Discrete Comput Geom 26:387-410 (2001)

Discrete & Computational
DOI: 10.1007500454-001-0042-y G e O m et ry

© 2001 Springer-Verlag New York Inc.

Every Set of Disjoint Line Segments Admits a Binary Treé

P. Bose! M. E. Houle? and G. T. Toussaint

1 School of Computer Science, Carleton University,
Ottawa, Ontario, Canada K1S 5B6
jit@scs.carleton.ca

2 Basser Department of Computer Science, The University of Sydney,
Sydney, NSW 2006, Australia
meh@cs.usyd.edu.au

3 School of Computer Science, McGill University,
Montreal, Quebec, Canada H3A 2A7
godfried@cs.mcgill.ca

Abstract. Given a set ofi disjoint line segments in the plane, we show that it is always
possible to form a tree with the endpoints of the segments such that each line segment is an
edge of the tree, the tree has no crossing edges, and the maximum vertex degree of the tree
is 3. Furthermore, there exist configurations of line segments where any such tree requires
degree 3. We provide a@(nlogn) time algorithm for constructing such a tree, and show

that this is optimal.

1. Introduction

Given a set of disjoint line segments, determining whether the set admits certain com-
binatorial structures has received considerable attention. One of the best-studied such
structures has been the simple circuit or polygon through a set of line segments. The
question of deciding whether a set of disjoint line segments admits a simple circuit is
conjectured to be NP-complete, since Rappaport [12] has shown that deciding whether
a set of line segments allowed to intersect at their endpoints admits a simple circuit is an
NP-complete problem. For certain special cases, however, polynomial-time algorithms
have been obtained. Avis and Rappaport [1] gavéan*) time andO(n?) space al-
gorithm to decide whether a set of disjoint line segments admits a simple monotone

* The research by P. Bose was supported by NSERC.

388 P. Bose, M. E. Houle, and G. T. Toussaint

circuit. Rappaport et al. [13] have shown that the decision problem (imlog n)

when every line segment in the set has at least one endpoint on their convex hull (such
a configuration is known as eonvexly independerstet of line segments). Although

not every convexly independent set of line segments admits a simple circuit, Mirza-
ian [7] has shown that such a set always admits a simple polygon such that the line
segments are either part of the boundary of the polygon or form internal diagonals.
Mirzaian’s result does not hold for arbitrary sets of disjoint line segments, as was shown
by Urabe and Watanabe [17], and later byu@saum [6], but it is conjectured that the
result is true if the line segments are also allowed to form external diagonals of the
polygon.

The simple circuit is not the only structure to have been investigated. EIGindy and
Toussaint [5] have shown that every set of line segments can be triangulated. Later,
O’Rourke and Rippel [10] proved the hamiltonicity of the visibility graph of certain
restricted classes of line segments.

The structures with which this paper is concerned are trees that span a set of disjoint
line segments such that each line segment is an edge of the tree and the tree has no
crossing edges—such a tree will be referred to asmmompassing tre&he problem of
determining whether a set of line segments admits an encompassing tree was first studied
by Bose and Toussaint [3], who showed that a set of disjoint line segments always admits
an encompassing tree, and that the encompassing tree of minimum total edge length has
maximum degree 7. Subsequently, Rivera-Campo and Urrutia [14] proved that a disjoint
set of line segments always admits an encompassing tree with maximum degree 4.

A natural question to ask iGiven a set of disjoint line segmentis there always
an encompassing tree with maximum degree less #vakigure 1 shows that there
exist configurations that do not admit an encompassing tree with maximum degree 2.
However, we show that a set of disjoint line segments always admits an encompassing
tree with maximum degree 3 (a binary tree), and that such a tree can be computed in
optimal® (nlogn) time.

The encompassing tree construction relies heavily on a convex subdivision of the plane
induced by the set of line segments. The construction of the subdivision is discussed in
Section 2, and the special structure of the subdivision is examined in Section 3. In
Section 4 it is shown how the subdivision may be used to construct an encompassing tree

>~

Fig. 1. No encompassing tree with maximum degree 2.

Every Set of Disjoint Line Segments Admits a Binary Tree 389

of degree 3 inO(nlogn) time. In Section 5 we present a proof of &inlogn) lower
bound for the problem. Closing remarks and open problems can be found in Section 6.

Most of the geometric and graph theoretic terminology used in this paper is standard,
and for definitions we refer the reader to [9], [2], and [11].

2. The Convex Subdivision

The goal of the next three sections is to develop an algorithm to construct an encom-
passing treés (as defined earlier) for a set ofdisjoint line segment$s. To simplify

the description of the algorithm, and to avoid degeneracies, we assume throughout the
paper that

e no segment o8 is horizontal (that is, parallel to the-axis),

e no three endpoints of segments®ére collinear, and

o of the lines obtained by extending the segments to infinity in either direction, no
three intersect in a common point.

The first of these assumptions is easily realized—if horizontal segments are present, a
simple reorientation of the coordinate axes can be performéex{im time. The second

and third assumptions can be realized using a perturbation scheme; however, we do not
address these issues here.

To arrive at an algorithm for computing a degree-3 encompassing tigens first
construct a convex subdivision derived from the segmeng& tistead of subdividing
the entire plane, we find it convenient to place a bounding box around the set of line
segments, and to subdivide the interior of the box into convex regions. In so doing, we
ensure that the subdivision has no unbounded regions or edges.

Conceptually, the subdivision is obtained by extending each segsnaloing the
unique line containing it. The extensions take the form of two rays, one oriented “up-
wards” (increasing iry-coordinate) and the other oriented “downwards” (decreasing in
y-coordinate). Each ray is allowed to continue until it intersects an obstacle or another
ray, at which point it is possibly truncated.

The rules governing these intersections are as follows:

1. If the intersection is determined by a maynd an edg® of the bounding box,
thenr is truncated at that intersection point: it does not continue bejond

2. Ifthe intersection is determined by a ragnd a segmerstof S, thenr is truncated
at that intersection point: it does not continue beysnd

3. If the intersection is determined by two raysandr, of the same orientation,
then one ray is allowed to continue, and the other is truncated. We assumg that
intersectg; from the right (as viewed fromy). If the rays are upward-oriented,
thenr, is truncated; if they are downward-orientegjs truncated.

4. If the intersection is determined by an upward-orientedrgeand a downward-
oriented rayr4, thenr is allowed to continue, ang, is truncated.

See Fig. 2 for illustrations of each of these cases.

390 P. Bose, M. E. Houle, and G. T. Toussaint

RULE 1 RULE 2

r2 r3 ri

RULE 3 RULE 4

Fig. 2. Extension ray intersection rules.

These rules are sufficient to guarantee that the resulting subdivision is convex. A
vertex v of the subdivision is either an endpoint of a segmenSpha corner of the
bounding box, or the truncation point of some ray, but in each of these cases, every angle
incident tov (and interior to the box) is at mostby the construction. Thus every region
is a polygon with no interior angle greater thanand is thereby convex.

To construct the subdivision in an efficient manner, we make use of the well-known
sweep-line paradigm. We assume that the reader is generally familiar with this paradigm,
and present only a sketch of the construction here. For more information regarding sweep-
line techniques, see [11].

The sweep is done intwo passes: in the first pass a horizontal line is swept from bottom
to top, searching for intersections involving upward-oriented rays only—downward-
oriented rays are ignored. When an intersection is detected, the appropriate rule (1, 2, or
3) is applied.

In the second pass the downward-oriented rays are introduced. A horizontal line is
swept from top to bottom, searching for intersections involving downward-oriented rays.
When an intersection is detected, the appropriate rule (1, 2, 3, or 4) is applied. Note that
the fourth rule guarantees that the subdivision edges introduced in the first pass are not
disturbed, as these edges derive from upward-oriented rays.

Consider the set of line segments (and its bounding box) shown in Fig. 3(a). The
subdivisions obtained after the first and second passes are shown in Fig. 3(b) and (c),
respectively.

Every Set of Disjoint Line Segments Admits a Binary Tree 391

P /

o

\.\.

(a) Before (b) After first pass

(c) After second pass

Fig. 3. Constructing the convex subdivision.

3. Properties of the Convex Subdivision

In this section we state and prove a number of facts concerning convex subdivisions
of the kind described in the previous section. We also examine structures to be found
within the subdivision which are central to the description of the algorithm presented in
the following section, both in its motivation and in the proof of its correctness.

We assume throughout that Q is the subdivision for é&5s#tn line segments in the
plane.

Lemma l. The number of edgesgertices and regions of Q is in @).
Proof. Follows easily from Euler’s formula [2]. O

The edges of the subdivision can be of one of three types:

e segment edgewhich derive from segments &
e extension edgesvhich derive from extension rays of segmentsSspénd
o box edgeswhich derive from the sides of the bounding box.

Each extension edge can be thought to have an orientation, namely that of the ray from
which the edge is derived. It can be classified asfamardextension edge ordownward
extension edge, depending on the orientation of the ray.

392 P. Bose, M. E. Houle, and G. T. Toussaint

Lemma 2. Every cycle in other than the cycle forming the bounding pogntains
an endpoint of some segmentin S

Proof. Assume otherwise: thatis, there exists some cythat does not consist entirely
of box edges, and that does not contain an endpoint of any segm&nhiote that the
cycle must contain at least one extension edge.

Letn = {ey, €1, €, ..., &_1, &} be the subsequencemtonsisting of the extension
edges ofyy, whereey = . With respect to the ordering af, each extension edge is
oriented eitheforward or backward

e Casel: the edges of’ do not all share the same orientation
In this case there must exist soiinsuch thatg is backward ane, ,; is forward.
Clearly,g ande,; cannot share a common endpoint—otherwise, two rays would
emanate from one point, in contravention of the rules governing intersections (3
and 4). This implies that there must be at least one non-extension edge between
ande 1 in . Lete be the non-extension edge occurring immediately bedare
in 7.

Let v be the vertex of Q where meetsg ;. Vertex v cannot lie on a box
edge, since no extension ray can emanate from the side of the bounding box.
Thereforee must be a segment edge. Howevemust then be an endpoint of the
underlying segmergin S, since no extension ray can emanate from the side of
This contradicts the assumption.

e Casell: the edges off’ all share the same orientation
Without loss of generality, we can assume that the extension edges are all forward
edges. The arguments of Case | imply that the cycle must consist entirely of exten-
sion edges—that ig; = n’, and the cycle is the sequengéself. The edges of’
therefore cannot be all upward; otherwise, each vertex in the cycle would have the
y-coordinate strictly greater than its predecessor, which is impossible. Similarly,
the edges o’ cannot be all downward. Therefore there exists sgraech thag,
is upward ana 11 is downward.

Letv’ be the vertex wherg meets; 1. The edge; .1, being forward, is oriented
away fromv’. Thereforeg; (and note;; 1) was on the ray that was truncatedvat
However, this contravenes the fourth intersection rule of Section 2, by which the
downward-oriented ray containirgg,, should have been truncated instead. Thus
no simple cycle may have its extension edges share a common orientation.

Lemma 2 has animmediate implication concerning the structures formed by extension
edges. Let F be the subgraph of Q induced by the extension edges of Q. Since Q cannot
contain cycles consisting entirely of extension edges, F mustfbeest that is, each
connected component of F is a tree. We refer to such treestassion trees

By the orientation of its incident edge, we can distinguish between two types of
leaves of extension trees: those whose incident edges are directed away from the leaf,
and those whose incident edges are directed towards the leaf. The former kind correspond
to endpoints of segments & the latter kind can be formed only when an extension
ray meets either the side of a segment or the bounding box. While an extension tree can
have many leaves of the former kind, it turns out that it can have only one of the latter

Every Set of Disjoint Line Segments Admits a Binary Tree 393

kind. We refer to these latter kinds of nodegaats of their respective trees, reserving
the termleaf for nodes of the former kind. The following lemma justifies the use of this
terminology:

Lemma 3. If T is an extension treghen it has exactly one rooFurthermore the
edges along the path from any node to the root are all oriented towards the root

Proof. According to the rules governing the intersections of extension rays, each in-
ternal node of the tree has exactly one outgoing edge. From any startingxnoge
consider the set of nodes reachable frowia a sequence of outgoing edges. Siiice

has no cycles, and is finite, this sequence must describe a unique patbfifinite

length, oriented towards the terminus. Since the definition states that leaves are incident
to outgoing edges, and roots to incoming edges, the terminus of this path can only be a
root. This root is unique, since every internal node can have only one outgoing@dge.

Even though the leaves of an extension tree may lie on many different segments of
the subdivision, the uniqueness of the root allows us to associate each tree with either a
unique segment o8, or the bounding box. Let; and T, be extension trees rooted on
the same side of a common segment S, and letr; andr; be their respective roots. If
no other extension tree rooted on the same sidehafs its root between andr,, then
we say thafl; andT, areadjacent In the same spirit, we say that two trees rooted on
the bounding box are adjacent if it is possible to move along the bounding box from one
root to the other without encountering the root of any other extension tree. See Fig. 4 for
an example of adjacent extension trees.

Consider a segmemstof S, and the sef = {Ty, T, ..., Tx} of all trees rooted to
one particular side af. We assume that the trees of T are indexed in accordance with
the left-to-right ordering of their roots with respectgpas viewed towards from the
side to which the trees attach. Let, vy, ..., vy) be the sequence of leaves one would
obtain if one reported them as they were encountered during an inorder traversal of all
the trees of T in left-to-right order. With respect to this ordering, we sayuhitthe

Fig. 4. Two adjacent extension trees.

394 P. Bose, M. E. Houle, and G. T. Toussaint

left neighbourof v; 1, thatvi,; is theright neighbourof v;, and thaty; andv;,; are
neighbouringeaves (see Fig. 4).

Observation 4. Letv andw be neighbouring leaves with respect to some segment s
of S Then there exists a path fromto w in Q that

e passesonly through extension edges of trees rootedesegment edges contained
ins, and
o that is entirely contained in the boundary of some cell ¢ of Q

Observation 5. Letv be a leaf of an extension treg ooted at some segment s of S
Let 5 be the left endpoint of s as viewed from the side to which the extension tree is
rooted If v has no left neighbouthen there exists a path fromto s, in Q that

e passes only through extension edges bT segment edges contained iresid
o thatis entirely contained in the boundary of some cell ¢ of Q

Note thatv can be identical t®,, in which case the extension tree of whighis a
leaf has its root as. By symmetry, Observation 5 holds whethas no right neighbour
ands, is the right endpoint.

Observation 4 extends to the case where we consider all trees rooted at the bounding
box. The only difference worth noting here is that wheregalsas no left neighbour and
vm has no right neighbour in the case outlined above, every leaf of a tree rooted at the
bounding box always has both a left and a right neighbour.

We conclude the discussion of the properties of the convex subdivision with the
following lemma, that shows that all segmentsSafan be connected simply by ensuring
that for every celt, the segments on the boundary of every calle mutually connected.

Lemma 6. LetS be asetofn disjointline segmeiatsd let Q be its underlying convex
subdivision Let G be any planar graph whose vertex set is the set of endpoints of the
segments in S and whose edge set includes the segment$hadnSG is connected if
and only if for every cell ¢ of QXhe set of segment endpoints on the boundary of c is
connected in G

Proof. If G is connected, then trivially the set of segment endpoints on the boundary
of any given cell are mutually reachable@

If the segment endpoints on the boundary of every calle mutually connected in
G, then the fact tha6G is connect follows from Lemma 2 (i.e., every cycle in Q must
contain an endpoint o) and the fact that the planar dual [2] of Q is connected. O

4. Constructing an Encompassing Tree of Degree 3

The degree-3 encompassing tree construction algorithapEPASS can best be de-
scribed as incremental: starting from a single segmes§ pfeviously unattached seg-

Every Set of Disjoint Line Segments Admits a Binary Tree 395

ments are attached to a growing t@@ne by one until no unattached segments remain.
When the algorithm terminate§, is the encompassing tree f8r

In the next subsection we discuss some of the invariants and conventions observed
by ENCOMPASS

In Section 4.2 we present a key procedure of the overall algorithmagdTo—one
which given a leaf of an extension tree, attaches to it the segment at which the tree is
rooted.

Procedure ATACHTO is not in itself sufficient to link up correctly all the segments
into an encompassing tree of degree 3. Although the main algorithm greedily relies on
ATTACHTO to attach as many segments as possible to the growing connected compo-
nent, it sometimes occurs that segments are left unattached even after all opportunities
for applying ATACHTO have been exhausted. In Section 4.3 we present the procedure
STITCHUP that takes a cell with both attached and unattached segments in its boundary,
and attaches t@ those segments thatrAacHTO could not find.

In Section 4.4 we present the main algorithm, as well as its complexity analysis, and
a proof of correctness.

4.1. Preliminaries

Algorithm ENCOMPASSaccepts as its input a set of segmeddsd returns an encompass-
ing treeG of degree at most 3. Whenever in the course of the execution of the algorithm
an edge ofG is created between two segment endpoinémdw, we say that dridge
(v, w) has been created betweeandw.

The EncompAssalgorithm maintains the following invariants regarding the creation
of bridges:

o A bridge is added only between two mutually visible endpoints.

e Each bridge added to the encompassing tree passes through the interior of exactly
one cell of the subdivision Q, from one segment endpoint on its boundary to another
segment endpoint on the boundary.

e Each endpoint can have at most two bridges attached to it, one through each of the
two cells sharing the endpoint in their common boundary.

e A bridge is never created between two endpoints so as to introduce a cyd into

During the execution of the algorithm, as vertices are visited and bridges created,
the segments, segment endpoints, and cells of Q acquire various labels. The labels also
respect certain invariant conditions, outlined below.

A segment can be labelathattachedin which case it has not yet been bridged to
any other segmengttached which indicates that it has been integrated into the final
encompassing tre€; and semi-attachedwhich indicates that it has been connected
to other segments by means of bridges, but has not yet been integrated into the final
encompassing tre&emi-attachedegments are labeled with the name of a connected
component into which it has been integrated. Initially, all segmentunattached
Once a segment becomssmi-attachedit will never again becomanattachedOnce
it becomesattached it will always remainattached The bounding box as a whole will

396 P. Bose, M. E. Houle, and G. T. Toussaint

sometimes be treated as if it were a segment. It is initialized with the ladzgtached
and will eventually receive the labattached

Segment endpoints can be labelewisited pending or examined An endpoint is
unvisitedf its segment has not yet been attached to another. Otherwise, if it is a candidate
leaf from which to apply ATACHTO, then it carries the labg@lending Endpoints labeled
unvisitedor pendinghave no bridges yet attached to them. An endpoint latetathined
is one from which a call to ATACHTO is no longer necessary. Initially, all segment
endpoints arenvisited Once an endpoint becompending it will never again become
unvisited Once it becomesxaminedit will always remainexamined

The labels of the cells of Q depend on the labels of the segments having endpoints
contained in its boundary. If these labels areuwalhttachedthen the cell is labeled
unvisited If the segments are alttachedthis implies that all endpoints in the boundary
of the cell are mutually connected by the encompassing tree, and thus the cell acquires
the labelconnectedA cell that is neitheconnectedor unvisited(that is, only “partly”
connected) is labeledending Initially, all cells areunvisited Once a cell becomes
pending it will never again becomenvisited Once it becomesonnectedit will always
remainconnectedWhen all cells becomeonnectedall segments are i6.

In the descriptions to come, the labels of cells are often not explicitly mentioned.
We assume that every time a segment label is modified, the labels of the two cells upon
which it borders are updated in accordance with the new segment label. This can be done
simply by maintaining an appropriate counter for each cell.

4.2. Connecting the Leaves of Extension Trees

Under the assumption that no two segments are collinear, Observation 4 implies that
subject to other restrictions (such as the invariants outlined in the previous subsection),
a bridge can always be created between any two neighbouring le@retw—unless
v andw are opposite endpoints of the same segmer8, @ which case no bridge is
necessary. If endpoint has no left neighbour, then by Observati® a bridge can be
created between and the left endpoint of the segment to which the extension tree of
v is rooted (and similarly if has no right neighbour). AlgorithmNEomMPASStakes
advantage of this by means of its procedures&HTO.

Procedure ATACHTO(X, dir) accepts a leak of an extension tree that is already
contained in some connected component (that is, esthmi-attacheadr attached, and
a directiondir (“left” or “right”). If Ty is the extension tree of whick is a leaf, then
the behaviour of ATACHTO depends on whethdy, is rooted at some segmesitof S,
or at the bounding box. In the former casaTACHTO only proceeds i§* is unattached
by traversing the trees rooted sittowards one of the endpoints sf (determined by
dir), linking the leaves when necessary as it goes along. This process is guaranteed
to reach the targeted endpoint &f, since each of the trees traversed are all rooted
ats*.

The manner in which a leaf is linked depends on the labeling of the segment of which
it is an endpoint. Le& be the current leaf in the sequence, belonging to compdagnt
and letb be the next leaf in the sequence. kgainds, be the segments of whiehandb
are endpoints, respectively.4f is unattached ATTACHT O introduces a bridge between

Every Set of Disjoint Line Segments Admits a Binary Tree 397

a andb, integrates, into G, by assigning it the same label gs and then continues the
procedure fronb.

If 5, is notunattachedthen it belongs to some connected componif G, = G,,
then instead of bridging fromto b (and introducing an unwanted cycle irgg = G,),
the procedure simply proceeds onward frbmvithout creating a bridge.

If Gp # G,, then the introduction of a bridge froaito b forces the two components
to be merged. If5, = G, then all segments d&, are immediately relabeled to that of
G, namelyattached Similarly if G, = G, all segments o6, are immediately relabeled
to attached If neitherGy, nor G, equalsG, then the two components are merged. In all
three cases the procedure continues ftom

Whenever two components other th@nare to be merged, it would be inefficient
to relabel the segments of one component explicitly to match that of the other; if this
is done, a given edge could potentially be relabeled many times. Instead, an efficient
set union-find data structure U is used to keep track of equivalence classes of seg-
ment labels. Merging components is thus a matter of merging classes of labels. The ex-
plicit relabeling that occurs when a component is merged W@itoban only be done
once per edge—once a segment receives the &tzadhed its label will never change
again.

The procedure by which the leaves of neighbouring extension trees are linked finishes
with the initial leafx ands* in the same connected component; several components may
have been merged with each other or i@dn the process. Once segmeiithas been
attached (say at its endpoin}, ATTACHTO is called again starting frorh. To avoid
creating two bridges at in the same cell of Q, the direction of the linking is reversed.
For example, if the call ArACHTO(X, left) resulted ins* being linked tox, then the call
ATTACHTO(2, right) would be performed.

If A itself is the last extension tree leaf, then by attaching* is attached. In this
case, since extension tra@g is rooted at the previously visited segmeht no further
call to ATTACHTO is made fromi.

Figure 5illustrates the process by which segments are attached by showing the bridges
created as a result of a call ta’cHTO(X, right), assuming the prior creation of bridge
b. Note that in this example, the sequence of callstmw&HTO terminates at a nodg
which is simultaneously the target endpoint of its segment, and the last of the leaves of
the extension trees rooted at its segment.

Inthe case wher§, is notrooted at a segment8fbutinstead is rooted at the bounding
box, the behaviour of AAACHT O is somewhat different. If ATACHTO is called when all
segments are yetattachedthe circular nature of the list of neighbours results in the
connection of the entire list. Once the starting point is reached, the process terminates.
For an example of how®AcCHTO handles this special case, see Fig. 6.

ATTACHTO(X, dir)

(1) If x has already been markedaminedthen return. Otherwise, maxkas being
examined

(2) LetTy be the extension tree of whichis a leaf, and lety be the root ofT. Let
s* be the segment at whicky, is rooted.

(3) If s* is attachedor semi-attachegthen return.

398 P. Bose, M. E. Houle, and G. T. Toussaint

Fig. 5. Bridges created by WACHTO(X, right).

(4) (s* must be anunattachedsegment.)
If X has no neighbouring leaf in the directidir, then:
(4a) Letw be that endpoint of* which lies in directiondir from ry as viewed
from x. If x = w, then return.
(4b) Otherwise:
(4b1) Create a bridge betwerrmndw. Mark s* with the label ofs,. Mark
the endpoint o6* opposite tow aspending
(4b2) Letoppdirbe the direction opposite @ir. ATTACHTO(w, oppdir).
(5) Else,x has a neighbouring leafin the directiondir. Let s, be the segment of
whichy is an endpoint.
(5a) Ifsy is unattachedthen create a bridge betwerrmandy. Mark s, with the
label ofs,, and the endpoint ad, opposite toy aspending

Fig. 6. Bridges created by WACHTO(X, right).

Every Set of Disjoint Line Segments Admits a Binary Tree 399

(5b) Otherwises, isattachedrsemi-attachedfthe component dd, is different
to that ofsy, then:
(5b1) Create a bridge betwegrandy.
(5b2) Ifs,isattachedthenrelabel all segments of the connected component
containings, asattached
(5b3) Otherwise, i, isattachedthen relabel all segments of the connected
component containing, asattached
(5b4) Otherwise, botk, ands, aresemi-attachedVierge the components
containings, ands,, by making their labels equivalent to each other
within the union-find structure U.
(5¢) ATTACHTO(Y, dir).

It should be noted at this point thatcHTo maintains each of the invariants listed in
Section 4.1. In particular, the introduction of the bridge at Step (5b1) does not violate the
invariant relating to the number of bridges that may be attached at a particular endpoint:
if y already had a bridge attached to it, the endpoint would have had thelamined—
in which case the procedure®cHTo would have been called gtbefore, that would
have resulted irs* already having been labeledtachedor semi-attachedA formal
inductive proof of correctness is given later in the paper.

4.3. Stitching Up Cells

Procedure ATACHTO is not in itself sufficient to link all segments into a tree of de-
gree 3. Even if ATACHTO is applied such that no more endpoints pemding some
segments may still benattachedand some cells of Q may not yet bennectedsee

Fig. 7 for an example). In these situations wheres&HTO cannot be applied, the pro-
cedure to be outlined in this subsection takes over. Since this procedureHSp,

relies heavily upon special properties of subdivisions for whichma8HTO cannot be
applied, we describet8&rcHUP without worrying about its applicability at this stage.

Its applicability and usefulness will be established after the overall algorithm has been
described.

Fig. 7. No more endpoints afggending butc is notconnected

400 P. Bose, M. E. Houle, and G. T. Toussaint

Procedure 8TcHUPIs called upon cells that are labelpending to be precise, those
that have endpoints of botittachedandunattachedsegments in their boundaries.df
is such a cell, the effect of callingr&cHUP s to attach allinattachedsegments having
one or both endpoints lying on the boundarycof

Thisis doneinthree phases. In the first phase a clockwise scan is performed around the
boundary ofc, starting from an endpointg that is guaranteed to belong to attached
segment. When the scan encountersuaattachedsegment with both endpoints on
the boundary ot, it initiates a call to ATACHTO in one of two ways, depending on
the number of consecutiuenattachedsegments encountered leading up to the current
segment.

Once the first invocation of ®ACHTO has terminated, a number of previously-
visitedendpoints may beconpending Calls to ATACHTO are then initiated from each
pendingendpoint, until no furthependingendpoints remain. The result of this process is
the creation of a connected component consistisgofi-attachedegments and bridges.
The scan then progresses to the next segment with both endpoints in the bourgary of
and the process is repeated to yield another connected component.

Itis shown later that when this scan has terminated, each of the previmagtached
segments on the boundarywfill have been integrated into a connected component. As a
result of the action of ATACHTO, some components may have merged with each other, or
even with the original component aftachededges. Furthermore, every survivisgmi-
attachedcomponent shall be shown to contain at least two endpoints on the boundary
of c that are not incident to any bridges passing throagh

In the second phase of the&i8cHUP procedure, a clockwise scan is again performed,
this time to identify endpoints o$emi-attacheccomponents not incident to bridges
throughc. When two consecutive such endpoints are discovered from diffegni-
attachedcomponents, a bridge is introduced, thereby merging the components. Once
the scan is complete, a singlemi-attachegdomponent remains.

In the final phase the remainirsgmi-attacheadomponent (call itG’) is integrated
into theattachedcomponent, in one of two ways. If the endpointg is incident to no
bridge passing througty thenwg may safely be bridged to either of two endpoints of
G’ (call themx andp) identified as incident to no bridges passing throoagbtherwise,
if a bridge througtt is incident towy, it is replaced by two new bridges connecti@g
to G'. The connectivity of the endpoints of the deleted bridge is in a sense “diverted”
through the new bridges and segments ofsbmi-attached¢omponent.

Once SITCHUP has terminated for celt, all segments are again labeled eithéer
tachedor unattachedand again no endpoint of a segmentSis left with a label of
pending We claim, and prove later, that all segments on the boundacytlwdit were
previouslyunattachechave becomattachedas a result of the call to18rcHUP.

STITCHUP(C)

(1) Let W = {wg, w1, wy, ..., wk_1, wx} be the sequence of segment endpoints
encountered as one traverses the boundarinaflockwise order, wher@g = w
is the first endpoint on the boundary ©fo have been marked by the algorithm
asexaminedLet s be the segment of which; is an endpoint, for all 0< i
<k.

Every Set of Disjoint Line Segments Admits a Binary Tree 401

(2) Initialize the union-find structure U to recognize equivalence classes within the
set of labeldl, ..., k — 1}. Each label is initially in its own equivalence class.
(3) Fori «— 0tok — 1, do the following:
(3a) If segmens is attachedor semi-attachedthen sea <— i.
(astoresthe most recently encounteattdchedrsemi-attachedéndpoint.)
(3b) If 5 isunattachedands = 51, then:
(3b1) & has both endpoints on the boundarycgf
Mark s assemi-attacheavith component label—segmens is the
first in a new connected component. Maskandw;,; aspending
(3b2) Ifi — ais even, then initiate AAACHTO(wj, right).
(3b3) Ifi —ais odd, then initiate ATACHTO(wj 11, left).
(3b4) While there are endpoints ynding choose such an endpoint (call
it y), and initiate ATACHTO(Y, right).
(4) Seth «— p «— 0.
(5) Fori «— 0tok—1, do the following. Ifs is semi-attache@ndw; has no bridge
attached to it passing through cellthen:
(5a) IfA =0, then seb «—i.
(5b) Otherwise, ifo = @, then sefp «—i.
(5c) Otherwise, i ands, are in differensemi-attachedonnected components,
then:
(5c1) Introduce a bridge betwespands throughc.
(5¢2) Using the union-find structure U, merge the components containing
s, ands.
(5¢c3) Seto «—i.
(5d) Otherwise, i ands, are in the samsemi-attachedonnected component,
then setp «—1i.
(6) Atthis point, all segments with endpoints on the boundacyesé eitheattached
or belong to a commosemi-attached¢onnected component.
(6a) If there is no bridge attached #@ passing througle, then introduce the
new bridge(wg, wy).
(6b) If there previously existed a bridge betweep and w1, then delete the
bridge and replace it with bridgés1, w;) and(w,, wo).
(6c) Otherwise, there previously existed a bridge betwegandwy_;. Delete
this bridge and replace it with bridgésy, w,) and(w,, wg_1).
(7) Relabel alkemi-attachedegments ir§ as beingattached

Note that SiTcHUPmaintains each of the invariants listed in Section 4.1; in particular,
a call to S1TcHUP cannot result in the connection of more than one bridge throwgh
any endpoint of any segment. The proof of this claim follows the discussion of Algorithm
ENcOMPASSIn the next section.

4.4. The Main Algorithm

Having described procedures TACHTO and S1TCHUP, we are now in a position to
outline the main algorithm. Following this, we prove that it is correct.

402 P. Bose, M. E. Houle, and G. T. Toussaint

ENCOMPASS

(1) From the set of segmeng build its associated convex subdivision using the
method outlined in Section 2.
(2) Mark the bounding box and each segmentiaattached Mark each segment
endpoint and each calhvisited
(3) Connect the leaves of all trees rooted at the bounding box, as follows:
(3a) Choose such aleaf (calkiz. Lets, be the segment of whichis an endpoint.
(3b) Marks, asattached and the endpoint af; opposite tax aspending
(3c) ATTACHTO(X, right).
(3d) Mark the bounding box astached
(4) While there are endpoints ypéndingdo:
(4a) Choose such an endpoint (cal)t
(4b) ATTACHTO(Y, right).
(5) While there are cells ygtendingdo:
(5a) Choose such a cell (calld}.
(5b) SriTCHUP(C).

The proof of correctness of AlgorithmNEOMPASSIS by induction. It is easily seen
that the first segments are correctly attache@ tat Step (3) of ECOMPASS For each
remaining segmerg of S attached at Step (4) or Step (5), we assume inductively that
both Lemmas 7 and 8 hold true befarés attached, and show that both also hold after
sis attached.

The proofs of the lemmas rely on two main facts. First#cHTo and S1TCHUP
both maintain the invariants set out in Section 4.1. In particular, any endpoint labeled
unvisitedor pendingis not connected to a bridge. Both’acHToO and SiTCcHUP ensure
that when a new bridge is introduced, its endpoints will have acquired thedahei-
ined Second, any endpoint with the lale{aminednust have been given this label by
ATTACHTO.

Lemma7. Lets be asegmentlabeled eithattachedr semi-attachedand letv be

an endpoint of swhich has becomexamineds a result of the application &TTACHTO
uponv. Let T, be the extension tree of whichis a leaf and let s be the segment of S
at which T, is rooted If s wasunattachedt the time thaATTACHTO was invoked om,
then once this invocation has terminatednust have correctly been made a member of
the same connected component as s

Proof. We assume thatis not in the same connected componerg,adter the invoca-

tion of ATTACHTO onv has terminated. If the call to#acHTO onv did not immediately
resultins being bridged tw, then ATACHTO attempted to link the neighbouring leaves

of extension trees to an endpointsddy means of bridges. If all these leaves were labeled
unvisitedor pending then clearly the algorithm succeeded in bridging to and attaching
the segmens, as no bridges had previously been attached to these leaves. Therefore at
least one of the leaves (callut) on the path to the endpoint efmust have previously
beenexaminedAs v’ can only have been given this label byTACHTO, the induction
hypothesis implies that' ands are in the same connected component. However, if

Every Set of Disjoint Line Segments Admits a Binary Tree 403

andv are not already in the same connected component, the hidg8 introduced at
Step (5b1) of ATACHTO causes the components to be merged. From this contradiction,
the result follows. O

Lemma 8. Letc be goendingecell upon which the calBriTcHUP(c) is madeat a time
when all segments of S are labeled eith#achedr unattachedThen when the call to
STiITcHUP terminates

1. All segments of S are again labeled eitla¢tachedr unattached.
2. No endpoints of segments of S pending.
3. cis correctlyconnected.

Proof. Consider the sequence of segment endpdints {wo, w1, wo, ..., wk_1, Wk}
encountered as one traverses the boundacyrolockwise order, whergy = wy is the
first endpoint on the boundary ofto have been marked by the algorithmexamined
Lets be the segment of whictp; is an endpoint, for all Gz i < k.

Imagine the boundary af as viewed from the interior, in clockwise order starting
from wp. The extension edge emanating from each endpoiWt ofiust itself lie on the
boundary ofc. If the extension edge af; follows w; when scanning the boundary in
clockwise order, then we say that is aclockwisg(CW) endpoint olW. Otherwise w;
is called acounterclockwis¢CCW) endpoint.

We first show that after the loop of Step (3) has terminated, all segments on the
boundary ot are eitheattachedor semi-attachedrl he invariants maintained during the
execution of the loop are:

1. Immediately before the execution of Step (3k&])is attachedor semi-attached
forall0< j <a.
2. Immediately after the execution of Step (3k8})is attachedor semi-attachedor
alo<j<i+1
3. Immediately after the execution of Step (3le})belongs to the same connected
componentas g, foralla < j <i.
4. Except during the execution of Steps (3b1)—(3b4), no endpoints of edges are
pending
5. Immediately after the execution of Step (3b4} ifs labeledsemi-attachegthen
there exist two endpoints;, andwj, of W such that:
o there are no bridges passing through the interiar bavingwj, or wj, as an
endpoint;
o 1< j2<i+1
o if bis the smallest index such thgtbelongs to the sam&emi-attachedom-
ponent as;, thens; also belongs to this component for blk j < j,.

Note that when 8TcHUP is invoked, no endpoints can be labeleehding Also note
that in the first iteration of the loop, is set to 0, sincg, had beerattachedprior to the
call to SrITCHUP.

Consider now the situation at= p in which segmens, is found to beunattached
at Step (3a), and,_; has the labehttachedor semi-attachedEndpointw, cannot be
CW, otherwise, the sequence of edges on the boundacybeftweenw,_1 and wy

404 P. Bose, M. E. Houle, and G. T. Toussaint

would consist of extension edges, followed by a single segment edge adjacgst to
The extension tree of whiah,_1 is a leaf would therefore be rootedsgt Since the loop
invariant implies thatv,_, cannot be labelepending(and therefore must examined),
Lemma 7 implies thad, must beattachedor semi-attachee-a contradiction. Therefore
wp must be CCW in this situation.

Let p < g < k be the smallest index such that eithey is CW, ors; is attached
or semi-attachedwe claim that in fack; must beunattachedOtherwise, we have two
cases:

® W is CW
From the definition of}, we have thaiv,_, is CCW. The only way a CCW endpoint
can be followed by a CW endpoint in CW order about the boundaryigfif the
endpoints belong to the same segment. However, the assumptispithatached
or semi-attachedmplies thats;—1 = & is alsoattachedor semi-attachedThis
contradicts the minimality od].

® Wq is CCW
Sincewq-1 is also CCW, the sequence of edges on the boundacybeftween
wq-1 andwq would consist of extension edges, preceded by a single segment edge
adjacent towq—1. The extension tree of whichy is a leaf would therefore be
rooted atsy_1. Since the loop invariant implies that, cannot be labeledending
(and therefore must examineg, Lemma 7 implies thad,_; must beattachedor
semi-attached-again contradicting the minimality af.

We are forced to conclude thaty is CW, and also tha;_1 = 5. This implies the
following:

e Once arunattachedegmens, is discovered at Step (3a), the condition of Step (3b)
will eventually be met at somie> p.

e Segmens; is unattachedorall p < j <i +1.

e Endpointwj is CCW forallp < j <i.

When Steps (3b1)—(3b4) are executed, the effect is to resmei-attachedor pos-
sibly evenattached every segmeng; in the rangep < j <i + 1. To prove that this is
the case, consider the effect of initiatingTACHTO at endpointw;, wherew; andw;_,
are both CCW. Arguments similar to those appearing above ensure that as a result of the
call to ATTACHTO, segmens;_; becomes a member of the same connected component
ass;. Endpointw;_; becomes eithggendingor examineddepending on the endpoint by
which s;_; becomes attached. However, Step (3b4) ensures thaerdingendpoints
becomeexaminedefore the step terminates. Given that both endpoings efs . ; are
labeledpendingin Step (3b1), and that alb; are CCW ands are initially unattached
forall p < j <i, all wj in the range must beconexaminedby the time Step (3b4)
terminates.

When Step (3b4) terminates, the second through fourth loop invariants mentioned
above have been restored. Sirgce; = 5 becomessemi-attachedor possibly even
attached as a resulta is set toi + 1 in the next iteration of the loop. This guarantees
that the first loop invariant holds for the next execution of Step (3b1), if any. Thus when
the loop terminates, all segments in the boundaryare indeed labeled eithattached
or semi-attached

Every Set of Disjoint Line Segments Admits a Binary Tree 405

So far we have not justified the separate handling of the cases depending on the parity
ofi — a, in Steps (3b2) and (3b3). We claim that this separate handling allows the fifth
loop invariant to be maintained. We assume thenghasemi-attacheavhen Step (3b4)
terminates.

If i —ais even, then Step (3b2) preventsfrom receiving a bridge through the interior
of ¢ before the termination of Step (3b4)—since all bridges introduced in Step (3b)
merge segments into a common connected component, a second bridge through
would introduce a cycle. In order to identify a second endpoint that receives no bridge
throughc, consider the endpoints whose indices lie in the rafege- 1,...,i — 1}.

Any bridges introduced through at any of the endpoints in the range must either
link two consecutive endpoints in the range, or must hinj; with w,. We have two
cases:

e way1 IS NOt bridged tow,.
Since no endpoint can receive more than one bridge, an even number of endpoints
of the range must receive bridges. As the cardinality of the range is odd, there must
be at least one endpoint that receives no bridge thraugbgether withw;, this
leaves thesemi-attachedomponent of with at least two unused endpoints with
indicesintherangéga + 1, ...,i + 1}.

Let b be the smallest index such that belongs to the samsemi-attached
component as; = S11. If b = a+ 1, we are done, sincg is in the component
ofg foralla+ 1< j <i+ 1. Otherwisep < a. Immediately before the current
iteration of the loop, segmest must have been the segment of smallest index of
a differentsemi-attacheg¢omponent. If so, the fifth loop invariant guarantees the
existence of endpoints;, andwj, to which no bridges were incident through
before the currentiteration whebe< j; < j». Sinces;; was inthe same component
ass, forallb < j’ < jo, thenj, < a. Also since no bridge was introduced at the
current iteration betweem, andwa,1, the endpointsv;, andw;, are not incident
to bridges througle when the current iteration terminates. The fifth loop invariant
is therefore satisfied in this case.

e wy,1 IS bridged tows,.
Ifthis occurs, the connected componengaherges with that of,. If s, isattached
thens becomesattached contradicting our assumption thettwassemi-attached
atthe end of Step (3b4).4f is semi-attachedhen the result of the merge is a single
semi-attachectomponent. By the fifth loop invariant, at least two endpoin{s
andwj, of W in thesemi-attachedomponent to whicls, belonged had no bridge
attached to them passing through_et b be the smallest index of the segments in
the component of,. As beforep < j; < jo < a.

If j» < a, then the arguments of the previous case apply to show that the fifth
loop invariant continues to hold. Otherwige,= a. Sinces; belongs to the former
component o, forallb < j < a, andtothe componentgfforalla+1< j <i,
after the merges; belongs to the component gfforallb < j <i + 1. Endpoint
wj, cannot have received a bridge as a result of the merge, and thexgfaed
w; satisfy the conditions of the fifth loop invariant.

Ifi —ais odd, Step (3b3) ensures that, 1 will have no bridge attached to it through
c. Considering that the range of indicigs+ 1, . . ., i } is of odd cardinality, the fifth loop

406 P. Bose, M. E. Houle, and G. T. Toussaint

invariant can be shown to hold using an argument almost identical to that of the case
wherei — ais even.

At this point, we have shown that all five invariants are maintained by the loop of
Step (3). In particular, when the loop terminates, the second, third, and fifth invariants
still hold, and no endpoints of segments3marepending Each bridge passing through
¢ must link consecutive endpoints @, since it can only have been introduced via a
call to ATTACHTO. Such bridges cannot interfere with any other bridges that may later
be introduced between free endpoint3/éf

The loop in Step (5) uses the indexto maintain the most recently encountered
unbridged endpoint of the curresémi-attachedcomponent; whenever an unbridged
endpoint of a new component is discovered, a bridge is introduced beitweand the
new endpoint, merging the components. The fifth invariant guarantees that when the first
unbridged endpoinp;, of a new component is discovered, a second unbridged endpoint
wj, of that component also exists, wifh > j1. This ensures that the merged component
has an unbridged endpoint that can be used to merge the next component to be discovered
by the loop of Step (5). When the loop terminates selini-attacheadges have been
merged into one component, ah@ndp are the minimum and maximum indices of the
original unbridged endpoints taken over sdimi-attachedegments.

In Step (6) thesemi-attached@omponent is merged into tladtachedcomponent via
endpointswg, w;, and (perhapsy,. Since there exists npin the interval{o, ..., A}
such thatw; was an unbridged endpoint osami-attachedegment before Step (5), the
bridges(wo, w;) would intersect no other bridges througli introduced; similarly, the
bridges(w1, w;) and(w,, wx_1) would intersect no other bridges.

If wois not already incident to a bridge throughhe introduction of bridgéwg, w;)
correctly merges theemi-attachedndattachedcomponents. Otherwise, if the bridge
(wo, w1) eXists, replacingwo, wi) by (w1, w;) and(w,, wo) correctly splices theemi-
attachedcomponent into thattachedcomponent betweew, andw;. The result is a
single connected component that includes all endpointd .of

To conclude the proof, we note that whent®®HUP has terminated, no segments are
semi-attache@nd no endpoints amgending O

Lemma 9. ENcompasseventually terminates after taking at mostrdogn) time

Proof. The construction of the underlying convex subdivision Q can be accomplished
using planar line-sweep techniques, as outlined in SectionQ(irog n) time [11]. At
the time of construction, pointers can be established linking the leaves of extension trees
with the segments to which they are rooted, and counters can be set up to allow efficient
modification of the labels of cells.

The total amount of work done in executing procedurga&HTO is proportional to
the number of vertices and edges of Q, which by Lemma 1 8(n). The first time
ATTACHTO is called on an endpoint, it marks it agaminedlif called on the endpoint
again, it simply exits without doing anything (this can be charged to the neighbour from
which the call was made). The extension edges of Q can be traversed at most once in each
direction when moving from neighbour to neighbour; segment edges can be traversed at
most four times each (twice from each of the two cells it bounds).

Every Set of Disjoint Line Segments Admits a Binary Tree 407

The total work done in executingr8cHUP onc can be divided into three categories:
work involving the union-find structure U; work involving calls ta®cHTO; and the
remainder ofthe work. The work involving calls tasacHTo has already been accounted
for. Also, the relabeling of the segments in the final stepf&iUP can be charged to
the segments themselves—since each segment can battacteedonly once, the total
work performed in this step over all calls taiI8cHUP is in O(n).

Let k. be the number of subdivision edges on the boundary ofczeliis number
is larger than the number of segment endpoints on the boundary. The total number
of union-find operations is ifO(k.), as well as the total time taken which has not
already been accounted for by calls totACHTO, or the relabeling discussed above. If
standard union-find structures are used [4], the time taken to perform these operations
is in O(k; - @(ke)), wherea(k.) is the very slowly growing inverse of Ackermann’s
function. Since $ITCHUP can only be performed once per cell, the total time taken by
calls to S1ITCHUPIS in O()_ (k: - a(kc))) € O(ae(n) Y . ke). Since each non-box edge
of the subdivision is contained in exactly two cells, and since the number of cells is in
O(n), > . ke is proportional to the total number of edges of Q, which i€itm). The
total additional time taken by the calls tai8cHUP is therefore inO(n - «(n)).

The overall work performed byN€eompAssis accounted for by the total work in-
volved in calls to ATACHTO, to the additional work performed byr8cHUP, and to
the construction of the convex subdivision. The time taken to construct the subdivision
dominates, and thus the total time taken bycBmpAssis in O(nlogn). O

Lemma 10. When the execution &NcomMmpPAassterminatesthen G is a degre&-en-
compassing tree for.S

Proof. Lemma 9 implies that EcoMPASSdoes indeed terminate.

Assume thaG does not encompass all segment$ofhen there exists at least one
cell of Q that isunvisited Since no cell ipending(by Step (5)), all cells that are not
unvisitedmust beconnectedThe correctness of Step (3) ensures that all cells bordering
the bounding box are nainvisited therefore, they must all bebnnected

Let C be the union of all cells that atevisited The boundary of C consists of a
collection of disjoint simple cycles in Q. There is at least one cycle in the boundary;
call it C. SinceC cannot contain box segments, Lemma 2 implies that there exists some
segment endpoint on C. Sincev is on the boundary of aanvisitedcell, v must be
labeledunvisited However,v is also on the boundary of @onnectectell, and must
therefore be labelegikamined-a contradiction. Every cell must therefore be connected.
Lemma 6 then implies th& encompasses all segmentsHf

The planarity and degree d& are a result of the invariants set forth in Sec-
tion 4.1. O

Theorem 11. Given a set S of n disjoint line segments in the pJ&n&oMPASSCOM-
putes a degre8&-planar encompassing tree of S ini@ogn) time and Qn) space

Proof Follows from Lemmas 1 and 7-10. O

408 P. Bose, M. E. Houle, and G. T. Toussaint
5. Lower Bound

Finally, we show that the problem of finding a degree-3 encompassing tree of a set
of disjoint line segments require2(nlogn) time to solve, using a reduction simi-

lar to that for the convex hull problem [11]. This implies the optimality of Algorithm
ENCOMPASS

Theorem 12. The problem of sorting n real numbers is(i)-transformable to the
problem of finding a degreg-spanning tree of a set of disjoint line segmeniais
finding a degree@encompassing tree of a set of disjoint line segments rec@iasog n)
time

Proof. Given a setS of n positive real numbersy, ..., X,, we show how any en-
compassing tree algorithm can be used to sort them with only linear overhead. For
convenience, ledy, . . ., s, represent the indices of the sorted order of the real numbers
from smallest to largest; that igs, is the smallest of the numbers, axglis the largest.
Letm = Xs, be the maximum element &

For each numbex;, we construct a corresponding vertical line segmient.e., we
associate the numbemith the line segment. The line segménis constructed in the
following way. The lower endpoint has coordinaies, x> — m? — 1), and the upper
endpoint has coordinat€s;, —xi2 + m? + 1). Note that sincen can be computed in
linear time, the construction requires only linear time.

These endpoints are well defined—for all values,ahe lower endpoint is strictly
below thex-axis, while the upper endpoint is strictly above. All of the lower endpoints
lie on the upward-opening parabdla y = x> — m? — 1 and all of the upper endpoints
lie on the downward-opening parabala y = —x? + m? + 1. Since the endpoints are
on the boundary of the a convex region (namely that bounded,y, and they-axis),
the fact that the segments are parallel means that the endpoigtarefvisible from the
endpoints of no other edges except andls,,.

Since the degree-3 encompassing tree consists of visibility edges between line seg-
ments together with the line segments themselves, a simple depth-first traversal of the
tree starting from the leftmost vertex of degree 1 enables us to uncover the sorted order
of the input in linear time from the output delivered by any algorithm. O

Although the segments of the proof were chosen to be parallel for the sake of conve-
nience, constructions in which no two segments are parallel can also be used.

6. Conclusion

In this paper we have shown that a set of disjoint line segments always admits an
encompassing tree with maximum vertex degree 3, and that there exist configurations
of line segments such that any encompassing tree of the set has maximum degree 3. We
presented an algorithm to compute a binary encompassing t@énitogn) time, and

Every Set of Disjoint Line Segments Admits a Binary Tree 409

showed a lower bound & (nlogn) for the problem establishing the optimality of our
algorithm. There are a number of open problems still to be considered.

1. Isit NP-hard to compute a simple polygon or a simple hamiltonian path through a
set of disjoint line segments? Rappaport [12] has shown that the decision problem
is NP-complete when the line segments are allowed to intersect at their end-
points.

2. Isit possible to compute a simple polygon through a set of disjoint line segments,

where the line segments are either part of the boundary, internal diagonals, or
external diagonals [7]? Urabe and Watanabe [17] have shown that if the line seg-
ments are limited to the boundary and internal diagonals, that it is not always
possible.

3. Isthe visibility graph of a set of disjoint line segments hamiltonian [7]? If not, can

anything be said about the longest path in the visibility graph?

Acknowledgments

We thank Hossam EIGindy, Eduardo Rivera-Campo, and Jorge Urrutia for fruitful dis-
cussions on the topic. We thank David Thompson for providing a stimulating research
environment.

References

11.

12.

13.

14.
15.

. D. Avis and D. Rappaport, Computing monotone simple circuits in the pla@arimputational Morphol-

ogy, G. T. Toussaint (ed.), Elsevier Scieriborth-Holland, Amsterdam, 1988.

. J. A. Bondy and U. S. R. MurtyGraph Theory with Application€lsevier Science, New York, 1976.
. P. Bose and G. Toussaint, Growing a tree from its brandoesnal of AlgorithmslL9 (1995), 86-103.
. T.H. Cormen, C. E. Leiserson, and R. L. Rivéstroduction to AlgorithmsMIT Press, Cambridge, MA,

1990.

. H. EIGindy and G. Toussaint, Efficient algorithms for inserting and deleting edges from triangulations, in

Proc. International Conference on Foundations of Data Organizati§yoto, 1985, pp. 163—-169.

. B. Grinbaum, Hamiltonian polygons and polyhedegombinatorics (1994), 83—89.
. A. Mirzaian, Hamiltonian triangulations and circumscribing polygons of disjoint line segnt@oispu-

tational GeometryTheory and Applicationg (1992), 15-30.

. C. Monma and S. Suri, Transitions in geometric minimum spanning tBessrete & Computational

Geometry8 (1992), 265-293.

. J. O'RourkeArt Gallery Theorems and Algorithm®xford University Press, New York, 1987.
. J. O’'Rourke and J. Rippel, Two segment classes with Hamiltonian visibility gr&pinsputational Ge-

ometry Theory and Applicationd (1994), 209-218.

F. Preparata and M. Sham@pmputational GeometryAn Introduction Springer-Verlag, New York,
1985.

D. Rappaport, Computing simple circuits from a set of line segments is NP-completecit3rd ACM
Symposium on Computational GeomeWaterloo, Ontario, 1987, pp. 322—-330.

D. Rappaport, H. Imai, and G. T. Toussaint, Computing simple circuits from a set of line sedbisortte
& Computational Geometr§ (1990), 289-304.

E. Rivera-Campo and J. Urrutia, Personal communication, 1992.

X. Shen and H. Edelsbrunner, A tight lower bound on the size of visibility grépfiosmation Processing
Letters26 (1987), 61-64.

410 P. Bose, M. E. Houle, and G. T. Toussaint

16. T. Su and R. Chang, Computing the constrained relative neighborhood graphs and constrained Gabriel
graphs in Euclidean planPattern Recognitio24 (1991), 221-230.

17. M. Urabe and M. Watanabe, On a counterexample to a conjecture of Mirgaiarputational Geometry
Theory and Applicationg (1992), 51-53.

18. A.Yao, AnO(E loglogV) algorithm for finding minimum spanning tregésformation Processing Letters
4(1975), 21-23.

Received Septembg4, 1999.and in revised form January7, 2001 Online publication Augus?9, 2001.

