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Abstract. We prove that there are at most eight lines tangent to four unit spheres inR3 if
the centres of the spheres are coplanar, but not collinear. This bound is sharp.

Macdonald et al. proved in Theorem 1 of [2] that the maximum number of lines tangent
to four unit spheres inR3 is twelve, unless the centres of the spheres are collinear. They
remark that twelve might not be the best bound if the centres are affinely dependent. We
prove that this is indeed the case.

Theorem 1. If the centres of four unit spheres inR3 are coplanar but not collinear,
then there are at most eight lines tangent to all four spheres, and this bound is sharp.

Proof. We use the idea from [1] that lines tangent to the four spheres correspond to
circular cylinders of radius 1 passing through the four centres. The cylinder intersects
the plane of the four centres either in an ellipse with semi-minor axis of length 1, or in
two parallel lines at distance at most 2 from each other, passing through the centres of
the four spheres. Each such ellipse or pair of parallel lines corresponds to at most two
cylinders, therefore it gives rise to at most two lines tangent to the four spheres.

We prove that given four non-collinear points inR2, there are at most four ellipses
with semi-minor axis of length 1 or pairs of parallel lines passing through them.

We consider a possibly degenerate conicK ⊂ R2 given by the equation

Q(x, y) = ax2+ 2hxy+ by2+ 2gx+ 2 f y+ d = 0,

wherea, b, d, f , g, h ∈ R. We assume thata, b andh are not all 0.
First, we rotate the axes through an angleϕ to eliminate thexy term. This corre-

sponds to a change of co-ordinates given by the equationsx = x′ cosϕ + y′ sinϕ,



494 G. Megyesi

y = −x′ sinϕ + y′ cosϕ. The condition that the coefficient ofx′y′ is 0 leads to the
equation(a− b) sin(2ϕ)+ 2h cos(2ϕ) = 0.

Let s =
√
(a− b)2+ 4h2. If s = 0, then anyϕ will work, otherwise there existsϕ

satisfying cos(2ϕ) = (b− a)/s and sin(2ϕ) = 2h/s.
After this change of co-ordinates the equation ofK is of the formAx′2+By′2+2Gx′+

2Fy′ + d = 0, whereA = (a+ b− s)/2, B = (a+ b+ s)/2.
If A = 0 andG 6= 0, thenK is a parabola, and after the change of co-ordinates

x′ = x′′ + (F2 − Bd)/2BG, y′ = y′′ − F/B, we can write the equation ofK as
By′′2+ 2Gx′′ = 0. The other case whenK is a parabola is whenB = 0 andF 6= 0, then
we use the change of co-ordinatesx′ = x′′ −G/A, y′ = y′′ + (G2− Ad)/2AF to write
the equation ofK asAx′′2+ 2Fy′′ = 0.

If K is not a parabola, thenAB 6= 0 or A = G = 0 or B = F = 0. In these cases let
u = G/A if A 6= 0 andu = 0 if A = 0, and letv = F/B if B 6= 0 andv = 0 if B = 0.
After the change of co-ordinatesx = x′′ − u, y′ = y′′ − v, we can write the equation of
K asAx′′2+ By′′2+ D = 0, whereD = d − u2− v2.

It is important to note that althoughϕ is not unique, it is only determined up to a
multiple ofπ in general, and is completely arbitrary ifK is a circle, the final form of the
equation is unique.

As described in [2], the quantitiesI1 = a+ b, I2 = ab− h2 and

I3 = det

a h g
h b f
g f d


are invariant under translation and rotation of the axes. ThereforeI1 = A+ B, I2 = AB
and if K is not a parabola, thenI3 = ABD.

Key Observation. K is an ellipse with semi-minor axis of length 1 if and only if
0< A ≤ B = −D or 0> B ≥ A = −D. In either case we have(A+ D)(B+ D) = 0,
and after multiplying by(AB)2 and expanding, we obtain

I 2
3 + I1I2I3+ I 3

2 = 0. (1)

This equation is also satisfied ifK is the union of two parallel lines or a double line,
since this is equivalent toI2 = I3 = 0.

Our condition is equivalent to the condition in [2], which says that ifK is an ellipse,
then it has semi-minor axis of length 1 if and only ifλ = 1 is the larger root of the
quadratic equationI 2

3λ
2+ I1I2I3λ+ I 3

2 = 0.
The left-hand side of (1) is a homogeneous polynomial of degree 6 ina, b, d, f , g,

h, sinceIk is a homogeneous polynomial of degreek for k = 1, 2 and 3.
We now consider the centres of the four spheres in the plane. If they are all collinear,

then, of course, there are infinitely many lines tangent to all four spheres. In all other
cases there are at most two pairs of parallel lines passing through all four centres.

Any four points on an ellipse form a convex quadrilateral, so if the four centres do
not form a convex quadrilateral, then there is no ellipse through them and there are at
most four lines tangent to all the four spheres.
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From now on we assume that the four centres form a convex quadrilateral. We can
then choose co-ordinates such that the intersection of the diagonals is the origin, and
the four centres have co-ordinatesc1 = (u1,0), c2 = (αu2,u2), c3 = (−u3,0) and
c4 = (−αu4,−u4) with ui > 0 for 1≤ i ≤ 4.

Let

Q0(x, y) = (u2x + (u1− αu2)y− u1u2)(u4x + (u3− αu4)y+ u3u4)

be the product of the equations of the linesc1c2 andc3c4, and let

Q1(x, y) = (u2x − (u3+ αu2)y+ u2u3)(u4x − (u1+ αu4)y− u1u4)

be the product of the equations of the linesc2c3 andc1c4. Our choice of scaling ensures
that Q0(0,0) = Q1(0,0) = −u1u2u3u4 < 0, which we use later.

Let Qt (x, y) = Q0(x, y) + t (Q1(x, y) − Q0(x, y)) for t ∈ R and Q∞(x, y) =
Q1(x, y)− Q0(x, y). Let

Qt (x, y) = a(t)x2+ 2h(t)xy+ b(t)y2+ g(t)x + f (t)y+ d(t)

for t ∈ R ∪ {∞}. Let Kt ⊂ R2 be the conic defined byQt (x, y) = 0. Then the real
pencil of conics passing throughc1, c2, c3 andc4 is exactly{Kt | t ∈ R ∪ {∞}}. As
Q0(0,0) = Q1(0,0), K∞ is the union of the linesc1c3 andc2c4.

Let A(t), B(t), D(t), I1(t), I2(t) and I3(t) be the values ofA, B, D, I1, I2 and I3

calculated froma(t), b(t), d(t), f (t), g(t) andh(t). (If Kt is a parabola, thenD(t) is
not defined, but the others always are.)

The coefficients ofQt are polynomials of degree at most 1 int , therefore the left-hand
side of (1) is a polynomial of degree at most 6 int , so it has at most six solutions int .
K∞ is a union of two lines, not an ellipse, so lines tangent to the four spheres occur at
finite values oft . This means that there are at most six values oft ∈ R ∪ {∞} such that
Kt is an ellipse with semi-minor axis of length 1, and hence there are at most twelve
lines tangent to all four spheres.

The quadratic equationI2(t) = 0 has two roots,t1 = (
√

u2u3 − √u1u4)
2/((u1 +

u3)(u2 + u4)) andt2 = (√u2u3 + √u1u4)
2/((u1 + u3)(u2 + u4)). It is easy to check

that 0≤ t1 < t2 ≤ 1.
We can writeI2(t) = η(t − t1)(t − t2), whereη = a∞b∞ − h2

∞ is the coefficient
of t2 in I2(t). η is negative, because it is the discriminant of the homogeneous degree 2
component ofQ∞(x, y), andK∞ is the union of two intersecting lines.

ThereforeI2(t) = A(t)B(t) > 0 if and only if t1 < t < t2, soKt is an ellipse if and
only if t1 < t < t2.

By direct calculation,

A

(
t1+ t2

2

)
= u1u3+ (1+ α2)u2u4−

√
(u1u3+ (1+ α2)u2u4)2− 4u1u2u3u4

2
,

which is clearly positive. ThereforeA(t) > 0 for t ∈ (t1, t2). (This is the point where
the fact thatQ0(0,0) = Q1(0,0) < 0 is used.)

The graphs ofA(t) andB(t) are two branches of a hyperbola, possibly each degen-
erating into the union of two rays, if the hyperbola degenerates into the union of two
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intersecting lines. AsA(t) ≤ B(t) for all t , the fact thatA(t) > 0 for t ∈ (t1, t2) implies
that B(t) > 0 for all t and A(t) > 0 if and only if t1 < t < t2. A(t1) = A(t2) = 0 and
A(t) < 0 if t < t1 or t > t2.

As Kt always has real points, we must haveD(t) < 0 for t1 < t < t2. Therefore the
ellipses we are looking for correspond to solutions ofB(t)+ D(t) = 0 with t1 < t < t2.

We also haveI3(t) = γ t (t − 1), whereγ is independent oft . This can be verified by
direct calculation. Another way to see it is thatI3(t) = 0 means thatKt is degenerate.
This only happens att = 0, t = 1 andt = ∞, this is why we get a quadratic instead of
the expected cubic. Furthermore,γ > 0, since ift1 < t < t2, thenA(t) > 0, B(t) > 0
and D(t) < 0. This inequality can also be derived by calculating the explicit formula
for γ .

We now consider three cases.

Case1: No two sides of the quadrilateral c1c2c3c4 are parallel. This is equivalent to
0< t1 < t2 < 1. Now A(0) < 0, D(0) = A(t1) = 0. We have

D(t) = I3(t)

I2(t)
= γ t (t − 1)

η(t − t1)(t − t2)
.

The inequalitiesγ > 0 andη < 0 imply that limt→t1− D(t) = ∞. Both A(t) andD(t)
are continuous on [0, t1), therefore there exists at ∈ (0, t1) such thatA(t) + D(t) =
0. Similarly, there exists at ∈ (t2,1) such thatA(t) + D(t) = 0. This means that
B(t)+ D(t) = 0 can have at most four solutions, giving at most eight lines.

Case2: Two sides of quadrilateral c1c2c3c4 are parallel, but the other two are not. We
may assume thatc1c4 andc2c3 are parallel. This is equivalent to 0< t1 < t2 = 1. By
the same argument as before, there existst ∈ (0, t1) such thatA(t) + D(t) = 0. Now
D(t) = γ t/(η(t − t1)), so the graph of−D(t) is a hyperbola, and so is the union of
the graphs ofA(t) andB(t). Two hyperbolas intersect in at most four points, therefore
there are at most three solutions toB(t)+ D(t) = 0. There is one pair of parallel lines
passing through the four centres, therefore there are at most eight lines tangent to the
four spheres.

Case3: c1c2c3c4 is a parallelogram. In this caset1 = 0, t2 = 1 andD(t) = γ /η is a
constant. Therefore there are at most two solutions toB(t) + D(t) = 0, there are two
pairs of parallel lines passing through the four centres, so there are at most eight lines
tangent to the four spheres.

It is easy to construct examples with eight common tangents. The example already
given in [2] is if the four centres form a square with sides of lengthe, where

√
2< e< 2.

Of course, small perturbations of this configuration will also work.

If we do not require the radii of the spheres to be equal, then it is possible to construct
four spheres with more than eight common tangent lines. We give a construction with
twelve common tangent lines. Theobald proved in [3] that if the centres of four spheres
of not necessarily equal radius inR3 are not coplanar and the number of common tangent
lines is finite, then this number is at most 12. A continuity argument then implies that the
bound 12 also holds if the centres are coplanar, so our example attains the maximum.
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Let l be the line with direction vector(1,1,1) passing through the point( 1
6,0,− 1

6).
The points(0,1,0), (−√3/2,− 1

2,0) and(
√

3/2,− 1
2,0) form a regular triangle. The

line l is at distancer1 =
√

26/6 from each one of them, so it is tangent to the spheres
of radiusr1 centred at these three points.l is at distancer2 =

√
2/6 from the origin, so

let the fourth sphere be the sphere of radiusr2 centred at(0,0,0). The linel is tangent
to these four spheres. This configuration of spheres has a symmetry group of order 12,
generated by reflections in thexy-plane, thexz-plane and a rotation through 2π/3 about
thez-axis. The linel is not fixed by any of these symmetries, therefore it has 12 distinct
images under the action of the group, each of which is a common tangent line to the four
spheres. It can be verified by a direct calculation that there are no other common tangent
lines.

A similar example can be constructed with any direction vector not parallel or per-
pendicular to thexy-plane, and such that the angle between its orthogonal projection in
thexy-plane and thex-axis is not an integer multiple ofπ/6.
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