
DOI: 10.1007/s00454-001-0047-6

Discrete Comput Geom 26:573–590 (2001) Discrete & Computational

Geometry
© 2001 Springer-Verlag New York Inc.

Hard Tiling Problems with Simple Tiles∗

C. Moore1,2,3 and J. M. Robson4

1Computer Science Department, University of New Mexico,
Albuquerque, NM 87131, USA

2Department of Physics and Astronomy, University of New Mexico,
Albuquerque, NM 87131, USA

3Santa Fe Institute,
1399 Hyde Park Road, Santa Fe, NM 87501, USA
moore@santafe.edu

4LaBRI, Université Bordeaux 1,
351 Cours de la Lib´eration, 33405 Talence, France
robson@labri.u-bordeaux.fr

Abstract. It is well known that the question of whether a given finite region can be tiled
with a given set of tiles isNP-complete. We show that the same is true for the right tromino
and square tetromino on the square lattice, or for the right tromino alone. In the process we
show that Monotone 1-in-3 Satisfiability isNP-complete for planar cubic graphs. In higher
dimensions we showNP-completeness for the domino and straight tromino for general
regions on the cubic lattice, and for simply connected regions on the four-dimensional
hypercubic lattice.

1. Introduction

Tilings of the plane have long intrigued statistical physicists, computer scientists and
recreational mathematicians. If we have as many copies as we like of a finite set of
shapes, can we fill a given region with them? Tiling problems are potentially very hard:
in fact, telling whether a finite set of tiles can tile the infinite plane is undecidable,
since the non-existence of a tiling is equivalent to the Halting Problem [1], [2]. For
finite regions, this problem becomesNP-complete [3], meaning that it is just as hard as
combinatorial search problems like Traveling Salesman or Hamiltonian Path [4].

∗ This work was partially supported by the Sandia University Research Program.

574 C. Moore and J. M. Robson

In fact, tiling problems can be difficult even for small sets of very simple tiles, such
as polyominoes [5] with as few as three cells. Specifically, Beauquier et al. [6] showed
that for general regions of the square lattice the tiling problem isNP-complete for hor-
izontal dominoes and vertical trominoes, and for any other pair of bars where either
has length greater than 2. This includes the straight tromino alone when rotations are
allowed. For simply connected regions in the plane, on the other hand, Kenyon and
Kenyon [7] provided a linear-time algorithm for the problem with any pair of bars.
When rotations are allowed, R´emila provided a polynomial-time algorithm for bars of
length 2 and 3 in two dimensions, both in simply connected regions [8] and in gen-
eral [9].

In this paper we give some additional examples of this kind. For the right tromino and
square tetromino, we show that tiling a region on the square lattice isNP-complete, and
that the problem of counting how many tilings exist is #P-complete, making it as hard
as enumeration problems like calculating the permanent of a matrix [10]. For the right
tromino alone, we showNP-completeness using a more complicated construction based
on 1-in-3 Satisfiability for planar cubic graphs, but unfortunately we have no result on
the counting problem.

In higher dimensions we consider the domino and straight tromino with rotations
allowed. We show that this tiling problem isNP-complete for general regions in the cubic
lattice, and for simply connected regions in the four-dimensional hypercubic lattice.

We end with a discussion of some open problems, and a discussion of whether these
results could be tightened further.

2. Building Circuits with Tiles

We call the question of whether a given set of shapes can tile a given finite subset of the
square lattice, and how many such tilings exist, theexistenceandcountingproblems.
These problems are trivially inNP and #P respectively, since we can confirm that a
proposed tiling works in polynomial time. In this section we consider the set of tiles
shown in Fig. 1, namely the right tromino and square tetromino, with rotations allowed.

While the first hardness results about tiling relied on simulating steps of a Turing
machine from row to row, here we instead simulate Boolean circuits, where “wires” with
two possible tilings carry truth values, and junctions in these wires simulate logical gates.
Similar approaches are taken in [6], [9], and [11]–[13]. The question of whether a tiling
exists then corresponds to the canonicalNP-complete problem Satisfiability, which asks
whether a set of truth values for the inputs exists that makes the output true [4].

Our wire is shown in Fig. 2. It moves in knight’s moves in eight possible directions
across the lattice. Given an orientation of the wire leading from input to output, the tilings

Fig. 1. The right tromino and square tetromino.

Hard Tiling Problems with Simple Tiles 575

Fig. 2. The wire for tilings by the right tromino and square tetromino. Each wire contains a sequence of 3×1
rectangles offset by a knight’s move and is given an orientation; we define its value as true or false depending
on whether the second cell of a rectangle is in the same tromino as the first or the last.

where cells in between jogs are occupied by trominoes upstream and downstream from
them will be considered “true” and “false,” respectively.

Given this encoding of truth values in wires, Fig. 3 shows an AND gate. Each pair of
truth values for the inputsa andb has one and only one tiling, which causes the output to
have the valuea∧b. Figure 4 shows a NOT gate, where the output has the opposite truth
value from the input. By combining AND and NOT gates we can generate any Boolean
function, including a “crossover gadget” that allows us to cross wires in the plane [14].
Since we may want to use the output of one gate as the input of several others, Fig. 5
shows how to split a wire into two copies with the same truth value. To create our inputs
and outputs, we need to be able to start variable wires with either truth value, and end
wires in a way that requires them to be true. Figure 6 shows how to do both of these.

There are two more subtleties that must be dealt with. First, it must be possible to bend
wires among their eight possible orientations. We can do this by rotating and reflecting
a wire’s direction as in Fig. 7; these turns are derived simply by setting one of an AND
gate’s inputs to be true. Secondly, a wire of a given orientation has a knight’s move
periodicity, so that if we color the cells of the lattice as in Fig. 8 each step can only land
on one of the five colors. This gives each wire a kind of phase, and the zigzag shown in
the figure allows us to change this phase so that a wire’s truth value can be delivered to
cells of any color. Then the output of any gate can become the input of any other, as long

Fig. 3. Our AND gate. Two input wires enter a 2× 2 square from above, and the output exits from below.
For each set of truth values for the inputs, there is exactly one tiling as shown.

576 C. Moore and J. M. Robson

Fig. 4. Our NOT gate, which negates the signal along a wire.

Fig. 5. How to split a wire (entering from above) into two copies with the same truth value.

Fig. 6. Our variables. The bulb at the top can be tiled in two ways, which produce a true or false value on
the wire it’s connected to. On the right, how to end a wire so that it must be true for a tiling to exist.

Fig. 7. How to bend wires. On the left the wire’s direction is reflected around a diagonal line, and on the
right it is rotated 90◦. These allow us to change from any of the eight directions to any other.

Fig. 8. Changing the phase of a wire. The zigzag shown keeps the truth value the same, but cycles among
the five colors of the lattice.

Hard Tiling Problems with Simple Tiles 577

as the gates are separated widely enough. It is easy to show that this separation need
only be polynomially large.

It is clear from this construction that for any Boolean circuit, we can construct a region
of the plane such that the right tromino and square tetromino can tile it if and only if the
circuit is satisfiable. Moreover, this reduction isparsimonious, i.e. the mapping between
solutions of the two problems is one-to-one, so the number of solutions is the same in
both cases. Thus the question of whether any tilings exist, and how many there are, are
equivalent to Satisfiability and #Satisfiability, which areNP-complete and #P-complete
respectively [4], [10].

We conclude this section with Fig. 9, an example of a figure produced by our reduction
from the expression¬(¬A∧¬B)∧¬(A∧ B), or equivalentlyA 6= B. A is the variable
at the top andB the one in the middle. To save space we have reduced the length of the

Fig. 9. A witness to the satisfiability of¬(¬A∧ ¬B) ∧ ¬(A∧ B).

578 C. Moore and J. M. Robson

wire from B to its splitter to zero and we have made the components fit together without
using explicit phase changes by adjusting the lengths of the sections of wire. The tiling
shown is that forA = true, B = false.

3. Right Trominoes Alone

We now improve on the result of the previous section, and show that the existence
problem isNP-complete for the set of tiles consisting only of the right tromino (with
rotations allowed). The main reason that this is more difficult than for the tromino and
square tetromino is that every tile covers three squares. If we use the same wires as
before, where the truth value depends on the protrusion, or lack of it, of a single site,
then we can only represent gates where the output is a linear function of the inputs mod
3. While this prevents us from coding Boolean circuits directly, we can still represent a
version of Satisfiability which we will show isNP-complete.

First, we represent variables with nodes as in Fig. 10, in which three outgoing wires
are constrained to be all true or all false.

Secondly, we represent clauses with the nodes of Fig. 11, which require that exactly
one of three incoming wires be true, and that the other two be false. If exactly one wire is
true, the tilings of the wires cover exactly one square of the central 2×2 square, leaving
a space for one right tromino. Otherwise the number of squares left in the central square
is not a multiple of 3 and so cannot be tiled by trominoes.

If we consider a bipartite graph of these two types of nodes connected with wires as
in the previous section, then the tiling problem becomes a variant of 1-in-3 Satisfiability.
That is, we have a set of variables and a set of three-variable clauses, and we want to
know if there is an assignment of truth values to the variables such that exactly one of
the three variables in each clause is true.

However, here we have a restricted case of this problem in which the expression’s
graph is planar, there is no negation, and each variable occurs in exactly three clauses
since our variable nodes have three wires emanating from them. We claim that any
bipartite planar cubic graph (with the two types of vertices being variables and 1-in-
3 clauses) can be transformed into a plane figure which is tileable if and only if the
expression represented by the graph is satisfiable. We use new wire and corner subfigures
as shown in Figs. 12 and 13. Note that we could have used these wires and corners in the

Fig. 10. A variable subfigure and its two possible tilings.

Fig. 11. A clause subfigure and its three possible tilings.

Fig. 12. A section of wire and its two possible tilings.

Fig. 13. A left-hand corner and its two possible tilings.

580 C. Moore and J. M. Robson

previous reduction but the clause subfigure would have been incorrect in the case where
tetrominoes were allowed. We proceed as follows:

– Choose a planar embedding.
– Find a drawing of the graph on a square grid so that vertices are at grid points and

edges are disjoint paths along grid lines. Theorem 8.3 of [15] tells us that this can
be done in linear time. Now every grid point either is a variable or clause vertex
with edges leaving in three orthogonal directions, or has a wire passing through
with or without a 90◦ turn, or is empty.

– Replace every non-empty grid point by a 6× 6 square of cells containing either a
variable, a clause, a corner or a wire as shown in Figs. 10–13 rotated as necessary.
The subfigures of Figs. 10–13 are all designed to fit into a 6× 6 square (indicated
by the dashed lines) so that, whenever a wire crosses from one square to another
it occupies the two middle cells of the boundary of the upstream square and one
of the two middle squares of the adjacent boundary of the downstream square
but otherwise no cells on the periphery of squares are occupied. This suffices to
guarantee that the signals can be transmitted along the wires as required and that
no other tilings are possible. Note that we have shown all the gadgets so that wires
exit 6× 6 squares to their right of the center of the square’s edge. In all cases we
could reflect the tromino straddling the boundary to change to a “left exit” and still
have a valid gadget; thus a left entry such as exists in the clause figure or in all the
reflected versions causes no problems.

Thus, to complete our proof we need only show that Cubic Planar Monotone 1-in-3
Satisfiability isNP-complete, and we do this in the next section.

3.1. Cubic Planar Monotone1-in-3 Satisfiability

Laroche [16] showed that Planar Monotone 1-in-3 SAT isNP-complete. This is the
restriction of Monotone 1-in-3 SAT to expressions whose graphG is planar, whereG is
defined with a vertex for each variable and each clause of the expression, and an edge
joining each clause to each variable appearing in it.

We will show that this problem remains NP-complete when restricted to expressions
where every variable has exactly three occurrences, i.e. those whose graph is cubic.
(An alternate formulation is to consider a hypergraph where each clause is a node
and each variable is a hyperedge joining three nodes. Since each true variable “cov-
ers” three clauses and every clause must be covered exactly once, we can then regard
this problem as Exact Cover by 3-Sets in the case where the associated hypergraph is
planar.)

While the reduction from this version of SAT to the tiling problem we gave in the
previous section is parsimonious, this does not show that the counting problem is #P-
complete, since we do not have such a result for Cubic Planar Monotone 1-in-3 SAT. We
leave this as an open problem for the reader.

Our reduction is from unrestricted Planar Monotone 1-in-3 SAT. In the diagrams of
this section we use the same convention as in [16] that circles represent variables and
squares represent clauses.

Hard Tiling Problems with Simple Tiles 581

The reduction proceeds in two stages. The first stage produces an expressionE′ which
is planar and satisfiable if and only if the original was, and where each variable has three
or fewer occurrences. The second stage, rather more intricate, adds new clauses and
auxiliary variables producing an expressionE′′ where all variables have exactly three
occurrences.

3.2. The Reduction

We start by introducing some simple components to be used in the first stage. Anequality
verifierfor two variablesv1 andv2 consists of two new variablesx andy together with the
two clauses(v1, x, y) and(v2, x, y). Clearly this can be satisfied if and only ifv1 = v2;
moreover, ifv1 andv2 are false, then exactly one ofx andy is true. Achainbetween two
variablesv1 andv2 consists of new variablesu andw and three equality verifiers: one
betweenv1 andu, one betweenu andw, and one betweenw andv2. Again a chain forces
v1 = u = w = v2 in any satisfying assignment and whenv1 andv2 are false, the choice of
x or ybeing true is independent for the three equality verifiers. A chain is shown in Fig. 14.

Given an expressionE which is an instance of Planar Monotone 1-in-3 SAT, we choose
a planar embedding of its graphG. For each variablevi that occurs ink > 1 clauses, we
replace it with a set of variablesvi j for j = 1 · · · k, one for each occurrence. We then link
thesek variables together with chains as in Fig. 15. We call the resulting expressionE′

and its planar graphG′. Note that this sequence of links between thevi j is not completed
to form a cycle; we omit an arbitrarily chosen link, say betweenvi,1 andvi,k. Therefore,
any boundary between two faces that includes a chain in fact includes chains from two
different variables that appear in the same clause, a fact which we use below.

This completes the first stage of the reduction. ClearlyE′ is satisfiable if and only if
E was, and every variable has three or fewer occurrences. The variables with less than
three occurrences are thex andy variables of each equality verifier, the intermediateu
andw variables of each chain, the two unlinked variablesvi,1 andvi,k for eachvi with
k > 1 occurrences, and the original variablesvi which have only one occurrence inE.
The total number of missing occurrences is a multiple of 3 since each variable must have
three occurrences and each clause absorbs three.

We now consider the faces ofG′. Our goal is to associate each missing occurrence to
a face so that each face has a multiple of three additional occurrences along its boundary.
There are some faces bordered by thev1, x, v2, y of an equality verifier; we call these
faces trivial, and assign no missing occurrences to them. The remaining assignments are
made as follows.

Fig. 14. A chain that forces two variablesv1 andv2 to be equal, and our abbreviation for it.

582 C. Moore and J. M. Robson

Fig. 15. Replacing variables withk > 1 occurrences withk variables connected by chains. One link is
omitted arbitrarily, say betweenvi,1 andvi,k, so as not to form a complete cycle.

Since thex and y variables of the chains have only one face adjacent to them, we
start with each non-trivial face having a certain number of additional occurrences mod
3. We now note that every non-trivial face has at least one chain along its boundary.
Each chain has two variablesu andv with one occurrence each that can be assigned
either to this face or to one adjacent to it. In this way, we can transfer 0, 1 or 2 (mod 3)
additional occurrences from this face to the next one. If we define a tree of faces (i.e.
a spanning tree of the dual graph) we can start at the leaves and change the number
of additional occurrences in each face to 0 mod 3, until we reach the root, where the
number of occurrences left is also 0 mod 3 since the total is a multiple of 3.

We use a similar strategy to control, for each face, how many of the additional oc-
currences entering it are true, in extending a satisfying assignment forE′ to one forE′′.
Recall that along the boundary between any pair of adjacent non-trivial faces are chains
corresponding to two different variables that appear in the same clause. In any satisfying
assignment, at least one of these is false, and so in each link of its chain we can take
eitherx or y to be true. In this way, we can transfer 0, 1 or 2 (mod 3) true variables
from one face to another. If we again define a tree of faces, we can start at the leaves
and change the number of true additional occurrences in each face to 0 mod 3, until we
reach the root. At the root face, the number of true additional occurrences is simply the
total mod 3. This is−(the number of clauses ofE′) mod 3, since variables provide true
values in multiples of 3 and each clause ofE′ absorbs one of these.

We now construct our final expressionE′′, and its graphG′′, by gathering the additional
occurrences around each face into agadgetas described in Section 3.3. This gadget will
enforce that the correct number mod 3 of the additional occurrences are true. In what
follows we sometimes write 0 and 1 for true and false respectively.

3.3. Gadgets

The purpose of a gadget is to be satisfiable provided the correct number mod 3, sayc,
of its 3m input edges are true. Thus we complete the construction ofG′′ by placing a
gadget in each face ofG′.

Hard Tiling Problems with Simple Tiles 583

A gadget is composed of a sequence ofoptional switchesthat allow the true and false
values to be sorted in any order, and checked in groups of three. Specifically, we wish
for the rightmostc groups of three variables to have one true input each, and for all other
groups of three variables to be either all true or all false. To do this, we terminate the
rightmostc groups with a single clause vertex, and all other groups with a 3-way equality
verifier as defined below.

An optional switch has two entry edges and two exit edges. It can be satisfied in all
cases where the two values on the exit edges are the same as the two values on the entry
edges in either order. It uses two sub-gadgets, thepartial switchwhich behaves the same
way except that it cannot be satisfied if both entry edges are true, and the 3-way equality
verifier, which requires all its inputs to have the same truth value.

The partial switch itself has a sub-gadget which we call atriangle. This is a component
with three variable vertices(a,b, c), each with one edge to the exterior, which requires
that exactly one ofa, b andc is true. In other words, it acts just like a clause, except that
it uses two of each variable’s occurrences. Note that we cannot achieve this simply by
doubling the clause(a,b, c) since this would violate planarity.

The triangle has three internal variablesa′, b′ and c′, and the clauses(a,b, c′),
(b,a′, c′), (c,a′,b′), (a, c,b′) and(a′,b′, c′). This is satisfied by takinga′ = a, b′ = b
and c′ = c, and the central clause then ensures that exactly one of these is true. A
triangle is shown in Fig. 16 together with the symbol used to denote it in larger compo-
nents.

The partial switch is shown in Fig. 17. It has two input variablesp,q and two output
variablesr, s. It contains internal variablesa,b, c and t , a triangle(a,b, c) and the
clauses(p,q, t), (b, r, t), (c, s, t), (a, r, s). If p = q = 0, the partial switch is satisfied
by takinga = t = 1 andb = c = r = s = 0. If p 6= q, we can take eitherr = c = 1
anda = b = s= t = 0 ors= b = 1 anda = c = r = t = 0, and in either caser 6= s.
Thus the partial switch copies the two inputs to the two outputs in either order, except
when both inputs are true.

Note that each partial switch uses two occurrences each of its input variables, and
only one each of its output variables. Thus partial switches can be strung together in
series. We use this to build the full optional switch shown in Fig. 18. This is composed of
a new variable vertex (which may always be false) placed between the two entry edges

Fig. 16. A triangle and our abbreviation for it.

584 C. Moore and J. M. Robson

Fig. 17. A partial switch and its abbreviation.

Fig. 18. An optional switch and its abbreviation.

Hard Tiling Problems with Simple Tiles 585

Fig. 19. A 3-way equality verifier and its abbreviation.

followed by two sequences of partial switches. These permit a single true value to be
transmitted from entry 1 to exit 2 or vice versa. This leaves three edges between the two
exit edges and these three edges are then passed into a 3-way equality verifier.

To complete our proof for Cubic Planar Monotone 1-in-3 SAT, we construct this veri-
fier as in Fig. 19. It has three input edges from variablesa,b, c and five internal variables
d,e, f, g, h. It contains the clauses(a,d,e), (b,e, g), (c, g, h), (d,e, f), (f, g, h) and
(d, f, h). If a = b = c = 0, we take eitherd = g = 1 ande = f = h = 0
or e = h = 1 andd = f = g = 0. If a = b = c = 1 we take f = 1 and
d = e= g = h = 0.

Finally, to construct a gadget for 3m inputs of whichc mod 3 are to be true, we form
a sorting network from a polynomial number of optional switches that allows the inputs
to be sorted in any order. We then divide the outputs of the sorting network into triples,
and add a suitable checker to each triple. This checker will be a single clause forc of
the triples and a 3-way equality verifier for the rest. An example is shown in Fig. 20,
wherem = 2 andc = 1. In the casem = 1, c = 2, this construction needs a slight
modification; we add a new variable and feed the six edges (the three inputs and the three
outputs from the variable) into am= 2, c = 2 gadget.

After the appropriate gadget is added to each face to absorb its additional occurrences,
it is clear thatE′′ is satisfiable if and only ifE is. This completes our proof that Cubic
Planar Monotone 1-in-3 Satisfiability, and therefore the existence problem for tilings by
the right tromino, isNP-complete.

4. Monotone Circuits in Three and Four Dimensions

In this section we construct wires and gates in three dimensions with the domino and
straight tromino, or (if you prefer) the dicube and straight tricube, shown in Fig. 21. The
construction is similar to that in Section 2, except that it is limited tomonotoneBoolean
circuits, whose outputs are non-decreasing functions of their inputs.

Our wires will consist of zigzags as in Fig. 22, which can be tiled by dominoes in
either of two ways. As before, we give each wire an orientation. Then if we two-color
the lattice as a three-dimensional checkerboard, dividing it into odd and even cells, we

586 C. Moore and J. M. Robson

Fig. 20. A gadget which allows six inputs to be sorted and confirms that 1 mod 3 of them are true.

Fig. 21. The domino and straight tromino in three dimensions.

Fig. 22. The wire for tilings by the domino and straight tromino. It can be tiled by dominoes in either of two
ways, such that the downstream end of each domino lies on either an odd cell (true) or an even cell (false).

Hard Tiling Problems with Simple Tiles 587

Fig. 23. This configuration serves as an AND or OR gate, depending on whether the central cell is even
or odd.

define true and false wires as those where the downstream end of each domino lies on
an odd or even cell respectively. Note that this allows wires to turn quite freely. Then the
reader can easily check that the configuration in Fig. 23, with two inputs entering from
above and an output exiting from below, acts as an AND gate if its central cell is even,
and an OR gate if its central cell is odd. There is a unique tiling for each truth value of
the inputs; in one of these four tilings the central crossbar is filled with a tromino, while
the other tilings consist entirely of dominoes.

With AND and OR gates, we can build any monotone Boolean circuit. It seems to
be difficult to build a NOT gate with these two tiles, and we conjecture that this is
impossible. However, monotone circuits are enough for our purposes, since we can use
De Morgan’s lawsa ∧ b = ā ∨ b̄ anda ∨ b = ā ∧ b̄ to move negations up through our
gates [14], and thus convert any Boolean circuit with variablesx1, . . . , xn to a monotone
one with variablesx1, x̄1, . . . , xn, x̄n.

To make a one-to-one correspondence between satisfying assignments of this circuit
and the original one, we just have to add the non-monotone condition that exactly one
of xi andx̄i be true for eachi . We can do this by connecting these two variables with a
zigzag wire; using our definition of orientation, this wire’s tiling will come out as true
at one end and false at the other. Finally, we require the output wire to be true by ending
it on an odd cell.

To complete the argument, we need to be able to split wires. However, if we can do
this, we can construct a NOT gate as shown in Fig. 24. Since our definition of truth
is negated if we reverse the orientation of a wire, if we attach one output of a splitter
backwards to a wire with valuex, and attach its input to a variable that can be true or
false, the other output will yield̄x. Thus if we are correct that we cannot build a NOT
gate, we cannot build a wire splitter either.

Since a perfect wire splitter does not seem to exist, we consider instead a “dirty
splitter” where the outputs are equal to or less than the inputs; for instance, an OR gate

588 C. Moore and J. M. Robson

Fig. 24. If we had a wire splitter, we could make a NOT gate by feeding a wire with valuex into one of
its outputs in reverse, and connecting its input into a region which can be tiled either true or false. Since our
definition of truth value is negated if we reverse the orientation of a wire, the other output will then carry the
negated valuēx.

in reverse has this property. Since the circuit is monotone, this can create false negatives
but not false positives, so this “dirty circuit” can have a true output if and only if the
original circuit can.

Finally, standard arguments can be used to show that we can embed the required
components in polynomially bounded 3-space with sufficient clearance between them
so that the wires do not intersect. Thus we have shown how to convert a monotone
Boolean circuit to a region of the cubic lattice that can be tiled with dominoes and
straight trominoes if and only if the circuit is satisfiable, and the existence problem for
such tilings isNP-complete.

We would like to say that the counting problem for such tilings is #P-complete, but
using dirty splitters means that in some cases there will be more than one tiling for a
given satisfying assignment. Specifically, if a wire coming out of a dirty splitter is true
but is not essential to making the output true, we can tile it false and the circuit will still
be satisfied. Thus the mapping between assignments and tilings is not one-to-one, and
our reduction from Satisfiability to the existence problem is not parsimonious. While it
seems likely that counting these tilings is #P-complete, it is not clear how to prove this.

It unlikely that the number of dimensions in this construction can be reduced from
three to two. While planar circuits and monotone circuits can both simulate Boolean
circuits in general [14], circuits which are both planar and monotone cannot.

Finally, we note that we can convert any finite regionR in the cubic lattice into a
simply connected regionR′ in the four-dimensional hypercubic lattice with an equivalent
tiling problem [17]. Simply choose a set of sitesSsuch thatR∪ S is simply connected,
two-color them, and add each one along with an additional site adjacent to it in the fourth
dimension, alternating up and down according to the two-coloring. Then these sites can
only be filled by dominoes aligned along the fourth dimension, and only the sites inRare
left. Thus the tiling problem for dominoes and straight trominoes is alsoNP-complete
for simply connected regions in the four-dimensional cubic lattice.

5. Discussion

For the right tromino and square tetromino on the square lattice, or the right tromino alone,
we have shown that the existence problem for tiling regions of the square lattice isNP-

Hard Tiling Problems with Simple Tiles 589

complete. In the former case we have shown that the counting problem is #P-complete.
For the domino and straight tromino we have shown that the existence problem isNP-
complete for general regions in the cubic lattice, and for simply connected regions in the
four-dimensional hypercubic lattice.

Intuitively, the NP-completeness of tiling with polyominoes with three or more
cells comes from that fact that, while telling whether a graph can be covered with
dimers is related to the Perfect Matching problem and can be solved in polynomial
time, telling whether it can be covered by trimers isNP-complete [4]. While there is
no strict connection between a system’s computational complexity and its statistical
mechanics, we might expect that tiling problems for tiles consisting of three or more
cells are generally not exactly solvable in two or more dimensions (although the statis-
tics of triangular trimers on the triangular lattice can be solved with a Bethe ansatz
[18]).

For dominoes the existence and counting problems have an especially elegant solution.
The number of ways to tile a region of a regular lattice with dominoes can be calculated
by expressing it as a determinant of a modified adjacency matrix [19], [20]. This puts
the existence and counting problems for the domino in the classDET ⊆ P and allows
the statistics of the dimer model to be solved exactly.

It would be interesting to find other small sets of tiles for which tiling problems are
hard, or find larger sets of tiles for which existence and/or counting are inP. As noted
above, in two dimensions the existence problem for dominoes and straight trominoes is
in P when rotations are allowed [8], [9].

Another solvable case is that of a single polyomino without rotation, or one which is
rotationally symmetric. Then there is at most one tiling of a given finite region, which
we can find by scanning from left to right and top to bottom and adding a tile to each
unoccupied cell we meet. Beauquier and Nivat [21] showed that this case of the tiling
problem is decidable for the infinite plane as well. Finally, we note that the existence
of an isohedral tiling of the infinite plane by a single polyomino—one whose symmetry
group acts transitively on the set of tiles—was recently shown to be decidable by Keating
and Vince [22].

Some open questions include:

1. Is the counting problem for the right tromino on the square lattice, or for the
domino and straight tromino on the cubic lattice, #P-complete?

2. Is the existence problem for the right tromino inP for simply connected regions
in the square lattice?

3. Is the existence problem for dominoes and trominoes inP for simply connected
regions in the cubic lattice?

Acknowledgements

We are grateful to Richard Kenyon, Michael Lachmann, Mark Newman, Mats Nordahl,
Eric Rémila and Laurent Vuillon for helpful conversations. C.M. also thanks Robert
Cori for an invitation toÉcole Polytechnique, to Michel Morvan for an invitation to
Université Paris 7 (Jussieu) where the authors met, and to Molly Rose and Spootie the
Cat for warmth and friendship.

590 C. Moore and J. M. Robson

References

1. R. Berger, The undecidability of the domino problem.Mem. Amer. Math. Soc. 66 (1966), 1–72.
2. R.M. Robinson, Undecidability and nonperiodicity of tilings of the plane.Invent. Math. 12 (1971), 177–

209.
3. H. Lewis, Complexity of solvable cases of the decision problem for predicate calculus.Proc. 19th Symp.

Foundations of Computer Science(1978), pp. 35–47.
4. M.R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, San Francisco, CA, 1979.
5. S.W. Golomb,Polyominoes: Puzzles, Patterns, Problems, and Packings, revised edition. Princeton Uni-

versity Press, Princeton, NJ, 1994.
6. D. Beauquier, M. Nivat, E. R´emila and J.M. Robson,Comput. Geom. 5 (1995), 1–25.
7. C. Kenyon and R. Kenyon, Tiling a polygon with rectangles.Proc. 33rd Symp. Foundations of Computer

Science(1992), pp. 610–619.
8. E. Rémila, Tiling a simply connected figure with bars of length 2 and length 3.Discrete Math. 160(1996),

189–198.
9. E. Rémila, Tilings with bars and satisfaction of Boolean formulas.European J. Combin. 17 (1996), 485–

491.
10. C.H. Papadimitriou,Computational Complexity. Addison-Wesley, Reading, MA, 1994.
11. E. Goles and I. Rapaport, Complexity of tile rotation problems.Theoret.Comput.Sci.188(1997), 129–159.
12. E. Goles and I. Rapaport, Tiling allowing rotations only.Theoret. Comput. Sci. 218(1999), 285–295.
13. K. Lindgren, C. Moore and M.G. Nordahl, Complexity of two-dimensional patterns.J. Statist. Phys. 91

(1998), 909–951.
14. L.M. Goldschlager, The monotone and planar circuit value problems are log space complete for P.SIGACT

News9 (1977), 25–29.
15. G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis,Graph Drawing, Prentice Hall, Englewood Cliffs,

NJ, 1999.
16. P. Laroche, Planar 1-in-3 satisfiability is NP-complete. ASMICS Workshop on Tilings, Deuxi`eme Journ´ees

Polyominos et pavages, Ecole Normale Sup´erieure de Lyon, 1992.
17. R. Kenyon, Personal communication.
18. A. Verberkmoes and B. Nienhuis, Triangular trimers on the triangular lattice: an exact solution.

cond-mat/9904343

19. P.W. Kasteleyn, The statistics of dimers on a lattice, I: The number of dimer arrangements on a quadratic
lattice.Physica27 (1961), 1209–1225.

20. J. Propp, Dimers and dominoes. Manuscript available athttp://www-math.mit.edu/ ∼propp/

articles. html .
21. D. Beauquier and M. Nivat, On translating one polyomino to tile the plane.Discrete Comput. Geom. 6

(1991), 575–592.
22. K. Keating and A. Vince, Isohedral polyomino tiling of the plane.Discrete Comput. Geom. 21 (1999),

615–630.

Received March8, 2000,and in revised form May14, 2001,and June18, 2001.
Online publication October12, 2001.

