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Abstract. In 1988 Kalai [5] extended a construction of Billera and Lee to producemany
triangulated(d−1)-spheres. In fact, in view of the upper bounds on the number of simplicial
d-polytopes by Goodman and Pollack [2], [3], he derived that for every dimensiond ≥ 5,
mostof these(d−1)-spheres are not polytopal. However, ford = 4, this reasoning fails. We
can now show that, as already conjectured by Kalai, all of his 3-spheres are in fact polytopal.

We also give a shorter proof for Hebble and Lee’s result [4] that the dual graphs of these
4-polytopes are Hamiltonian.

1. Introduction

This paper is about triangulated spheres and the question whether or not the members
of a certain family of them arerealizable, that is, if they arise as boundary complexes
of simplicial polytopes. While for all two-dimensional spheres this is true by Steinitz’
theorem, already one dimension higher there exist simplicial spheres that cannot be
realized in a convex way. The first example for this—the so-calledBrückner sphere—
was found by Gr¨unbaum and Sreedharan in 1967, who realized that a certain simplicial
3-sphere on eight vertices does not represent the combinatorial type of any 4-polytope,
contrary to what Br¨uckner originally thought. (See Chapter 5 of [11] for a more thorough
discussion and references.)

In 1988 Kalai extended a construction by Billera and Lee, and showed that starting
with d = 5, there exist many more simplicial(d−1)-spheres than simpliciald-polytopes,
and that therefore, in a very strong sense,mostsimplicial spheres are not realizable. In
contrast, it is the main goal of this paper to show that all of Kalai’s 3-spheresdoarise as
boundary complexes of simplicial 4-polytopes.
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ported by the Deutsche Forschungsgemeinschaft, Grant GRK 588/1.
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In the remainder of this Introduction, we present the context of these constructions,
including the known upper (resp. lower) bounds for the numbers of simplicial polytopes
(resp. spheres).

The most important invariant of a(d − 1)-dimensional simplicial sphereS is its
f-vector f (S) = ( f−1, f0, f1, . . . , fd−1), where fi = fi (S) counts the number ofi -
dimensional faces ofS, and f−1 = 1. In 1971 McMullen [7] conjectured a characteriza-
tion of the f -vectors of boundary complexes of simpliciald-polytopes in terms of an en-
coding of f (S), the so-calledg-vector. First define theh-vectorh(S) = (h0, h1, . . . , hd)

of S by

hk =
k∑

i=0

(−1)k−i

(
d − i

d − k

)
fi−1 for k = 0,1, . . . ,d.

Theh-vector of any simplicial sphere satisfies theDehn–Sommerville equationshk =
hd−k for k = 0,1, . . . , bd/2c. Now theg-vector of S is g(S) = (g0, g1, . . . , gbd/2c),
whereg0 := h0 = 1 and

gk := hk − hk−1 for k = 1,2, . . . , bd/2c.
We say thatg(S) forms anM-sequenceif g0 = 1 and gk−1 ≥ ∂k(gk) for k =
1, . . . , bd/2c, where

∂k(gk) =
(

ak − 1

k− 1

)
+
(

ak−1− 1

k− 2

)
+ · · · +

(
a2− 1

1

)
+
(

a1− 1

0

)
,

and the integersak > ak−1 > · · · > a2 > a1 ≥ 0 are determined by thebinomial
expansion

gk − 1=
(

ak

k

)
+
(

ak−1

k− 1

)
+ · · · +

(
a2

2

)
+
(

a1

1

)
of gk − 1 with respect tok. See Chapter 8 of [11] for more details. We can now state
McMullen’s conjecture:

Theorem 1(g-Conjecture/Theorem).An integer vector g= (g0, g1, . . . , gbd/2c) is the
g-vector of the boundary complex of a simplicial d-polytope P if and only if it is an
M-sequence.

In the same year, 1979, Stanley [9] proved the necessity and Billera and Lee [1] the
sufficiency of McMullen’s conditions. Stanley’s proof that theg-vector of any simplicial
polytope is an M-sequence used the Hard Lefschetz Theorem for the cohomology of
projective toric varieties, but in the meantime a simpler proof by McMullen using his
polytope algebrais available.

Billera and Lee invented an ingenious construction to produce, for every M-sequence
g, a simpliciald-polytope with thisg-vector. Very briefly, they first find a shellable ball
B as a collection of facets of a cyclic polytopeC, such that theg-vector of∂B is the
given M-sequence. Then they construct a realization ofC and a pointz that sees exactly
the facets inB, and obtain a realization of∂B as a simplicial polytope by taking the
vertex figure atz of conv({z} ∪ C).
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We next discuss Kalai’s 1988 extension of their construction, by which he built so
many simplicial spheres thatmostof them (in a sense to be made precise below) fail to
be polytopal. He achieved this by giving a rule to produce many listsI of (d+1)-tuples
of vertices, which span pure simplicial complexesB(I ). The underlying space of every
such complex turns out to be a simplicial, shellabled-ball, which he called asqueezed
ball, and therefore the boundaryS(I ) of B(I ) is a simplicial(d−1)-sphere, asqueezed
sphere. Lee shows in [6] that Kalai’s squeezed spheres are shellable.

Let s(d,n) denote the number of simplicial(d− 1)-spheres,sq(d,n) the number of
squeezed(d − 1)-spheres, andc(d,n) the number of combinatorial types of simplicial
d-polytopes withn labeled vertices. Goodman and Pollack [2], [3] derive the upper
bound

logc(d,n) ≤ d(d + 1)n logn (1)

using a theorem of Milnor that bounds the sum of the Betti numbers of real algebraic
varieties, while Kalai’s squeezed spheres provide the following lower bound fors(d,n):

logs(d,n) ≥ logsq(d,n) ≥ 1

(n− d)(d + 1)

(
n− b(d + 2)/2c
b(d + 1)/2c

)
= Ä(nb(d+1)/2c−1) for fixedd.

These bounds reveal that limn→∞ c(d,n)/sq(d,n) = 0 for d ≥ 5, which means that
for d ≥ 5 most of Kalai’s spheres are not polytopal—there are simply too many of
them. However, we learn nothing ford ≤ 4. We prove in Proposition 1 below that
sq(4,n) ≤ 2n−5n! for n ≥ 5, which is strictly less than the bound from (1) for all
n ≥ 5.

The rest of the paper is organized as follows: In Section 2 we collect some facts about
cyclic polytopes, an essential ingredient of our proof. In Section 3 we first present the
details of Kalai’s construction, and then show how to realize any of his 3-spheres as
boundary complexes of simplicial 4-polytopes (Theorem 2). Finally, Section 4 uses the
pictures constructed in Section 3 to give a shorter proof of Hebble and Lee’s result that
the dual graphs of squeezed 3-spheres are Hamiltonian.

2. Some Facts on Cyclic Polytopes

The convex hull ofn distinct points on themoment curveµd: t 7→ (t, t2, . . . , td) in
Rd is called ad-dimensionalcyclic polytopewith n vertices. The combinatorial type of
this polytope is independent of the choice of then points on the moment curve, and so
one can talk aboutthe cyclic polytopeCd(n). In fact, anyd-dimensional orderd curve
also gives rise to the same combinatorial types of polytopes.

We switch fromd and n to d + 1 and n + 1, and consider a setX = {x0 =
µ(t0), . . . , xn = µ(tn)} of n+1 distinct points on the moment curveµd+1 =: µ, ordered
by their first coordinates. For anyf ⊂ {0,1, . . . ,n}, write Ff for the subset ofX indexed
by f , andi (F) for the indices of a subsetF of X. The supporting hyperplaneH(F) of
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a (d + 1)-subsetF ⊂ X is given byH(F) = {x ∈ Rd+1: γ (F) · x = −γ0(F)}, where
γ (F) = (γ1(F), . . . , γd+1(F)) ∈ Rd+1 andγ0(F) ∈ R are defined by

0 =
∏

i∈i (F)
(t − ti ) =

d+1∑
j=0

γj (F)t
j = γ0(F)+ γ (F) · µ(t). (2)

Observe thatγd+1(F) = 1; we say thatγ (F) points upwards.
Gale’sevenness criteriontells us which(d + 1)-subsetsF of X are vertex sets of

facets of the cyclic polytopeC = conv(X): for anyi, j ∈ {0,1, . . . ,n}\i (F), the number
of elements ofi (F) betweeni and j must be even.

Define theend setWend of Ff ⊂ X to be the rightmost contiguous block{r f +
1, . . . ,max f } of the indicesf of F , wherer f = max{i ∈ N: i < max f, i /∈ f }. Let
F be a facet ofC and takexj = µ(tj ) ∈ X\F . If the cardinality of the end set ofF is
odd, we get

∏
i∈i (F)(tj − ti ) < 0 becausej /∈ i (F), and thereforeγ (F) · xj < −γ0(F).

Sinceγd+1(F) = 1, we conclude that the whole cyclic polytopeC is below F, and call
F an upper facet of C. If #Wend is even, we analogously callF a lower facet of C.
Finally, define anouter normal vector α(F) of any facetF of C byα(F) = γ (F) (resp.
α(F) = −γ (F)) if F is an upper (resp. lower) facet ofC, and setα0(F) = −γ0(F)
(resp.α0(F) = γ0(F)). By this, we obtainC ⊂ {x ∈ Rd+1: α(F) · x ≤ α0(F)} for all
facetsF of C.

3. Realizing Kalai’s 3-Spheres

3.1. Kalai’s Idea

First define a partial order¹ on
( N

d+1

)
by {i1, i2, . . . , i d+1}< ¹ { j1, j2, . . . , jd+1}< if

i k ≤ jk for everyk = 1, . . . ,d+ 1. Here the notationA = {a1, . . . ,ar }< means that the
elements of the setA are listed in increasing order. For the standard poset terminology
used in the following, see [10].

For an odd integerd > 0 andn ∈ N, letFd(n) be the collection of(d + 1)-subsets
of [n] := {1,2, . . . ,n} of the form{i1, i1 + 1} ∪ {i2, i2 + 1} ∪ · · · ∪ {i e, i e+ 1}, where
e= (d+ 1)/2, i1 ≥ 1, i e < n, andi j+1 ≥ i j + 2 for all relevantj . Let I ′ be an initial set
(order ideal) ofFd(n) with respect to the partial order¹ on

( N
d+1

)
. Informally, f ′ ¹ g′

for f ′, g′ ∈ Fd(n) if f ′ arises fromg′ by pushing some elements ing′ to the left.
For evend > 0, putFd(n) = {{0} ∪ f ′: f ′ ∈ Fd−1(n)} =: 0 ∗ Fd−1(n) with the

induced partial order, and setI := 0 ∗ I ′.
Finally, letB(I )be the simplicial complex (thesqueezedd-ball) spanned byI , denote

the boundary complex ofB(I ) by S(I ) (thesqueezed(d−1)-sphere), and do the same
for I ′.

3.2. The Structure of3-Balls

To specialize Kalai’s construction tod = 4, we first study squeezed 3-balls. Taken ≥ 4
in N, write (i, j ) for an element{i, i + 1, j, j + 1} ⊂ [n] of F3(n), and define thegap
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of (i, j ) ∈ F3(n) to be the numberj − i − 2 of integers betweeni + 1 and j . From
the fact that any two elements ofF3(n) with the same gap are translates of each other
and therefore¹-comparable, we conclude that any¹-antichain inF3(n) can be linearly
ordered by increasing gap, and denote this order by@. We remark that the difference
between the gaps of any two elements in a¹-antichain must be at least 2, as otherwise the
two elements would be¹-comparable. In particular, the maximal number of elements
of a¹-antichain inF3(n) is d(n− 3)/2e.

Any order idealI ′ ⊂ F3(n) for n ∈ N is generated by the setG′ = {g′1, g′2, . . . , g′r }@
of its maximal elements, for somer ≤ d(n− 3)/2e. By our discussion, theg′k = (i k, jk)
satisfy

(1) jk ≥ i k + 2 for k = 1, . . . , r , and
(2) i k > i k+1 and jk < jk+1 for k = 1, . . . , r − 1.

As an example, letI ′ be the ideal generated byG′ = {(9,11), (8,12), (5,14),
(2,17)}@:

1 121110982 3 1514 17 185 6 13

Note that ifg′ @ h′ ∈ G′, theng′ is nested insideh′ (possibly with overlap). From Fig. 1
we read off the structure of the 3-ballB(I ′) generated byG′, and its boundaryS(I ′).

Now putF4(n) = 0 ∗ F3(n) with the induced partial order, andI = 0 ∗ I ′. The
4-ball B(I ) spanned byI is a cone over the 3-ballB(I ′), whose boundary complex is
the squeezed 3-sphereS(I ).

Proposition 1. There are at most2n−4(n + 1)! squeezed3-spheres with n+ 1 ≥ 5
labeled vertices. In particular, logsq(4,n) = 2(n logn).

Proof. By Proposition 3.3 of [5], distinct 4-ballsB(I ) whose vertices are labeled ac-
cording to their construction give rise to distinct 3-spheresS(I ) labeled in this way, and
distinct initial setsI ⊂ F4(n) obviously induce distinct such 4-balls. Every initial set
I is of the form 0∗ I ′ for a unique order idealI ′ ⊂ F3(n). Therefore, by relabeling
vertices,sq(4,n + 1) is at most(n + 1)! times the number of distinct order ideals in
F3(n), depending on the combinatorial symmetries ofS(I ). By Fig. 1, every such order
ideal can be represented by a lattice path of lengthn−4 taking steps only in the positive
i - or negativej -directions, and starting at(i, j ) = (1,n− 1). There are 2n−4 of these,
and they all give rise to distinct ideals.

3.3. A Bird’s-Eye View of the Realization Construction

Observe that by Gale’s Evenness Criterion, everyf ∈ I corresponds to a lower facetFf

of a cyclic polytope. By adapting the ideas of Billera and Lee, we will now realize any
S(I ) as the boundary complex of a 4-polytopeP by appropriately realizing a cyclic
5-polytopeC, and choosing a viewpointv close to the negativee5-axis that sees exactly
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Fig. 1. The Kalai posetF3(18). The shaded circles are the facets of the 3-ballB(I ′) with generatorsG′ =
{(9,11), (8,12), (5,14), (2,17)}@. The minimal elementsH ′ ofF3(18)\I ′ are marked by∇ ’s, and@ orders
the elements ofE′ = G′ ∪ H ′ from left to right (see Observation 1). Straight lines between facets correspond
to≺-covering relations between elements ofI ′, and straight and curved lines together to inner ridges ofB(I ′).
The small circles are the facets ofS(I ′) = ∂B(I ′). The set of facets of the Kalai sphereS(I ) is the union of
B(I ′) and 0∗ S(I ′).

the facets ofC in B(I ). The convex 4-polytopeP is then the vertex figure atv of
conv(C ∪ {v}), andS(I ) its boundary.

Specifically, letµ = µ5: R → R5, t 7→ (t, t2, . . . , t5) be the moment curve in
dimension 5. Given an order idealI = 0∗ I ′ in F4(n) wheren = max

⋃
I , we execute

the following steps:

1. ChooseN ′ > 0 and place 0= t0 < t1 < · · · < tn ∈ R≥0 such that∏
i∈ f \{0}

ti < N ′ for all f ∈ I , and

(S1)∏
i∈ f \{0}

ti > N ′ for all f ∈ F4(n)\I .

Solutions for (S1) exist witht1 > 0 arbitrarily small. We will find a solution for



Kalai’s Squeezed 3-Spheres Are Polytopal 401

this system of inequalities by processing the elements ofE′ = G′ ∪H ′ in@-order,
whereG′ is the set of¹-maximal elements ofI ′, andH ′ is the set of¹-minimal
elements ofF3(n)\I ′.

2. Make sure that the viewpoint to be defined will not see any upper facets ofC =
C5(n+ 1) = conv{0, µ(t1), µ(t2), . . . , µ(tn)} that contain 0, by choosingt1 > 0
so small that

t1tn−2tn−1tn < N ′. (S2)

3. Chooseε, with 0< ε < t1, so small that for alle, f ∈ F4(n),

e≺ f H⇒ γ (Fe) · µ(ε) < γ (Ff ) · µ(ε). (S3)

4. Chooseε > 0 even smaller, if necessary, such that the viewpointv := µ(ε)−εN ′e5

satisfies

α(F) · v > α0(F) for fF ∈ I ,

α(F) · v < α0(F) for all lower facetsF of C such that fF /∈ I ,

α(F) · v < α0(F) for all upper facetsF of C,

(S4)

whereα(F) is the outer normal vector ofF we defined at the end of Section 2.

We conclude thatv sees exactly the facets ofC in B(I ), and obtainS(I ) as above.

3.4. How to Realize Kalai’s3-Spheres

We now give the details of the construction and prove the following theorem.

Theorem 2. Every squeezed3-sphere S(I ) given by an order ideal I in the poset
(F4(n),¹) with n≥ max

⋃
I can be realized as the boundary complex of a simplicial,

convex4-polytope.

Remark 1. The construction shows the stronger result that every squeezed 4-ballB(I )
can be realized as a regular triangulation of a convex 4-polytope.

Proof of Theorem2. Given an idealI ⊂ F4(n), we may assume thatn = max
⋃

I
sinceF4(n) ⊆ F4(n′) for n ≤ n′. By definition, every order idealI ⊂ F4(n) has the
form I = 0 ∗ I ′, where I ′ = 〈G′〉 ⊂ F3(n) is generated by its maximal elements
G′ = {g′1, g′2, . . . , g′r } with g′k = (i k, jk). ChooseN ′ > 0, introducen variable points
0 < t1 < t2 < · · · < tn in R>0, and consider the setH ′ of ¹-minimal elements of
F3(n)\I ′.

Observation 1. Consider any two consecutive elements e′ = (i, j ) @· f ′ = (k, `)
of a @-ordered¹-antichain G′ of F3(n). Then the unique≺-minimal element m′ in
F3(n)\〈G′〉 with gap(e′) < gap(m′) < gap( f ′) exists and is m′ = (k + 1, j + 1). In
particular, the number of≺-minimal elements inF3(n)\〈G′〉 is no greater thanb(n −
3)/2c.
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Sketch of Proof. The first statement follows by inspection of Fig. 1. For the sec-
ond assertion, note that the setH ′ has maximal cardinality ifG′ = {(i,n − i ): i =
1,2, . . . , d(n− 3)/2e}. 2

Using Observation 1, we linearly orderE′ = G′ ∪ H ′ by@, see Fig. 1. To carry out
Step 1 of our program, first choose some smallδ > 0. Our goal is to place thet ’s in R>0

such that∏
i∈g′

ti = N ′ − δ for g′ ∈ G′ and
∏
i∈h′

ti = N ′ + δ for h′ ∈ H ′. (S1′)

Observation 2. The cardinality of E′ = G′ ∪· H ′ is at most n− 3. In particular, there
are fewer equalities in(S1′) than there are variables.

Proof. Becausen = max
⋃

I , the largest element of(E′,@) is in G′. Using Observa-
tion 1 again,

#E′ = #G′ + #H ′ ≤
⌈

n− 3

2

⌉
+
⌊

n− 3

2

⌋
= n− 3,

which proves Observation 2.

We now begin the construction by placing thet ’s corresponding to the@-smallest
element ofE′ in such a way inR>0 that (S1′) is satisfied. This is clearly possible. The
general step of constructing a solution to (S1′) is based on the following lemma.

Lemma 1. Let e′ = (i, j ) @· f ′ = (k, `) be two consecutive elements of E′.

(a) If e′ ∈ G′ and f′ ∈ H ′, then0 < k ≤ i and ` = j + 1. If e′ ∈ H ′ and f′ ∈ G′,
then k= i − 1 and j ≤ ` < n. (See Fig. 1.)

(b) Suppose that the{ti }i∈e′ have been placed already, but not all{tj }j∈ f ′ . Then these
latter t ’s may be placed in such a way inR>0 that 0 < tk < tk+1 < t` < t`+1,
and the equality

tktk+1t`t`+1 = M (3)

is satisfied, where M := N ′ − δ if f ′ ∈ G′ and M := N ′ + δ if f ′ ∈ H ′.

Sketch of Proof for(b). Suppose thate′ ∈ G′ and f ′ ∈ H ′. We then have the following
situation:

tk titk+1 ti+1 tj tj+1 = t` t`+1

cc0b0ba

It is straightforward to verify that for any 0< k ≤ i , the pointsa,b, c may be placed in
such a way that 0< a < b < b0 < c0 < c andabc0c = N ′ + δ. Similarly, if e′ ∈ H ′
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and f ′ ∈ G′,

a0 bb0

t`tj

ca

tk tk+1 = ti ti+1 tj+1 t`+1

for any j ≤ ` < n we may placea,b, c such that 0< a < a0 < b0 < b < c and
aa0bc= N ′ − δ. 2

We now complete Step 1 by applying Lemma 1 to all members ofE′ in @-order.
The definition of¹ tells us that because thef ′ ∈ E′ satisfy (S1′), in fact all f ∈ F4(n)
satisfy the system (S1).

If in Step 1 we encountered somee′ ∈ E′ with 1 ∈ e′, then necessarilye′ = {1,2,n−
1,n} ∈ G′, which imposed the inequalityt1t2tn−1tn < N ′. This inequality in turn remains
satisfied if we chooset1 even small enough to verify (S2). If 1/∈ e′ for all e′ ∈ E′, we
are free to do the same. We have completed Step 2, and place any remaining unassigned
t ’s such that 0= t0 < t1 < · · · < tn.

Observation 3.

(a) γ0(Ff ) = 0 for any5-element subset f⊂ {0,1, . . . ,n} that contains0.
(b) For all choices of t1 < · · · < tn, one can findε > 0 small enough such that the

implication(S3)holds for all f, g ∈ F4(n).

Proof of (b). The definition (2) of theγ ’s implies that for f = {0, s1, . . . , s4},
γ (Ff ) · µ(ε) = ε(ε − s1) · · · (ε − s4) = εs1s2s3s4± o(ε). (4)

This means thatγ (Ff ) · µ(ε) < γ (Fg) · µ(ε) by definition of≺, for ε small enough.2

Take 0< ε < t1 as in Observation 3(b), tentatively setz := µ(ε), and let f ∈ F4(n).
If f ∈ I , there exists someg ∈ G := 0 ∗ G′ with f ¹ g, and by (4) we have

γ (Ff ) · z≤ γ (Fg) · z= ε
∏

i∈g\{0}
ti + O(ε2) = ε(N ′ − δ)± o(ε).

If f /∈ I , then there is someh ∈ H := 0 ∗ H ′ with f º h, and we obtain in a similar
way that

γ (Ff ) · z≥ ε(N ′ + δ)± o(ε).

Thus, we finally choose 0< ε < t1 so small that withz := µ(ε) and N := εN ′, we
haveγ (Ff ) · z< N for f ∈ I , andγ (Ff ) · z> N for f /∈ I . Step 3 is now complete.

We proceed to verify thatv := µ(ε) − εN ′e5 = z− Ne5 satisfies the inequalities
(S4). For this, recall that allFf with f ∈ F4(n) satisfy Gale’s Evenness Criterion, which
means thatF4(n) is exactly the set of lower facets of the cyclic polytopeC = conv(X)
that containx0 = 0. However,any F⊂ X of odd cardinality satisfying Gale’s Evenness
Criterion with even end set must contain 0, and we conclude thatF4(n) is in fact the set
of all lower facets ofC.
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Recall from Section 2 thatα(F) = γ (F) andα0(F) = −γ0(F) if F is an upper facet
of C, and thatα(F) = −γ (F) andα0(F) = γ0(F) if F is a lower facet ofC. We discuss
all facetsFf of C in turn:

Lower facets of C:

• If f ∈ I ⊂ F4(n), then by constructionγ (Ff ) ·z< N, and this impliesγ (Ff ) ·v <
0 (remember thatγ5(F) = 1 for all F) andα(Ff ) · v > 0= α0(Ff ), which means
that Ff is visible fromv.
• If f ∈ F4(n)\I , we conclude fromγ (Ff ) · z > N thatα(Ff ) · v < 0 = α0(Ff ),

which says thatFf is not visible fromv.

Upper facets of C:

• If 0 6∈ f = {s1, . . . , s5}, then (2) andε < t1 imply γ (Ff ) · z+ γ0(Ff ) =
∏5

i=1(ε−
si ) < 0, and

α(Ff ) · v = γ (Ff ) · v = γ (Ff ) · z− N < −γ0(Ff )− N < −γ0(Ff ) = α0(Ff ).

• If 0 ∈ f , thenγ0(Ff ) = 0 and f = {0,1}∪ {i, i +1}∪ {n}with 2≤ i ≤ n−2. By
inequality (S2) and the definition of≺, we conclude that necessarilyγ (Ff ) ·z< N
and

α(Ff ) · v = γ (Ff ) · z− N < 0= α0(Ff ).

We have verified the inequalities (S4) and completed the proof of Theorem 2. 2

Remark 2. A referee has suggested extending this construction to boundaries of more
general even-dimensional squeezed balls. However, so far we have only been able to
realize odd-dimensional squeezed spheres directly modeled on the three-dimensional
ones, and leave this as an open problem.

4. A Shorter Proof that Squeezed 3-Spheres Are Hamiltonian

In 1973 Barnette [8] conjectured that all simple 4-polytopes admit a Hamiltonian circuit.
In [4] Hebble and Lee prove that squeezed 3-spheres are (dual) Hamiltonian by explicitly
constructing a Hamiltonian circuit in the dual graph; however, their proof goes through
extensive case analysis. A referee has suggested that it might be possible to obtain a
simpler proof of this result. In this section we follow the referee’s suggestion and obtain
a “proof by picture” with fewer case distinctions, which moreover only depend on parity
conditions.

Theorem 3[4]. The dual graph of any Kalai4-polytope S(I ) admits a Hamiltonian
circuit. In particular, the polars of these4-polytopes satisfy Barnette’s conjecture.

Proof. Recall from Section 3.2 that the set of facets ofS(I ) is B(I ′)∪ (0∗ S(I ′)). We
continue to write(i, j ) = {i, i +1, j, j +1} for facets ofS(I ) in B(I ′), and introduce the



Kalai’s Squeezed 3-Spheres Are Polytopal 405

(b) j1 � j0 even

j1

i1

i2

jj

i2

i1

j1
i

(i0; j0)

(a) j1 � j0 odd

Fig. 2. StepsOver the topandDown. The circled facet is(i1, j1), the upper2 represents(i1 + 1
2 , j1), and

the lower2 is (i2 + 1
2 , j1 + 1).

notation(i + 1
2, j ) := {0, i + 1, j, j + 1} and(i, j + 1

2) := {0, i, i + 1, j + 1} for facets
of S(I ) in 0 ∗ S(I ′). Also, recall from Section 3.2 the definition of the order relations
¹ and@, and number the setG′ of ¹-maximal elements(i k, jk) of B(I ′) in ascending
@-order, starting withk = 1.

We start our Hamiltonian circuit in the dual graph ofS(I ) at the facet(i0, j0) =
(1,3) = {1,2,3,4} ∈ B(I ′). While walking through the other facets ofB(I ′), we also
pick up the facets of the form(i + 1

2, j ) and(i, j + 1
2) with i, j ≥ 1 of S(I ′), and then

return to(1,3) via the set of facets{(0, j ): 2≤ j ≤ n− 1}. We also use the difference
operators1 jk = jk+1− jk and1i k = i k+1− i k. In our circuit we repeatedly go through
certain steps, and in the figures we mark the end of one step and the beginning of the
next by a square. In all steps, if all facets inG′ are processed, go to stepDown(and then
to Finish).

1. Over the top: Start at(i0, j0) = (1,3). If j1 − j0 is odd, continue as in Fig. 2(a).
If j1 − j0 is even, proceed as in Fig. 2(b). In both cases, go on until(i1 + 1

2, j1).
Setk = 1, and go to stepDown.

2. Down: If there are no more generators to be processed, go down along the facets
{(i`, jk + 1

2): ` = k, k − 1, . . . ,1} and continue with stepFinish. Otherwise, if
1i k > 0, continue downwards as in Fig. 2 until(i k+1 + 1

2, jk + 1). If i k+1 = i k,
do nothing. In both cases, incrementk by 1, and continue to stepAcross.

3. Across: If 1 jk is even, continue as in Fig. 3(a). If1 jk is odd and not 1 andi k+1− i0

is even, continue as in Fig. 3(b); if1 jk 6= 1 andi k+1 − i0 are both odd, continue
as in Fig. 3(c). If1 jk = 1 and1i k+1 is even, proceed as in Fig. 4(a), if1i k+1

is odd, proceed as in Fig. 4(b). In any case, incrementk by one, and repeat from
stepDownor Acrossas necessary, depending on whether the facet surrounded by
a dashed circle in Fig. 4 is inG or not.

4. Finish: Now the only thing left to do is to return to(1,3) via the set of facets
{(0, j ) : n− 1≥ j ≥ 2}, as in Fig. 5.

This completes the proof of Theorem 3.
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jk jk+1

ik+1

i0

(a) �jk odd, ik+1 � i0 even(b) �jk odd, ik+1 � i0 odd

i0

ik+1 ik+1

jk+1jkjk jk+1

i0

(a) �jk even

Fig. 3. StepAcrossin case1 jk is even. The circled facet is(i k+1, jk+1).

jk jk+1

ik+1

ik+2

(a) �ik+1 even (b) �ik+1 odd

ik+2

ik+1

jk+1jk

Fig. 4. StepAcrossin case1 jk = 1. The circled facet is(i k+1, jk+1). Depending on whether the facet
surrounded by a dashed circle is inG or not, the next step will beDownor Across, respectively.

Fig. 5. StepFinish.
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