8, 10) or (7, 11) is in F . However, the first choice
is impossible and thus (7, 11) ∈ F .

Let now c′ = (9, 9) and f = (7, 9). If f /∈ I (F), then (9, 10) ∈ F . On the other
hand, if f ∈ I (F), we conclude that b ∈ F since c, (9, 10) and b must be covered by
exactly one point of F . The cases c′ = (9, 8) and c′ = (9, 7) are trivial because around
c there is at least one element of F , and c′ and the codeword of I (F) just above it must
be covered by one point of F and thus the point above c′ belongs to F .

(vi) Assume finally that c = (9, 6). Denote d = (10, 6). Let first c′ = c. Notice that
a or d is in F . Denote further f = (7, 6). If f /∈ I (F) it is immediate that d ∈ F .
Suppose f ∈ I (F). Let x1 = (7, 7), x2 = (5, 6) and x3 = (7, 5). If none of them is
contained in I (F), then a ∈ F . Now we have to check the cases where (at least) one
of the xi ’s is in I (F). Suppose x2 ∈ I (F). Now a point of F must cover x2. We get
a ∈ F except if I (F) = {x2, f, c} in which case (6, 6) ∈ F . Let x1 ∈ I (F). The case
I (F) = {x1, f, (7, 8), c} gives x1 ∈ F and I (F) = {x1, f, x3, c} implies that f ∈ F .
For other sets I (F) containing x1 we know that a ∈ F . Assume now that x1 /∈ I (F).
Let x3 ∈ I (F). We obtain x3 ∈ F if I (F) = {(7, 4), x3, f, c} and a ∈ F otherwise.

Suppose then that c′ = b. Let f = (7, 5). The situation f /∈ I (F) implies that c′ ∈ F .
Assume now f ∈ I (F). Does any of the points x1 = (7, 6), x2 = (5, 5) or x3 = (7, 4)

belong to I (F)? If not, then (8, 5) ∈ F . If x2 ∈ I (F) or x3 ∈ I (F), then c′ ∈ F . Assume
that only x1 is in I (F) of these three points. Now since f ∈ I (F), either (8, 5) ∈ F or
x1 ∈ F . If (7, 7) /∈ I (F), then (8, 5) ∈ F . The case (7, 7) ∈ I (F) implies that x1 ∈ F
because neither f nor (7, 7) can be covered by the point in F that covers c.

Let next c′ = (9, 3) and f = (7, 3). If f /∈ I (F), then (9, 4) ∈ F . Assume hence
that f ∈ I (F). Then one element of F covers f and in order to cover both c and b we
must have b ∈ F . It is very easy to see that for the same reason the cases c′ = (9, 2) and
c′ = (9, 1) give b ∈ F . This completes the proof.

Theorem 6. There exists a weakly (1, ≤ 3)-identifying code with density 7
12 in the

infinite square lattice.

Proof. We claim that the code of Fig. 6 with density 7
12 is (1, ≤ 3)-identifying.

We are given a pattern I (F) and should always demonstrate that we can tell at least
one element of F—clearly, I (F) is empty if and only if F is empty. Recall that the leader
of I (F) is the (unique) point in I (F) with the highest value of the ordinate among the
points with the highest value of the abscissa. By symmetry, it suffices to assume that
the leader is among c2–c9, d1–d5 and d7 (see Fig. 6 for the chessboard coordinates,
which we use in parallel with the usual (x, y)-coordinates). Throughout the proof we
call all the points in B1(v) the neighbours of v, i.e., we (a bit misleadingly) include v

itself among the neighbours.

Step 1: The leader is c2, c3, c4, c5, c6 or c8. These cases are immediate (see Example 1).
If the leader is (i, j), then in each of these cases (i, j+1) /∈ I (F) and (i+1, j−1) /∈ I (F)

and the only neighbour of (i, j) than can be in F is (i − 1, j).

Step 2: The leader is c7 ∈ I (F). Then b7 or c6 ∈ F . If c6 /∈ I (F) or c5 /∈ I (F), then
we can tell that c6 /∈ F and consequently b7 ∈ F , and we are done. We can therefore
only consider cases in which c6, c5 ∈ I (F).
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Fig. 6. A weakly (1, ≤ 3)-identifying code with density 7
12 .

Consider the patterns obtained when c6 /∈ F . The fact that c6 ∈ I (F) now implies
that b6 ∈ F ; and c5 ∈ I (F) implies that b5 ∈ F . Hence I (F) = {c7, c6, c5, a6}, but
given this pattern, we can immediately tell that the only neighbour of a6 that can be in
F is b6.

Given any pattern I (F) ⊇ {c7, c6, c5} other than {c7, c6, c5, a6} with leader c7, we
know that c6 ∈ F .

Step 3: The leader is c9. This is very similar to the previous case. We deduce that c8 ∈ F
or b9 ∈ F , and are immediately done, unless a9, c8, c7 ∈ I (F). Assuming that the only
patterns obtained when c8 /∈ F result from F = {b9, b8, b7} and F = {b9, b8, c6},
and in both cases, given the corresponding I (F), we can immediately tell that the only
neighbour of a9 that can be in F is b9. Given any other I (F) we know that c8 ∈ F .

Step 4: The leader is d1, d2, d3 or d4. Let the leader be the point (i, j). We know that
(i−1, j) ∈ F or (i, j−1) ∈ F . We can only consider patterns in which (i−1, j+1), (i−
1, j), (i − 1, j − 1) ∈ I (F): otherwise we can immediately tell that (i, j − 1) ∈ F .
Consider the patterns obtained when (i − 1, j) /∈ F (in which case (i, j − 1) ∈ F). It
again suffices to prove that each of the resulting patterns I (F) will immediately give
away at least one element in F .
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Because (i −1, j) has a neighbour in F , we know that (i −2, j) ∈ F or (i −1, j −1) ∈
F ; because (i −1, j +1) ∈ I (F), we know that (i −2, j +1) ∈ F or (i −1, j +2) ∈ F—
and if the leader is d1, d2 or d3, the latter is not possible and we are already done (because
in the resulting patterns (i − 3, j + 1) ∈ I (F) has a neighbour in F , and it can only be
(i − 2, j + 1)). So assume that (i, j) = d4. If b4 = (i − 2, j) ∈ F , the two possibly
resulting patterns I (F) tell us that b4 must be in F ; if c3 = (i − 1, j − 1) ∈ F , then
c2 ∈ I (F) and of its neighbours only c3 can be in F .

Step 5. A similar argument to that presented in Step 4 shows that if d2, d3, d4 or d5 is
the point in I (F) with the lowest value of the ordinate among the points with the highest
value of the abscissa, then all the resulting patterns I (F) give away at least one element
of F .

Step 6: d7 is the leader. Then d7, d6 or c7 ∈ F . Furthermore, it suffices to consider the
patterns in which also c7 and c6 are in I (F): otherwise only one of d7, d6 or c7 can be
in F .

If d5 /∈ I (F), then we know that d7 ∈ F or c7 ∈ F , and we are done unless also c8
is in I (F). Again considering only the patterns resulting when c7 /∈ F (in which case
d7 ∈ F) we see that b8 ∈ F or c8 ∈ F , and the third element of F is b6 or c6; but in all
such patterns we immediately recognize that b8 ∈ F or that c8 ∈ F .

It therefore suffices to consider the patterns with d5 ∈ I (F). Then among the neigh-
bours of d5, d7, c7, c6 ∈ I (F) at least two belong to F . By Step 5, we can assume that
the lowest point v of I (F) in the column d is d1 or lower: but v immediately identifies
itself, as we know that there are two other members of F but they are sufficiently far
above v.

Step 7: d5 is the leader. As in Step 6, we see that d5, d4 or c5 ∈ F , and that it suffices
to consider the patterns in which d5, d4, c5 and c4 are all in I (F). Clearly,

|(B1(d5) ∪ B1(d4) ∪ B1(c5) ∪ B1(c4)) ∩ F | ≥ 2. (2)

By Step 5, we can assume that the lowest point v of I (F) in the d-column is d1: if it
is d2, d3 or d4, we are immediately done by Step 5; if it is below d1, then as in Step 6,
v immediately identifies itself, as we know that there are two other elements in F , but
they are sufficiently far above it. We can only consider patterns in which d1, d2, c1 and
c2 all belong to I (F); otherwise, there is only one neighbour of d1 which can belong to
F . Clearly,

|(B1(d2) ∪ B1(d1) ∪ B1(c2) ∪ B1(c1)) ∩ F | ≥ 2. (3)

By (2) and (3), c3 ∈ F or d3 ∈ F , and hence all the ten points c1–c5, d1–d5 are in
I (F). If c3 ∈ F , this is only possible if d5 and d1 are also in F , and then I (F) consists
of these ten points. If d3 ∈ F , the only possibility is that also c1 and c5 are in F , in
which case I (F) consists of 12 points, so we are done.
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