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Abstract. Continuing and extending the analysis in a previous paper [15], we establish
several combinatorial results on the complexity of arrangements of circles in the plane. The
main results are a collection of partial solutions to the conjecture that (a) any arrangement
of unit circles with at least one intersecting pair has a vertex incident to at most three circles,
and (b) any arrangement of circles of arbitrary radii with at least one intersecting pair has
a vertex incident to at most three circles, under appropriate assumptions on the number of
intersecting pairs of circles (see below for a more precise statement).

1. Introduction

In this paper we study the combinatorial complexity of arrangements of circles in the
plane. The main motivation for our study is the following conjecture, whose parts (a)
and (b) have been posed by A. Bezdek for the case of unit circles [5] (see also [3] and
[4] for related conjectures), and parts (c) and (d) are extensions to the case of arbitrary
circles. This conjecture extends the classical Sylvester–Gallai problem (see [13]) to the
case of circles.
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Conjecture 1.1.

(a) LetC be a finite family of unit circles in the plane, at least two of which intersect.
Then there exists an intersection point that is incident to at most three circles
of C.

(b) Same as(a), under the additional assumption that every pair of circles ofC
intersect.

(c) LetC be a finite family of arbitrary circles in the plane, such that at least two of
them intersect and the number P of intersecting pairs satisfies P≥ β|C|q, where
β is a sufficiently large constant and where q is the maximum size of apencilof
C, namely, a subset all of whose elements are incident to the same pair of points.
Then there exists an intersection point that is incident to at most three circles
of C.

(d) Let C be a finite family of arbitrary circles in the plane, such that every pair of
circles inC intersect, and such thatC is not a single pencil. Then there exists an
intersection point that is incident to at most three circles ofC.

Conjecture 1.1(b) has been proven in a preceding paper of Pinchasi [15]. In fact, it
has been shown there that ifC consists of at least five pairwise-intersecting unit circles,
then there exists an intersection point incident to just two circles. That paper also gives
an example of four pairwise-intersecting unit circles where every intersection point is
incident to three circles. This is done as follows. Choose three points on one circle,a,
such that they form an acute triangle. Letb, c andd be the three unit circles different
from a and passing through pairs of these three points. It is not hard to show thatb, c
andd pass through a common point.

This example can be extended to yield a family of any number of unit circles (not
every pair of which intersect) where every intersection point is incident to three circles,
and where the intersection graph of the circles is connected. For example, one can
build larger “tree-like” examples by repeatedly adding triplets of unit circles using the
following procedure: Consider first that arc of, say,b which lies outside ofa, c andd,
then choose three points close to each other on this arc, so that the three unit circles
e, f andg, which are different fromb and pass through pairs of the selected points, are
disjoint froma, c andd. Notice that every intersection point determined by the family
{a,b, . . . , g} has degree 3.

Another simple construction proceeds as follows. LetR be a rhombus of edge length
2 and with angles> 60◦ and consider a simple connected cluster of congruent copies of
R glued to each other in an edge-to-edge manner. The unit circles which are centered
at the vertices and at the midpoints of these rhombi form a family of unit circles where
each intersection point has degree 3. One can also add triplets of unit circles to this
arrangement, in the same way described above, to obtain more complicated examples
with the same property.

Finally, we note that it is much easier to establish the existence of a vertex incident to
no more than five circles (in all versions of the conjecture). Such an argument is given
in [7]. However, reducing “five” to “four” (let alone “three,” as in the conjecture) is not
easy.

In this paper we prove various special cases of the other three parts of Conjecture 1.1.
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We first study Conjecture 1.1(d), and prove it in the case thatn, the size ofC, is
sufficiently large (see Theorem 4.1). We then tackle Conjecture 1.1(a), and prove it in
the case thatn is sufficiently large and the number of pairs of intersecting circles inC is at
leastβn, for an appropriate absolute positive constantβ (see Theorem 4.5). Finally, we
give a proof of Conjecture 1.1(c), under the stronger assumption thatP ≥ β|C|(q+|C|1/3)
for an appropriate absolute constantβ (see Theorem 4.8). We also note that part (c) of
the conjecture fails ifP ≤ |C|q/2 (see the remark at the end of Section 4).

Someof the technical tools that we develop for our solutions are, in our opinion, of
independent interest. The main set of tools deals with faces of degree 2 in the arrangement
A(C) of C. With the possible exception of the unbounded face, these faces are either
“lenses” (contained in the interiors of the two incident circles) or “lunes” (contained in
the interior of one incident circle and in the exterior of the other). We derive various
upper bounds for the number of these faces: In case (b) it was shown in [15] that the
number of lunes is at most three1 and the number of lenses is at mostn. In case (d) we
show that the number of lunes is at most 2n − 2 and the number of lenses is at most
18n. In case (a) we show that the number of lenses is at mostO(n4/3 logn) (and the
number of lunes is at mostn). In case (c) we show that the number of lenses and lunes
is O(n3/2+ε), for anyε > 0 (where the constant of proportionality depends onε).

The study of lenses and lunes has also been followed in [6], for similar goals. It is also
reminiscent of the study of lenses in arrangements of “pseudo-parabolas” by Tamaki and
Tokuyama [20].

Another collection of results that may be of independent interest relates the number
V of vertices in an arrangement of circles and the numberP of intersecting pairs of
circles. Specifically, we first show that in an arrangement of unit circles one always has
V = Ä(P) (see Theorem 5.1). The same result also holds for arrangements of general
circles, provided thatP ≥ β|C|(q + |C|1/3), for some sufficiently large constantβ (see
Theorem 5.4).

The paper is organized as follows. After introducing some notations in Section 2, we
prove in Section 3 the above-mentioned upper bounds on the number of lunes and lenses
in the various kinds of arrangements of circles under consideration.

We then show, in Section 4, the existence of an intersection point incident to at
most three circles, in the various arrangements of circles under consideration, under
appropriate additional conditions, as mentioned above.

Finally, in Section 5 we exploit the machinery developed in the paper and prove, for
an arrangement ofn unit or arbitrary circles, thatV = Ä(P) (for arbitrary circles, under
the additional assumptions made above).

2. Preliminaries

Throughout this paperC denotes a finite family of circles in the Euclidean plane.
We usually denote a circle by the letterC, possibly with some modifier (subscript or

1 Actually, this was shown under the additional assumption thatA(C) does not contain any vertex incident
to just two circles. Nevertheless, recent unpublished work by Last and Pinchasi show that this is true for any
arrangement of pairwise-intersecting unit circles.
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Fig. 1. A lens and a lune.

superscript). The closed disk bounded by that circle is denoted byD, and its center by
o, with the same modifier.

Definition 2.1. Let C be a family of circles in the plane. LetC1,C2 be two circles in
C that intersect at two distinct points,A and B. We call D1 ∩ D2 a lens if no circle in
C\{C1,C2}meets(D1∩ D2)\{A, B}. We then say that bothC1 andC2 support that lens
(see Fig. 1).

We call D1\int D2 a lune if no circle in C\{C1,C2} meets(D1\int D2)\{A, B}. We
then callC1\int D2 the longer arc of the lune and say thatC1 supports the longer arc of
that lune.

Whenever we refer to twointersectingcircles we mean two circles that either intersect
at two distinct points or are tangent.

For a circleC and pointsa,b onC which are not antipodal, we denote by
_

C(ab) the
closed smaller arc ofC delimited bya andb.

For two distinct pointsa andb in the plane, we denote byab the line througha and
b. We denote by

−→
ab the closed ray that emanates froma and containsb. The closed line

segment betweena andb is denoted by [ab].
Let p,q, r be three noncollinear distinct points in the plane. We denote by∠pqr the

closed convex region bounded by the rays−→qp and−→qr . The angular measure of∠pqr is
denoted by]pqr. Therefore 0< ]pqr < π .

In a previous paper [15] and in more recent unpublished work by Last and Pinchasi,
the following result is proved.

Theorem 2.2[15]. A family of n pairwise-intersecting unit circles in the plane deter-
mines at most three lunes and at most n lenses.

In the following section we extend this result for more general arrangements of circles.
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3. Bounding the Number of Lunes and Lenses in Arrangements of Circles

In this section we obtain upper bounds on the number of lunes and lenses in various types
of arrangements of circles: arrangements of pairwise-intersecting circles, arrangements
of unit circles, and arrangements of arbitrary circles (in the two latter cases, not every
pair of circles is intersecting). These results, besides being of independent interest, are
needed for showing that such arrangements, under additional assumptions, must contain
vertices incident to at most three circles.

3.1. The Number of Lunes in a Family of Pairwise-Intersecting Circles

Inthis subsection we prove the following theorem.

Theorem 3.1. A family of n pairwise-intersecting circles in the plane determines at
most2n− 2 lunes.

Definition 3.2. Let C be a family of circles. We say thatC is apencilif either there are
two distinct points that belong to every circle inC, or the circles inC are pairwise tangent
at a common pointP. We sometimes refer to the latter case as adegenerate pencil.

Observe that ifC is a nondegenerate pencil, then it determines exactly 2n− 2 lunes.
This shows that Theorem 3.1 is tight in the worst case.

Let C be a family ofn pairwise-intersecting circles in the plane. Define a graphG
whose vertices are the centers of the circles inC, and whose edges connect pairs of
centers whose associated circles support the same lune. By drawing the edges ofG as
straight segments, we obtain a plane embedding of this graph.

Observe that unlessC is a pencil, there are no multiple edges inG. Indeed, suppose
to the contrary that there existC1,C2 ∈ C such that bothL1 = D1\int D2 and L2 =
D2\int D1 are lunes. Denote the intersection points ofC1 andC2 by a,b. These points
partitionC1 into two arcs, one of which is the outer arc ofL1 and the other is the inner
arc ofL2. Hence neither of the relative interiors of these arcs meets another circle, so all
circles inC pass througha andb.

Lemma 3.3. G is planar.

Proof. We will show that the plane embedding ofG defined above has no pair of
crossing edges. This will be a special case of the following more general lemma, which
will be needed when we later consider families that are not pairwise intersecting.

Lemma 3.4. Let C1,C2,C3,C4 be four distinct circles,such that both L1 = D2\int D1

and L2 = D4\int D3 are lunes, and such that all pairs of these circles, with the possible
exception of the pair(C2,C4), are intersecting. Then the line segments[o1o2] and[o3o4]
do not intersect.
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Fig. 2. Case 1 in the proof of Lemma 3.4.

Remark. The proof of Lemma 3.4 applies also to the case where some of the inter-
secting circles may be tangent to each other. When reading the proof below, the reader
should keep in mind that the two points of intersection of a pair of circles may coincide.

Proof of Lemma3.4. We need the following simple observation:

Observation 3.5. Let C1 and C2 be two intersecting circles, and denote by p the center
of the arc C1 ∩ D2. Then o2 lies on the ray−→o1 p.

SinceL1 is a lune, eitherD3 containsL1 or D3 is disjoint from the interior ofL1; the
same two possibilities hold forD4. We consider the following subcases:

Case1: D3 is disjoint from the interior of L1. We have to show thato4 does not lie inside
the convex unbounded regionK that is bounded by the rays−−→o3o1, −−→o3o2 and by the line
segment [o1o2]. Denote bya,b the intersection points ofC1 andC2. Denote byp the
intersection point of−−→o3o1 with C1 that lies outsideD3. The pointp is the farthest point
from o3 onC1 (see Fig. 2). It suffices to show thato4 is not inside∠o2o1 p.

Let γ be the arcC1 ∩ D3. Clearly, p /∈ γ . Let q be the midpoint of the arcC1 ∩ D2;
it is the intersection point of−−→o1o2 with C1. SinceD3 is disjoint from the interior ofL1,
we haveq /∈ γ . Denote byδ the arcC1 ∩ D4. Observe thatδ ⊆ γ , for otherwiseC1

would intersect the interior ofD4\int D3, contradicting the assumption thatL2 is a lune.
Hence, by Observation 3.5,o4 is on a ray that emanates fromo1 and crossesγ .

We claim thatγ , and thusδ too, is disjoint from
_

C1(pq). To show this, denote byr
the midpoint ofγ ; clearly,r is the point onC1 antipodal top. Recall that bothp and

q do not lie inγ . Therefore, ifγ ∩
_

C1(pq) 6= ∅, thenγ ⊆
_

C1(pq). This however is

impossible, sincep andr are antipodal points onC1 and thus cannot both lie in
_

C1(pq).

Hence,o4 does not lie on any of the rays that emanate fromo1 and cross
_

C1(pq), i.e,
o4 /∈ ∠o2o1 p.

Case2: D3 ⊃ L1 and D4 is disjoint from the interior of L1. Rotate the plane so that
the lineo1o2 becomes horizontal, ando2 is to the right ofo1. Without loss of generality,
assume thato3 is in the closed halfplane aboveo1o2. We have to show thato4 does not
lie inside the convex unbounded regionK that is bounded by the rays−−→o3o1,−−→o3o2 and by
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Fig. 3. Case 2 in the proof of Lemma 3.4.

the line segment [o1o2]. Denote bya,b the intersection points ofC1 andC2, so thata is
belowo1o2. Denote byp the intersection point of−−→o3o2 with C2 that lies outsideD3; this
point is farthest fromo3 alongC2.

Denote byu and v the intersection points ofC3 and C2, so thata,u, v,b are in
clockwise order alongC2 (see Fig. 3).

Denote byδ the arcC1 ∩ D4. Denote byx, y the intersection points ofC3 andC1, so
thatx,u, v, y are in clockwise order alongC3 (by assumption, bothu, v lie insideC1, so
no interleaving ofx, y with u, v is possible). Denote byγ the arcC1∩ D3. The pointsx
andy are the endpoints ofγ . Clearly,δ ⊆ γ , for otherwise, arguing as above,C1 would
intersect the interior ofD4\D3, contradicting the assumption thatL2 is a lune. Denote
by q ∈ C1 the intersection point of−−→o1o2 with C1; this is the midpoint of the arcC1∩ D2.

Assume to the contrary thato4 lies inside the regionK . Let r be the midpoint ofδ.
Sinceo4 is below or ono1o2, we conclude, by Observation 3.5, thatr is also below or

ono1o2. Therefore,r ∈
_

C1(xq).

Since we assume thatD4 is disjoint from the interior ofL1, we haver ∈
_

C1(xa) and

alsoδ ⊆
_

C1(xa).
We next claim thatD4 cannot contain any of the pointsa,u, x as an interior point.

Indeed,a cannot be interior toD4, for otherwiseD4 would intersect the interior ofL1,
which is impossible. Ifx were interior toD4, then D4 would intersect the interior of
the arcC1\D3. Therefore,C1 would intersect the interior ofD4\D3, contradicting the
assumption thatL2 is a lune. Finally, ifu were interior toD4, thenD4 would intersect
the interior of the arcC2\D3. In this caseC2 would intersect the interior ofD4\D3,
contradicting the assumption thatL2 is a lune.

We may also assume thatC3 ∩ D4, which is the inner arc ofL2, is contained inD1.
Otherwise,D1 would be disjoint fromL2, so we could apply Case 1, switching the roles
of L1 andL2.

Let e ∈ D1 be one of the endpoints of the arcC3 ∩ D4. Denote by1 the region

bounded by
_

C1(xa),
_

C2(au),
_

C3(ux).
From the convexity ofD4, the line segment [er] is contained inD4. It intersects the

boundary of1 at r and at another pointf which lies either on
_

C3(ux) or on
_

C2(au)
(becausee∈ int D4).



472 N. Alon, H. Last, R. Pinchasi, and M. Sharir

Fig. 4. Case 3 in the proof of Lemma 3.4.

Assume first thatf ∈
_

C3(ux). By the preceding claim, we haveC3 ∩ D4 ⊂
_

C3(ux).

By Observation 3.5,o4 lies on a ray that emanates fromo3 and crosses
_

C3(ux). In other
words,o4 ∈ ∠uo3x. Therefore,o4 /∈ ∠po3o1, a contradiction.

Assume next thatf ∈
_

C2(au). The preceding claim implies thatC2∩ D4 ⊂
_

C2(au).

By Observation 3.5,o4 lies on a ray that emanates fromo2 and crosses
_

C2(au). Therefore,
o4 /∈ ∠Po2o1, again a contradiction.

Case3: D3 ⊃ L1 and D4 ⊃ L1. Again, rotate the plane so that the lineo1o2 is horizontal
ando2 is to the right ofo1, and assume thato3 is in the closed halfplane aboveo1o2. We
have to show thato4 is not inside the convex unbounded regionK that is bounded by the
rays−−→o3o1,−−→o3o2 and the line segment [o1o2].

Note that in this caseC4 andC2 must intersect. Indeed, we have assumed thatD4 ⊃
D2\int D1. Thus, if C4 does not intersetC2, then D4 ⊃ C2. However, then, since
C2\D3 6= ∅, C2 has to intersect the interior ofL2 = D4\int D3, which is impossible.

Denote byγ the arcC2∩ D4. Denote byp the intersection point of−−→o3o2 with C2 that
lies outsideD3; this is the point onC2 farthest fromo3 (see Fig. 4).

Clearly,p /∈ D3. SinceL2 = D4\int D3 is a lune, it follows thatp /∈ D4 (for otherwise
C2 would have to intersect the interior ofL2). We conclude thatp /∈ γ . Denote byq, s
the intersection points ofo1o2 with C2, so thats is outsideD1; the points is the midpoint
of the arcC2\D1. SinceD4 ⊃ L1, we haves ∈ γ . Denote byr the midpoint ofγ . Since

o3 is above or ono1o2, p is below or ono1o2. The pointr cannot lie on
_

C2(qp), for
otherwise, sincep /∈ γ , the subarc ofγ betweenr ands contains the intersection ofC2

with the closed halfplane aboveo1o2, which is impossible sincer is the midpoint ofγ .
Hence,o4, which lies on−→o2r (by Observation 3.5), is outside∠po2o1. This completes
the proof.

The planarity ofG already implies thatC determines at most 3n−6 lunes (unlessC is
a nondegenerate pencil, in which caseG contains multiple edges; however, in this case
C is easily seen to have exactly 2n− 2 lunes). We can, however, improve this bound and
make it tight (2n− 2), by observing thatG is almost a bipartite graph. This is the goal
of the remainder of this section.
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Fig. 5. The configuration in Claim 3.6.

Claim 3.6. Let C,C1,C2 be three distinct pairwise-intersecting circles. Suppose that
L1 = D1\int D and L2 = D\int D2 are lunes. Then C2 passes through the two inter-
section points of C and C1. Moreover, the inner arc of L1 is the outer arc of L2.

Proof. See Fig. 5. Denote bya andb the intersection points ofC andC1 (note that
a 6= b). The arcC2 ∩ D is the inner arc ofL2, henceC1 andC2 cannot intersect inside
the interior ofD. The arcC1\D is the outer arc ofL1, henceC1 andC2 cannot intersect
outsideD. ThereforeC1 ∩ C2 ⊂ C, which implies thatC2 passes througha andb.

For the second part, observe that sinceC2 passes througha andb, the outer arc ofL2

is eitherC∩D1 (i.e., the inner arc ofL1) or C\D1. Assume to the contrary that the outer
arc of L2 is C\D1. ThenD2 containsC ∩ D1 which is the inner arc ofL1. SinceL1 is
a lune,D2 must contain also the outer arc ofL1 which isC1\D. SinceD\D2 is a lune,
D2 must containC1∩ D (for otherwiseC1 intersects the interior ofD\D2). The last two
containments imply thatD2 ⊃ D1 which is impossible sinceC1 andC2 intersect ata
andb.

Lemma 3.7. Suppose that C∈ C supports an inner arc of a lune L1, as well as an
outer arc of a lune L2. Then eitherC is a pencil or C supports exactly one inner arc of
a lune and one outer arc of a lune. Moreover, if C is not a pencil, then the inner arc of
L1 is the outer arc of L2.

Proof. Write L1 = D1\int D, L2 = D\int D2, for a (not necessarily distinct) pair of
circlesC1,C2 ∈ C. Denote bya andb the intersection points ofC andC1. If C1 = C2,
thena,b are the only intersection points onC1 (as well as onC), becauseC1\D is the
outer arc ofL1 andC1 ∩ D is the innner arc ofL2. HenceC is a pencil in this case. We
may thus assume thatC1 6= C2.

By Claim 3.6,C2 passes througha,b and the inner arc ofL1 is the outer arc ofL2.
Denote that arc byd. If C contains another inner or outer arc of some lune, then, by the
preceding argument, this arc equalsd. However,d can be an inner arc of at most one
lune and an outer arc of at most one lune.

Proof of Theorem3.1. We prove the theorem by induction onn. The theorem clearly
holds forn = 2. Assume that it holds for alln′ < n and consider the case ofn circles.
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Denote byC+ the set of all circles inC that support the outer arc of some lune. Denote
by C− the set of all circles inC that support the inner arc of some lune.

Case1: C+ ∩ C− = ∅. In this caseG is bipartite. As is well known, bipartite planar
graphs onn vertices have at most 2n− 4 edges, so the theorem holds in this case.

Case2: C+ ∩ C− 6= ∅. Let C be a circle inC+ ∩ C−. By Lemma 3.7, eitherC is a pencil
or C supports exactly one inner arc of a luneL1 = D1\int D and one outer arc of a lune
L2 = D\D2, and we haveC ∩ D1 = C\int D2. If C is a (nondegenerate) pencil, then
clearly it admits exactly 2n− 2 lunes. IfC is not a pencil, thenC ′ = C\{C} has exactly
one lune less thanC; indeed, the lunesL1, L2 no longer exist, but instead we gained the
lune D1\int D2. By the induction hypothesis, there are at most 2(n− 1)− 2 lunes inC ′
and therefore at most 2n − 3 ≤ 2n − 2 lunes inC. This establishes the induction step
and thus completes the proof.

3.2. The Number of Lenses in a Family of Pairwise-Intersecting Circles

In this subsection we prove the following theorem.

Theorem 3.8. A family of n pairwise-intersecting circles in the plane determines at
most18n lenses.

Proof. Let C be a family ofn pairwise-intersecting circles in the plane. We prove the
theorem by induction onn. The theorem clearly holds forn ≤ 36, because the number
of lenses is at most

(n
2

)
< 18n, for n ≤ 36. Suppose that the theorem holds for alln′ < n

and consider the case ofn > 36 circles.

Lemma 3.9. There exists a point interior to at least n/9of the disks bounded by circles
in C.

Proof. Let C0 ∈ C be a circle that has the smallest radiusr . Let D∗0 be the disk of
radius 3r that is concentric withC0. For any circleC ∈ C\{C0}, the area ofD ∩ D∗0 is
minimized when the radius ofC is r andC is fully contained inD∗0. This minimum area
is πr 2. Since the area ofD∗0 is 9πr 2, there is a point inside it that is interior to at least
n/9 of the circles inC.

The constant 9 can be improved to 4, as discussed in Theorem 6.1 of [10].
Without loss of generality, assume that the origin,O, is interior to at leastn/9 of the

circles inC.
We perform an inversionI of the plane with respect toO, effected by the mapping

I (z) = 1/z, using the complex number representation of the plane. This is a one-to-
one continuous mapping from the plane (minus the origin) to itself.I maps circles, not
passing through the origin, to circles. IfC is a circle such thatO /∈ D, thenI mapsint D
onto int I (C). If C is a circle such thatO ∈ D, thenI mapsint D onto the complement
of I (C).
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Observation 3.10. Assume that C1,C2 ∈ C, and O∈ int D1\D2. Let C′1 = I (C1) and
C′2 = I (C2). If D1 ∩ D2 is a lens, then D′2\int D′1 is a lune.

Denote byC ′ the set of all circlesC ∈ C such thatO ∈ D. We have|C ′| ≥ n/9. Since
the intersection of all the disks bounded by the circles inC ′ has a nonempty interior,
there is at most one lens that is supported by two circles inC ′. Denote bỳ the number
of lenses supported by a circle inC ′ and a circle inC \C ′. After performing the inversion
I , we have, by Observation 3.10, at least` lunes in the familyI (C). By Theorem 3.1,
` ≤ 2n− 2.

By the induction hypothesis, the familyC\C ′ determines at most 18(1−1/9)n = 16n
lenses. Hence,C determines at most 16n+ (2n− 2)+ 1< 18n lenses. This establishes
the induction step and thus completes the proof of the theorem.

In Section 3.4 we shall need the following extension of Theorem 3.8:

Lemma 3.11. Let A and B be two families of circles in the plane, such that every circle
in A intersects every circle in B, and there is a point p that is interior to all the disks
bounding the circles of A. Then the number of lenses within the family A∪ B that are
supported by a circle of A and by a circle of B is O(|A| + |B|).

Proof. First note that we may assume, without loss of generality, that every pair of
circles inA intersect. Indeed, ifC1,C2 ∈ A andC1∩C2 = ∅, then, sincep ∈ D1∩ D2,
it must be the case that one ofD1, D2 contains the other disk. Suppose thatD1 ⊂ D2.
We claim that there is no lens that is supported byC2 and by a circle inB. Indeed,
assume that there existsC ∈ B such thatD ∩ D2 is a lens. SinceC1 ⊂ D2, we have
C1∩D ⊂ D2∩D, which means that the arcC1∩D is contained within the lensD2∩D,
which contradicts the definition of a lens. Therefore, we may excludeC2 from A without
decreasing the number of lenses under consideration. Hence we may assume that every
pair of circles inA intersect.

Perform an inversion mapI with respect top. By Observation 3.10, every lens that is
supported by a circle inA and a circle inB becomes a lune, unless it contains the point
p. Moreover, the outer (resp. inner) arc of each such lune is supported by the image of
a circle inB (resp. inA). Clearly, at most one lens can containp.

Denote byI (A) and I (B) the two families that contain the images of the circles of
A and ofB, respectively, under the inversionI .

Every pair of circles inI (A) intersect, and each circle ofI (A) intersects every circle
of I (B). Define a bipartite graphG whose vertices are the circles inI (A) ∪ I (B), and
whose edges are the pairs(C,C′), whereC ∈ I (A), C′ ∈ I (B) andD′\int D is a lune
within the family I (A)∪ I (B). By Lemma 3.4,G is a planar graph. Hence, the number
of edges ofG, which is equal to the number of lunes, the outer arc of which is supported
by a circle fromI (B) and the inner arc of which is supported by a circle inI (A), is
at most 2(|A| + |B|) − 4. Adding the one possible lens that containsp, we obtain the
asserted bound.
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3.3. The Number of Lenses in Arrangements of Unit Circles

We now consider the case of unit circles, and tackle Conjecture 1.1(a).
Our first result shows that the number of lenses inA(C) is subquadratic. We note that

the weaker subquadratic boundO(n3/2) is easy to establish using a forbidden subgraph
argument. (An even weaker bound ofO(n5/3) follows from the more general results of
Tamaki and Tokuyama [20] mentioned in the Introduction.)

Theorem 3.12. The number of lenses inA(C) is O(n4/3 logn).

Proof. Let P denote the set of centers of the circles inC and letD be the set of disks
of radius 2 centered at the points ofP (each disk inD is concentric with a circle ofC
and its radius is twice as large).

Let G be the bipartite containment subgraph ofD× P; that is, the edges ofG are all
pairs(D, p) ∈ D× P such thatp ∈ D. We apply the batched range-searching technique
of Katz and Sharir [12] toD and P. This technique computesG and represents it as
the disjoint union of complete bipartite graphs{Di × Pi }, so that

∑
i (|Di | + |Pi |) =

O(n4/3 logn).
Note that for each lens incident to circlesC,C′, the centerp′ of C′ lies in the diskD

of radius 2 concentric withC. Hence(D, p′) appears in one of the graphsDi × Pi .
Hence it suffices to show that the number of lenses “within” each of the graphsDi×Pi

is linear in|Di | + |Pi |. (Note that a lensϕ in A(C) is also a lens in the arrangement of
any subset ofC that contains the two circles incident toϕ.) More precisely, letCi denote
the set of circles inC that are concentric with the disks inDi , and letC̄i denote the set of
circles ofC centered at the points ofPi . Our goal is to estimate the number of lenses in
Ci ∪ C̄i .

Since every “bichromatic” pair of circles inCi × C̄i intersect, the centers of the circles
in Ci × C̄i all lie in some squareR of side at most 8. We partitionR into 64 small
subsquares, each of side 1, and observe that any pair of circles centered at the same
subsquare intersect each other. Now, instead of considering the setCi ∪ C̄i , consider the
O(1) setsC(p)i ∪ C̄(q)i , whereC(p)i is the set of circles ofCi whose centers lie in thepth
small subsquare, and̄C(q)i is the set of circles of̄Ci whose centers lie in theqth small
subsquare. Since each pair of circles inC(p)i ∪ C̄(q)i intersect, it follows from Theorem 2.2
that the number of lenses in that set isO(|C(p)i |+ |C̄(q)i |). Summing these bounds over all
p,q, we conclude that the number of lenses inCi ∪ C̄i is O(|Ci | + |C̄i |). This completes
the proof of the theorem.

Remark. We conjecture that the real bound on the number of lenses is near-linear in
n. However, proving such a bound is likely to be very hard. This is suggested by the
following consideration. LetS be a set ofn points in the plane, and letC be the family
of unit circles centered at the points ofS. For a pair of pointsp,q ∈ S, the distance
|pq| is 2 if and only if the two circles centered atp andq are externally tangent to each
other. If no two of these points of tangency coincide then, by perturbing the points of
S slightly and randomly, we can ensure that at least a constant fraction of the number
of these tangencies become lenses in the perturbed arrangement. The best known upper
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bound for the number of repeated distances in a set ofn points in the plane isO(n4/3)

[17] (see also [13] and [14]), whereas the best known construction gives only a slightly
superlinear number of repeated distances [13]. This upper bound has resisted any attempt
of improvement for the past 15 years. Hence, improving our bound on the number of
lenses belowO(n4/3) is likely to be hard. We feel confident, though, that it should not
be too difficult to improve the bound toO(n4/3). (We note, though, that, because of
the issue of possibly coinciding tangencies, the repeated distances problem is not fully
reducible to the lenses problem.)

3.4. The Number of Lenses and Lunes in Arrangements of Arbitrary Circles

In this subsection we study general arrangements of circles of arbitrary radii in the plane,
and tackle Conjecture 1.1(d). We first have the following upper bound on the number of
lenses and lunes in such an arrangement.

Theorem 3.13. The number of lenses and lunes determined by a family of n circles
of arbitrary radii in the plane is O(n3/2+ε), for any ε > 0, where the constant of
proportionality depends onε.

Proof. LetC be a family ofn circles of arbitrary radii. LetG be the intersection graph of
C. That is, the vertices ofG are the circles ofC and the edges ofG connect all intersecting
pairs of circles.

We run a batched range-searching procedure for constructingG and for representing
it as the disjoint union of a family of complete bipartite graphs{Ai × Bi }. A standard
way of doing this is as follows. Represent a circleC whose center is at(a,b) and whose
radius isr by the point

pC(a,b, r,−(r 2− a2− b2)) ∈ R4,

and by the pair of hyperplanes

h+C : x4 = 2ax1+ 2bx2+ 2r x3+ (r 2− a2− b2),

h−C : x4 = 2ax1+ 2bx2− 2r x3+ (r 2− a2− b2).

Note that a circleC of radiusr centered at(a,b) and a circleC′ of radiusR centered at
(ξ, η) intersect if and only if

(R− r )2 ≤ (a− ξ)2+ (b− η)2 ≤ (R+ r )2,

or

2aξ + 2bη + 2r R+ (r 2− a2− b2) ≥ −(R2− ξ2− η2)

and

2aξ + 2bη − 2r R+ (r 2− a2− b2) ≤ −(R2− ξ2− η2).

In other words, they intersect if and only if the pointpC lies aboveh−C′ and belowh+C′ .



478 N. Alon, H. Last, R. Pinchasi, and M. Sharir

Hence, the range-searching problem that we face is: We have a setP of n points inR4,
all lying on the paraboloidπ : x4 = x2

1+x2
2−x2

3, and a setW of n wedges, we wish to find
a compact representation of the set of all pairs of point–wedge containment. Applying
standard range-searching machinery (see, e.g., [1] and [2]), we can represent the set of
these pairs as the disjoint union of a family of complete bipartite graphs{Pi ×Wi }, such
that the overall size of the vertex sets of these graphs isO(n3/2+ε), for anyε > 0, with the
constant of proportionality depending onε. We then transform each of the graphsPi×Wi

to the corresponding graphAi × Bi , whereAi is the set of circles whose representing
points are inPi andBi is the set of circles whose representing wedges are inWi .

Clearly, if two of the given circlesC,C′ form a lens or a lune, then they intersect, so
the pair(C,C′) appears in one of the bipartite graphsAi × Bi , and forms a lens or a
lune inAi ∪ Bi .

We fix a graphAi × Bi , and denote it asA× B for short. Note that each circle inA
intersects every circle inB, but there may be disjoint pairs of circles inA × A and in
B × B.

Suppose that the smallest circle inA ∪ B is C ∈ A, and letr be the radius ofC. We
argue as in the proof of Lemma 3.9. That is, letD0 be the disk of radius 3r concentric
with C. Each circleC′ ∈ B intersectsC and has radiusr ′ ≥ r , so, arguing as above, the
intersection ofD0 with the diskD′ thatC′ bounds has area at leastπr 2. Hence, we can
placeO(1) points inD0 so that any suchD′ contains at least one of them. This implies
that we can decomposeB into O(1) familiesB(1), . . . ,B(p) so that all the circles in the
same family have a common point in their interiors.

Lemma 3.11 implies that the number of “bichromatic” lenses inA∪B( j ) is O(|A| +
|B( j )|). The analysis of lunes is a bit more involved. First, as implied by Lemma 3.4,
the number of bichromatic lunes whose inner arc is supported by a circle ofB( j ) and
whose outer arc is supported by a circle ofA is O(|A| + |B( j )|). (Note that, as in the
proof of Lemma 3.11, we first argue that we may assume that every pair of circles inB( j )

intersect; indeed, if this family contains two circlesC,C′ such thatC is fully contained
in the interior ofC′, then, as is easily verified,C cannot support the inner arc of any lune
under consideration, so it can be ignored.)

It remains to consider lunes whose inner arc is supported by a circleC ∈ A and
whose outer arc is supported by a circleC′ ∈ B( j ). Suppose first that the radius ofC is
smaller than or equal to the radius ofC′. Then the outer arc of the lune is larger than
half of C′, and consequently the number of these lunes is at mostO(|B( j )|). Any other
lune under consideration has its inner arc supported by a circle inA whose radius is at
leastr . LetA′ denote the subset of these circles. Arguing as above, we can partitionA′
into O(1) subfamilies, so that all circles in the same subfamily have a common point
in their interiors. For each such subfamilyA′′, Lemma 3.4 and the analysis given in the
preceding paragraph, imply that the number of bichromatic lunes under consideration
in A′′ ∪ B( j ) is O(|A′′| + |B( j )|). Summing this over all the subfamiliesA′′, we finally
obtain that the overall number of lenses and lunes inA ∪ B( j ) is O(|A| + |B( j )|).

Summing this bound over theO(1) indices j , we conclude that the number of bichro-
matic lenses and lunes inA∪B = Ai ∪Bi is O(|Ai | + |Bi |). Summing this bound over
all bipartite graphsAi × Bi in our decomposition, we conclude that the overall number
of lenses and lunes inC is O(n3/2+ε), as asserted.
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We next derive the following strengthening of Theorem 3.13:

Theorem 3.14. The number of lenses and lunes determined by a family of n circles of
arbitrary radii in the plane with P intersecting pairs is O(n1/2−εP1/2+ε + n), for any
ε > 0, where the constant of proportionality depends onε.

Proof. Clearly, we only need to prove the theorem in the case thatP = o(n2), and we
may also assume thatP > n, for otherwise the complexity of the arrangement isO(n),
so the theorem trivially holds in this case. Putr = n2/P, and choose a random sampleR
of r circles ofC. The expected number of intersecting pairs inR is O(Pr2/n2) = O(r ),
which implies that the expected complexity ofA(R) is O(r ). DecomposeA(R) into
pseudo-trapezoids (as in [16]). Theε-net theory implies that, with high probability, each
pseudo-trapezoid is crossed by at mostO((n/r ) logr ) circles ofC. We can thus assume
that our sampleR is such that the number of pseudo-trapezoids isO(r ) and each is
crossed by at mostO((n/r ) logr ) circles ofC. For any lens or luneL in A(C) there
exists a pseudo-trapezoidτ such thatL is also a lens or lune inA(Cτ ), whereCτ is the
collection of circles ofC that crossτ . By Theorem 3.13, the number of lenses and lunes
in A(Cτ ) is O((n/r )3/2+ε), for anyε > 0. Hence, the total number of lenses and lunes
in A(C) is

O(r ) · O((n/r )3/2+ε) = O(n3/2+ε/r 1/2+ε) = O(n1/2−εP1/2+ε),

as asserted.

Remark. We do not know whether the bound in Theorem 3.13 is tight. The best lower
bound that we can construct isÄ(n4/3). Indeed, construct a setL of n lines and a set
P of n points that have2(n4/3) incidences between them (see, e.g., [11] for such a
construction). Choose a sufficiently small parameterδ > 0, replace each pointp ∈ P
by a circle of radiusδ centered atp, and replace each linè∈ L by a parallel line that
lies abovè at distanceδ from it. We now have2(n4/3) tangencies between the new
circles and lines. Finally, take each of the new lines, move it slightly down and bend
it slightly upwards into a huge circle. It is easily seen that these deformations can be
made so that all the huge circles have the same radius and so that each of the former
tangencies is turned into a lens in the new arrangement. We thus obtain an arrangement
of 2n circles, of only two different radii, that hasÄ(n4/3) lenses. (Similarly, by bending
the lines slightly downwards, we can obtain an arrangement withÄ(n4/3) lunes.)

4. The Existence of Vertices Incident to at Most Three Circles

In this section we tackle parts (a), (c) and (d) of Conjecture 1.1, and derive partial
solutions to them.

4.1. Vertices of Low Degree for Pairwise-Intersecting Circles

In this subsection we establish the following result:
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Theorem 4.1. LetC be a family of n pairwise-intersecting circles in the plane. If n is
sufficiently large andC is not a pencil, then there exists an intersection point incident to
at most three circles.

We need the following easy consequence of Euler’s formula for planar maps, which
has already been used in the previous paper [15]; we include the simple proof for the
sake of completeness.

Lemma 4.2. LetC be a finite family of circles in the plane. For every k≥ 2 denote by
tk the number of vertices ofA(C) that are incident to exactly k circles ofC. Denote by
fk (k ≥ 1) the number of faces ofA(C) that have k edges. Then

t2+ f2+ 2 f1 ≥ 6+
∑
k≥3

(k− 3)tk +
∑
k≥3

(k− 3) fk.

Proof. Denote byV, E, F the numbers of vertices, edges and faces ofA(C), respec-
tively. We have

V =
∑
k≥2

tk, F =
∑
k≥1

fk, E =
∑
k≥2

ktk = 1

2

∑
k≥1

k fk.

By Euler’s formula,V+F = E+1+c, wherec is the number of connected components
of
⋃
C. Therefore,

3
∑
k≥2

tk + 3
∑
k≥1

fk =
∑
k≥2

ktk +
∑
k≥1

k fk + 3+ 3c,

which is easily seen to imply the lemma.

Proof of Theorem4.1. Let tk, fk, for k ≥ 2, be as defined in Lemma 4.2. Note that
we may assume in this case thatf1 = 0. Indeed, if there is a circle which contains just
one intersection point, then it follows from the fact that the circles inC are pairwise
intersecting, thatC is a degenerate pencil, contrary to assumption.

We assume to the contrary thatt2 = t3 = 0 and derive a contradiction. Under this
assumption, Lemma 4.2 implies

V =
∑
k≥4

tk ≤
∑
k≥4

(k− 3)tk ≤ f2− 6.

By Theorems 3.1 and 3.8, the number of bounded faces ofA(C) of degree 2 (i.e., the
lunes and lenses ofC) is less than 20n. Taking into account the unbounded face as well,
we still haveV ≤ f2− 6< 20n.

Claim 4.3. C does not contain a pencil of size≥ 9n1/2.

Proof. Suppose to the contrary that there exists a pencilC ′ ⊂ C of size|C ′| = k ≥ 9n1/2.
Each circle inC\C ′ intersects the circles inC ′ in at leastk distinct points. Hence, if we
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add a circleC1 of C\C ′ toC ′ we obtain at leastk new intersection points. Adding another
circleC2 ∈ C\C ′ yields at leastk− 2 additional new intersection points with the circles
in C ′ (note thatC1 andC2 can share at most two of these intersection points). Continuing
in this manner, adding thej th circle ofC\C ′ will yield at leastk−2 j +2 new intersection
points.

Suppose first thatk < 2n/3. Then we can addk/2 circles ofC\C ′ to C ′, and obtain
at leastk2/4 distinct vertices ofA(C). Since the number of vertices is at most 20n, we
obtaink < 9n1/2, a contradiction.

Suppose then thatk ≥ 2n/3. Adding one circleC ∈ C\C ′ to C ′ yields at least 2n/3
new intersection points, all having degree 2 inA(C ′ ∪ {C}). Since each of these points
must have degree at least 4 inA(C), it follows that C\C ′ must contain at least 2n/3
additional circles, a contradiction that completes the proof of the claim.

Since f2 ≤ 20n it follows that by removing at most 20n edges fromA(C) we obtain
a planar graph without multiple edges. Since the number of edges in such a planar
graph is at most three times the number of its vertices, we obtainE − 20n < 3V , or
E < 80n.

Claim 4.4. If n is sufficiently large, then each vertex ofA(C) is incident to at most
27n3/4 circles.

Proof. Suppose to the contrary that there exists an intersection pointp incident to more
than 27n3/4 circles. LetC ′ denote the subfamily of circles incident top.

By Claim 4.3,C does not contain a pencil of size 9n1/2. Therefore, within the family
C ′, every intersection point other thanp has degree at most 9n1/2. Hence each circle
C ∈ C ′ is incident to at least(27n3/4)/(9n1/2) = 3n1/4 distinct intersection points, soC
contributes at least these many edges toA(C). Hence, the number of edges ofA(C) is at
least 27n3/4 · 3n1/4 = 81n, a contradiction.

By Claim 4.4, each circle inC is incident to at leastn/(27n3/4) > 1
27n1/4 distinct

intersection points, and thus contributes at least these many edges toA(C). Hence the
number of edges ofA(C) is at least127n5/4, which is greater than 80n whenn is sufficiently
large. This contradiction completes the proof of the theorem.

Theorem 4.1 is a partial solution to Conjecture 1.1(d). One may say that Conjecture
1.1(d) is tight, in the sense that we cannot guarantee the existence of vertices incident
to only two circles. We have already seen in [15] that there are configurations of four
pairwise-intersecting unit circles such that every intersection point is incident to exactly
three circles. If we do not restrict ourselves to unit circles, we also have the example
in Fig. 6 of six circles where each intersection point is incident to at least three circles.
This example also has the property that at most two circles pass through any two distinct
points (i.e., no pencils of size> 2 exist). We can add a seventh circle (the dotted one in
Fig. 6) that violates this condition but preserves the property that each intersection point
is incident to at least three circles.
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Fig. 6. An arrangement of six or seven circles where each vertex is incident to at least three circles.

4.2. Vertices of Low Degree in Arrangements of Unit Circles

In this subsection we establish the following result, which provides a partial solution to
Conjecture 1.1(a) posed in the Introduction.

Theorem 4.5. LetC be a collection of n unit circles in the plane. If the number of pairs
of intersecting circles inC is at leastβn, for some sufficiently large constantβ, then
A(C) contains a vertex incident to at most three circles.

Proof. We assume to the contrary thatA(C) does not contain any such vertex, and
derive a linear upper bound onP, the number of intersecting pairs of circles. There
exists a circleC ∈ C that intersects at least 2P/n other circles ofC. Let σ0 denote a
unit disk that intersects the maximum number,ξ , of circles ofC; clearly,ξ ≥ 2P/n, or
P ≤ ξn/2. Denote the set of these circles byCσ0. The centers of all circles ofCσ0 lie in
the diskσ ∗0 that is concentric withσ0 and has radius 2 (note that any circle centered in
σ ∗0 belongs toCσ0). Coverσ ∗0 by seven unit disks (this is easy to do, using a construction
based on the hexagonal grid; see Fig. 7). One of these disks, call itσ1, contains at least
ξ/7 centers. The setC1 of circles centered inσ1 has the property that every pair of its
elements intersect each other, and the intersection points of any such pair lie in the disk
σ ∗1 of radius 2 concentric withσ1; the numberP1 of these pairs is thus at least

(
ξ/7
2

)
. The

sizen1 of C1 satisfiesn1 ≤ ξ , as follows from the maximality ofξ .
As the subsequent analysis will show, a technical problem may arise when these pairs

of circles intersect in too few points, or, more precisely, when there are intersection
points of very high degree (linear inξ ). The following lemma takes care of this problem.

Lemma 4.6. If σ ∗1 contains a vertex incident to more than aξ circles ofC1, for any
constant parameter a, then the number of distinct vertices ofA(C) within σ ∗1 is at least
aξ(aξ − 2)/2.

Proof. Let v be a point inσ ∗1 incident tow ≥ aξ circles ofC1. There may be at most
w/2 tangent pairs of these circles, and the other pairs of them intersect at pairwise distinct
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Fig. 7. Covering a disk of radius 2 by seven disks of radius 1.

points that all lie inσ ∗1 . The number of these points is thus at least(
w

2

)
− w

2
= w(w − 2)

2
≥ aξ(aξ − 2)

2
.

We now coverσ ∗1 , as above, by seven unit disks. One of them, call itσ , has the
following property:

(i) If the condition of Lemma 4.6 holds, thenσ contains at leastaξ(aξ − 2)/14
distinct vertices ofA(C).

(ii) Otherwise, at leastξ(ξ − 7)/686 pairs of circles ofC1 intersect insideσ .

Let Cσ denote the set of circles that intersectσ . By the maximality property ofσ0, we
havenσ = |Cσ | ≤ ξ .

We modify the analysis based on Euler’s formula, given in Lemma 4.2, and apply it to
the arrangement̃A(Cσ ), which is obtained by clippingA(Cσ ) to withinσ . Specifically, let
V, E andF be the sets of vertices, edges and faces ofÃ(Cσ ). (Note that the intersection
points of the circles ofCσ with ∂σ constitute additional vertices of̃A(Cσ ). By shifting
σ slightly, if necessary, we may assume that the number of these new vertices is exactly
2nσ and each is incident to exactly one edge of the clipped arrangement.) We have
|V | + |F | = |E| + 1+ c, wherec is the number of connected components ofσ ∩⋃ Cσ .
We also have

|V | = 2nσ +
∑
k≥2

t (σ )k , |F | =
∑
k≥1

f (σ )k , |E| = nσ +
∑
k≥2

kt(σ )k =
1

2

∑
k≥1

k f (σ )k ,

wheret (σ )k is the number of vertices of̃A(Cσ ) that lie in the interior ofσ and are incident
to exactlyk circles ofCσ , and f (σ )k is the number of faces of̃A(Cσ ) that are incident to
exactlyk edges ofÃ(Cσ ), where each edge that terminates on∂σ is counted twice (all
these edges bound the unbounded face of the clipped arrangement). Hence we have

6nσ + 3
∑
k≥2

t (σ )k + 3
∑
k≥1

f (σ )k = nσ +
∑
k≥2

kt(σ )k +
∑
k≥1

k f (σ )k + 3+ 3c.



484 N. Alon, H. Last, R. Pinchasi, and M. Sharir

Equivalently,

t (σ )2 + f (σ )2 + 5nσ =
∑
k≥4

(k− 3)t (σ )k +
∑
k≥4

(k− 3) f (σ )k + 3+ 3c. (1)

Since we have assumed thatA(C) does not contain any vertex of degree 2 or 3, it
follows that t (σ )2 = t (σ )3 = 0. We next apply Theorem 3.12 toCσ and observe that the
clipping of the arrangement does not affect the asymptotic bound onf (σ )2 provided by
the theorem. Using also the trivial boundf (σ )1 ≤ nσ , we thus obtain∑

k≥4

kt(σ )k = O(n4/3
σ lognσ ) = O(ξ4/3 logξ). (2)

Suppose first that, in the construction ofσ , the condition of Lemma 4.6 did hold, with
a value ofa that will be determined later. In this case, as follows from the lemma and
from the construction, there are at leastaξ(aξ − 2)/14 distinct vertices ofA(C) inside
σ . In this case (2) implies that

aξ(aξ − 2)

14
<
∑
k≥4

kt(σ )k = O(ξ4/3 logξ).

In other words,ξ is bounded by a constantc1 (that depends ona), so we haveP ≤ c1n/2.
Suppose then that the condition of Lemma 4.6 did not hold fora. That is, no point is

incident to more thanaξ circles ofC1. We then have

Pσ ≤
aξ∑

k=2

(
k

2

)
s(σ )k , (3)

wherePσ is the number of pairs of circles inC1 that intersect insideσ , ands(σ )k is the
number of points that lie insideσ and are incident to exactlyk circles ofC1.

Let s(σ )≥k denote the number of vertices ofA(C1) that lie insideσ and whose degree is
at leastk, for k ≥ 2. By the result of Spencer et al. [17] (see also [8] and [18]), one has
(recall thatn1 = |C1|)

s(σ )≥k ≤ b

(
n1

k
+ n2

1

k3

)
, (4)

for an appropriate absolute constantb. (See Lemma 4.10 below for a strengthening of
this bound, which is not needed for the present analysis.)

Put

P∗ =
aξ∑

k=A

(
k

2

)
s(σ )k ,

for a constant parameterA that will be determined shortly. We have

P∗ =
aξ∑

k=A

(
k

2

)[
s(σ )≥k − s(σ )≥k+1

]
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≤
(

A

2

)
s(σ )≥A +

aξ∑
k=A+1

[(
k

2

)
−
(

k− 1

2

)]
s(σ )≥k

≤
(

A

2

)
s(σ )≥A +

b√n1c∑
k=A+1

ks(σ )≥k +
aξ∑

k=b√n1c+1

ks(σ )≥k .

Using (4), we readily obtain that

P∗ ≤ 3bn2
1

A
+ 2abξn1 ≤

(
3b

A
+ 2ab

)
ξ2.

Since Pσ ≥ ξ(ξ − 7)/686, it follows that if we chooseA sufficiently large anda
sufficiently small, we can ensure thatP∗ < Pσ /2. Using (2), this implies that

ξ(ξ − 7)

686
≤ Pσ ≤ 2

A−1∑
k=2

(
k

2

)
s(σ )k ≤ A

∑
k≥2

ks(σ )k ≤ A
∑
k≥4

kt(σ )k ≤ Bξ4/3 logξ,

for an appropriate constantB. (The fourth inequality follows from the observation that
any vertex that contributes to the sum

∑
k≥2 ks(σ )k also contributes to the sum

∑
k≥4 kt(σ )k ,

with a larger or equal coefficientk.) Hence, as above,ξ is at most some constantc2, so
P ≤ c2n/2 in this case. Hence, choosingβ > max{c1, c2}/2 we obtain a contradiction,
which therefore completes the proof of the theorem.

Inspecting the proof of the theorem, we actually have the following stronger result.

Corollary 4.7. LetC be a finite family of unit circles with the property that there exists
a unit disk that intersects at leastβ circles ofC. Then there exists a vertex ofA(C) that
is incident to at most three circles.

4.3. Vertices of Low Degree in Arrangements of Arbitrary Circles

In this section we establish the following theorem, whose proof exploits the bound on
the number of lunes and lenses given in Theorem 3.14.

Theorem 4.8. There exists an absolute constantβ with the following property. LetC be
a family of n circles of arbitrary radii in the plane, and let q≥ 2denote the maximal size
of a pencil inC. If the number of pairs of intersecting circles inC is at leastβn(q+n1/3),
thenA(C) contains a vertex incident to at most three circles.

Proof. Applying Lemma 4.2 toA(C), and continuing to use the same notation, we
obtain

t2+ f2+ 2 f1 ≥ 6+
∑
k≥3

(k− 3)tk +
∑
k≥3

(k− 3) fk.

Note that, as above,f1 ≤ n. Assume to the contrary thatt2 = t3 = 0. Then we have
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(replacingε by 3ε in Theorem 3.13)V ≤ E ≤ 4( f2+2 f1) = O(n3/2+3ε), whereV and
E denote, respectively, the number of vertices and edges ofA(C).

Let P denote the number of pairs of intersecting circles inC. We have

P ≤
∑
k≥4

(
k

2

)
tk.

Denote byt≥k the number of vertices ofA(C) incident to at leastk circles. We need the
following result, which improves a bound due to Clarkson et al. [8] on the number of
vertices of large degree in arrangements of circles of arbitrary radii.

Lemma 4.9. LetC be a family of n circles of arbitrary radii in the plane with P pairs
of intersecting circles. Then the number t≥k of points incident to at least k circles satisfies

t≥k ≤ b

(
P

k2.5
+ n

k

)
, (5)

for an appropriate absolute constant b.

Proof. The approach is to derive a refined bound on the numberI of incidences between
the circles ofC and the points in anm-element setM . This is done using the following
variant of the technique of [8].

Draw a random sampleR of r = dn2/Pe circles fromC. The expected number of
intersecting pairs inR is at mostP(r/n)2 = r . DecomposeA(R) into pseudo-trapezoids
(see [16] for details), and for each pseudo-trapezoidτ consider the setMτ of points of
M that lie in τ0, which is τ with its four vertices removed, and the setCτ of circles
that intersectτ0. Putmτ = |Mτ | andnτ = |Cτ |. By the results of [8], the number of
incidences betweenCτ andMτ is O(m3/5

τ n4/5
τ +mτ + nτ ). We sum this over allτ ’s, and

note that the incidences that we miss are between the circles ofC and the vertices of
the trapezoids. Any such incidence can be charged to an intersection between a circle of
R and a circle ofC. The expected number of these intersections isO(Pr/n) = O(n).
Denoting byI ′ the number of these incidences, we obtain

I = I ′ + O

(∑
τ

m3/5
τ n4/5

τ +mτ + nτ

)
.

Using Hölder’s inequality, and observing that
∑

τ mτ = O(m), we obtain

I = I ′ + O

(∑
τ

mτ

)3/5

·
(∑

τ

n2
τ

)2/5

+m+
∑
τ

nτ


= I ′ + O

m3/5

(∑
τ

n2
τ

)2/5

+m+
∑
τ

nτ

 .
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Taking expectation with respect to the random sampleR, and using the analysis of
Clarkson and Shor [9] and the concavity of the functionx2/5, we obtain

I = O(n)+ O

(
m3/5 ·

[(n

r

)2
· r
]2/5

+m+ n

)

= O

(
m3/5n4/5

r 2/5
+m+ n

)
= O(m3/5P2/5+m+ n).

We now apply this bound toC and to the setM of all t≥k vertices incident to at leastk
circles. Since the number of incidences is at leastkt≥k, we obtain

kt≥k = O(t3/5
≥k P2/5+ t≥k + n),

from which the asserted bound ont≥k follows readily.

Remark. An analogous bound to that derived in Lemma 4.9, which strengthens the
bound in (4) that we have used earlier, can be established for arrangements of unit circles.
Even though we do not need this variant, we include it here for the sake of completeness:

Lemma 4.10. LetC be a family of n unit circles in the plane with P pairs of intersecting
circles. Then the number of points incident to at least k circles is O(P/k3+ n/k).

Proof. Using Székely’s technique [18], it is easy to show that the numberI of incidences
between the circles ofC and a setM of m points satisfies

I = O(m2/3P1/3+m+ n). (6)

Let M be the set of all vertices ofA(C) that are incident to at leastk circles ofC. Then
I ≥ mk, so we havemk ≤ c(m2/3P1/3 + m+ n), for an appropriate constantc, from
which the claim follows readily.

Claim 4.11. Let L be a collection of m> 54b lines in the plane. If A(L) does not
contain a vertex(which may be at infinity) incident to more than m/a lines, for any
constant a satisfying a> 12b, then the number of distinct vertices ofA(L) is at least
cm2, for an appropriate constant c.

Proof. By applying a suitable projective transformation to the plane, we may assume
that no two lines inL are parallel. Similar to (4) and the proof of Lemma 4.10, it has been
shown in [19] (see also [14]) that, in an arrangement ofm lines, the number of vertices
incident to at leastk lines is at mostb(m/k+m2/k3), for an appropriate absolute constant
b. The numberQ of pairs of crossing lines is, by assumption,

(m
2

)
. Hence, denoting by

wk (resp.w≥k) the number of vertices ofA(L) incident to exactly (resp. at least)k lines,
and using an approach similar to the one in the proof of Theorem 4.5 we have, for a
parameterB that will be determined shortly,

Q =
m/a∑
k=2

(
k

2

)
wk =

B−1∑
k=2

(
k

2

)
wk +

m/a∑
k=B

(
k

2

)
wk
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≤ B

2

B−1∑
k=2

kwk +
(

B

2

)
w≥B +

√
m∑

k=B+1

kw≥k +
m/a∑

k=√m+1

kw≥k

≤ B

2

∑
k≥2

kwk + bm2

B
+

√
m∑

k=B+1

2bm2

k2
+

m/a∑
k=√m+1

2bm

≤ B(E′ −m)

2
+ 3bm2

B
+ 2bm2

a
≤ B(3V ′ +m)

2
+ 3bm2

B
+ 2bm2

a
,

whereV ′ andE′ are the numbers of vertices and edges of the line arrangement, respec-
tively. Hence, if we choosea > 12b andB = 18b, we will have

m2

6
≤ 9b(3V ′ +m)

and this implies the claim.

Claim 4.12. A(C) satisfies the following inequality:

βn(q + n1/3) ≤ P ≤
∑
k≥4

(
k

2

)
tk ≤ 4

λ∑
k=4

(
k

2

)
tk,

where

λ = max{aq, c′(P2/9+ n1/3)},
for an appropriate constant c′.

Proof. Letv be a vertex ofA(C) incident tok > λ circles. LetC ′ denote the subfamily
of circles incident tov. Apply to the plane an inversion centered atv. All the circles in
C ′ are mapped into lines. No vertex (which may be at infinity) of this line arrangement is
incident to more thanq lines, for otherwiseC would contain a pencil of size larger than
q. Sincek > aq, Claim 4.11 implies that the line images of the circles ofC ′, and thus the
circles ofC ′ themselves, intersect in at leastck2 distinct points. Sincek ≥ c′(P2/9+n1/3),
simple calculation shows thatt≥λ < 1

2cλ2 < 1
2ck2, so at least half of these intersection

points are each incident to at mostλ circles. This implies that the number of pairs of
circles meeting at high-degree vertices can be charged to twice the number of pairs of
circles meeting at low-degree vertices. In other words, we have shown that∑

k>λ

(
k

2

)
tk ≤ 3

∑
k≤λ

(
k

2

)
tk.

This readily implies the claim.

We next estimate the sum in Claim 4.12 using (5). That is, we have, for a parameter
B that will be determined shortly and forξ = (P/n)2/3,

βn(q + n1/3) ≤ P ≤ 4
λ∑

k=4

(
k

2

)
tk = 4

B−1∑
k=4

(
k

2

)
tk + 4

λ∑
k=B

(
k

2

)
tk
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≤ 2B
B−1∑
k=4

ktk + 4

(
B

2

)
t≥B + 4

ξ∑
k=B+1

kt≥k + 4
λ∑

k=ξ+1

kt≥k

≤ 2B
∑
k≥4

ktk + 4bP

B1/2
+

ξ∑
k=B+1

8bP

k1.5
+

λ∑
k=ξ+1

8bn

≤ 2BE+ 20bP

B1/2
+ 8λbn.

If λ = aq, i.e.,q = Ä(P2/9+n1/3), then, choosing the constantsB,aandβ appropriately,
we will have, using Theorem 3.14,

P < 4BE ≤ 16B( f2+ 2 f1) = O(n1/2−εP1/2+ε + n),

for anyε > 0. This implies thatP = O(n) and this will lead to a contradiction if we
requireβ to be sufficiently large.

Otherwise, forq = O(P2/9+ n1/3), we again can obtain

P < 4BE+O(λn) ≤ 16B( f2+2 f1)+O(λn) = O(n1/2−εP1/2+ε+n+nP2/9+n4/3),

for any ε > 0. This implies thatP = O(n4/3), which again is a contradiction ifβ is
required to be sufficiently large.

Remark. Theorem 4.8 may fail ifP is not sufficiently large, as the following construc-
tion shows. Given parametersn andq, drawm= n/q concentric circlesC1, . . . ,Cm and
another circleC that intersects each of them at two points; denote the intersection points
of C andCi by ai andbi . Now replace eachCi by a pencil ofq circlesCi 1, . . . ,Ciq

that pass throughai andbi and are sufficiently close to each other so that no pair of
circles from different pencils intersect. PutC = {C} ∪ {Ci j | i ≤ m, j ≤ q}. This
is a collection ofn + 1 circles whose union is connected, so that every vertex of their
arrangement is incident toq+1 circles. In this case the size of the largest pencil isq+1
and the number of intersecting pairs of circles isn +m

(q
2

) = n(q + 1)/2. This shows
that Theorem 4.8 may fail if we do not require that the number of intersecting pairs of
circles is substantially larger thann times the size of the largest pencil.

5. Intersecting Pairs and Vertices in Arrangements of Circles

In this section we use the machinery developed in the preceding sections to obtain the
following results, which relate the number of vertices of the arrangement to the number
of intersecting pairs of circles, and which we believe to be of independent interest.

Theorem 5.1. LetC be a collection of n unit circles,with P intersecting pairs of circles.
Then these circles intersect in at leastβP distinct points, for some constantβ > 0.

Proof. The proof proceeds by induction onn and P. The claim clearly holds for any
n ≥ 2 andP = 1 (for anyβ < 1). We assume that it holds for alln′ < n and allP, and
for n′ = n andP′ < P, and will show that it also holds forn andP.
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Arguing as in the proof of Theorem 4.5, we claim that there exists a unit diskσ

which contains at leastaξ2 distinct vertices ofA(C), whereξ is the maximum number of
circles ofC that intersect any unit disk, and wherea is an appropriate absolute constant.
Indeed, if the condition in Lemma 4.6 is satisfied, then the claim is obvious. Otherwise,
we choose a diskσ for which Pσ = Ä(ξ2), and repeat the analysis in the preceding
section (without assuming anything aboutt2 andt3). Inequality (2) becomes∑

k≥2

kt(σ )k = O(t (σ )2 + t (σ )3 + f (σ )1 + f (σ )2 ) = O(t (σ )2 + t (σ )3 + ξ4/3 logξ). (7)

The bound forP∗ is derived exactly as above, and allows us to assume thatP∗ < Pσ /2.
This, combined with (7), yields, as above,

Ä(ξ2) = Pσ = O(t (σ )2 + t (σ )3 + ξ4/3 logξ).

Hence, ifξ is at least some appropriate and sufficiently large constantα, then we have

t (σ )2 + t (σ )3 = Ä(ξ2),

which implies the claim. Ifξ < α, then, sinceA(C) contains at least one vertex, we can
chooseσ to be a unit disk containing that vertex, and choosea so that 1≥ aα2. Then in
this case we also have a unit disk that contains at leastaξ2 distinct vertices ofA(C).

Remove fromC all thenσ circles ofCσ (i.e., the circles that intersectσ ), and letC ′
be the resulting subset. LetP′ denote the number of intersecting pairs of circles inC ′.
We haveP′ = P − P1 − P2, whereP1 ≤ ξ2/2 is the number of intersecting pairs of
circles inCσ , andP2 is the number of intersecting pairs(C,C′) of circles, withC ∈ Cσ
andC′ ∈ C ′. Note that any such circle intersects the diskσ ∗ of radius 3 and concentric
with σ . We can coverσ ∗ by 19 unit disks, using a construction based on the hexagonal
grid and similar to that shown in Fig. 7, and use the maximality ofξ to conclude that the
number of such circlesC′ is at most 19ξ . Hence,P2 ≤ 19ξ2.

In other words, we have foundN ≥ aξ2 ≥ 2β(P1 + P2) distinct vertices ofA(C),
for an appropriate choice ofβ. After removingCσ , we are left with a setC ′ of n′ < n
circles, such that no vertex ofA(C ′) coincides with any of the vertices constructed so far.
If P′ ≤ P/2, thenP1 + P2 = P − P′ ≥ P/2, so we have shown thatA(C) contains at
least 2βP/2= βP distinct vertices. Otherwise, apply the induction hypothesis ton′ and
P′, to obtain at leastβP′ new vertices ofA(C). Hence, the number of distinct vertices
of A(C) is at least

βP′ + 2β(P1+ P2) ≥ β(P′ + P1+ P2) = βP.

This establishes the induction step and thus completes the proof of the theorem.

Corollary 5.2. The number of distinct intersection points of n unit circles whose centers
lie inside a square of side length d> 1 is at leastÄ(n2/d2).

Proof. Assumed to be an integer, and partition the given square intod2 squares of
side length 1. LetCi denote the subcollection of the given circles whose centers lie in
the i th smaller square, fori = 1, . . . ,d2. Every pair of circles inCi intersect, so, by
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Theorem 5.1, these circles haveÄ(n2
i ) distinct points of intersection, whereni = |Ci |.

We sum these lower bounds over all familiesCi , and note that each intersection point
can contribute to onlyO(1) terms. Hence, the total number of intersection points of the
given circles isÄ(

∑
i n2

i ) = Ä((
∑

i ni )
2/d2) = Ä(n2/d2).

Remark. The corollary does not use the full “strength” of the theorem. It only requires
the weaker result that if every pair of circles intersect, then they determineÄ(n2) distinct
intersection points.

Corollary 5.3.

(a) For a collectionC of n unit circles whose centers lie in a square of size≤ cn1/2,
for a sufficiently small constant c, there exists a point that is incident to only two
or three circles.

(b) If the area of the union of the disks bounded by the circles ofC is at most c′n, for
a sufficiently small constant c′, then there exists a point that is incident to only
two or three circles.

Proof. In both cases it is easy to show that the number of pairs of intersecting circles
in C is larger thanβn, providedc andc′ are sufficiently small.

Theorem 5.4. Let C be a collection of n circles of arbitrary radii in the plane with
P intersecting pairs. Let q denote the largest size of a pencil inC, and suppose that
P ≥ βn(q + n1/3), for a sufficiently large constantβ. ThenA(C) hasÄ(P) distinct
vertices.

Proof. Similar to the assertion of Claim 4.12, we have

βn(q + n1/3) ≤ P ≤
∑
k≥2

(
k

2

)
tk ≤ 3

λ∑
k=2

(
k

2

)
tk,

whereλ is as defined above. We estimate this sum using Lemma 4.9. That is, we have,
for a parameterB that will be determined shortly,

βn(q + n1/3) ≤ P ≤ 4
λ∑

k=2

(
k

2

)
tk = 4

B−1∑
k=2

(
k

2

)
tk + 4

λ∑
k=B

(
k

2

)
tk

≤ 2B2
B−1∑
k=2

tk + 4

(
B

2

)
t≥B + 4

(P/n)2/3∑
k=B+1

kt≥k + 4
λ∑

k=(P/n)2/3+1

kt≥k

≤ 2B2
∑
k≥2

tk + 4cP

B1/2
+

(P/n)2/3∑
k=B+1

8cP

k1.5
+

λ∑
k=(P/n)2/3+1

8cn

≤ 2B2V + 20cP

B1/2
+ 8cnλ.
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Hence, choosing the constantsB andβ appropriately, one can show, as in the preceding
analysis, that

P

2
≤ 2B2V,

which establishes the claim.

Remark. The theorem may fail if we do not requireP to be significantly larger than
nq, as the example given at the end of the preceding section demonstrates.
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