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Abstract. A conjecture of Branko Gnibaum concerning what astal;) configurations
exist is shown to be true.

1. Introduction

An (ng) configurationis a collection of points and straight lines in the Euclidean plane,
where each point is on exactly four lines and each line passes through exactly four
points. A configuration iconnectedf, starting at an arbitrary point, it is possible to
reach any other point in the configuration by travelling only on lines of the configuration
and changing lines only at points of the configuration. (Ag) configuration isastral
if the subgroup of the isometries of the Euclidean plane which map the configuration
onto itself generate exactly two transitivity classes of points and two transitivity classes
of lines (see [1] and [2]). In a connected ast(al) configuration, the points of the
configuration must lie on the vertices of two concentric, convex, regaigons, where
m = n/2, and the lines of the configuration must be common diagonals ofitgens.
If the vertices of aim-gon are consecutively labelled, . . ., vy, a diagonal haspan a
if it connects vertices; andv; 5. The configuration may also be constructed by taking a
regular, convexn-gon and all diagonals of spamandc, where the diagonals of the two
spans happen to intersect appropriately, and making the intersection points the vertices
of the innem-gon (for an example, see Fig. 1). In [4] it was shown that if four diagonals
of a regular polygon intersect, then thegon must haven divisible by six, so any
configuration whose points lie on the vertices of two concentric, convex, ragudans
must havem divisible by six as well.

Following the notation in [2], such a configuration will be notatedrés,cy, where
m is the number of vertices of the outsidegon anda andc are the spans of diagonals.
Considering only the spamdiagonals, one diagonal has intersection points on it from
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Fig. 1. The astraln,) configuration 12#45,.

the other spam diagonalsp is the number of these intersection points, counted from
the midpoint of the diagonal, until the innergon vertex is reached (and similarly for

d and the spar diagonals). Thusa, andcy are the same point of the configuration.
Additional configurations may be constructed from a given configuration by taking
concentric copies of the configuration, equally spaced, for some chojzérothis case

the final configuration will be said to consist pfmultiplesof the original configuration

(see Fig. 2 for an example with = 3). The final type of astralns) configurations are
constructed by taking two concentric copies of a configuration whose points lie on the
vertices of two concentric, regular, convex polygons and rotating one through an arbitrary
angle with respect to the other (see [3]); these are discussed further in Section 4.

Theorem 1. All astral (ng) configurations with points that lie on the vertices of two
concentri¢ regular, convex m-gonswhere m= n/2 and lines which are common
diagonals of the m-gons are listed in the followirtbere are two infinite families
(BK)#(3BKk — Jak—2j(2k)jfor j =1,...,2k—1, j #k,and j # 3k/2, and (6k)#(3k —
2])j(Bk — j)x, for j =1,...,k— 1. There are27 connected sporadic configuratigns
with m = 30,42, and 60, listed in Table5, where a configuration is sporadic if it is
not a member of one of the infinite famili€nally, there are multiples of the sporadic
configurations

The history of this theorem is somewhat confused. The existence of the infinite fami-
lies of configurations and of the sporadic configurations was proven in [2]. In that paper
Griinbaum conjectured that these were all the agtralconfigurations. He emended the
conjecture in [3], where he stated that these were all the connected astral configurations,
although in [2] he discussed the fact that giveoopies of an astralns) configura-
tion m#a,cq one could construct the disconnected astral configuratiefs asp,SGq (See
Theorem 2 below). In a private communication he indicated that the proper form of the
conjecture is as stated in Theorem 1.
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Fig. 2. The astral(ns) configuration 36#1215;,, constructed from three copies of 1284 (one copy is
shown with thicker lines).

Theorem 2. A configuration6k#a,cy is connected ifiGCD(mM, a, b,c,d) = 1. If
GCD(m,a, b,c,d) = q > 1, then the configuratio®k#a,cq is constructed from q
concentric copigsequally spacegdof the configuratiork/g#(a/d)b/q(C/d)d/q-

Proof. Suppose a configuration (the “main configurationk}t&,cq is made up ofy
concentric copies, rotated through equal angles, of a smaller, connected configuration
6k'#ay, ¢, (the “subconfiguration”). Notice that each copy contribut€s/rtices to the

total numbem of vertices, san = 6k’qg. If a line has spam®’ (respectivelyc’) when
considered as part of the subconfiguration, then it must havesspérespectivelyc'q)
considered as part of the main configuration, since there ar@nred more vertices of

the main configuration to be counted between each two vertices of the subconfiguration
containing the line. Similarly, there are na@y 1 more intersection points per original
intersection point to be counted when determirirandd in the main configuration, so
b=bgandc=cq.

Now suppose K#aycy is a configuration whose vertices lie on the vertices of two
concentric, regular, convar-gons, and suppose G@R a, b, ¢, d) = g. Any subcon-
figurationm'#ay, c;, must have n'; if m" = m/q andq { k butq|m, then 6t m'. So if
GCD(m, a, b, c,d) = g and 6(m/q), theng|k, so GCOKk, a, b, ¢, d) = g. Choose a
vertexvg on the outer polygon of the configuration. Label the other vertices of the outer
polygonuy, vo, ..., vm_1 proceeding counterclockwise frong. Consider the vertices
connected t@g: using the spaa andc lines, vg is connected to, andv.. By travelling
along the spaa line and changing to a different sparine at thebth intersection point
(ontheinner polygon of the configuratiomy,is connected to, and, similarly, tayy using
the sparc line. It follows thatvy must be connected to atl ati,btisctid, Wherely, ..., ig
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are integers and the subscript is taken modnld@hat is, if p = GCD(a, b, ¢, d), vg is
connected to alj, (jp taken modulan), and the subconfiguration induced by thgis
the connected component di#a,cy containingvg. Finally, the number of components
of 6k#aycy equals GCDmM, p) = q, so &#a,cy consists of precisely copies of the
subconfiguration induced by thg, (since the choice ofp was arbitrary). O

Corollary 1. The configurations listed in Theoretnwhich are connected are those
with configuration symbdk#a,cq, whereGCD(k, a, b, ¢, d) = 1.

The remainder of this section and the following two sections deals with the proof of
Theorem 1.

Tofind astraln,) configurations whose vertices lie on two concentric, regular, convex
m-gons, it suffices to determine when a regufagon has two pairs of two diagonals of
the same span which intersect in a single point. In [4] Poonen and Rubinstein determined
how many intersection points of 2, 3, 4, 5, 6, or 7 diagonals there are in a regrgjan
and provided information about what diagonals are used to form such intersections; they
showed that 8 or more diagonals can meet only in the center of an even-sided polygon.
In particular, they found 4 one-parameter families of intersecting triples of diagonals,
along with 65 sporadic triples (i.e., triples not members of the infinite families), and they
found 12 one-parameter families of intersecting quadruples.

Poonen and Rubinstein listed their intersecting triples (respectively, quadruples) as
hextuples (respectively, octuples) of numbers summing to 1, listing the fraction of the
circumference traversed between successive endpoints of the diagonals in question: call
this the arclength. Given a hextupla, b, ¢, d, e, f}, to form theith diagonal of the
triple, choose a starting position on the polygon and number by.1, 26 the vertices
reached by traversing through arclengththen through arclength, etc. Verticesi
andi + 3 are connected to form theh diagonal; in an octuple, the construction is
similar, but the vertices are labelled.1., 8 and vertices andi + 4 are joined (see
Fig. 3). The least common denominator of the fractions in the hextuple or octuple is a
factor of m, the number of vertices in the polygon. To convert an octuple of arclengths
into a configuration, assuming that it consists of two pairs of same-span diagonals, the
following algorithm is used: first, multiply each fraction by leaving a list of the number

a3,

d2

di

e

Fig. 3. Converting the hextuplg, b, c, d, e, f} into a triple of diagonal$d;, dz, d3}.
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of arcs between each endpoint of a diagonal; call thidllist (L4, ..., Lg). For each,
i =1,...,8, make a new lisL” which contains the sum fror; to L4 in theith slot
(with indices summed mod 8). Latbe the smallest element bf and letc be the second
smallest element. To calculatefind the two positions i.” which havea in them, say
L; andLy, and seb = L + - - - + L¢_1 (again, taking indices mod 8). Similarly, to find
d, sum between the positions inwhich correspond to the appearanceaf L'. The
configuration corresponding to the octupleriga,cy.

Poonen and Rubinstein show in [4] that the maximum number of diagonals of a
regularm-gon which meet in a point other than the center is threm i$ not divisible
by six. Thus, for any astrgh,) configuration, ifm = n/2, m = 6k.

2. The Infinite Families of Configurations

Poonen and Rubinstein determined that there are twelve one-parameter families of inter-
secting quadruples of diagonals, which they listed in a table in [4]. Of these, four contain
two pairs of same-span diagonals. | have given them names (i.e., fgraitgording to
the order in which they were listed in [4]. They are listed by arclengths in Table 1.

If t = j/m, wherem = 6k, and the lists are multiplied through Ing, the lists in
Table 2 are generated, which may be converted into configuration symbols as outlined
above.

Definek to be the greatestinteger strictly less thkaRollowing the instructions above,
the octuples in Table 2 are converted into the configurations in Table 3, with parameters
as indicated.

Note that there are several variants of a configuration symbol which correspond to the
same configuration. These variants yield the followtmgpfiguration identitieswhich
may be combined in any order:

M#axCq = MHCqay, 1)
M#apCy = MH#apCm_d, (2)
m#a,Cy = MHa,C_g, 3
M#apCy = MA(M — a)pCy. (4)

To show that the families of configurations in Table 3 are the same families of config-
urations as Guribaum found, it is necessary to reparametrize and use the configuration
identities.

Table 1. The infinite families with pairs of same-span diagonals.

Family Ranget € Q
1 t t t -2 F 0 4t i -2t O0<t<3
2 t i-t  i-t It ot z 3+t : O<t<$
4 2 -t 2t -2t ot it t -2t o<t<3
12 it t -t ot -t 2t 1-3t o<t<t
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Table 2
Family Range;j e N
1 i i j -2j+k k j+2 k -2j+k 0<j<k/2
2 i —-j+k —j+k —j+k ] k j+k k 0<j<k
4 2 —j+3k 2j -2j+k | —-j+k i -2j+k 0<j<k/2
12 2j —j+k i —-j+k j —j+k 2j -3j+3k 0<j<k
Table 3
Family Configuration Parameter range
1 BkH#(] + K)(2j+5k) (2K) (j+ak) i=1..., k/2
2 Bk#(3k — 2)j (3k — )k i=1..., k-1
4 BkH#(2K — ) (k—2j) (2K) (k+j) j=1..., k/2
12 OKH#(2K) (k—j) (] + 2K)(2)+k) j=1..., k-1
Table 4
Family Reparametrization New configuration New parameter range
1 i k—i Bk#(3K — i) (ak—21)(2K)_i i =3k/24+1,..., 2k—1
4 ji—k Bk#(3K — i) 3k—2i) (2K)i i=k+1,..., 3k/2
12 jr>2k—i 6k#(2K); (3K — i)3k_2i i=1..., k—1

First, consider Family 2. Since&k8(3k — 2j); (3K — J) k) is equivalent to B#(3k —
2))j Bk — j) k) using identity (2), this is Gribaum’s second family, with =1, ...,
k—1.

Families 1, 4, and 12 together form@baum'’s first family of configurations. To see
this, first reparametrize as indicated in Table 4.

Applying identity (3) to family 1, identity (1) to family 12, and replacingvith j,
the three families combine to form @ibaum’s first family.

3. The Sporadic Configurations

In finding the infinite families of quadruples, Poonen and Rubinstein “merged” the in-
finite families of triples they had found, by developing a system of linear conditions to
determine when two triples overlapped to form a quadruple. Mostly, the one-parameter
families of triples combined to form one-parameter families of quadruples; however,
for small values ofm, they found a finite number of quadruples which were formed
from two infinite-family triples but were not themselves members of the infinite fam-
ilies of quadruples [4]. It can be verified that these particular quadruples, which all
havem = 12, 18, 24, correspond to configurations which are members of the infinite
families.
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Fig. 4. Relationships between arclengths of intersecting triples.

Therefore, any sporadic astral configurations must contain a sporadic triple, since all
the configurations which are formed from two overlapping infinite-family triples are in
the infinite families of configurations.

Given four diagonals which intersect in a single point, the quadruple may be decom-
posed as two sets of three diagonals, each of which intersect in the same point: i.e, if
di, d2, d3, andd, are the four diagonals, thgd,, d,, dz} form one triple andd;, dy, d}
form the other triple. Following the notation in [4], the tripld,, d,, d3} decomposes
the circle into the six arclengthsiy, X1, v1, Y1, w1, z1}, and the triple{dy, d,, ds} de-
composes the circle into the six arclengths, x,, v, Yo, wo, 22}. If two distinct triples
overlap to form a quadruple, where the first two diagonals are the same, then the following
relationships must hold (see Fig. 4):

up = Uy,

Y1 = Yo,
v+ X1 = v2 + Xo,
w1+27Z1 = w2+ 2,

X1 # X2 (so that the triples are distinct)

If the pair of triples satisfies the above equations, they are cailgeableln this
case the quadruple they form has arclenftisxy, |Xo —X1|, v2, Y1, w1, [wa—w1], Z2}. |
call the process of comparing pairs of triples to see if they satisfy the necessary equations
mergingthe triples.

To determine the sporadic configurations, the sporadic triples must be merged with
each other and with the infinite-family triples.
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Poonen and Rubinstein proved the following lemma (note that here “configuration”
simply refers to a certain set of diagonals, and “denominator” refers to the least common
denominator of the arclengths in the set of diagonals,mg.,

“Lemma5.1. If a configuration of k> 2 diagonals meeting at an interior point other
than the center has denominator dividingllen any configuration of diagonals meeting
at that point has denominator dividingcM(2d, 3)” [4, p. 146].

Thus, it suffices to check whether the sporadic triples of a given denominator are
mergeable only with triples with denominators as indicated by the lemma. That is,

Sporadic triples Possibly mergeable triples
m= 30 m = 30, 60

42 42,84
60 30, 60, 120
84 42, 84,168
90 30, 60, 90, 180

120 30, 60, 120

210 30, 42, 60, 84, 210, 420

Using Mathematica the sporadic triples were merged with triples of the appropriate
denominator, and the resulting octuples were converted into configurations. The sporadic
configurations obtained are listed in Table 5.

Merging the sporadic triples of the other denominators either resulted in octuples
from the merge which did not correspond to configurations<( 84, 120; the octuples
did not contain two pairs of diagonals of the same span) or in no results from the merge
(m =90, 210.

Table 5

m=30
30#47s 30#6,74 30#6,1119
30#6:85 30451211 30#8 135"

30#1Q11s 30#1Q12:0 30#1G:13;2
30#1b12; 30#1%143 30#1213g
30#1214:2 30#1213;9 30#131411

m =42
42#613;5 42#1%18;7 42#1213
42#12198 42#1%61811 42#—‘1%1912T
m = 60
60#9%22>1 60#12254 60#1427-¢
60#21522 60#24251, 60#2G2714

* Erroneously listed in [2] as 30£83;.
T Erroneously listed in [2] as 42#379; 4.
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These are all possible connected sporadic astrgl configurations (note this list
corrects a few typos in [2]).

Combining the results of Sections 2 and 3 with Corollary 1 completes the proof of
Theorem 1.

4. Other Astral (n4) Configurations

Theorem 1 completely characterizes astra)) configurations whose vertices lie on
the vertices of two concentric regular-gons. However, there are some asii®)
configurations where the vertices of the configuration do not lie on two regutams;
see Fig. 5.

Theorem 3. All astral (n4) configurations whose vertices do not lie on the vertices
of two concentric regular m-gons may be constructed by taking two concentric copies
of one of the astral configurations indicated in Theorgmvhere one copy is rotated
through an arbitrary angldi.e., other thanz/m) with respect to the other

Proof.  First, consider a configuration (the “main configuration”) which is constructed
from two copies of an astral configuration listed in Theorem 1. Such a configuration
is astral, since if the configuration is made of two copies of a configuratites,cy
rotated as indicated, then using a combination of rotation througim2and reflection
through the lines of symmetry in the main configuration, it is clear that the afiags

Fig. 5. An astral configuratiori48,), whose vertices do not lie on the vertices of two concemtrigons; it
is constructed from two copies of 12¢84, with one copy shown with thicker lines.
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of both subconfigurations form one symmetry class of lines and thecdpaes of both
subconfigurations form the other, and that the vertices form two symmetry classes, one
on the outer circle and one on the inner circle.

Given an astralng) configuration whose vertices do not lie on the vertices of a
regular polygon, notice that due to symmetry considerations, the connected component
of a vertexv must be one of the configurations listed in Theorem 1. A configuration
constructed from more than two concentric copies of a Theorem 1 configuration rotated
through arbitrary angles with respect to one of them results in more than two symmetry
classes of points and lines, so ttm) configuration is not astral. O

5. Remarks

1. Given the characterization of an astfa}) configuration whose vertices lie on the
vertices of two concentric regular polygons as one which is formed from two pairs
of same-span diagonals of a regutar= (n/2)-gon which intersect in a common
point, it may seem that it should be straightforward to determine all such @sjpal
configurations. However, there turned out to be significant subtleties.

2. All computations were done iMathematicaAnnotated source code is available
at http://www.math.washington.edu/"berman.
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