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Abstract. Let S ⊂ [−1, 1). A finite set C = {xi }M
i=1 ⊂ �n is called a spherical S-

code if ‖xi‖ = 1 for each i , and x T
i xj ∈ S, i 	= j . For S = [−1, 0.5] maximizing

M = |C| is commonly referred to as the kissing number problem. A well-known technique
based on harmonic analysis and linear programming can be used to bound M . We consider
a modification of the bounding procedure that is applicable to antipodal codes; that is,
codes where x ∈ C ⇒ −x ∈ C. Such codes correspond to packings of lines in the unit
sphere, and include all codes obtained as the collection of minimal vectors in a lattice. We
obtain improvements in upper bounds for kissing numbers attainable by antipodal codes in
dimensions 16 ≤ n ≤ 23. We also show that for n = 4, 6 and 7 the antipodal codes with
maximal kissing numbers are essentially unique, and correspond to the minimal vectors in
the laminated lattices �n .

1. Introduction

Let S ⊂ [−1, 1). A finite set C = {xi }M
i=1 ⊂ �n is called a spherical S-code if ‖xi‖ = 1

for each i , and xT
i xj ∈ S, i 	= j . When S = [−1, cos θ ] the points of C are the centers

of nonoverlapping spherical caps of angular diameter θ , and if θ = π/3 the points of C
are the centers of nonoverlapping spheres of radius 1

2 , all of which touch the sphere of
radius 1

2 centered at the origin. Maximizing the number of such spheres is commonly
referred to as the kissing number problem in �n .

There is a very large literature concerning spherical codes, and the related Tammes
problem: find a [−1, cos θ ]-code of given cardinality M that maximizes θ (see Chapters 1
and 3 of [5] and references therein). In addition to their purely geometrical interest these
problems have a number of significant applications, for example to the construction
of constant-energy codes for a Gaussian communication channel [5, Section 3.1]. A
fundamental problem connected with spherical codes is to bound M = |C| for a given S.
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An approach based on harmonic analysis and linear programming [9], [12] allows for
the computation of explicit bounds on M for fixed n, and also asymptotic bounds on
the sizes of spherical codes and related sphere packings for large n. In Chapters 13
and 14 of [5] this approach is applied with S = [−1, 0.5] to obtain bounds on M for
n = 3, . . . , 24, and to give precise characterizations of spherical codes that solve the
kissing number problem in dimensions 8 and 24. For recent results concerning spherical
codes, the Tammes problem and the linear programming bounds see pp. xxiii–xxv of [5].

In this paper we consider a modification of the linear programming bound that is
applicable when C is antipodal; that is, x ∈ C ⇒ −x ∈ C. Antipodal codes include all
codes obtained as the set of minimal vectors in a lattice, so the antipodal bound applies
to the size of any such lattice code in �n . An antipodal code can also be viewed as a
packing of lines in the unit sphere, which is the lowest-dimensional case of the packings
of subspaces, or Grassmannian packings, considered in [4]. Bounds for antipodal codes,
or packings of lines, have been previously considered in [3], [7], and [11].

In the next section we describe the linear programming bound of [9], and a variant
that is valid for antipodal codes. In Section 3 the antipodal bound is applied in the case
of S = [−1, 0.5] to obtain bounds on the kissing number attainable by antipodal codes
in dimensions n = 3, . . . , 24. (For all such n except 13, 14 and 15 the highest known
kissing number corresponds to an antipodal code.) We obtain improvements in the best
known upper bound on M in dimensions 16 ≤ n ≤ 23. In Section 4 we use the solutions
of the linear programming problems to obtain additional results for certain dimensions.
In particular we prove that for n = 4, 6 and 7 the antipodal codes that attain the maximal
kissing number are essentially unique, and correspond to the minimal vectors in the
laminated lattices �n .

2. Linear Programming Bounds

Let C = {xi }M
i=1 be a spherical S-code in �n , n ≥ 3. In this section we describe a

well-known linear programming bound for the size M of such a code. The distance
distribution of the code is the function α(·): [−1, 1] → � defined as

α(s) = |{(i, j): xT
i xj = s}|

M
.

It is then easy to see that

α(1) = 1, (1a)∑
s∈S

α(s) = M − 1, (1b)

α(s) ≥ 0, α ∈ S. (1c)

Let 
k(·), k = 0, 1, . . ., denote the Gegenbauer, or ultraspherical, polynomials


k(t) = P (β,β)

k (t)(
k+β

k

) , (2)
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where P (β,β)

k is the Jacobi polynomial with β = (n − 3)/2 [1]. The normalization in (2)
is chosen so that 
k(1) = 1 for all k. Using techniques from harmonic analysis it can
be shown [9], [5, Chapters 9 and 13] that

1 +
∑
s∈S

α(s)
k(s) ≥ 0, k = 1, 2, . . . . (3)

By combining (2) and (3) a bound on M can be obtained via the linear programming
problem

(LP) max
∑
s∈S

α(s)

s.t.
∑
s∈S

α(s)
k(s) ≥ −1, k = 1, 2, . . . ,

α(s) ≥ 0, s ∈ S.

Note that (LP) has both an infinite number of variables and constraints. In practice a bound
on M can be obtained by working with a finite number of constraints k = 1, . . . , K , and
using a feasible solution to the dual problem to bound the optimal value of (LP).

Our interest here is in modifying the problem (LP) to obtain an improved bound whenC
is antipodal. In this case it is obvious that the distance distribution satisfies α(s) = α(−s),
s ∈ [−1, 1]. Since the polynomials 
k(·) are odd for k odd, it follows immediately that
the constraints (3) are satisfied with equality for all odd k. Let S+ = S ∩ [0, 1] and
S++ = S ∩ (0, 1]. Since 
k(·) are even for k even, the constraints (3) for even k can be
written as

2 + α(0)
2k(0) + 2
∑

s∈S++

α(s)
2k(s) ≥ 0, k = 1, 2, . . . .

A bound for M , the size of the code, can then be based on the linear programming
problem

(LP+) max α(0) + 2
∑

s∈S++

α(s)

s.t. α(0)
2k(0) + 2
∑

s∈S++

α(s)
2k(s) ≥ −2, k = 1, 2, . . . , K ,

α(s) ≥ 0, s ∈ S+.

(If 0 /∈ S the variable α(0) is omitted in (LP+).) The dual of (LP+) is the problem

(LD+) min 2
K∑

k=1

f2k

s.t.
K∑

k=1

f2k
2k(s) ≤ −1, s ∈ S+,

f2k ≥ 0, k = 1, . . . , K .
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In practice it may be impossible to solve (LD+) exactly due to the infinite number of
constraints. However, by solving an approximation of (LD+) using a finite set of points
s1, s2, . . . , sN we can obtain values f2k , k = 1, . . . , K , so that

1 +
K∑

k=1

f2k
2k(s) ≤ ε, s ∈ S+, (4)

where 0 ≤ ε < 1. A bound on the size of the code is then given as follows.

Lemma 1. Let f2k , k = 1, . . . , K , be nonnegative numbers satisfying (4). If C is an
antipodal spherical code, then M = |C| ≤ 2 + 2(

∑K
k=1 f2k)/(1 − ε).

Proof. Since C is antipodal, the identities (1a) and (1b) imply that M ≤ v(LP+) +
2, where v(LP+) denotes the solution objective value in (LP+). By weak duality [6]
v(LP+) ≤ 2(

∑K
k=1 f2k), where f2k , k = 1, . . . , K , is feasible in (LD+). However, if

f2k , k = 1, . . . , K , are nonnegative and satisfy (4), then f2k/(1 − ε), k = 1, . . . , K , are
feasible in (LD+).

3. Bounds on Kissing Numbers

We now consider the bound of Lemma 1 applied to the case of S = [−1, 0.5], often re-
ferred to as the kissing number problem. In this case S+ = [0, 0.5]. Bounds for this case
based on explicit feasible solutions to (LD+) have previously been described [3], but to
our knowlege there has been no attempt to solve (LD+) numerically. For n = 3, 4, . . . , 24
we solve the approximation of (LD+) obtained using K = 6, and the constraints gen-
erated by {sj }2001

j=1 , sj = 0.00025( j − 1). Let f2k , k = 1, . . . , K , be the solution of this

linear programming problem, and let 
(s) = 1 + ∑K
k=1 f2k
2k(s). To obtain the value

ε required for the bound in Lemma 1 we use the following simple technique. Let j be
such that 
(aj ) ≈ 0, 
′(sj ) > 0, 
′(sj+1) < 0. Let d2 = max{
′′(sj ), 
′′(sj+1)}. Then

′′(s) ≤ d2 < 0, s ∈ [sj , sj+1], assuming that 
′′(·) is negative and monotonic on this
interval, which is easily checked. It follows that for 0 ≤ δ ≤ 0.00025,


(sj + δ) ≤ 
(sj ) + δ
′(sj ) + δ2

2
d2,

from which we obtain an upper bound of the form

ε = 
(sj ) − 
′(sj )

2d2
.

In Table 1 we give bounds on the kissing number attainable by antipodal codes, as
well as the original linear programming bounds and highest known kissing numbers,
from [5]. The antipodal bounds are rounded down to the next even integer, since M must
be even for an antipodal code. For 4 ≤ n ≤ 15 the antipodal bounds computed here
agree with bounds given by explicit polynomials in [3] and [11]. For 16 ≤ n ≤ 23,
however, our bounds are better than those of [3] and [11]. For n = 5, 10 and 14 the
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Table 1. Best known kissing numbers and linear programming
bounds.

Best Original Antipodal
n known Lattice? bound bound

3 12 yes 13 12
4 24 yes 25 24
5 40 yes 46 40‡

6 72 yes 82 72
7 126 yes 140 126
8 240 yes 240 240

9 306 no† 380 366

10 500 no† 595 548‡

11 582 no† 915 820

12 840 no† 1,416 1,228
13 1,130 no 2,233 1,866

14 1,582 no 3,492 2,938‡

15 2,564 no 5,431 4,962

16 4,320 yes 8,313 8,158‡

17 5,346 yes 12,215 11,478
18 7,398 yes 17,877 16,122
19 10,668 yes 25,901 22,724
20 17,400 yes 37,974 32,340
21 27,720 yes 56,852 46,878
22 49,896 yes 86,537 70,164
23 93,150 yes 128,096 111,126
24 196,560 yes 196,560 196,560

†Antipodal.
‡See text.

linear programming bounds are integral, and it is shown in [3] that codes attaining these
bounds cannot exist. Consequently the bounds may be reduced by 2, and these reduced
values are reported in Table 1. We use a similar technique to improve the bound for
n = 16 in the next section. As described above K = 6 was used in the formulation of
the problem used to obtain these bounds, but f10 = f12 = 0 in the solution for all n
except for n = 3.

As can be seen in Table 1 the antipodal bounds are tight for dimensions 3–8 and 24.
The tight bounds for dimensions 8 and 24 are to be expected since the original linear
programming bounds are tight, and the maximal kissing numbers are attained by lattice
codes [5, Chapter 13]. The tight bounds for 3 ≤ n ≤ 8 provide an alternative proof for the
known result [13], [14] that the laminated lattices �n have the highest possible kissing
numbers for lattices in these dimensions, and also imply that higher kissing numbers, if
they exist, can only come from codes that are not antipodal. It is known that the maximal
kissing number for n = 3 is 12 [10].

For some n the solution of (LD+) is particularly well structured, allowing for additional
analysis that can either demonstrate that the code attaining the bound is essentially unique,
or in fact cannot exist. We pursue this topic in detail in the next section for n = 4, 6, 7
and 16.
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4. Uniqueness or Nonexistence of Certain Antipodal Codes

In this section we show that:

• For n = 4, 6 and 7 the only antipodal codes that attain the maximal possible kissing
number correspond to orthogonal transformations of the set of minimal vectors of
the laminated lattices �n .

• For n = 16 there is no antipodal code that attains the bound 8160 from (LD+), and
therefore this bound can be reduced by 2.

In all cases the analysis uses explicit rational coefficients f2k suggested by the solution
of (LD+). For n ≤ 8 it is known that �n is the unique lattice with maximal density [5,
Section 1.5], and, for 4 ≤ n ≤ 9, �n is the unique lattice with the highest kissing
number [14]. Our method of proving the uniqueness of these codes in dimensions 4,
6 and 7 is similar to that used to prove that for n = 8 the minimal vectors from E8

are the essentially unique code with kissing number 240 [2]; see also Theorem 7 in
Section 14.2 of [5]. The fact that in dimensions 4, 6 and 7 the distance distribution for
an antipodal code achieving the bound in Table 1 is uniquely determined was previously
noted in [3].

For a code C = {xi }M
i=1, let αi (s) = |{ j : xT

i xj = s}|. A code is called distance
invariant if αi (s) is independent of i for all s, and in this case αi (s) = α(s) for all i
and s.

Lemma 2. Suppose that an antipodal spherical code C for n = 4 and S = [−1, 0.5]
has M = |C| = 24. Then C is distance invariant, and the distance distribution of C has
α(0) = 6, α( 1

2 ) = α(− 1
2 ) = 8, α(1) = α(−1) = 1, α(s) = 0, s /∈ {0, ± 1

2 , ±1}.

Proof. For n = 4 we obtain f2 = 6, f4 = 5 and a bound 2 + 2( f2 + f4) = 24. Let


(s) = 1 + f2
2(s) + f4
4(s) = 16s2(s2 − 1
4 ).

Then 
(s) ≤ 0 for s ∈ S+, with roots at 0 and 1
2 . It follows from the complementary

slackness property [6] that if C is an antipodal code with M = 24, then the distance
distribution for C must satisfy α(s) = 0, s /∈ {0, ± 1

2 , ±1}, and in addition

α(0)
2(0) + 2α( 1
2 )
2(

1
2 ) = −2,

α(0)
4(0) + 2α( 1
2 )
4(

1
2 ) = −2.

(5)

The unique solution of (5) is α(0) = 6, α( 1
2 ) = 8. From (5) and the fact that the code

is antipodal, C is a 5-design in �4 [8]. Since C is also an S-code with |S| = 4, Theorem
7.4 of [8] implies that C is distance invariant.

Theorem 3. Suppose that an antipodal spherical code C for n = 4 and S = [−1, 0.5]
has M = |C| = 24. Then there is an orthogonal transformation that maps the elements
of C onto the minimal vectors of the lattice �4 = D4.
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Proof. Let {xi }24
i=1 be the elements of C, and define the lattice L consisting of points of

the form
24∑

i=1

√
2 ai xi , ai ∈ Z, i = 1, . . . , 24.

It is then easy to show that L is an even integral lattice. Since L is generated by vectors
of squared-norm 2, Witt’s theorem [5, Section 4.3] implies that L is a direct sum of root
lattices that are isometric with either An , n ≥ 1, or Dn , n ≥ 4. The only lattice of this
form with at least 24 minimal vectors is D4.

In dimensions 6 and 7 very similar analysis obtains the following results.

Lemma 4. Suppose that an antipodal spherical code C for n = 6 and S = [−1, 0.5]
has M = |C| = 72. Then C is distance invariant, and the distance distribution of C has
α(0) = 30, α( 1

2 ) = α(− 1
2 ) = 20, α(1) = α(−1) = 1, α(s) = 0, s /∈ {0, ± 1

2 , ±1}.

Proof. Similar to the proof of Lemma 2, using f2 = 14, f4 = 21.

Theorem 5. Suppose that an antipodal spherical code C for n = 6 and S = [−1, 0.5]
has M = |C| = 72. Then there is an orthogonal transformation that maps the elements
of C onto the minimal vectors of the lattice �6 = E6.

Proof. Similar to the proof of Theorem 3, but with the additional root lattice E6.

Lemma 6. Suppose that an antipodal spherical code C for n = 7 and S = [−1, 0.5]
has M = |C| = 126. Then C is distance invariant, and the distance distribution of C has
α(0) = 60, α( 1

2 ) = α(− 1
2 ) = 32, α(1) = α(−1) = 1, α(s) = 0, s /∈ {0, ± 1

2 , ±1}.

Proof. Similar to the proof of Lemma 2, using f2 = 234
11 , f4 = 448

11 .

Theorem 7. Suppose that an antipodal spherical code C for n = 7 and S = [−1, 0.5]
has M = |C| = 126. Then there is an orthogonal transformation that maps the elements
of C onto the minimal vectors of the lattice �7 = E7.

Proof. Similar to the proof of Theorem 3, but with the additional root lattices E6

and E7.

It is worthwhile to note that the distance distributions characterized in Lemmas 2, 4
and 6 attain the “special bound” for antipodal codes described in Example 8.4 of [8].

Next we give the nonexistence result for n = 16. From the solution of (LD+), the
polynomial 
(s) = 1 + f2
2(s) + f4
4(s) + f6
6(s) + f8
8(s) appears to be of the
form


(s) = γ s2(s2 − θ)2(s2 − 1
4 ),
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where γ is a scalar and
√

θ ≈ 0.185. Using the fact that the bound from (LD+) is 8160 and
f6 = 1824, we compute γ = 495616/85, θ = 3/88, f8 = 20064/13, f4 = 41848/65,
f2 = 339/5. Using the same argument as in the proof of Lemma 2, the solution of (LP+)
must satisfy

α(0)
2(0) + 2α( 1
2 )
2(

1
2 ) + 2α(

√
θ)
2(

√
θ) = −2,

α(0)
4(0) + 2α( 1
2 )
4(

1
2 ) + 2α(

√
θ)
4(

√
θ) = −2,

α(0)
6(0) + 2α( 1
2 )
6(

1
2 ) + 2α(

√
θ)
6(

√
θ) = −2,

α(0)
8(0) + 2α( 1
2 )
8(

1
2 ) + 2α(

√
θ)
8(

√
θ) = −2,

(6)

which has a unique solution α(0) = 2890/3, α( 1
2 ) = 11560/19, α(

√
θ) = 170368/57.

From (6) and the fact that C is antipodal, C is a 9-design in �16, and is also an S-code
with |S| = 6. From Theorem 7.4 of [8] C is distance invariant, so α(s) must be integral
for all s. Therefore no antipodal code with M = 8160 can exist, and the bound can be
reduced to 8158.
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