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Abstract. A conjecture of Branko Gr¨unbaum concerning what astral(n4) configurations
exist is shown to be true.

1. Introduction

An (n4) configurationis a collection of points and straight lines in the Euclidean plane,
where each point is on exactly four lines and each line passes through exactly four
points. A configuration isconnectedif, starting at an arbitrary point, it is possible to
reach any other point in the configuration by travelling only on lines of the configuration
and changing lines only at points of the configuration. An(n4) configuration isastral
if the subgroup of the isometries of the Euclidean plane which map the configuration
onto itself generate exactly two transitivity classes of points and two transitivity classes
of lines (see [1] and [2]). In a connected astral(n4) configuration, the points of the
configuration must lie on the vertices of two concentric, convex, regularm-gons, where
m = n/2, and the lines of the configuration must be common diagonals of them-gons.
If the vertices of anm-gon are consecutively labelledv1, . . . , vm, a diagonal hasspan a
if it connects verticesvi andvi+a. The configuration may also be constructed by taking a
regular, convexm-gon and all diagonals of spana andc, where the diagonals of the two
spans happen to intersect appropriately, and making the intersection points the vertices
of the innerm-gon (for an example, see Fig. 1). In [4] it was shown that if four diagonals
of a regular polygon intersect, then them-gon must havem divisible by six, so any
configuration whose points lie on the vertices of two concentric, convex, regularm-gons
must havem divisible by six as well.

Following the notation in [2], such a configuration will be notated asm#abcd, where
m is the number of vertices of the outsidem-gon anda andc are the spans of diagonals.
Considering only the spana diagonals, one diagonal has intersection points on it from
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Fig. 1. The astral(n4) configuration 12#4154.

the other spana diagonals;b is the number of these intersection points, counted from
the midpoint of the diagonal, until the innerm-gon vertex is reached (and similarly for
d and the spanc diagonals). Thus,ab andcd are the same point of the configuration.
Additional configurations may be constructed from a given configuration by takingp
concentric copies of the configuration, equally spaced, for some choice ofp: in this case
the final configuration will be said to consist ofp multiplesof the original configuration
(see Fig. 2 for an example withp = 3). The final type of astral(n4) configurations are
constructed by taking two concentric copies of a configuration whose points lie on the
vertices of two concentric, regular, convex polygons and rotating one through an arbitrary
angle with respect to the other (see [3]); these are discussed further in Section 4.

Theorem 1. All astral (n4) configurations with points that lie on the vertices of two
concentric, regular, convex m-gons, where m = n/2 and lines which are common
diagonals of the m-gons are listed in the following: there are two infinite families,
(6k)#(3k− j )3k−2 j (2k)j for j = 1, . . . ,2k− 1, j 6= k, and j 6= 3k/2, and(6k)#(3k−
2 j )j (3k− j )2k, for j = 1, . . . , k− 1. There are27connected sporadic configurations,
with m = 30,42, and 60, listed in Table5, where a configuration is sporadic if it is
not a member of one of the infinite families. Finally, there are multiples of the sporadic
configurations.

The history of this theorem is somewhat confused. The existence of the infinite fami-
lies of configurations and of the sporadic configurations was proven in [2]. In that paper
Grünbaum conjectured that these were all the astral(n4) configurations. He emended the
conjecture in [3], where he stated that these were all the connected astral configurations,
although in [2] he discussed the fact that givens copies of an astral(n4) configura-
tion m#abcd one could construct the disconnected astral configurationsm#sasbscsd (see
Theorem 2 below). In a private communication he indicated that the proper form of the
conjecture is as stated in Theorem 1.
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Fig. 2. The astral(n4) configuration 36#1231512, constructed from three copies of 12#4154 (one copy is
shown with thicker lines).

Theorem 2. A configuration6k#abcd is connected iffGCD(m,a,b, c,d) = 1. If
GCD(m,a,b, c,d) = q > 1, then the configuration6k#abcd is constructed from q
concentric copies, equally spaced, of the configuration6k/q#(a/q)b/q(c/q)d/q.

Proof. Suppose a configuration (the “main configuration”) 6k#abcd is made up ofq
concentric copies, rotated through equal angles, of a smaller, connected configuration
6k′#a′b′c

′
d′ (the “subconfiguration”). Notice that each copy contributes 6k′ vertices to the

total numberm of vertices, som = 6k′q. If a line has spana′ (respectively,c′) when
considered as part of the subconfiguration, then it must have spana′q (respectively,c′q)
considered as part of the main configuration, since there are nowq− 1 more vertices of
the main configuration to be counted between each two vertices of the subconfiguration
containing the line. Similarly, there are nowq− 1 more intersection points per original
intersection point to be counted when determiningb andd in the main configuration, so
b = b′q andc = c′q.

Now suppose 6k#abcd is a configuration whose vertices lie on the vertices of two
concentric, regular, convexm-gons, and suppose GCD(k,a,b, c,d) = q. Any subcon-
figurationm′#a′b′c

′
d′ must have 6|m′; if m′ = m/q andq - k but q|m, then 6-m′. So if

GCD(m,a,b, c,d) = q and 6|(m/q), thenq|k, so GCD(k,a,b, c,d) = q. Choose a
vertexv0 on the outer polygon of the configuration. Label the other vertices of the outer
polygonv1, v2, . . . , vm−1 proceeding counterclockwise fromv0. Consider the vertices
connected tov0: using the spana andc lines,v0 is connected tova andvc. By travelling
along the spana line and changing to a different spana line at thebth intersection point
(on the inner polygon of the configuration),v0 is connected tovb and, similarly, tovd using
the spanc line. It follows thatv0 must be connected to allvi1a+i2b+i3c+i4d, wherei1, . . . , i4
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are integers and the subscript is taken modulom. That is, if p = GCD(a,b, c,d), v0 is
connected to allvj p ( j p taken modulom), and the subconfiguration induced by thevj p is
the connected component of 6k#abcd containingv0. Finally, the number of components
of 6k#abcd equals GCD(m, p) = q, so 6k#abcd consists of preciselyq copies of the
subconfiguration induced by thevj p (since the choice ofv0 was arbitrary).

Corollary 1. The configurations listed in Theorem1 which are connected are those
with configuration symbol6k#abcd, whereGCD(k,a,b, c,d) = 1.

The remainder of this section and the following two sections deals with the proof of
Theorem 1.

To find astral(n4) configurations whose vertices lie on two concentric, regular, convex
m-gons, it suffices to determine when a regularm-gon has two pairs of two diagonals of
the same span which intersect in a single point. In [4] Poonen and Rubinstein determined
how many intersection points of 2, 3, 4, 5, 6, or 7 diagonals there are in a regularm-gon
and provided information about what diagonals are used to form such intersections; they
showed that 8 or more diagonals can meet only in the center of an even-sided polygon.
In particular, they found 4 one-parameter families of intersecting triples of diagonals,
along with 65 sporadic triples (i.e., triples not members of the infinite families), and they
found 12 one-parameter families of intersecting quadruples.

Poonen and Rubinstein listed their intersecting triples (respectively, quadruples) as
hextuples (respectively, octuples) of numbers summing to 1, listing the fraction of the
circumference traversed between successive endpoints of the diagonals in question: call
this the arclength. Given a hextuple{a,b, c,d,e, f }, to form thei th diagonal of the
triple, choose a starting position on the polygon and number by 1, 2,. . . , 6 the vertices
reached by traversing through arclengtha, then through arclengthb, etc. Verticesi
and i + 3 are connected to form thei th diagonal; in an octuple, the construction is
similar, but the vertices are labelled 1, . . . ,8 and verticesi and i + 4 are joined (see
Fig. 3). The least common denominator of the fractions in the hextuple or octuple is a
factor ofm, the number of vertices in the polygon. To convert an octuple of arclengths
into a configuration, assuming that it consists of two pairs of same-span diagonals, the
following algorithm is used: first, multiply each fraction bym, leaving a list of the number

d1

d2
d3 b

a

c

e
f

d

Fig. 3. Converting the hextuple{a,b, c,d,e, f } into a triple of diagonals{d1,d2,d3}.
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of arcs between each endpoint of a diagonal; call this listL = (L1, . . . , L8). For eachi ,
i = 1, . . . ,8, make a new listL ′ which contains the sum fromLi to Li+4 in the i th slot
(with indices summed mod 8). Leta be the smallest element ofL ′ and letc be the second
smallest element. To calculateb, find the two positions inL ′ which havea in them, say
L j andLk, and setb = L j + · · · + Lk−1 (again, taking indices mod 8). Similarly, to find
d, sum between the positions inL which correspond to the appearance ofc in L ′. The
configuration corresponding to the octuple ism#abcd.

Poonen and Rubinstein show in [4] that the maximum number of diagonals of a
regularm-gon which meet in a point other than the center is three ifm is not divisible
by six. Thus, for any astral(n4) configuration, ifm= n/2, m= 6k.

2. The Infinite Families of Configurations

Poonen and Rubinstein determined that there are twelve one-parameter families of inter-
secting quadruples of diagonals, which they listed in a table in [4]. Of these, four contain
two pairs of same-span diagonals. I have given them names (i.e., familyi ) according to
the order in which they were listed in [4]. They are listed by arclengths in Table 1.

If t = j/m, wherem = 6k, and the lists are multiplied through bym, the lists in
Table 2 are generated, which may be converted into configuration symbols as outlined
above.

Definek̂ to be the greatest integer strictly less thank. Following the instructions above,
the octuples in Table 2 are converted into the configurations in Table 3, with parameters
as indicated.

Note that there are several variants of a configuration symbol which correspond to the
same configuration. These variants yield the followingconfiguration identities, which
may be combined in any order:

m#abcd = m#cdab, (1)

m#abcd = m#abcm−d, (2)

m#abcd = m#abc−d, (3)

m#abcd = m#(m− a)bcd. (4)

To show that the families of configurations in Table 3 are the same families of config-
urations as Gr¨unbaum found, it is necessary to reparametrize and use the configuration
identities.

Table 1. The infinite families with pairs of same-span diagonals.

Family Range;t ∈ Q
1 t t t 1

6 − 2t 1
6

1
3 + t 1

6
1
6 − 2t 0< t < 1

12

2 t 1
6 − t 1

6 − t 1
6 − t t 1

6
1
6 + t 1

6 0< t < 1
6

4 2t 1
2 − t 2t 1

6 − 2t t 1
6 − t t 1

6 − 2t 0< t < 1
12

12 2t 1
6 − t t 1

6 − t t 1
6 − t 2t 1

2 − 3t 0< t < 1
6
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Table 2

Family Range;j ∈ N
1 j j j −2 j + k k j + 2k k −2 j + k 0< j < k/2

2 j − j + k − j + k − j + k j k j + k k 0< j < k

4 2j − j + 3k 2 j −2 j + k j − j + k j −2 j + k 0< j < k/2

12 2j − j + k j − j + k j − j + k 2 j −3 j + 3k 0< j < k

Table 3

Family Configuration Parameter range

1 6k#( j + k)(2 j+5k)(2k)( j+4k) j = 1, . . . , k̂/2

2 6k#(3k− 2 j )j (3k− j )(4k) j = 1, . . . , k− 1

4 6k#(2k− j )(k−2 j )(2k)(k+ j ) j = 1, . . . , k̂/2

12 6k#(2k)(k− j )( j + 2k)(2 j+k) j = 1, . . . , k− 1

Table 4

Family Reparametrization New configuration New parameter range

1 j 7→ k− i 6k#(3k− i )(3k−2i )(2k)−i i = 3̂k/2+ 1, . . . ,2k− 1

4 j 7→ i − k 6k#(3k− i )(3k−2i )(2k)i i = k+ 1, . . . , 3̂k/2

12 j 7→ 2k− i 6k#(2k)i (3k− i )3k−2i i = 1, . . . , k− 1

First, consider Family 2. Since 6k#(3k− 2 j )j (3k− j )(4k) is equivalent to 6k#(3k−
2 j )j (3k − j )(2k) using identity (2), this is Gr¨unbaum’s second family, withj = 1, . . . ,
k− 1.

Families 1, 4, and 12 together form Gr¨unbaum’s first family of configurations. To see
this, first reparametrize as indicated in Table 4.

Applying identity (3) to family 1, identity (1) to family 12, and replacingi with j ,
the three families combine to form Gr¨unbaum’s first family.

3. The Sporadic Configurations

In finding the infinite families of quadruples, Poonen and Rubinstein “merged” the in-
finite families of triples they had found, by developing a system of linear conditions to
determine when two triples overlapped to form a quadruple. Mostly, the one-parameter
families of triples combined to form one-parameter families of quadruples; however,
for small values ofm, they found a finite number of quadruples which were formed
from two infinite-family triples but were not themselves members of the infinite fam-
ilies of quadruples [4]. It can be verified that these particular quadruples, which all
havem = 12,18,24, correspond to configurations which are members of the infinite
families.
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Fig. 4. Relationships between arclengths of intersecting triples.

Therefore, any sporadic astral configurations must contain a sporadic triple, since all
the configurations which are formed from two overlapping infinite-family triples are in
the infinite families of configurations.

Given four diagonals which intersect in a single point, the quadruple may be decom-
posed as two sets of three diagonals, each of which intersect in the same point: i.e, if
d1,d2,d3, andd4 are the four diagonals, then{d1,d2,d3} form one triple and{d1,d2,d4}
form the other triple. Following the notation in [4], the triple{d1,d2,d3} decomposes
the circle into the six arclengths{u1, x1, v1, y1, w1, z1}, and the triple{d1,d2,d4} de-
composes the circle into the six arclengths{u2, x2, v2, y2, w2, z2}. If two distinct triples
overlap to form a quadruple, where the first two diagonals are the same, then the following
relationships must hold (see Fig. 4):

u1 = u2,

y1 = y2,

v1+ x1 = v2+ x2,

w1+ z1 = w2+ z2,

x1 6= x2 (so that the triples are distinct).

If the pair of triples satisfies the above equations, they are calledmergeable. In this
case the quadruple they form has arclengths{u1, x1, |x2−x1|, v2, y1, w1, |w2−w1|, z2}. I
call the process of comparing pairs of triples to see if they satisfy the necessary equations
mergingthe triples.

To determine the sporadic configurations, the sporadic triples must be merged with
each other and with the infinite-family triples.
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Poonen and Rubinstein proved the following lemma (note that here “configuration”
simply refers to a certain set of diagonals, and “denominator” refers to the least common
denominator of the arclengths in the set of diagonals, i.e.,m):

“Lemma 5.1. If a configuration of k≥ 2 diagonals meeting at an interior point other
than the center has denominator dividing d, then any configuration of diagonals meeting
at that point has denominator dividingLCM(2d,3)” [4, p. 146].

Thus, it suffices to check whether the sporadic triples of a given denominator are
mergeable only with triples with denominators as indicated by the lemma. That is,

Sporadic triples Possibly mergeable triples

m= 30 m= 30,60
42 42, 84
60 30, 60, 120
84 42, 84, 168
90 30, 60, 90, 180

120 30, 60, 120
210 30, 42, 60, 84, 210, 420

Using Mathematica, the sporadic triples were merged with triples of the appropriate
denominator, and the resulting octuples were converted into configurations. The sporadic
configurations obtained are listed in Table 5.

Merging the sporadic triples of the other denominators either resulted in octuples
from the merge which did not correspond to configurations (m = 84,120; the octuples
did not contain two pairs of diagonals of the same span) or in no results from the merge
(m= 90,210).

Table 5

m= 30

30#4176 30#6174 30#611110

30#6286 30#721211 30#811312
∗

30#101116 30#1061210 30#1071312

30#112127 30#1161413 30#121138

30#1241412 30#1271310 30#1361411

m= 42

42#611312 42#1161817 42#121136

42#1251918 42#1761811 42#1851912
†

m= 60

60#922221 60#1252524 60#1432726

60#212229 60#2452512 60#2632714

∗ Erroneously listed in [2] as 30#81132.
† Erroneously listed in [2] as 42#1721914.
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These are all possible connected sporadic astral(n4) configurations (note this list
corrects a few typos in [2]).

Combining the results of Sections 2 and 3 with Corollary 1 completes the proof of
Theorem 1.

4. Other Astral (n4) Configurations

Theorem 1 completely characterizes astral(n4) configurations whose vertices lie on
the vertices of two concentric regularm-gons. However, there are some astral(n4)

configurations where the vertices of the configuration do not lie on two regularm-gons;
see Fig. 5.

Theorem 3. All astral (n4) configurations whose vertices do not lie on the vertices
of two concentric regular m-gons may be constructed by taking two concentric copies
of one of the astral configurations indicated in Theorem1, where one copy is rotated
through an arbitrary angle(i.e., other thanπ/m) with respect to the other.

Proof. First, consider a configuration (the “main configuration”) which is constructed
from two copies of an astral configuration listed in Theorem 1. Such a configuration
is astral, since if the configuration is made of two copies of a configurationm#abcd

rotated as indicated, then using a combination of rotation through 2π/m and reflection
through the lines of symmetry in the main configuration, it is clear that the spana lines

Fig. 5. An astral configuration(484), whose vertices do not lie on the vertices of two concentricm-gons; it
is constructed from two copies of 12#4154, with one copy shown with thicker lines.
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of both subconfigurations form one symmetry class of lines and the spanc lines of both
subconfigurations form the other, and that the vertices form two symmetry classes, one
on the outer circle and one on the inner circle.

Given an astral(n4) configuration whose vertices do not lie on the vertices of a
regular polygon, notice that due to symmetry considerations, the connected component
of a vertexv must be one of the configurations listed in Theorem 1. A configuration
constructed from more than two concentric copies of a Theorem 1 configuration rotated
through arbitrary angles with respect to one of them results in more than two symmetry
classes of points and lines, so the(n4) configuration is not astral.

5. Remarks

1. Given the characterization of an astral(n4) configuration whose vertices lie on the
vertices of two concentric regular polygons as one which is formed from two pairs
of same-span diagonals of a regularm = (n/2)-gon which intersect in a common
point, it may seem that it should be straightforward to determine all such astral(n4)

configurations. However, there turned out to be significant subtleties.
2. All computations were done inMathematica. Annotated source code is available

at http://www.math.washington.edu/˜berman.
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3. Grünbaum, B. Which(n4) configurations exist?Geombinatorics9 (2000), 164–169.
4. Poonen, B., and M. Rubinstein. The number of intersection points made by the diagonals of a regular

polygon.SIAM J. Discrete Math. 11 (1998), 135–156.

Received July8, 2000,and in revised form February14, 2001.Online publication August28, 2001.


