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Abstract. A uniform polyhedron has equivalent vertices and regular polygonal faces.
An established set of 77 Wythoff symbols effectively describes the dynamic kaleidoscopic
constructions of uniform polyhedra. The main combinatorial and metrical quantities of
uniform polyhedra and their duals are presented as closed-form expressions derived from
the Wythoff symbols.

1. Introduction

The standard definition of auniform polyhedronis a polyhedron that has regular faces
and a symmetry group that is transitive on the vertices. Such a finite figure consists of
one or more kinds of faces that are regular plane polygons which meet two to a side
(edge) and which are arranged alike around every vertex. With the restriction that no
subset of faces has these properties, we exclude a compound of two or more uniform
polyhedra.

The 77 kinds of uniform polyhedra are separated historically and naturally into the
5 Platonic solids (convex regular polyhedra), the 13 Archimedean solids (convex semi-
regular polyhedra), the 4 star polyhedra of Kepler–Poinsot (non-convex regular polyhe-
dra), the 53 non-regular star polyhedra, and the 2 infinite families of uniform prisms and
antiprisms.

The complete set of Wythoff symbols is an established system of notation that effec-
tively describes the dynamic kaleidoscopic construction for each uniform polyhedron
[7]. The main combinatorial and metrical quantities of uniform polyhedra are presented
here as closed-form expressions derived from the Wythoff symbols. This direct approach
differs from previous algorithms which involve numeric iterations [14], [21]. A vertex in
Cartesian coordinates is located first by one of two different methods (snub case versus
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non-snub case) after which formulas apply to all uniform polyhedra. The known quanti-
ties of a uniform polyhedron are then used for deriving expressions for the corresponding
dual polyhedron.

The concepts, terminology, and many of the symbol conventions used in this paper
follow primarily [5] and [7]. Important relations known to be in the literature are ref-
erenced as such. To simplify the relationships, all derived metrical quantities are based
on uniform polyhedra of edge-length 2 except where indicated. The formulas, most of
which are new, are presented in ways that adapt well to symbolic computer program-
ming. In this regard, the author has written a program usingMathematica(Wolfram
Research, Inc.) which renders the labeled vertex figure and returns the important set of
exact metrical quantities for the uniform polyhedron given by its Wythoff symbol. Other
availableMathematicaprograms render the complete uniform polyhedron or its dual
[21], [38].

2. A Brief Review of Wythoff’s Kaleidoscopic Constructions and Symbols

Except for one non-Wythoffian case, uniform polyhedra can be generated by Wythoff’s
kaleidoscopic method of construction. In this construction an initial vertex inside a special
spherical trianglePQRis mapped to all the other vertices by repeated reflections across
the three planar sides of this triangle. Likewise in such a trihedral kaleidoscope,PQR
and all its images must cover the sphere an integral number of times which is referred
to as the densityd of PQR. The densityd ≥ 1 is dependent on the choice of angles
π/p, π/q, π/r at P, Q, R, respectively, wherep,q, r are reduced rational numbers
greater than one. Such a spherical triangle is called a Schwarz triangle, conveniently
denoted(p q r). Except for the infinite dihedral family of(p 2 2) for p = 2,3,4, . . .
there are only 44 kinds of Schwarz triangles [5], [7], [18]. It has been shown that the
numerators ofp,q, r are limited to 2, 3, 4, 5 (4 and 5 cannot occur together) and so the
nine choices for rational numbers are 2, 3,3

2, 4, 4
3, 5, 5

2, 5
3, 5

4.
Wythoff’s kaleidoscopic constructions fall into one of the four polyhedral symme-

try groups: dihedral, tetrahedral, octahedral, or icosahedral. The latter three symmetry
groups correspond to the largest numerators 3, 4, and 5, respectively.

There are only three Schwarz triangles that haved = 1. They are the so-called M¨obius
triangles(2 3 3), (2 3 4), (2 3 5), spherical triangles which are the fundamental domains
for the tetrahedral, octahedral, icosahedral symmetry groups, respectively. The sphere
is covered byg Möbius triangles whereg is the order of the full symmetry group, that
is, g = 24,48, or 120 respectively for tetrahedral, octahedral, or icosahedral symmetry.
It is known [7] that(p q r) consists ofd Möbius triangles of the same symmetry kind
whered = (g/4)(1/p+ 1/q + 1/r − 1).

In the course of Wythoff’s kaleidoscopic construction we find that edges join vertices
reflected across the sides shared by adjacent Schwarz triangles. However, in the case
of snub polyhedra, vertices are generated by an even number of reflections and edges
correspond to vertex reflections across the sides of two sequentially adjacent Schwarz
triangles [7].

The Wythoff symbol appears simply as a left-to-right sequence of four elements
consisting of the three rational numbersp,q, r introduced above and one vertical bar “|”
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which separates the numbers into subsets. The choices forp,q, r and the four possible
placements of “|” in the Wythoff cases,

p | q r, p q | r, p q r |, | p q r,

suffice to describe the constructions for all uniform polyhedra except for the one non-
Wythoffian case. The relative placements of “|” denote the four ways to select a pointC
in spherical triangle(p q r) so that it traces the vertices of regular polygonal faces all
having the same edge-length:

p | q r C is the vertexP of (p q r).
p q | r C lies on the arcPQof (p q r) and on the bisector of the opposite angleR.
p q r | C is the incenter of(p q r) which is equidistant from the triangle’s three

sides.
| p q r C is a special point in(p q r)whose images under taking an even number

of reflections trace a snub polyhedron. The location ofC depends on the
solution of the quartic equation (4) in Section 6.

It should be stressed that Wythoff constructions can be applied to any pointC of a Schwarz
triangle(p q r), leading to isogonal (vertex-transitive) polyhedra. However, only with
the special choices ofC listed above will the resulting faces beregular polygons, and
the polyhedra uniform. Furthermore, only ifp,q, r are all integers will the resulting
uniform polyhedra be convex.

Varying the order of the numbers within a subset ofp,q, r does not affect the kind of
uniform polyhedron. Excluding such redundancies, the other permutations of Wythoff
symbols (using “|” and the set of nine rational numbers) do not always produce new or
valid polyhedra as some are degenerate forms. Consider, for example, that the regular
octahedron 4| 2 3 can also be interpreted as 2| 3 3 or| 2 2 3. Such equivalencies are made
apparent in the next section where we derive the cycle of faces that surround each vertex.

The final tally of uniform polyhedra has been proven to be only 77 [33]–[35]. They are
listed in Appendix B for quick reference and the complete set is figured in [7], [14], [18],
[38], and [39]. One can find instructive images of all the uniform polyhedra and their
duals on the Internet, some of which are virtual reality models that the user can spin [3].

3. The Vertex Figure and Vertex Cycle of a Uniform Polyhedron

It is desirable to regard the vertices of the “vertex figure” as lying at unit distance from
one vertex of the polyhedron along all edges incident to this vertex. In this respect,
every uniform polyhedron has a characteristic planar vertex figure which is a cyclic
polygon having a signed sidevn = 2 cos(π/n) corresponding to each regularn-gonal
face incident to a vertex of the polyhedron. The circumradius of the vertex figure is
denoted byρ.

A uniform polyhedron is frequently described by its vertex cycle symboln1·n2· · · · ·nk

where{n1}, {n2}, . . . , {nk} are thek faces that surround each vertex. We use{n} to denote
a regularn-gonal face for reduced rationaln > 1. Appendix B lists the 77 Wythoff
symbols together with the corresponding vertex cycle symbols which tend to be more
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intuitive than the former. The relation between the two kinds of symbols is established
by the following observations:

If n > 2, then{n} is an “ordinary” face and the corresponding positive side,vn ≥ 0,
of the vertex figure subtends a positive (counterclockwise) central angle.

If n = 2, then the side of the vertex figure corresponding to the digon face reduces
to a point. Hence{2} is eliminated from the cycle of faces whenever it appears
in the conversion of Wythoff symbol to vertex cycle symbol.

If 1 < n < 2, then{n} is a “retrograde” face which corresponds to a negative side,
vn < 0, and negative central angle.

Some published vertex cycles give the ordinary notationsn > 2 for faces that are
actually retrograde. It is important to recognize and preserve the two basic kinds of{n}
that compose the vertex cycle as certain calculations depend on this distinction. If the
retrograde form of ordinary{n} is denoted{n′}, thenn′ = n/(n − 1) and so we have
the complementary relation 1/n + 1/n′ = 1. For example,{ 53} is the retrograde form
of { 52}. It is further observed that the ordinary or retrograde face{n} has num(n) edges
and has a polygonal density that is the denominator of the ordinary form ofn. Here and
throughout, num(x) denotes the largest numerator in a setx = {n1,n2, . . .} of reduced
rational numbersnj .

Figure 1 illustrates retrograde triangle faces{ 32} of the uniform polyhedron with
Wythoff symbol 3

2 4 | 4 and vertex cycle symbol32 · 8 · 4 · 8. Figure 2 is the associated
vertex figure which is inscribed in the circle of radiusρ and which shows retrograde
winding of the side that corresponds to{ 32}. Figure 2 could be interpreted as having
vertex cycle 3· 8 · 4

3 · 8 with retrograde square faces. However, the latter vertex cycle
symbol would need to associate with Wythoff symbol 34

3 | 4 which essentially leads

Fig. 1. Uniform polyhedron3
2 4 | 4 with vertex cycle3

2 · 8 · 4 · 8.
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Fig. 2. Vertex figure of3
2 4 | 4.

to the same polyhedron as3
2 4 | 4. For such equivalencies Coxeter et al. [7] discard the

Wythoff symbol derived from the larger colunar Schwarz triangle (see Section 5). The
foregoing associations are made clear as we now summarize the conversion of Wythoff
symbol to vertex cycle symbol.

p | q r yields vertex cycle(q · r )p which expands toq · r · q · r ·, . . . ,q · r . By
expressingp as the reduced fractionnp/dp, we observe that portionq · r is repeatednp

times in the complete vertex cycle that windsdp times around the polyhedral vertex.
p q | r yields simply vertex cyclep · 2r · q · 2r .
If all denominators (including 1) ofp,q, r are odd, thenp q r | yields the vertex

cycle 2p ·2q ·2r except when an angle of the (triangular) vertex figure is obtuse. If this is
the angle oppositev2r so that(v2p)

2+ (v2q)
2 < (v2r )

2, then the cycle is(2p)′ · (2q)′ ·2r ,
wheren′ = n/(n− 1).

If just one of p,q, r in p q r | has an even denominator, let this ber . It follows that
the incenterC of spherical trianglePQRlies on the bisector atR which also corresponds
to a reflection plane in the symmetry group. In the course of tracing{2p} and{2q} about
centersP andQ, respectively, the images ofC reflected acrossRPandRQtrace a{2r }
twice about centerR. This leads to the curious vertex cycle 2r · 2p · 2q · 2r · 2q · 2p
consisting of two{2p}’s, two{2q}’s, and a{2r } traversed twice. By discarding the double
{2r }we are left with an acceptable one-sided polyhedron whose vertex figure is a crossed
quadrilateral (“butterfly”). In traversing the crossed quadrilateral we notice a reversal in
direction and so the vertex cycle is 2p · 2q · (2p)′ · (2q)′. For these cases ofp q r |
Coxeter et al. [7] use the hybrid notation

p q
r
s

∣∣∣∣
wherev2r and v2s are the distances spanned by the two vacant bases of the crossed
quadrilateral vertex figure. While not a true Wythoff symbol, the hybrid notation is useful
as the same polyhedron is derived fromp q s |wheres too has an even denominator. The
quantities are related by Ptolemy’s theorem: sgn(q − p)v2r v2s = (v2q)

2− (v2p)
2. Here

and throughout, sgn(x) = 1 for x ≥ 0 while sgn(x) = −1 for x < 0. For convenience,
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the hybrid notations are included in Appendix B instead of the separate Wythoff symbols
p q r | and p q s |.

Snub notation| p q r yields vertex cyclep · t ·q · t · r · t where intercalatingt is t = 3
or 3

2. A useful algorithm fort is t = 6/(3− sgn(ρ − λ/√3)). Here and throughout,
λ = 0 or 1 depending on whether the Wythoff symbol signifies dihedral symmetry or not
dihedral symmetry, respectively. Dihedral symmetry exists when 2 occurs twice among
the Wythoff elements, that is, uniform prismsp 2 | 2 and antiprisms| p 2 2. We observe
that whenλ = 1, an occurrence of element3

2 in | p q r forces the intercalating triangles
in the vertex cycle to be retrograde,t = 3

2, in order to preserve the consistency of signed
measurements used in later formulas. The effect of circumradiusρ of the vertex figure
is further discussed in Section 6.

The pseudo-Wythoff symbol| p q r s identifies the sole non-Wythoffian uniform
polyhedron| 3 5

2
3
2

5
3 which yields vertex cycle 3· 4 · 5

2 · 4 · 3
2 · 4 · 5

3 · 4.
A useful exercise in reverse is to determine the Wythoff symbol directly from a given

cycle of the various{n} surrounding a vertex.

4. Enumerative Quantities

Order g of the full symmetry group for Schwarz triangle(p q r) is given byg =
4d/(1/p + 1/q + 1/r − 1) where densityd for the higher polyhedral symmetries is
discussed in Section 2. This expression also applies to dihedral symmetry where we find
d to be the denominator ofp in (p 2 2). For programming purposes a useful algorithm
that does not required is g = (4)(6λ)(η+λ(η−2)(η−5))whereη = num(p,q, r ) and
λ = 0 or 1 as defined in the previous section. A figure that possesses at least one plane
of symmetry is said to be “reflexible.” Thus, a reflexible uniform polyhedron has either
dihedral symmetry(η > 2, g = 4η), tetrahedral symmetry(η = 3, g = 24), octahedral
symmetry(η = 4, g = 48), or icosahedral symmetry(η = 5, g = 120). Non-reflexible
snubs cases| p q r and| p q r s have rotational symmetries of orderg/2.

Various combinatorial and metrical quantities associated with uniform polyhedra can
be calculated directly from their Wythoff symbols. We begin by enumerating the vertices,
edges, and faces of a uniform polyhedron. DenotingN0 = number of vertices,N1 =
number of edges, andN2 = total number of faces which consist ofi faces of form{m},
j faces of form{n}, . . . wherei + j + · · · = N2, we then have:

Wythoff symbol No

p | q r
g

2 num(p)

p q | r g

4
if

1

p
+ 1

q
= 1 andr <

g

8
; otherwise

g

2
p q r | g

p q
r
s

∣∣∣∣ g

2

| p q r
g

2

| p q r s
g

2
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N1 = N0N01

2
,

whereN01 is the number of edges at each vertex, which is the number of elements in the
vertex cycle denoted byk in Section 3 [7].

nN2 = N0N02

num(n)

is the number of face kind{n} whereN02 is the number of occurrences of{n} in the
vertex cycle [7].

N2 =
∑

nN2

represents the sum ofnN2 over the (non-repeated) kinds ofn that occur in the vertex
cycle.

5. A Vertex of a Non-Snub Uniform Polyhedron

In this section and the next we present expressions for coordinates of vertices of the
various uniform polyhedra. The main part of this is the determination of one vertex in
relation to the symmetry group of the polyhedron. We begin here with the non-snub
uniform polyhedra.

The location of the initial vertex(x, y, z)depends on the specific Cartesian orientation
of the spherical Schwarz triangle(p q r) that contains the vertex. The specific orientation
of (p q r), geometrically denoted asPQR, is such thatR lies on theZ-half-axis:Z > 0;
P lies in theXZ-half-plane:X > 0; Q lies in theXYZ-half-space:Y > 0.

The expression

N =
√
− cosScos(S− A) cos(S− B) cos(S− C)

is encountered in advanced treatments [36] of spherical triangleABC where half the
sum of its angles isS= (A+ B+ C)/2. We instead use a more convenient expression
H = 2N in discussing the uniform polyhedra. Accordingly, quantityH2 is expressed in
terms of the Wythoff elements by any of these symmetrical forms:

H2 =

∣∣∣∣∣∣∣∣∣∣∣

1 − cos
π

q
− cos

π

r

− cos
π

q
1 − cos

π

p

− cos
π

r
− cos

π

p
1

∣∣∣∣∣∣∣∣∣∣∣
= 1− cos2

π

p
− cos2

π

q
− cos2

π

r
− 2 cos

π

p
cos

π

q
cos

π

r

= −4 cos(S) cos

(
S− π

p

)
cos

(
S− π

q

)
cos

(
S− π

r

)
where S= π

2

(
1

p
+ 1

q
+ 1

r

)
. (1)
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An interesting known relation for example is

N2 = H2

4
= cot(R0) cot(R1) cot(R2) cot(R3)

whereR0 is the angular radius of the small circle circumscribed aboutPQRandR1, R2, R3

are the angular radii of the circumcircles for each of the three colunar triangles ofPQR.
The three colunar triangles ofPQRare Schwarz trianglesP′QR,PQ′R,PQR′, where
P′, Q′, R′ are antipodes ofP, Q, R, respectively. More relationships involvingH ap-
pear in Section 9.

We begin by scaling the oriented spherical trianglePQRso thatP, Q, Rare each unit
distance from the origin. Using standard methods of spherical trigonometry and analytic
geometry, we determine the Cartesian coordinates ofP, Q, R to be

P:

(
H

sin(π/r ) sin(π/p)
,0,

cos(π/q)+ cos(π/r ) cos(π/p)

sin(π/r ) sin(π/p)

)
,

Q:

(
H

sin(π/q) tan(π/r )
,

H

sin(π/q)
,

cos(π/p)+ cos(π/q) cos(π/r )

sin(π/q) sin(π/r )

)
,

R: (0,0,1).

FromP, Q, Rwe can next determine the normal equations for the three planes (Schwarz
planes) determined by sidesRP,RQ,PQof PQRas follows:

PlaneRP: y = 0.

PlaneRQ:
(
sin

π

r

)
x −

(
cos

π

r

)
y = 0. (2)

PlanePQ:

(− cos(π/q)−cos(π/p) cos(π/r )

sin(π/r )

)
x−

(
cos

π

p

)
y+

(
H

sin(π/r )

)
z=0.

Depending on the choice of Wythoff case, the vertex(x, y, z) will either be distance
0 or 1 from each of the Schwarz planes assuming edge-length 2. Thus(x, y, z) is the
simultaneous solution of three distances from the three Schwarz planes. The vertex
coordinates(x, y, z) in terms of the specific orderp,q, r and Wythoff case typeσi are
generalized as follows:

x = 1+ σ1 cos(π/r )

sin(π/r )
; y = σ1;

(3)

z =
((

cos
π

q
+ cos

π

p
cos

π

r

)
x +

(
σ2+ cos

π

p

)(
sin

π

r

)
y

)
/H,

whereσ1 = 0 for the first Wythoff casep | q r , otherwiseσ1 = 1; andσ2 = 0 for
the second Wythoff casep q | r , otherwiseσ2 = 1. The remaining vertices may be
traced by successive reflections across the Schwarz planes ofPQR. More specifically,
the reflection of the point(x0, y0, z0) across a plane with normal equation form

u1x + u2y+ u3z= 0: u2
1+ u2

2+ u2
3 = 1

is the image point(x0−u1 f, y0−u2 f, z0−u3 f ) where f = 2(u1x0+u2y0+u3z0). In
the literature this image is usually expressed as the product of a vector and a 3×3 matrix
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M of reflection. Accordingly, the image of the point(x0, y0, z0) is the point [x0 y0 z0]M
where

M =

1− 2u2
1 −2u1u2 −2u1u3

−2u2u1 1− 2u2
2 −2u2u3

−2u3u1 −2u3u2 1− 2u2
3

 .
An interesting problem for each uniform polyhedron is to map a Hamiltonian circuit
of non-repeated vertices among theN0 vertices using only the three Schwarz planes of
PQRas reflection planes. Starting with vertex(x0, y0, z0), such Hamiltonian circuits are
generated by certain orders of successive kaleidoscopic reflections with the modification
that vertices of snub polyhedra are produced by the even reflections (see Section 2).
Difficulty arises from the fact that the necessary order of reflections across the three
Schwarz planes cannot be regular repetitions.

6. A Vertex of the Snub Uniform Polyhedron | p q r

The rules for orientingPQR of | p q r are outlined in Section 5. To determine the
coordinates of a snub vertex inPQRwe begin with the signed sidesvn of the vertex
figure as defined in Section 3:

a = vp = 2 cos
π

p
; b = vq = 2 cos

π

q
; c = vr = 2 cos

π

r
.

Then fromH2 as specified in (1) we make use of 4H2 = 4− a2− b2− c2− abc.
The location of the initial snub pointC in PQRrequires that its reflections in the side

planes ofPQRproduce the vertices of the appropriate equilateral triangleC′C′′C′′′ which
corresponds to the snub{3} of | p q r. PointC is then a vertex of another| p q r which
is enantiomorphic to the snub polyhedron with faceC′C′′C′′′. Coxeter et al. [7] obtain
a natural coordinate system by lettingx, y, z denote the distances ofC from the three
planes and show that the conditions for snub{3} requirex2−ayz= y2−bzx= z2−cxy.
Eliminatingz= (x2−y2)/(ay−bx), Coxeter et al. obtain a quartic equation in variables
x andy which we modify here by settingy= 1 and changingx to ourw:

(1− b2)w4+ b(a− bc)w3+ 2(abc− 1)w2+ a(b− ac)w + 1− a2 = 0. (4)

The Cartesian coordinates(xw, yw, zw) of vertexC are derived from the simultaneous
solution of the three distancesw,1, (w2 − 1)/(a − bw) from C to the sides ofPQR,
whose equations are specified in (2). The case of two positive quartic roots is discussed
at the end of this section.

A convenient set of vertex coordinates(xw, yw, zw) for | p q r scaled to edge-length

ew = 4 sin
π

r

√
w2+ cw+ 1= 2 sin

π

r

√
x2
w + y2

w

is

xw = 2w + c; yw = 2 sin
π

r
=
√

4− c2;
(5)

zw = (a2− b2)(w2+ cw+ 1)+ 4H2(w2− 1)

2H(a− bw)
.
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Thus, vertex(kxw, kyw, kzw): k = 2/ew corresponds to the snub polyhedron of edge-
length 2.

As an alternate approach to determiningk, consider angleφ at the polyhedron’s center
which is subtended by a half-edge and circumsphere radius0R as defined in Section 8. If
a vertex(xw, yw, zw) in PQRis oriented as described, then specifically for snub uniform
polyhedra we have the relation

cosφ =
√

cos2
π

r
+ sin2 π

r

(
z2
w

x2
w + y2

w + z2
w

)
and soρ = cosφ when the edge-length is 2. Then from (6) we have

0R= 1√
1− ρ2

= 1

sin(π/r )
√

1− z2
w/(x

2
w + y2

w + z2
w)

and so the desired vertex is(kxw, kyw, kzw): k = 0R/
√

x2
w + y2

w + z2
w which applies to

snub polyhedra of edge-length 2.
A snub polyhedron is reflexible if two of the Wythoff elementsp,q, r are identical.

Unfortunately quartic equation (4) fails to produce a viable root whenp = q for the
first two ordered elements. For example, if the Wythoff symbol| p q r is such that
p = q = 3 or p = q = 3

2, then quartic equation (4) reduces to the insoluble case
w2−2w+1= 0, that is,w = 1 regardless ofr . Accordingly, the reflexible snub| 3

2
3
2

5
2

must be taken as| 5
2

3
2

3
2 which is obtained by permuting the elements of the Wythoff

symbol. Here different permutations ofp,q, r produce the same polyhedron but with
different Cartesian orientation and with differentew. Thus, one simple way to resolve
a case of two simultaneous positive quartic roots is to permute the cycle of elements
p,q, r and then reapply the quartic equation until one positive root occurs. However, a
more direct method is to select the one positive root which givesρ from (xw, yw, zw) so
that the algebraic sum of the central angles subtended by the sides of the corresponding
vertex figure is a multiple of 2π . This condition is satisfied by

sin

(
sgn

(
ρ− λ√

3

)
3 arcsin

(
1

2ρ

)
+arcsin

(
a

2ρ

)
+arcsin

(
b

2ρ

)
+arcsin

(
c

2ρ

))
=0.

The hypothetical case| 2 2 2 produces an equilateral triangle vertex figure ofρ = 1/
√

3
which we interpret to be a pivotal state between vertex figures that encircle the center
once or twice. Thus, we observe that for| p q r whenλ = 1, conditionρ ≥ 1/

√
3

relates to snub triangles{3} and central angle sum 2π while conditionρ < 1/
√

3 relates
to snub triangles{ 32} and central angle sum−4π .

7. A Vertex of the Sole Uniform Polyhedron| p q r s

Non-Wythoffian case| 3 5
2

3
2

5
3 is closely related to snub case| 3 5

2
5
3 in that both

polyhedra share the same vertices. Thus, we obtain a non-Wythoffian vertex by applying
the previous formulas to the related snub case.
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8. Metrical Quantities of the Orthoschemes

The orthoscheme corresponding to each{n} of the uniform polyhedron is a “quadrirect-
angular” tetrahedronO0O1O2O3 which has four right triangle faces,O0O1O2,O0O1O3,

O0O2O3,O1O2O3, and three mutually perpendicular edges,O0O1,O1O2,O2O3, where
O0 is a vertex of the polyhedron,O1 is the midpoint of an edge,O2 is the center of{n},
andO3 is the center of the polyhedron. AngleO0O2O1 is simplyπ/n, the angle sub-
tended by a half-edge at the center of{n}. Subsequent expressions are simplified if we
set half-edgeO0O1 to 1 and use the following notations:

0rn=O0O2, the circumradius of{n}.
1rn=O1O2, the perpendicular distance (apothem) to the side of{n} from the

polygonal center.

0R=O0O3, the circumsphere radius.

1R=O1O3, the midsphere radius.

2Rn=O2O3 the insphere radius for{n}.
φ=O0O3O1, the angle atO3 subtended by a half-edge.

χn=O0O3O2, the angle atO3 subtended by0rn.

ψn=O1O3O2, the angle atO3 subtended by1rn.

δm,n = the dihedral angle 0< δm,n < π at the edge shared by{m} and{n} where the
distinction between an ordinary and a retrograde face is important.δm,n is that dihedral
angle which enclosesO3 even if O3 is contained by one of the faces. If one face is
retrograde but not the other, then the dihedral angleπ−δm,n encloses a “locally interior”
portion of the polyhedron.

Beginning with this section, quantities are expressed in terms ofπ/n andφ. More
specifically, we favor using the trigonometric constants cot(π/n) and cotφ because they
frequently provide the most concise expressions. This consistency will expedite the task
of computer programming.

For any vertex(x, y, z) of a uniform polyhedron of edge-length 2, we derive these
familiar right triangle relationships of the orthoscheme:

0R=
√

x2+ y2+ z2 =
√

cot2 φ + 1= cscφ = 1√
1− ρ2

;
(6)

1R= cot φ =
√

0R2− 1; ρ = cosφ = 1R

0R
=
√

1− 1

0R2
.

A retrograde elementn′ of the vertex cycle must first be changed to its ordinary com-
plement formn for this set of calculations:

1rn = cot
π

n
; 0rn = csc

π

n
=
√

cot2
π

n
+ 1; 2Rn =

√
cot2 φ − cot2

π

n
;

sin χn = sin φ csc
π

n
=
√

cot2(π/n)+ 1

cot2 φ + 1
; sin ψn = cot(π/n)

cot φ
.
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A retrograde element is not changed to its ordinary form for dihedral angle calcula-
tions [22]:

cosδm,n = cot(π/m) cot(π/n)−
√
(cot2 φ − cot2(π/m))(cot2 φ − cot2(π/n))

cot2 φ
.

Note that

βm,n =
∣∣∣∣arccos

(
cot(π/m)

cot φ

)
+ arccos

(
cot(π/n)

cot φ

)∣∣∣∣
is an expression which reveals the sum of the two component dihedral angles that occur
between a common plane throughO3 and the correspondingn-gon facial plane. Thus
δm,n is the lesser ofβm,n or 2π − βm,n.

9. Expressions forφ in Terms of the Wythoff Elements

Using the non-snub initial vertex(x, y, z) specified in (3) and the relation cot2 φ =
x2 + y2 + z2 − 1 derived from (6), we express cotφ in terms of the three elements
p,q, r in the Wythoff symbol. QuantityH from (1) in Section 5 appears as a factor
in the compact relations that follow. Deeper significance of this quantity is seen in the
relationH = sin(π/h) where the definition of “Coxeter number”h in [5] is extended to
the general Schwarz triangle(p q r) such that cos2(π/h) = cos2(π/p)+ cos2(π/q)+
cos2(π/r )+ 2 cos(π/p) cos(π/q) cos(π/r ) in [18].

Rational values forh relate to the symmetry group of the Schwarz triangle as follows:
dihedral(2 2 p): h = max(p, p′); tetrahedral:h = 4; octahedral:h = 6; icosahedral:
h = 6,10, or 10

3 . The corresponding values forH are

tetrahedral: H= 1√
2
; octahedral: H= 1

2
; icosahedral: H= 1

2
,

1

2τ
,or

τ

2
,

whereτ = (1+√5)/2 is the golden ratio.
We first express cotφ for all non-snub uniform polyhedra as

cot φ = csc
π

r

[(
σ1+ cos

π

r

)2
+ (1/H2)

(
cos

π

p

(
σ1+ cos

π

r

)

+ cos
π

q

(
1+ σ1 cos

π

r

)
+ σ1σ2 sin2 π

r

)2
]1/2

, (7)

whereσ1 = 0 for the first Wythoff casep | q r , otherwiseσ1 = 1; andσ2 = 0 for the
second Wythoff casep q | r , otherwiseσ2 = 1.

The right side of (7) can be simplified for specific Wythoff cases as follows:

For casep | q r ,

cot φ =
√

1

H2
sin2 π

p
− 1
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from which we derive the compact relation

sin φ = csc
π

p
sin

π

h
.

For casep q | r ,

cotφ = 1

H

√(
1+ cos

π

r

)(
1+ cos

π

r
+ 2 cos

π

p
cos

π

q

)
from which we derive

sin φ = sin(π/h)√
(2 cos(π/2r ))2− (cos(π/p)− cos(π/q))2

.

For casesp q r | and p q
r
s

∣∣∣∣,
cotφ = 4

H
cos

π

2p
cos

π

2q
cos

π

2r
= 4 cos

π

2p
cos

π

2q
cos

π

2r
csc

π

h
,

wheres may be substituted forr .
For the snub case| p q r we make use of the vertex figure sides defined in Section 3

by assigning

a = vp = 2 cos
π

p
, b = vq = 2 cos

π

q
, c = vr = 2 cos

π

r
,

s= a2+ b2+ c2, t = abc, and u = a2b2+ b2c2+ c2a2.

Then cotφ = (2− Y)−1/2 whereY is a real root of

(1− t)Y4+(3t − u)Y3+(3u−2s−st)Y2+t (3s− t − 8)Y+s2+3t2−4u=0. (8)

A similar fourth-degree “snub equation” has been described by Coxeter et al. [7, equa-
tion 10.3] in the variableX = 1 − tan2 φ. It is simplified to (8) in the variable
Y = 2− tan2 φ by making the substitutionX = Y − 1. From relations (6) in Sec-
tion 8, other important quantities can now be expressed in terms ofY, for example
ρ2 = 1/(3− Y).

In most snub cases the quartic polynomial expression in (8) will factor and the relevant
roots are found in a quadratic or cubic equation as summarized in Appendix A. For the
notable snub subset| 2 3 q or | 2 3

2 q the quartic polynomial in (8) will factor, leaving
the relevant roots in the cubic equation

Y3− Y2− Y + 1− 4 cos2
π

q
= Y3− Y2− Y − 1− 2 cos

2π

q
= 0. (9)

Section 12 discusses howY is related to the characteristic facial twists of snub{3} in
| 2 3q.
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Fig. 3. Face of dual of32 4 | 4.

10. Duals of Uniform Polyhedra

Many of the previous terms and symbols used for uniform polyhedra are also used for
the duals. A simple description of the dual (reciprocal) of a parent uniform polyhedron
is a polyhedron that has the same number,N1, of edges as the parent but there is an
interchange in the number and placement of faces and vertices. Thus, an{n} of the
parent yields a regularn-gonal vertexVn of the dual polyhedron whereVn lies on the ray−→
O3O2. Moreover, the dual polyhedron hasN0 identical (or enantiomorphically paired)
faces, each ak-sided polygon defined by the verticesVn1,Vn2, . . . ,Vnk which follow the
order noted in the parent vertex cyclen1 · n2 · · · · · nk described in Section 3. Duality
implies that the circle which circumscribes the parent vertex figure also inscribes this
dualk-gon. Therefore, the sides of thek-gon are simply the tangents constructed at the
vertices of the parent vertex figure.

Figure 3 shows the dual face constructed around the vertex figure of3
2 4 | 4 which

is also shown in Fig. 2 with labeled sides. Duals of non-convex uniform polyhedra have
parts of their faces (often including some vertices) hidden from outside viewing. In Fig. 3
only the shaded portions of the dual face are visible on the surface of the complete dual
polyhedron shown in Fig. 4. The corresponding parent uniform polyhedron3

2 4 | 4 is
shown in Fig. 1 at a different scale and orientation. It turns out that the dual of

2 4
3
2
4
2

∣∣∣∣∣
has the same outward appearance as Fig. 4 because each of its dual faces is exactly the
shaded portions shown in Fig. 3. More of such apparent dual equivalencies and details
for constructing all the duals can be found in [41].
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Fig. 4. Dual of 3
2 4 | 4.

The following additional symbols are used for the duals:

γn = distanceVnO3.

εn1,n2 = dual edge-lengthVn1Vn2.

αn = dual face angle atVn. There are num(n) equal dual face angles that emanate
from Vn.

3R = insphere radius of the dual polyhedron, distance fromO3 to dual face.

δ′ = dihedral angle between two adjacent faces of the dual polyhedron.

ρ = radius of the circle inscribed in the dual face (= circumradius of the parent
vertex figure).

Metrical quantities here are specifically for the dual whose edges are tangent to the
midsphere (radius1R) of the parent uniform polyhedron of edge-length 2. Calculations
are based on polar reciprocation with respect to this sphere [41]. Accordingly, these
relations are generally known:

δ′ + 2φ = π; sin
δ′

2
= cosφ = ρ; (γn)(2Rn) = (1R)2 = (0R)(3R);

3R= ρ(1R) = ρ2(0R).
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The subsequent relations in this section are newly reported beginning with

γn = cot2 φ√
cot2 φ − cot2(π/n)

;

εn1,n2 =
1√

tan2(π/n1)− tan2 φ
+ 1√

tan2(π/n2)− tan2 φ
;

cos
αn

2
= cos(π/n)

cosφ
.

Note that because face{2 r } is equatorial(2R2r = 0) in cases ofp q | r : 1/p+1/q = 1,
we haveφ = π/2r and soγ2r becomes infinity.

We now briefly discuss some analytic geometry of dual polyhedra.
If (xu, yu, zu) is a vertex of the parent uniform polyhedron, then the reciprocally

related center of the incircle of the dual face is((3R/0R)xu, (3R/0R)yu, (3R/0R)zu) =
(ρ2xu, ρ

2yu, ρ
2zu). The corresponding dual facial plane is represented by the equation

in normal form(xu/0R)x + (yu/0R)y + (zu/0R)z− 3R = 0 or in convenient form
(xu)x + (yu)y+ (zu)z= 1R2 = cot2 φ.

By using the scaling factor 1/ρ2 = 0R/3R = 1R2/3R2 = 0R2/1R2, we expand the
current dual whose edges are tangent to the midsphere to the larger dual whose faces are
tangent to the parent’s circumsphere (radius0R).

The equation of the corresponding facial plane of this expanded dual has the normal
form (xu/0R)x+(yu/0R)y+(zu/0R)z−0R= 0 or the convenient form(xu)x+(yu)y+
(zu)z= 0R2.

The Cartesian coordinates of dual verticesVp,Vq,Vr are determined from each of
P,Q,Rgiven for the parent uniform polyhedron in Section 5. For example, P:(xp, yp, zp)

is unit distance from the origin and so we have the reciprocalVp: (γpxp, γpyp, γpzp).
Vp is also(kA, kB, kC) wherek = γp/

√
A2+ B2+ C2 and A, B,C are coefficients in

the general equationAx+By+Cz+ D = 0 of the parent facial plane{p}. It is generally
known from analytic geometry that the equation of{p} is determined from any of its
three vertices(xu, yu, zu) by∣∣∣∣∣∣∣∣∣

x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣∣∣∣∣∣∣∣∣ = Ax+ By+ Cz+ D = 0.

11. Some Simplified Formulas Unique to Regular Polyhedra

Regular polyhedra are uniform polyhedra with one kind of face as evidenced by their
Wythoff constructionsp | 2 q which yield vertex cyclesqp. They are the five convex
Platonic solids and the four non-convex star polyhedra of Kepler–Poinsot, all included
in the first group of Appendix B. A regular polyhedron, with face{p} and regularq-
gonal vertex figure, is conveniently denoted by the Schl¨afli symbol {p,q}. Note that
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{p,q} corresponds to Wythoff symbolq | p 2 (or q | 2 p). For these cases we use
χ = χp, ψ = ψp, andδ = δp,p.

The vertex for{p,q} of edge-length 2 that corresponds to orientedq | p 2 orq | 2 p
is respectively

(1,0, 1R) or (0r p,0, 2Rp),

where

1R2 = cot2 φ =
(

sec2
π

p
sin2 π

q
− 1

)−1

, 0r p = csc
π

p
,

(10)

2Rp =
√

cot2 φ − cot2
π

p
.

Interesting known relations [5] for{p,q} are

cosφ = cos
π

p
csc

π

q
; cosχ = cosφ cosψ = cosφ sin

δ

2
= cot

π

p
cot

π

q
;

cosψ = sin
δ

2
= csc

π

p
cos

π

q
.

Expressions forN0, N1, and N2 in terms of p andq are well known for the Platonic
solids [5]:

N0 = 4p

4− (p− 2)(q − 2)
, N1 = 2pq

4− (p− 2)(q − 2)
,

N2 = 4q

4− (p− 2)(q − 2)
.

12. Relative Facial Twists and Edge Lengths of the Snub Polyhedron
| p q2: λ = 1

The family of snub polyhedra| p q 2 wherep > 2,q > 2 is assigned the Schl¨afli

symbol s

{
p

q

}
. In several references [2], [9], [17], [19], [20], [30], [32] we find examples

of the convex snub polyhedra s

{
3

3

}
, s

{
3

4

}
, s

{
3

5

}
encased by the proper{p,q} or {q, p}

in order to observe the rotation angle of snub faces s{p} or s{q} relative to the copla-
nar Platonic faces{p} or {q}. The specific associations for the convex cases are: s{3}
relates to{3,3}, {3,4}, or {3,5}; s{4} relates to{4,3}; s{5} relates to{5,3}. The regular

icosahedron{3,5} can be interpreted as s

{
3

3

}
or | 2 3 3 which is encased in the regular

tetrahedron{3,3}.
In this section we extend the encasing relationship to include non-convex snub cases

and retrograde cases| p q 2 wherep < 2 and/or q < 2. Facial twistθp is defined
as the smallest angle between a symmetry line locally within s{p} and a symmetry
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plane member of the full symmetry group that is superposed on the rotational group of
| p q 2. It follows that 0≤ θp < π/2 num(p) and specificallyθp = 0 for the reflexible
case| p q r whereq = r . Using Wythoff symbols as subscripts we generalize to
cot2 φq|p2 = (sec2(π/p) sin2(π/q)−1)−1 from the relations in (10) used for the regular
polyhedronq | p 2. Thenθp of | p q 2 is the least angle of the set|kπ/num(p) − µ|
wherek = 0,1,2, . . . ,num(p)− 1 and

µ = arccos

sin
π

p

(
cot φq|p2 cot φ|pq2+ sgn(2− q)

×
√(

cot2 φq|p2− cot2
π

p

)(
cot2 φ|pq2− cot2

π

p

))
cot

π

p

.

For the non-retrograde case| p q 2 wherep > 2 andq > 2, we note thatk = 1 for
example.

If we now assignp = 3, that is| 3 q 2 whereq > 2 or q < 2, a simpler expression
for θ3 is

ξ = π

6
− arcsin

1

2

√
3 cot2 φq|p2− 1

3 cot2 φ|pq2− 1
.

If p = 3
2 as in| 3

2 q 2, then we must adjust toθ3/2 = π/3+ ξ .

It has been shown in [17] that for the small family s

{
3

q

}
or | 2 3q whereq > 2, each

extended side of the twisted s{3} intersects a vertex and a side of the encasing{3}of {3,q}.
The lesser of the two angles that an extended side of s{3}makes with the sides of{3} is
the same measurement as our definedθp for p = 3. In terms ofθ3, we find by elementary
geometry that the sides of{3} are cut in the ratioY = (√3 cot θ3 − 1)/2. Rotge [30]
demonstrated thatY3−Y2−Y−1+2 cosA = 0 whereA is the (interior) vertex angle in
the face s{q}. However,A = π(1−2/q)and so we haveY3−Y2−Y−1−2 cos(2π/q) =
0 which is the same as (9) in variableY = 2− tan2 φ that is associated with the snub
subset| 2 3q in Section 9. From cotθ3 = (1+2Y)/

√
3, we obtain the compact relation

2 tan2 φ +√3 cot θ3 = 5 for | 2 3q whereq > 2.
For the retrograde case| 2 3 5

3 we must select the greater complementary twist angle
π/3− θ3 so thatY = (√3/2) cot(π/3− θ3)− 1

2 satisfies (9).
Identifying edges and insphere radii with Wythoff symbol subscripts, we calculate

the ratio of edge lengths when s{p} lies in {p} of q | p 2 from

e|pq2

eq|p2
= 2Rp(q|p2)

2Rp(|pq2)
=
√

cot2 φq|p2− cot2(π/p)

cot2 φ|pq2− cot2(π/p)
. (11)

The subscripts in (11) could actually be changed to any two Wythoff symbols when
p-gon facial planes are shared by two uniform polyhedra.

In the next section facial twists for the snub cases other than| p q 2 are solved by a
general analytic geometry approach.
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13. Relative Facial Twists for Any Snub Polyhedron| p q r

The Cartesian orientation of snub polyhedron| p q r as described in Section 5 specifically
places s{r } centrally and orthogonally about theZ-axis. Thus, the facial twistθr is the
least angle of the set|kπ/num(r )− arctan(yw/xw)| wherek = 0,1,2 and

yw
xw
= sin(π/r )

w + cos(π/r )
.

The coordinatesxw and yw of the snub vertex in (5) are calculated by solving quartic
equation (4) in the variablew in Section 6. As previously stated, specific cases| 3 3 5

2
and | 3

2
3
2

5
2 are reflexible because two Wythoff elements are identical. Here we find

non-twisted s{ 52} placed symmetrically about the reflection planes unlike s{3} and s{ 32}
which are twisted. Similarly,{p} of antiprism| p 2 2 is not twisted. All facial twists for
| p q r: λ = 1 are summarized in Appendix A.

14. The Infinite Families of Uniform Prisms and Antiprisms

Although the formulas in previous sections apply to prisms(p 2 | 2: p > 2 yielding
p · 4 · 4), antiprisms (| p 2 2: p > 3

2 and p 6= 2 yielding p · 3 · 3 · 3), and their duals, a
few convenient simplifications for edge-length 2 are tabulated here. Antiprisms can be
separated into “ordinary antiprisms” (p > 2) and “crossed antiprisms”( 3

2 < p < 2)
which have crossed vertex figures.

Prism p 2 | 2: p > 2 Antiprism| p 2 2: p > 3
2 and p 6= 2

0R=
√

2+cot2
π

p

1

2

√
5+cot2

π

2p

1R= cot φ=csc
π

p

1

2
csc

π

2p

ρ=cosφ= 1√
1+sin2(π/p)

1√
1+4 sin2(π/2p)

Dihedral angles:δp,4= π
2
; δ4,4=π− 2π

p
cosδp,3=− 1√

3
tan

π

2p
; cosδ3,3= 1

3

(
1−4 cos

π

p

)
Dual face anglesαp+2α4=π where Dual face anglesαp+3α3=2π where

cosαp=1−2 sin4 π

p
; cosα4=sin2 π

p
cosαp=−1+6 cos2

π

p
−4 cos3

π

p
; cosα3= 1

2
−cos

π

p
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Appendix A. Essential Equations and Angles for Uniform Snub
Polyhedra | p q r

Each uniform snub polyhedron has a fourth degree “snub equation” (8) in the variable
Y = 2− tan2 φ as described in Section 9. A half-edge subtends angleφ at the center
O3 of the polyhedron. In most cases the quartic polynomial expression in (8) will factor
and the relevant roots are found in a quadratic or cubic equation as shown below. For
example, cases| 3 3 5

2 and | 3
2

3
2

5
2 relate toY2 − Y − τ = 0 where golden ratio

τ = (1 + √5)/2 = 1.6180339887 and soY = (1 ± √1+ 4τ)/2. Decimal results
are truncated, not rounded. Facial twistθn is the (smallest) angle that the snub face
s{n} is rotated relative to the encasing face{n} of the fully symmetric polyhedron that
encases the snub polyhedron. For the family| 2 3 q whereq > 2 we have cotθ3 =
(1 + 2Y)/

√
3 and 2 tan2 φ + √3 cotθ3 = 5. Special cases| 2 3 3 and| 2 3

2
3
2 are

equivalent to the Platonic icosahedron 5| 2 3 and the regular star icosahedron5
2 | 2 3,

respectively.

| p q r Snub equation Y=2−tan2 φ φ (degrees) Facial twistθn for s{n} (degrees)

| 2 3 3 τ 31.717474411 θ3=22.238756092
Y2(Y2−Y−1)=0| 2 3

2
3
2 −τ−1 58.282525588θ3/2=22.238756092

| 2 3 4 (Y−1) 1.8392867552 21.845383553θ3=20.315014336 θ4=16.467560400
·(Y3−Y2−Y−1)=0

| 2 3 5 (Y−τ) 1.9431512592 13.410633720θ3=19.517922567 θ5=13.106403376
·(Y3−Y2−Y−τ)=0

| 2 3 5
2 1.3990206456 37.783865694θ3=24.514783895 θ5/2=8.8920818930

| 2 3 5
3 (Y + τ−1) 0.4944394214 50.820400469θ3=18.948438216 θ5/3=10.155303612
·(Y3−Y2−Y + τ−1)=0

| 2 3
2

5
3 −0.8934600671 59.549433143θ3/2=5.5663456794 θ5/3=16.952614494

| 2 5 5
2 1.8180755760 23.099507883θ5=14.519275160 θ5/2=12.068113640

Y4−Y3−3Y2 + 5=0| 2 5 5
3 1.4739876869 35.952140323θ5=10.766941734 θ5/3=7.6119024894

| 3 3 5
2 1.8667603991 20.053093367θ3=27.640276588 θ5/2=0

(Y + τ−1)2

·(Y2−Y−τ)=0| 3
2

3
2

5
2 −0.8667603991 59.433273863θ3/2=27.640276588 θ5/2=0

| 3 5 5
3 (2Y−3) 1.7548776662 26.339933901θ3=10.518676134 θ5=7.1174491250
·(Y3−2Y2 + Y−1)=0 θ5/3=15.401415840

| 3 5
2

5
3 (
√

5Y−τ−3)(Y + τ−1) 1 45 θ3=14.330332524 θ5/2=15.772242400
·(Y−1)2=0 θ5/3=15.772242400

Appendix B. The 77 Wythoff Symbols and Corresponding Vertex Cycle
Symbols

Wythoff symbols for the uniform polyhedra are grouped by type and listed in columns
according to the increasing numerical order of numerators and denominators. Vertex
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cycles preserve the symbols used for retrograde faces. See Section 3 for an explanation
of Coxeter’s “hybridized” Wythoff symbol used forp q r | having an even denominator.

2 | 3 4 (3 · 4)2 3 | 2 3 33 3 | 3 5
2 (3 · 5

2)
3 5 | 2 3 35

2 | 3 5 (3 · 5)2 3 | 2 4 43 3 | 5 5
3 (5 · 5

3)
3 5 | 2 5

2 ( 5
2)

5

2 | 3 5
2 (3 · 5

2)
2 3 | 2 5 53 3

2 | 3 5 (3 · 5)3/2 5
2 | 2 3 35/2

2 | 5 5
2 (5 · 5

2)
2 3 | 2 5

2 ( 5
2)

3 4 | 2 3 34 5
2 | 2 5 55/2

p 2 | 2: p > 2 p · 4 · 4 (prisms)

2 3 | 3 3 · 6 · 6 2 5
2 | 5 5

2 · 10 · 10 3 5
2 | 3 3 · 6 · 5

2 · 6 5 5
2 | 2 5 · 4 · 5

2 · 4
2 3 | 4 3 · 8 · 8 3 3

2 | 2 3 · 4 · 3
2 · 4 3 5

2 | 5
3 3 · 10

3 · 5
2 · 10

3 5 5
3 | 3 5 · 6 · 5

3 · 6
2 3 | 4

3 3 · 8
3 · 8

3 3 3
2 | 3 3 · 6 · 3

2 · 6 3 5
3 | 2 3 · 4 · 5

3 · 4 5 5
4 | 3 5 · 6 · 5

4 · 6
2 3 | 5 3 · 10 · 10 3 3

2 | 5 3 · 10 · 3
2 · 10 3 5

3 | 5 3 · 10 · 5
3 · 10 5 5

4 | 5 5 · 10 · 5
4 · 10

2 3 | 5
3 3 · 10

3 · 10
3 3 3

2 | 5
3 3 · 10

3 · 3
2 · 10

3
3
2 4 | 2 3

2 · 4 · 4 · 4 5
2

5
3 | 3 5

2 · 6 · 5
3 · 6

2 4 | 3 4 · 6 · 6 3 4 | 2 3 · 4 · 4 · 4 3
2 4 | 4 3

2 · 8 · 4 · 8 5
2

5
3 | 5

3
5
2 · 10

3 · 5
3 · 10

3

2 5 | 3 5 · 6 · 6 3 4 | 4
3 3 · 8

3 · 4 · 8
3

3
2 5 | 3 3

2 · 6 · 5 · 6
2 5 | 5

3 5 · 10
3 · 10

3 3 5 | 2 3 · 4 · 5 · 4 3
2 5 | 5 3

2 · 10 · 5 · 10

2 5
2 | 3 5

2 · 6 · 6 3 5 | 5
3 3 · 10

3 · 5 · 10
3 4 4

3 | 3 4 · 6 · 4
3 · 6

2 3 4 | 4 · 6 · 8 2 3 5 | 4 · 6 · 10 2 5 5
3 | 4

3 · 10 · 10
7 3 5 5

3 | 6 · 10 · 10
3

2 3 4
3 | 4

3 · 6 · 8
5 2 3 5

3 | 4 · 6 · 10
3 3 4 4

3 | 6 · 8 · 8
3

2 3
5
2
5
4

2 4
3
2
4
2

2 4
3

3
2
4
2

2 5
3
2
5
2

2 5
3

3
2
5
4

3 5
3
2
5
4

3 5
3

3
2
5
2

4 ·6 · 4
3 · 6

5 4 ·8 · 4
3 · 8

7 4 · 8
3 · 4

3 · 8
5 4 ·10· 4

3 · 10
9 4 · 10

3 · 4
3 · 10

7 6 ·10· 6
5 · 10

9 6 · 10
3 · 6

5 · 10
7

| p 2 2: p > 3
2 and p 6= 2 p · 3 · 3 · 3 (antiprisms)

| 2 3 4 3 · 3 · 3 · 4 · 3 | 2 3
2

5
3

3
2 · 3

2 · 3
2 · 5

3 · 3
2 | 3 5 5

3 3 · 3 · 5 · 3 · 5
3 · 3

| 2 3 5 3 · 3 · 3 · 5 · 3 | 2 5 5
2 3 · 5 · 3 · 5

2 · 3 | 3 5
2

5
3 3 · 3 · 5

2 · 3 · 5
3 · 3

| 2 3 5
2 3 · 3 · 3 · 5

2 · 3 | 2 5 5
3 3 · 5 · 3 · 5

3 · 3 | 3
2

3
2

5
2

3
2 · 3

2 · 3
2 · 3

2 · 5
2 · 3

2

| 2 3 5
3 3 · 3 · 3 · 5

3 · 3 | 3 3 5
2 3 · 3 · 3 · 3 · 5

2 · 3 | 3 5
2

3
2

5
3 3 · 4 · 5

2 · 4 · 3
2 · 4 · 5

3 · 4
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