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Abstract. We prove that there are at most eight lines tangent to four unit spheRésfin
the centres of the spheres are coplanar, but not collinear. This bound is sharp.

Macdonald et al. proved in Theorem 1 of [2] that the maximum number of lines tangent
to four unit spheres iiR? is twelve, unless the centres of the spheres are collinear. They
remark that twelve might not be the best bound if the centres are affinely dependent. We
prove that this is indeed the case.

Theorem 1. If the centres of four unit spheres R® are coplanar but not collinear
then there are at most eight lines tangent to all four spheaed this bound is sharp

Proof. We use the idea from [1] that lines tangent to the four spheres correspond to
circular cylinders of radius 1 passing through the four centres. The cylinder intersects
the plane of the four centres either in an ellipse with semi-minor axis of length 1, or in
two parallel lines at distance at most 2 from each other, passing through the centres of
the four spheres. Each such ellipse or pair of parallel lines corresponds to at most two
cylinders, therefore it gives rise to at most two lines tangent to the four spheres.

We prove that given four non-collinear pointsii?, there are at most four ellipses
with semi-minor axis of length 1 or pairs of parallel lines passing through them.

We consider a possibly degenerate cdficc R? given by the equation

Q(x, y) = ax? + 2hxy+ by? + 2gx 4+ 2fy +d = 0,

wherea, b, d, f, g, h € R. We assume that, b andh are not all 0.
First, we rotate the axes through an angléo eliminate thexy term. This corre-
sponds to a change of co-ordinates given by the equakoss x’ cosy + y'sing,
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y = —x’'sing + Yy’ cosg. The condition that the coefficient of y’ is O leads to the
equation(a — b) sin(2¢) + 2h cog2¢) = 0.

Lets = \/(a—b)2+ 4h2, If s = 0, then anyy will work, otherwise there existg
satisfying co82¢) = (b — a)/s and sin2¢) = 2h/s.

After this change of co-ordinates the equatioikas of the formAx? + By? +2GxX +
2Fy +d =0,whereA=(a+b—-5s)/2,B=(a+b+5s)/2.

If A =0andG # 0, thenK is a parabola, and after the change of co-ordinates
x' = X"+ (F? — Bd)/2BG, y = y’ — F/B, we can write the equation df as
By 4 2GX’ = 0. The other case whef is a parabola is wheB = 0 andF # 0, then
we use the change of co-ordinatés= x” — G/A, y =y’ + (G2 — Ad)/2AF to write
the equation oK asAx’? + 2Fy’ = 0.

If K is not a parabola, theB# 0orA=G =0o0rB = F = 0. In these cases let
u=G/Aif AZ20andu=0if A=0,andletv = F/Bif B 0Oandv=0if B=0.
After the change of co-ordinates= x” — u, y' = y” — v, we can write the equation of
K asAx”? + By”? + D = 0, whereD = d — u? — v2.

It is important to note that althougp is not unique, it is only determined up to a
multiple of = in general, and is completely arbitraryKfis a circle, the final form of the
equation is unique.

As described in [2], the quantitids = a + b, I, = ab— h? and

a h g
Is=detlh b f
g f d

are invariant under translation and rotation of the axes. TheréfoereA + B, |, = AB
and ifK is not a parabola, thelz = ABD.

Key Observation. K is an ellipse with semi-minor axis of length 1 if and only if
O<A<B=-Dor0O> B> A= —D. Ineither case we hav& + D)(B+ D) =0,
and after multiplying byAB)? and expanding, we obtain

124+ 14lls+13=0. (1)

This equation is also satisfied i is the union of two parallel lines or a double line,
since this is equivalent tp = I3 = 0.

Our condition is equivalent to the condition in [2], which says thadt iis an ellipse,
then it has semi-minor axis of length 1 if and onlyaif= 1 is the larger root of the
quadratic equatiohZA? + l1l213x + 13 = 0.

The left-hand side of (1) is a homogeneous polynomial of degreeaghind, f, g,

h, sincely is a homogeneous polynomial of degiefor k = 1, 2 and 3.

We now consider the centres of the four spheres in the plane. If they are all collinear,
then, of course, there are infinitely many lines tangent to all four spheres. In all other
cases there are at most two pairs of parallel lines passing through all four centres.

Any four points on an ellipse form a convex quadrilateral, so if the four centres do
not form a convex quadrilateral, then there is no ellipse through them and there are at
most four lines tangent to all the four spheres.



Lines Tangent to Four Unit Spheres with Coplanar Centres 495

From now on we assume that the four centres form a convex quadrilateral. We can
then choose co-ordinates such that the intersection of the diagonals is the origin, and
the four centres have co-ordinates = (uq, 0), ¢ = (xUp, Up), c3 = (—us, 0) and
Cs = (—auy, —Ug) Withu; > O0forl<i < 4.

Let

Qo(X, y) = (U2X + (Ug — aUz)y — U1U2)(UgX + (U3 — ala)y + U3Ua)
be the product of the equations of the lirgs, andcscy, and let
Q1(X, y) = (U2X — (U3 + aUz)y + UpU3g) (UgX — (Ug + ala)y — U1Ua)

be the product of the equations of the lirigs; andc;c,. Our choice of scaling ensures
that Qo (0, 0) = Q41(0, 0) = —uyusuzus < 0, which we use later.

Let Qi(X,y) = Qo(X,y) + t(Qu(X,y) — Qo(x,y)) fort € R and Q. (X, y) =
Q1(X, y) — Qo(X, y). Let

Qi(x, y) = at)x? + 2h(t)xy + bt)y? + g(t)x + f(t)y + d(t)

fort € R U {oo}. Let K; ¢ R? be the conic defined b®;(x, y) = 0. Then the real
pencil of conics passing through, ¢, ¢z andc, is exactly{K; | t € R U {c0}}. As
Qo(0, 0) = Q4(0, 0), K, is the union of the lines;cz andc,c,.

Let A(t), B(t), D(t), 11(t), Io(t) andI3(t) be the values oA, B, D, |4, I, and |3
calculated froma(t), b(t), d(t), f(t), g(t) andh(t). (If K; is a parabola, thed(t) is
not defined, but the others always are.)

The coefficients 0@, are polynomials of degree at most 1t jtherefore the left-hand
side of (1) is a polynomial of degree at most &jrso it has at most six solutions in
K is a union of two lines, not an ellipse, so lines tangent to the four spheres occur at
finite values ot. This means that there are at most six values®fR U {co} such that
K; is an ellipse with semi-minor axis of length 1, and hence there are at most twelve
lines tangent to all four spheres.

The quadratic equatiofy(t) = 0 has two rootsf; = (,/UzUs — M)z/((ul +
uz)(uz + us)) andty = (,/u2uz + M)Z/((ul + u3z)(Uz + Uyg)). It is easy to check
thatO<t; <t, < 1.

We can writel(t) = n(t — t1)(t — tp), wheren = a,b, — h?, is the coefficient
of t2in I,(t). n is negative, because it is the discriminant of the homogeneous degree 2
component 00Q.. (X, y), andK , is the union of two intersecting lines.

Thereforel,(t) = A(t)B(t) > 0if and only ift; <t < t;, soK; is an ellipse if and
onlyift; <t < to.

By direct calculation,

A (tl + t2> Uz + (14 o) uUs — v/ (UrUs + (14 a?)UaUs)? — 4UzUaUsly
2 o 2 ’

which is clearly positive. ThereforA(t) > 0 fort € (ty, tp). (This is the point where
the fact thatQo(0, 0) = Q1(0, 0) < Ois used.)

The graphs ofA(t) and B(t) are two branches of a hyperbola, possibly each degen-
erating into the union of two rays, if the hyperbola degenerates into the union of two
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intersecting lines. A#\(t) < B(t) for all t, the fact thatA(t) > O fort € (3, tp) implies
thatB(t) > O for allt andA(t) > Oifand only ift; <t < to. A(t;) = A(t;) = 0 and
At) <Oift <tyort > t.

As K; always has real points, we must havét) < 0 fort; <t < t,. Therefore the
ellipses we are looking for correspond to solution8¢f) + D(t) = O witht; <t < to.

We also haves(t) = yt(t — 1), wherey is independent df. This can be verified by
direct calculation. Another way to see it is tHgtt) = 0 means thaK; is degenerate.
This only happens dt= 0,t = 1 andt = oo, this is why we get a quadratic instead of
the expected cubic. Furthermoge,> 0, since ift; <t < t;, thenA(t) > 0, B(t) > 0
andD(t) < 0. This inequality can also be derived by calculating the explicit formula
for y.

We now consider three cases.

Casel: No two sides of the quadrilaterakc;csc4 are parallel This is equivalent to
O0<t; <th <1.NowA() < 0,D(0) = A(ty) = 0. We have

ls®) oyt -1

PO= L0 " n—wi-t

The inequalitieyy > 0 andn < 0 imply that lim_.,— D(t) = co. Both A(t) and D(t)
are continuous on [@;), therefore there existstac (0, t;) such thatA(t) + D(t) =
0. Similarly, there exists & € (t, 1) such thatA(t) + D(t) = 0. This means that
B(t) + D(t) = 0 can have at most four solutions, giving at most eight lines.

Case2: Two sides of quadrilateralic,cscy are parallel but the other two are nowe

may assume thatc, andc,c; are parallel. This is equivalentto t; < t, = 1. By

the same argument as before, there exists(0, t;) such thatA(t) + D(t) = 0. Now

D(t) = yt/(n(t — t1)), so the graph of-D(t) is a hyperbola, and so is the union of

the graphs ofA(t) and B(t). Two hyperbolas intersect in at most four points, therefore
there are at most three solutionsB@) + D(t) = 0. There is one pair of parallel lines
passing through the four centres, therefore there are at most eight lines tangent to the
four spheres.

Case3: c1CoC3¢, is a parallelogram In this case; = 0,t; = 1 andD(t) = y/npisa
constant. Therefore there are at most two solutionrB(t9 + D(t) = 0, there are two
pairs of parallel lines passing through the four centres, so there are at most eight lines
tangent to the four spheres.

It is easy to construct examples with eight common tangents. The example already
givenin [2] is if the four centres form a square with sides of lemgthherey/2 < e < 2.
Of course, small perturbations of this configuration will also work. O

If we do not require the radii of the spheres to be equal, then it is possible to construct
four spheres with more than eight common tangent lines. We give a construction with
twelve common tangent lines. Theobald proved in [3] that if the centres of four spheres
of not necessarily equal radiusli¥ are not coplanar and the number of common tangent
lines is finite, then this number is at most 12. A continuity argument then implies that the
bound 12 also holds if the centres are coplanar, so our example attains the maximum.
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Letl be the line with direction vectarl, 1, 1) passing through the pOiI(l%, 0, —%).
The points(0, 1, 0), (—+/3/2, —3, 0) and (v/3/2, —3, 0) form a regular triangle. The
line| is at distance; = +/26/6 from each one of them, so it is tangent to the spheres
of radiusr; centred at these three poinitss at distance, = +/2/6 from the origin, so
let the fourth sphere be the sphere of radiusentred a0, 0, 0). The linel is tangent
to these four spheres. This configuration of spheres has a symmetry group of order 12,
generated by reflections in tikg-plane, thexz-plane and a rotation throughr 23 about
thez-axis. The lind is not fixed by any of these symmetries, therefore it has 12 distinct
images under the action of the group, each of which is a common tangent line to the four
spheres. It can be verified by a direct calculation that there are no other common tangent
lines.

A similar example can be constructed with any direction vector not parallel or per-
pendicular to thexy-plane, and such that the angle between its orthogonal projection in
thexy-plane and the-axis is not an integer multiple of/6.
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