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Abstract. The fat flow modulus is a discrete version of the classical conformal modulus;
one can use itto classify triangulations of half-open annuli as parabolic or hyperbolic. There
exist various criteria for parabolicity; several of these criteria involve the vertex valences
of the triangulation. In this paper we decompose the half-open annulus into a family of
concentric sub-annuli. We can estimate the fat flow moduli of these sub-annuli in terms
of their vertex valences. By using the Layer Theorem of Cannon et al. [2], we sum the
estimates for these sub-annuli to prove a conjecture of He and Schramm [6]. The result is
a new parabolicity criterion.

1. Combinatorial Modulus

In 1989 Pansu had already used a version of conformal modulus to discriminate among
spaces of negative curvature [7]. About the same time, Cannon was using a discrete
version of conformal modulus to prove his Combinatorial Riemann Mapping Theorem;
the paper appeared in 1994 [1]. Cannon et al. (see [2]-[5]), as well as He and Schramm
[6] later employed the same concept in various ways.

The specific discrete modulus used by Cannon is the combinatorial fat flow modulus.
The formulation of this modulus given below is essentially due to Cannon et al. [4].

We say thalX is ahalf-open annulug it is homeomorphic td(x, y) | 1 < x>+ y? <
2}. The homeomorphisny will map 8 X to the unit circle; we call this boundary the
bottomof X. Now supposeX is tiled by closed topological disks. We assume that the
tiling is locally finite, but the number of tiles will be (countably) infinite. Letbe a
nonzero function that assigns to eachtile X a nonnegativeveight w(t). We assume
thatw is €% i.e., >, x w(t)? < oco. Then thew-areaof X, denotedA,, is the sum of
the squares of the weights of the tilesdfis a collection of tiles, then tha-lengthof
C, denoted lep(C), is the sum ofw(t), taken over the tilesin C.

We now define fat flows and skinny cuts. Lefe a connected set of tiles k, and
suppose there exists a topological path0, 1) — X such that the tiles irf coverc.
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Furthermore, supposkincludes all tiles which interseet For anyr € [0, 1), let F(r)
be the union of all tiles irf which intersect:([r, 1)). Suppose can be chosen to satisfy
the following conditions:

1. the pointx(0) lies on the bottom oX; and
2. for all compact subsets of X, there exists € [0, 1) such that~(r) N K = @.

Then we say thaf is afat flow. In essence, a fat flow has an underlying topological
path whose image under the homeomorphigraegins at{(x, y) | x*> + y> = 1} and
approachef(x, y) | x2+y? = 2}. If w is aweight function orX, then the “fatw-height”
H, ¢ of X underw is the infimum of lep, f, wheref varies over all possible fat flows.
Now define thdat flow modulus

Hti f
M¢ = slljp A’ ,

w

where the supremum is taken over all weight functianen X. If a weight function
actually achieves this supremum, we call faaflow optimal weight functiarOne can

see that the fat flow modulus is a combinatorial version of the classical modulus, which
seeks to maximize the ratio of height squared to area.

The fat flow modulus was originally defined for tilings (or, in fact, shinglings) of
topological rectangles and annuli (see [4]). In these cases we designate two opposite
sides of the rectangle (or the two boundary components of the annulus) to be the top and
bottom of the tiling; fat flows have underlying topological paths joining the top to the
bottom. The heighH,, ¢ is the length of a minimal fat flow, anéll; = supﬂ(Hj.f/Aw)
as before. Cannon et al. show (in [4]) that fat flow optimal weight functions exist for all
locally finite tilings of (closed) topological rectangles and annuli.

In this article we shall see that whether or not a half-open annular tiling has finite fat
flow modulus depends on the degrees of the vertices of the tiling as one moves outwards
from the boundary. In essence, the modulus is finite if the degrees are large, since large
degrees cause the number of tiles to grow quickly. Otherwise the modulus is infinite.

We employ the following three theorems in our proofs. The first is found in [4] and
[8]; the second is found in [2]; the third in [2] and [8].

Theorem 1. Let A be alocally finite tiling of a topological rectangennulus or half-
open annulusLet w be a weight function on ALet pi, po, ..., px be w-minimal fat
flows in A Suppose thab(t) = Zikzla,- pi (), for all tiles t in A, where a, ..., a are
positive real numbersaind where pt) = 1ift isin p;, and p(t) = 0 otherwise Then
w is a fat flow optimal weight function on. A

This theorem states, in essence, that fat flow optimal weight functions are weighted
sums of their minimal fat flows.

Theorem 2 (Bounded Overlap Theorem).Suppose that a half-open annulus X has two
locally finite tilings T and T, such that no element of T intersects more than K elements
of T” and such that no element of ihtersects more than K elements afllet M(X, T)

be the fat flow modulus of X with the tiling @&nd let M(X, T’) be the fat flow modulus
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of X with the tiling T. Then

M(X,T) < K3 M(X, T).

Theorem 3(Layer Theorem). Suppose a half-open annulus X with a locally finite
tiling is divided into a family{ X;}72, of tiled closed annulisuch that any two members
of the family are disjoint except possibly at their boundariggen the fat flow modulus
of X is greater than or equal to the sum of the fat flow moduli of the sets X

2. A Conjecture by He and Schramm

Following He and Schramm in [6], we definedesk triangulation grapho be the 1-

skeleton of a triangulation of an open topological diskslis a disk triangulation graph
andv is a vertex ofG, consider the tilinglT dual toG. If t, is the interior of the tile

corresponding te, then letT, = T\{t,}. Now T, is a half-open annulus. We say tl@&t

is parabolicif the fat flow modulus ofT, is infinite for some vertex in G; otherwise,

we say thats is hyperbolic

In their article He and Schramm use the term “vertex extremal length” to refer to
combinatorial modulus, since their formulation assigns weights to the vertic&s of
they consider paths in the graph rather than fat paths in the triangulation. In this paper,
however, we assign weights to the faces of the triangulation and calculate moduli as
described above. To see that this difference in formulation does not affect the parabolicity
or hyperbolicity of the graph, suppose tltais a locally finite disk triangulation graph
with bounded valence. Suppose we remove a vertex fEorfihen the resulting graph
G is the 1-skeleton of a locally finite triangulatidnof a half-open annulus. Léd, be
the modulus ofG in terms of the HgSchramm formulation (with weights concentrated
at the vertices and paths given by edges); andVlebe the fat flow modulus of the
triangulationT (viewed as a tiling, with weights assigned to the faces). bdie the
dual tiling of the graplG. Now M, is the fat flow modulus oD. SinceG has bounded
valence, the tilingl spanned by has bounded overlap with the tilirig, and thus, by
the Bounded Overlap Theorem, eitidy andM; are both infinite or they are both finite.
Hence, whether or not we assign weights to the vertices or to the tiles does not affect the
type (parabolic or hyperbolic) of the graph.

One can also define parabolicity and hyperbolicity in terms of circle packings, in
terms of “edge extremal length” (in which weights are assigned to the edges), in terms
of simple random walks, and in terms of electrical networks. He and Schramm show in
[6] that all of these formulations are equivalent.

In the same paper He and Schramm proceed to discuss the relationship between the
vertex valences of a disk triangulation graph and the type (parabolic or hyperbolic) of
the graph. They obtain the following results:

Theorem 4. Let G be thel-skeleton of a disk triangulatigmnd suppose that at most
finitely many vertices in G have valence greater tBamhen G is parabolic

Theorem 5. Let G be thel-skeleton of a locally finite disk triangulatiohet val(v)
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denote the valence of the vertexSuppose that

. 1
svl\ipwlg\lj% (W Zval@)) > 6,

veW

where W and \W/are nonempty finite connected sets of vertidgéen G is hyperbolic

They note the wide gap between these two theorems and speculate on the possibility
of obtaining type criteria in terms of the sequerag}, where

an =) _(valv) - 6),

the sum being taken over all vertices witmiedges of a specified base vertgxIn par-
ticular, they speculate that boundednes&gf implies parabolicity of the corresponding
disk triangulation graph.

It is this conjecture which we prove. We state it as the following theorem.

Theorem 6. Let G be a disk triangulation graph of bounded valenket vy be a
vertex of G For any vertex of G, let |v| denote the minimum number of edges in a path
connectingu to v. Let

a, = Y _(val(v) —6).

lvl=n

If the sequencéa,} is boundedthen G is parabolic

We calla, thevalence excess

3. Discussion of Theorem 6

To understand more clearly what this theorem is saying, we consider the behavior of the
sequencéga,}. This sequence is not necessarily well-behaved, for it can be unbounded
and yet have a constant subsequence. For an example of such a triangulation, see Fig. 1.
Identify the sides to form a disk triangulation graph. If the vertex at the bottom is the base
vertex, then the numbers at the side give the valence excess. Note that igsup,
whereas liminf, = —6. So, althougha,} is not bounded, it has a subsequence that is
bounded.

Moreover, one can use the Bounded Overlap Theorem to see that the tiling has finite
fat flow modulus and is therefore hyperbolic. To do so, consider the “squared rectangle”
R shown in Fig. 2. Note thaR has bounded overlap with the triangulation shown in
Fig. 1. The weight function determined by the sizes of the squares in the figure is the
fat flow optimal weight function orR. If the largest square iR has unit side length,
then the height oR is 6, and its area is 36. The fat flow modulus is 1, and therefore the
original triangulation must be hyperbolic. Thus, evefajf} has a bounded subsequence
we are not guaranteed parabolicity.

However, consideR more closely. Notice that it consists of concentric layers (which
become annuli after we identify the sides); the sum of the heights of these annuli gives
the height of the entire squared rectangle. Furthermore, notice that the valence excess
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Fig. 1. A hyperbolic disk triangulation graph.

increases only when the number of tiles in a layer increases. When the number of tiles
in a layer remains the same, the valence excess stay8.at

Suppose that we modifR. Instead of doubling the number of tiles every third layer, let
the number of layers between each doubling be described by a sequdnggarticular,
we say that the number of layers with 8" tiles isr,,. Now, if we have a layer in our
modified rectangle with 62" tiles, the height of that layer is2+1. So the height of

Fig. 2. A squared rectanglR corresponding to Fig. 1.
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the total modified rectangle is

00
Z rn2—n+1
n=1

If ry increases as a polynomial, for instance, the height of the rectangle (and hence its
modulus) will be finite. Recall that the only timéa,} was greater thanr-6 was when

we doubled a layer; if, grows like a polynomial, then, we will have arbitrarily long
strings of values of-6 in {a,}; nevertheless, the tiling will still be hyperbolic.

Looking atthese examples gives us an idea of how to approach the proof of Theorem 6.
We decompose the disk triangulation graph (and the tiling spanned by it) into concentric
annuli and then estimate the fat flow modulus of each of these annuli. The Layer Theorem
allows us to sum their moduli, obtaining an estimate for the modulus of the entire tiling.
To estimate the moduli of the annuli, note that in the above example, the number of tiles
in the annulus controlled the modulus (height); at the same time, the number of vertices
on the borders of the annuli controlled the valence excess. Thus, if we assume the valence
excess to be bounded, we can estimate the number of vertices; these estimates, in turn,
give us information about the disposition of the tiles in each annulus, allowing us to
estimate moduli. It is this general plan of attack which we follow below.

4. Triangulated Annuli

Let A be a closed topological annulus with two (disjoint) boundary components homeo-
morphic to circles. Construct a homeomorphism frArto a simplicial 2-complex, thus
triangulating A. Then we say thaf\, with this triangulation, is &imply triangulated
annulusif all vertices of the triangulation lie on the boundary Afand if any edges
joining a top vertex to another top vertex are themselves part of the top.

We consider the types of triangles that a simply triangulated annulus can contain.
First, we know that at least one vertex of each triangle must lie on the bottofn of
by definition. Now if we suppose that exactly one vertex lies on the bottom, then two
vertices must lie on the top. The edges connecting those two top vertices must be part
of the top boundary component. We call such a trianglewan triangle (See Fig. 3.)

On the other hand, if a triangle has exactly two vertices on the bottom and, conse-
guently, one vertex on the top, then we have two possible cases: either the edge connecting
the two bottom vertices lies in the bottom boundary component, or it does not. We call
the first sort of triangle anp triangle we call the other sortmid triangle Finally, if all
three vertices lie on the bottom, then we call the triandbeiat triangle (See Fig. 4.)

down
up

Fig. 3. Up, down, and mid triangles.
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Fig. 4. Bent triangles.

These are the only types of triangles that can occur in a simply triangulated annulus.
Incidentally, this analysis shows us that all vertices in a simply triangulated annulus are
either on the bottom or are connected to the bottom by an edge.

We define awell-triangulated annulugo be a closed topological annulus with two
(disjoint) boundary components and an imposed triangulation such that all vertices that
do not lie on the bottom are connected to the bottom by an edge; and such that any edges
joining a top vertex to another top vertex are themselves part of the top. For eachwertex
of a well-triangulated annulus, we define tile valenceof v (denoted tval)) to be the
number of tiles (triangles) in the annulus incidenvtdNote that all simply triangulated
annuli are well-triangulated.

We begin by considering simply triangulated annuli such that all nonboundary edges
connect the bottom and the top of the annulus.

Proposition 7. Let A be a simply triangulated annulus such that all nonboundary
edges of the triangulation connect the bottom and the top of the anr&lppose the
bottom of the annulus contains k verticébeled iy, by, .. ., by, and suppose the top
contains n verticedabeled {, to, . .., t,. Then

k
> val(b) —3) =n—k
i=1

and

Z(tval(ti) —3)=k—n.
i=1

Proof. Choose an orientation for the annulus and order the nonboundary edges clock-
wise. Re-indexing if necessary, we assume that an edge commectdt;, that the other
verticesby, ..., by andt,, .. ., t, are ordered consecutively clockwise around the annu-
lus, and that no edge connebtsto t,. (That is, the edge frorp, to t; is the “first” edge
clockwise fromb;.) Now fori = 1,...,k, we letm; be the number of nonboundary
edges incident tb;. Note that tvalbj) = m; + 1. (See Fig. 5.)

Now fori = 1, the last edge frorb; hits ty,, as does the first edge froln. By
induction one can show that the last edgebohits tm,+..4m—i-1 fori = 1,... k.
However, the last edge froby must hitt; = t, ;. So

=~

dom—(k=1) =n+1,

i=1
k
Zmi —k =n.
i=1
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-« =t 4

Fig. 5. Arrangement of edges and verticesAn
Since tvalb)) = m; + 1,

k kK
> val() —3) = Y (m +1-3)
i=1 i=1

The other half of the proposition follows by symmetry. O

Our nexttask is to extend this proposition to deal with any simply triangulated annulus.
To do so involves some valence count calculations. Since this type of argument recurs
throughout this paper, we refer to following standard lemma:

Lemma 8 (Shelling Lemma for Triangulated 2-Disks)Suppose that D is a disk with
triangulation T. If T comprises more than one triangkben there is a triangle\ in T
with the following propertythe intersection o8 A with the interior of D is an open arc
consisting of either the interior of one edgeftype ong or the interior of two edges
and the intervening vertetype twq. In fact, there are two such triangleA.

These triangleg\ are calledshelling disksOne can prove this lemma by induction
on the number of triangles in the triangulatidn The fact that there are at least two
shelling disks is the key to the induction. The actual proof is left to the reader.

One can extend the concept of a shelling disk to triangulated annuli as follows. In
a triangulated annulud, a shelling disk is a trianglé with the following properties.
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First, the intersection ok with 3 Ais an arc in the bottom oA. Second, the intersection
of dA with int A is an open arc which consists of either the interior of one edge of
A (type one) or the interior of two edges and the intervening vertex (type two). Note
that in the case of triangulated annuli, we are not guaranteed the existence of shelling
disks.

We use the following procedure at several points in the paper. For convenience, we
label it the Uniform Reduction Procedure:

Uniform Reduction Procedure. If a shelling diskA is of type one, we simplify the

disk or annulus by removing\ and then taking the closure of its complement. If the
shelling diskA has type two, we simplify the disk or annulus by collapsing it to an arc
which starts at the boundary and ends at an interior vertex; to do so, we identify the two
interior edges of the shelling disk and collapse the boundary edge to a single point.

Ourfirst use of the shelling lemma and the uniform reduction procedure is in extending
Proposition 7 to all simply triangulated annuli.

Proposition 9. Let A be a simply triangulated annuluSuppose the bottom of the
annulus contains k verticedgabeled h, by, ..., bk, and suppose the top contains n
vertices labeled §, to, ..., ty. Let g be the number of bottom vertices connected to the
top by an edgeThen

k
Z(tval(bi) —3)=n-q
i=1
and

> (valt) —3) =q—n.
i=1

Proof. We perform induction on the number of interior edges connecting the bottom
to the bottom. If every interior edge connects the bottom to the top, then Proposition 7
applies. Now assume that we have proved our proposition for all simply triangulated
annuli with at mosh — 1 interior edges connecting the bottom to the botton:(1).
SupposeA hasn interior edges connecting bottom to bottom. Consider one of these
interior edges. It must bound a triangulated dizln A. Either D is already a shelling

disk for A or, by the shelling lemmd) contains two shelling disks fdp, one of which,

A, must be a shelling disk foA. Since there are no interior verticesA) A must be

of type one. Deleté\ from A as specified in the uniform reduction procedure to obtain
A'. By removing the type one shelling digk, we have reduced the number of interior
edges connecting bottom to bottom by one, and the proposition is tréé lo§ our
induction. A simple calculation shows that the sums which appear in the conclusion of
the proposition do not change in passing fréno A'. O

To conclude this section, we consider well-triangulated annuli, thus allowing for
interior vertices.
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Fig. 6. Removing an interior vertex.

Proposition 10. Let A be awell-triangulated annuluSuppose this triangulation con-
tains n top verticesc bottom verticesand x interior verticesLabel the bottom vertices
V1, ..., Vc. Then

Cc
(tval(vi) —3) > n+x—c.
=1

Proof. If Aisasimply triangulated annulus, then the result follows from Proposition 9.
So we may perform induction on the number of interior vertices. Suppose we have proved
the proposition for all well-triangulated annuli withinterior vertices. Now supposé

hasn + 1 interior vertices.

We first consider the possibility that one of the interior vertices is connected by an
edge to a top vertex. Let be such an interior vertex @&, connected to a top vertax
by an edge. Replaceby two top vertices’ andv”, and replacev by a top vertexw’
connected to both' andv” (see Fig. 6), thus transforming an interior vertex into two top
vertices without changing the sumj_, (tval(vi ) —3). By induction, the resulting annulus
(which has one fewer interior vertices) satisfies the conclusion of the proposition. Since
none of the bottom vertices has changed, we knowAhaust therefore also satisfy the
conclusion.

Now suppose none of the+ 1 interior vertices ofA is joined by an edge to a top
vertex. In this case leB be the union of all triangles which intersect the t&pis an
annulus with the following property: iD is the closure of a component 8f B, thenD
is a triangulated disk with exactly one edgeBrand the complementary portion of the
boundary on the bottom 4.

Letk be the greatest number of triangles in any of these disk&e perform induction
onk. SinceA contains interior vertices, none of which is connected to the top by an edge,
we conclude that must be at least two. K = 2, then eaclD can contain at most one
interior vertex, but such disk3 add 4 to the sum on the left-hand side of the proposition.
Thus the proposition would be true. Now suppose that we have shown the proposition
true for somek > 2. If there exists & with k + 1 triangles, then apply the shelling
lemma toD in order to supply a shelling disk. Now we may simplify(and henced)
by the uniform reduction procedure. By our induction on the number of trianglBs in
the result is true for the simplified annulus. Two straightforward calculations (one for
each type of shelling disk) show that the result is therefore trué\falence we have
now finished our induction on the number of interior vertices, establishing the truth of
the proposition for all well-triangulated annuli. O
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u u'

/\

v v 7

Fig. 7. Removing an interior vertex.

Finally, we must establish one more result about well-triangulated annuli.

Proposition 11. Let A be a well-triangulated annuluSuppose A contains ¢ bottom
vertices labeleduvy, . . ., vg; n top verticeslabeledws, . .., wy; and x interior vertices
labeled u, ..., ux. Then

> val(v) — 3) + Y _(tval(ui) — 6) = — " (tval(w;) — 3).
i=1 i=1 i=1

Proof. Letu be an interior vertex ofA. SinceA is a well-triangulated annulus, there
must be an edge connectingto a bottom vertex. We remove the interior vertex
somewhat as before, replacingdpy two bottom vertices’ andv”, and replacingi by a
bottom vertexy’ connected ta’ andv”. (See Fig. 7.)

Notice that tvalv) = tval(v) +tval(v”) and tva{u) = tval(u’). Therefore we can see
that(tval(v) — 3) + (tval(u) — 6) = (tval(v') — 3) + (tval(v”) — 3) + (tval(u’) — 3). Hence,
this slicing operation has not affected the shnitval(vi) — 3) + Y _(tval(u;) — 6); nor
has it changed the suin (tval(w;) — 3), since it did not touch the top of the annulus.

Performing this slicing operation for all interior vertices, we obtain a new anriflus
with no interior vertices. It has the sameop verticeswy, ..., wy; and it hasc 4+ 2x
bottom vertices, which we label, ..., v, ,,. SinceA’is a simply triangulated annulus,
Proposition 9 applies. Letbe the number of bottom vertices @) which are connected
to the top. We see that

C+2X

> val(v) —3) + ) (tval(u) —6) = Y (tval(v)) —3) =n —q.
i—1 i—1 i=1

However, again by Proposition 9, we know tRaf_, (tval(w;) — 3) = g — n, and hence
we conclude that

> val(v) —3) + ) (tval(u) — 6) = — > (tval(w;) — 3). O
i=1 i=1 i=1

5. The Moduli of Well-Triangulated Annuli

In this section we obtain a lower bound on the modulus of any well-triangulated annulus
in terms of the number of vertices on the top and bottom. First we consider simply
triangulated annuli.
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We call a sequence of alternating up and down trianglessic subtilingof a simply
triangulated annulus. (We require a basic subtiling to include at least one up triangle and
at least one down triangle.) If the entire annulus is a basic subtiling, we give it the same
top and bottom as the original annulus and proceed to compute its fat flow modulus.
Otherwise, we consider the basic subtiling to be a quadrilateral, with top and bottom
inherited from the annulus. Our first proposition deals with an optimal weight function
for basic subtilings:

Proposition 12. Consider a basic subtiling containing i+ 0 down triangles and
n > 0 up triangles Then an optimal weight function for this basic subtiling is

n if t is a down triangle
m if t is an up triangle

w(t) = {

Proof. There are four possible cases:

1. The basic subtiling is a quadrilateral with=n + 1.
2. The basic subtiling is a quadrilateral with=n — 1.
3. The basic subtiling is a quadrilateral with= n.

4. The basic subtiling is an annulus.

For each case we can show that the funciigih) defined above is an optimal weight
function (according to Theorem 1) by expressing it as a sum of its minimal fat flows.
Note that by the “fatness” of these paths, all minimal fat flows must contain both an up
and a down triangle. In particular, observe that minimal fat flows (from bottom to top)
in a basic subtiling begin at an up triangle and end at a down triangle.

Our first case, illustrated by Fig. 8, is a basic subtiling which is a quadrilateral with
m = n + 1. Note that each of the flows shown in the figure i®-aninimal fat flow.
Consider one of the down triangles, which we ¢allVe find that

n n

D =i+ Dpa 1)+ Y ipa(h)
i=1

i=1

n—-1+1 if t is the leftmost down triangle,
={n if t is the rightmost down triangle,
i+(n—->(+D+1 otherwise
=n=w().

P2n-1 Pzn

Fig. 8. Basic subtiling withm =n+ 1.
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On the other hand, if is one of the up triangles in this basic subtiling, then

=i+ Dpaa®)+ ) ipat) = (N—i+1)+i
i=1 i=1
=n+1l=m=w).

In either caseyw = Zi”:l(n —i+1)pr_1+ Zinzlipzi; thusw is the weighted sum of
w-minimal flows, and it is therefore an optimal weight function for this basic subtiling.
The other three cases—when= n — 1, whenm = n in a quadrilateral, and when

the basic subtiling is an annulus—are handled similarly. O

Corollary 13. If B is a basic subtiling consisting of m 0 down triangles and n- 0
up triangles then the modulus M of B is

n+m

nm

Proof. By Proposition 12 the optimal weight functian on B assigns a weight of
n to the down triangles and a weight of to the up triangles. Since a fat flow will
contain one up triangle and one down triangle, the length of any fat flomtisn, and
Hy.f(B) = n+m. The areaA,, (B) will be mr? 4 nn?. The result follows. O

Now partially order the basic subtilings by subset inclusion and obtaiximal basic
subtilings which would have no tiles in common. Suppose that no nonboundary edges
of a simply triangulated annulus join the bottom to the bottom; then the triangulation
contains only up triangles and down triangles.

Proposition 14. Let A be a simply triangulated annulus such that all nonboundary
edges of the triangulation connect the bottom and the top of the anheithie maximal
basic subtilings of A be denoted ,B3,, ..., Bx. Fori = 1,...,k, letn, and m be the
number of up and down triangleespectivelyin B;. Then an optimal weight function
w(t) for A is given as follows

m if t is an up triangle in B;
N + m P 9 '
N L . .
w(t) = ! if t is a down triangle in B;
ni +m;
0 otherwise

Proof. Observe thaib is well-defined since maximal basic subtilings cannot share tiles.
Note further thatw is simply the concatenation of the optimal weight functions on the
maximal basic subtilings, all normalized to have a height of one. Thus, in order to prove
the proposition, we need to show that one cannot construct a pathualghgth less
than one by starting in one maximal basic subtiling and ending in another.

Suppose we have a paptwhich is not contained in a maximal basic subtiling. It must
begin with an up triangle First suppose thatis part of a maximal basic subtiling. Then
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Fig. 9. A flow out of a maximal basic subtiling.

t must be at the edge of that maximal basic subtiling; otherwise the seconddieanld
be a down triangle in the same maximal basic subtiling, and the path’s length would be
one. Furthermore, the path must end at the first down triasjlat it encounters, since
by then it shall have reached the top of the annulus. Thus, the path must look like the one
shown in Fig. 9. The path consists of trianglésts, . . ., t,, s}. However, the last two
tiles (t, ands) of p are an alternating yjplown pair of triangles; thus they are themselves
part of a maximal basic subtiling. Henegt,) + w(s) must equal one, and the length
of p therefore cannot be less than one.

One can handle the other case (in which the first triangfeishot part of a maximal
basic subtiling) similarly. Therefore, we may conclude that paths of length one-are
minimal, and hence that the functiam being the sum ofv-minimal fat flows, is an
optimal weight function forA. O

Corollary 15. Let A be asimply triangulated annulus such that all nonboundary edges
of the triangulation connect the bottom and the top of the ann@uppose A contains

k maximal basic subtilingand let M be the fat flow modulus of théhimaximal basic
subtiling fori =1, ..., k. Then the fat flow modulus of A is

(i)

Proof. Proposition 14 states that the optimal weight functiorfor A is the con-
catenation of the optimal weight functions for the maximal basic subtilings, each one
normalized to unit height. Note that the height of tklemaximal basic subtiling under

w will be 1, and so its area will be/M;. The height ofA underw will also be 1. The
area ofA will be the sum of the areas of the maximal basic subtilings, nahely/ M;,

and the modulus oA will be the reciprocal of that sum. O

Now that we have an expression for the modulusApfve consider the minimum
possible modulus for such a simply triangulated annulus, in terms of the number of
vertices on the top and the number of vertices on the bottom.

Proposition 16. Let A be a simply triangulated annulus such that all nonboundary
edges of the triangulation connect the bottom and the top of the ant@uppose A has

n vertices on the top and k vertices on the bottiril is the fat flow modulus of Ahen

M > 3/(2m), where m= min{n, k}.
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Proof. Note than andk also denote the number of down and up triangles, respectively,
in A. Denote the maximal basic subtilingsafasBy, By, ..., By. Fori =1,..., p, let
n; andk; be the number of up and down triangles, respectivel;irBy Corollary 13
the fat flow modulus foB; is
_ni+Kk
niki
Letm; = min{n;, ki}. We have three possible cases: either=n; = ki; m; = n; =
ki —1; orm; = ki = n; — 1. Consider the first case.ifi = n; = k;, thenM; = 2/m;.
The second and third cases reduce to the same situation:

2m +1 2
= < —
m(m +1) m

Mi

We conclude that
2m; +1
— =
m; (m; + 1)
Now sincem; > 1, we know

2mi(2m; +1) > 3(m? + my),
2m +1 3
> >

M;

- miz +m — 2m;’
1 2m

— < —
M — 3

for anyi from 1 to p. It therefore follows that

Wl N
3

p P
NTEDIE
i=1 ! i=1
sincem, the minimum of the total number of up triangles and the total number of down
triangles inA, must be at least as large as the sum of the minima for each maximal basic
subtilings (i.e., at least as large asm;).

However, by Corollary 15, we have

which is what was to be proven. O

Note that this estimate is the best possible; one can obtain a simply triangulated
annulus with this modulus by taking eanhto be equal to 1 and letting eagh = 2.
Thenm; =1foralli=1,....m M; = g and)_ m; = m, making all the inequalities
into equations.

The next proposition investigates the effect of ignoring bent triangles and considering
mid triangles as up triangles.
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Proposition 17. Let X be a simply triangulated annuluset X be the simply triangu-
lated annulus obtained by deleting all bent triangles fromL&t M andM be the fat
flow moduli of X andX, respectivelyThen M> M.

Proof. Letw be a fat flow optimal weight function foK. ThenM is the ratio of
HZ  (X) to Az (X). Now define a weight functiom on X by

o),  teX,
wH) = {0, te X,
CIe_arIyA,D()_() = A, (X). Let f be aw-minimal fat flow in X; then the restriction of
to X is aw-minimal fat flow in X. ThereforeH,,(X) = Hz(X). Now we may conclude,

g HEO0 OO HER) -
“SPAO T A T A T

We may now estimate the modulus of any simply triangulated annulus.

Corollary 18. Let X be a simply triangulated annulus with n top vertices and with g
of the bottom vertices connected to the.tém is the minimum of n and,@nd if M is
the fat flow modulus of Xhen M > 3/(2m).

Proof. DefineX andM as in Proposition 17. TheX is a simply triangulated annulus,
all of whose nonboundary edges connect the bottom to the top. it tegsvertices and
g bottom vertices. By Propositions 16 and 17 we hklve=- M > 3/(2m). O

Finally, we obtain a result on the moduli of well-triangulated annuli.

Proposition 19. Let X be a well-triangulated annuluSuppose the triangulation con-
tains n top verticed et M be the fat flow modulus of. Xhen M> 3/(2n).

Proof. Letq be the number of bottom vertices which are connected to the top by an
edge. As in the proof of Proposition 11, replaXdy a simply triangulated annulus’,

with n top vertices andy + r bottom vertices connected to the top. Nownifis the
minimum ofn andq + r, then clearlym < n. By Corollary 18 the fat flow modulust’

of X’ is greater than or equal to @m).

Let w be the optimal weight function foX’. Because of the procedure we used in
replacingX by X', there is a one-to-one correspondence of tileX ianto tiles inX’'.

So we may apply the functiom to the original tilingX as well as to the modified tiling
X’ and say that tha-areas of the two tilings are the samg,; (X) = A, (X).

Next consider the relationship of flows ¥ato flows in X’. The top tiles of each tiling
are the same, and all bottom tiles Xfare bottom tiles ofX’. The operation preserves
all combinatorics, except that two tiles adjacent along some interior edganiay no
longer be adjacent iX’. However, both of these tiles will now be bottom tiles, so any
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fat flow in X containing one of these tiles has a subset that is a fat flog.imhus, any
fat flow in X contains a fat flow inX’. So the infimum of thev-lengths of the fat flows
may be smaller when taken ovr than when taken oveX; hence we conclude that
H,, (X) > H, (X’). Thus,

2 2 /
JHIOO | HEOO) 3

M > > =
Aw(x) Aw(x) 2m

> s O
-2n

At this point, it is possible to prove Theorem 6 if we assume one additional hypothe-
sis—namely, that one can break the disk triangulation graph into concentric well-
triangulated annuli surrounding the base ventgXsee [8] for the proof). In the next
section we work to remove this extra hypothesis. To do so, we need to consider the
structure of a disk triangulation graph in detail.

6. Dealing with Islands

We define awell-triangulated annulus with islands be a closed topological annulus
with two (disjoint) boundary components homeomorphic to circles and an imposed
triangulation which satisfies the following conditions: any edge joining a vertex on the
top to another vertex on the top must be part of the top; and any vertex not connected to
the bottom by an edge is either part of the bottom or surrounded by a cycle of vertices
satisfying the following two conditions:

1. The vertices in this cycle contain no bottom vertices.
2. The vertices in this cycle are all connected to the bottom by an edge.

If L is the union of such a cycle with its interior, then we $aig anisland (See Fig. 10.)
Note that by this definition all islands must contain vertices in their interior and be simply
connected. Theizeof an island is the number of vertices in its boundary cycle.

If we take a disk triangulation graph and pick a base vertax, then for any other
vertexv, we may defingv| to be the edge distance (minimum number of edges) from
tov. Then we may define sets of verticds= {v | |v| = i}. Suppose tha, a subset of
the complex spanned lgy, is a well-triangulated annulus with islands. Suppose that all
vertices on the bottom o are inVi and that the other vertices ivare in{JZ,,; V.

Fig. 10. Anisland.
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If L is anisland inA, then we say that hasstation kor is stationed at kNote that all
boundary vertices of such an island will belongq 1. Suppose thdtis the maximum
value such that there is a vertexlirbelonging toV,. Then we say that theéepthof L is
I — (k+ 1). Note that all vertices in the interior &f are inU}:kJr2 Vk.

We now show that one can decompd3ento the union of a disk and a series of
well-triangulated annuli with islands. In order to do so, we first present the following
lemmas, whose proofs are left to the reader.

Lemma 20 (Annulus Construction Lemma).Suppose X is a half-open annulus whose
boundary J is a simple closed cun&uppose X has a locally finite triangulation T
Let S denote the subcomplex of T consisting of the two-dimensional simplexes that
intersect J together with their fac€se., the star of J in T). Then the complement of
|S| in X has finitely many components,C;, ..., Cp with closures lg, L4, ..., Ly,
respectivelyeach bounded by a simple closed culzeactly one of the closuresay Ly,

is noncompagcttis a half-open annulus containing a neighborhood of infinity inTke
others Ly, ..., Ly, are disksDefine A= X\Co. Then A is a well-triangulated annulus
with islands The original curve J is the bottom boundary curve of TAe boundary
curve of Ly is the top boundary curve of. Ahe islands of A are those disks Wwhich
contain a vertex of T in their interior

Lemma 21(Open Disk Construction Lemma).In the statement of the Annulus Con-
struction Lemmareplace X by an open diskeplace its boundary J by a single vertex
of T; and replace S by the star of the vertexThen Ly, the noncompact closuyis once
again a half-open annulu3he set A= X\Cy is a disk

Lemma 22 (Closed Disk Construction Lemma).In the statement of the Annulus Con-
struction Lemmareplace X by a closed disknd replace J by its boundaryhen all of
the closed components L .., L, if any, are disks

Note that we are reservirig, to refer to the unbounded components in the construction
lemmas.

Lemma 23 (Addendum to Construction Lemmas)Let Lo, L1, ..., L, be the closed
components arising in any of the three construction lemif@sn a graphl” as follows
put one vertex in the interior of each of the sets jiut one vertex at each vertex of T
which lies on any of the boundaries of the setsdnd join the interior vertex of Lto
each of its boundary vertices by an ed@jaen each component bfis a tree

Proof. Suppose one componentBfis not a tree. Then there is some simple closed
curve K in I'. At least one of the vertices df must be in the interior of somky,
implying that one of the points on the boundarylgf must be separated ¢ from J.

We may assume th#t is embedded in the union of the séts However, each boundary
point of everyL; can be joined td by an arc which lies (except for its endpoints) in the
interior of some single triangle df which hitsJ. By definition, the union of the sets
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cannot contain this triangle, and thus we must conclude that none of these &fcs hit
This is a contradiction, and the result follows. O

The following proposition is an immediate consequence of the first two construction
lemmas:

Proposition 24. Let G be a locally finite disk triangulatiofick a base vertexg, and
for each positive integer k defing ¥ {v | |v| = k}. Then there exist se{#\; };2, such
that G = | J2, A and such that the following statements are true

1. Aqis a closed topological disk

2. Fori > 1, A is a well-triangulated annulus with islands

3. Fori > 1, all bottom vertices of Aare in \{; and all top vertices of Aare in
Vi, 1. Note that this statement implies that all islands ina#e stationed at.i

4. The bottom of Ais equal to the top of A, ifi > 2,and the bottom of Ais equal
to the boundary of A

Proof. LetG be a disk triangulation with a distinguished verigxThen, by the Open
Disk Construction Lemma, there exists a closed digkontaining the star afy, andAg
has all of its boundary vertices Wi. Note also that all of the vertices \y are contained
in Ag. G\ Ag is a half-open annulus.

We have now proved the first conclusion of the proposition. We prove the rest of the
conclusions inductively.

Suppose we have complex(a.é\i}!‘=0 with a finite number of vertices. LdDy =

U:;o Ai, and suppose that the following statements hold:

1. G\ Dy is a half-open annulus.
2. The vertices 0@ Dy are all inVy1.
3. All vertices ofl '] V; are contained itDy.

We refer to these statements as Induction Facts for the remainder of this proof. Clearly
they are satisfied fdt = 0. Now suppose they are satisfied for sdme

Let Xy be the half-open annulus\ Dy with boundaryo Xy = 9 Dg. By the Annu-
lus Construction Lemma we may obtain a well-triangulated annulus with isl&apnds
This fact establishes the second conclusion of the proposition. Fipce contains
the star ofd Dy, we have established our first Induction Fact fo# 1. The bottom
boundary curve ofA¢ will be 3Dy and thus will contain only vertices ofy 1. Be-
cause of our construction, the top boundary?@f ; can only contain vertices of_ o,
thus establishing the third conclusion of the proposition and our second Induction Fact
for k 4+ 1. The fourth conclusion of the proposition also follows from our method of
constructingAx1, as does our third Induction Fact. Hence we have completed our
induction.

By our third Induction Fact every vertex @ is contained in at least one sAf,
and hence we can decompo€einto the union of well-triangulated annuli with
islands. O

We use the following lemma to replace an island by a set of interior vertices.
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Lemma 25. Let P be a graph homeomorphic to a circlBuppose P has n vertices
labeledvy, ..., vy, with n > 3. Then there is a triangulation g with the following
properties

1. |Tp| is a closed topological disk

2. P is the boundary of 4.

3. All vertices of F lie on its boundary

4. Zi":l(tval(vi) — 3) = —6, wheretval(-) counts only triangles inside,T

Proof. In order to prove this lemma, we must triangulate the region boundéed by
without introducing any new vertices. To do so, note that there exists a vgriex

P such that; is not the endpoint of an edge which both joins two vertice® aind

at the same time is exterior to the region boundedbyow cone fromw;, joining it

to the other nonadjacent vertices Bf and the first three statements of the lemma are
self-evident. To prove the last statement, note thdkifconsists of a single triangle,

the conclusion is obvious. Otherwise, apply the shelling lemma and then the uniform
reduction procedure. One can then verify the final conclusion inductively via a simple
calculation. (Note that only shelling disks of type one can afisehaving no interior
vertices.) O

If Tp is a triangulation withn vertices as described in Lemma 25, we calljsgudo-
island of size n. We use pseudoislands to show that the presence of an island in a
well-triangulated annulus with islands does not materially affect the sum of tile valences
along the bottom.

Now we must prove some lemmas concerning the structure of islands themselves.

Lemma 26. LetL be an island stationed ag kSuppose the island contains a vertex
which is in the set yYfor some n> kg + 2. Thenv is surrounded by a cycle of vertices
all of which lie in \{,_;. Furthermore all vertices surrounded by this cycle will be in

U;.in V.

Proof. We prove the lemma by induction on By definition it is true fom = kg + 2.
Assume the lemma is true for all verticesn L such thajv| = n for somen > kg + 2.
Suppose now that we have a vertexn L with |[v] = n + 1. Then there is an edge
connecting to a vertexw in V. By inductive hypothesis there is a cy€leof vertices in
Vnh_1 surroundingw and hence surroundingas well. Note thatu| > n for all vertices
u enclosed byC.

Apply the Closed Disk Construction Lemma to the disk bounde€b¥hen since
lv] = n+ 1, v cannot be in the star ¢, all vertices ofC being inV,_;. Hence it is
enclosed by one of the disks referred to in that lemma; the boundarylgfconsists of
vertices inV;,, andL; contains only vertices such thatu| > n+ 1. Lemma 26 follows
by induction for all values ofi > kg + 2. O

Lemma 27 builds on the construction lemmas to give details on the possible ways
that islands may intersect.
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Lemma 27. Let L, ..., Lp be the components referred to in any of the construction
lemmasThe boundaries of the sets Wwill be cycles of verticesThen any two of these
cycles intersect in at most one vertard there are in fact no cycles of cycles

Proof. For each, letC; = aL;. Since these cyclgs; were formed by application of

the construction lemmas, now consider the addendum to these lemmas. As described in
that addendum, form a graphby putting one vertex in the interior of each cy&eand
connecting it to all boundary vertices ©f. Then, according to the addendum, there are

no cycles inl". Hence we conclude that the cycléscan share at most one vertex per

pair of cycles and that there are indeed no cycles of cycles. O

Lemma28. LetlLy,..., L, be the closed and bounded components referred to in any
of the construction lemmaghe boundaries of the sets Will be cycles of vertices-or

this lemmalet the term “interior vertex” denote any vertex [dipzl oL; notlying on the
original curve J and not lying on the boundary of any unboundgthiat might existif

xi is the number of vertices #L;, then the number of interior vertices in the union of
the cycles is atleast.”, x*' — p.

Proof. Once again form the grafgh as in the addendum to the construction lemmas.
As usual, we procede by induction. First Iet = ' N (L U Lg). Then the number
of interior vertices o'y is at leastx-* — 1, since by Lemma 2€ 1 can share at most
one vertex withLy (assumingLg exists). Now assume th&{ has been formed by the
union of some subset of the collection of s@tsN L; }J-pzl. If not all of the setd.; have
been used, choose one suchto add to the union in order to for 1. If possible,
however, choose thgsuch thaf™ N L; intersectd’;. This subgraphi® N L;, according
to Lemma 27, shares at most one vertex With;. Hence, the cyclé; must add at least
xLi — 1 vertices to the total, and the conclusion of the lemma follows. O

Suppose a simplicial 2-complex is homeomorphic to a closed disk; suppose that it has
vertices in its interior; and suppose that all interior vertices are connected to the boundary
by an edge. We call such a complexialand core We prove a fact about island cores
before returning our attention to islands themselves.

Lemma 29. Suppose a triangulated disk D has x boundary vertices and y interior
vertices Let vy, ..., vy denote the boundary verticeand letw;, ..., wy denote the
interior vertices Then

1Y (tval(v) — 3) + Y, (val(w;) — 6) = —6;
2. Y itval(w) —3) = =3+ y —x.

Proof. Once again we use the shelling lemma and induction on the number of triangles.
Both conclusions are clearly true for a single triangle. By the shelling lemma there exists
a shelling diskA for D. RemoveA via the uniform reduction procedure. A few easy
calculations show that the lemma is inductively true. O

Now is the best place to present a corollary to Lemma 25:
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Corollary 30. Let L andL be an island and a pseudoislaréspectivelyhaving the

same boundaryLettval(v) denote the tile valence of a vertexon the boundary of L

and lettval (v) denote the tile valence of the same vertex in(In these tile valence
numberscount only the tiles inside L dr, respectively Then

Z (tval(v) — tval (v)) = 6 + Z (tval(v) — 3).

ved(L) ved(L)

Proof. Summing over the verticasin a(L), we have
> val(v) —tval (v)) = Y (tval(v) — 3) — Y (tval (v) — 3)

= ) (val(v) —3) +6
by Lemma 25. O

In the proof of Theorem 6, we use Proposition 24 to partition the triangulated plane
into a diskAg and annuliA,. We also partition the valence sums= Z|v|5k(Va|(U) —6)
into contributions from the dislkg and the annul@q, ..., Ax.

We estimate the contribution from an annulysn two steps. We first replace islands
by pseudoislands and calculate the contributions. Then Proposition 31, which follows,
allows us to calculate the correction we must make in passing back to the original island.

For an interior vertex of an island, the adjustment is easy: simply add a summand
equal to vajv) — 6, namely, the contribution to valence excess which disappears when
a pseudoisland (with no internal vertices) replaces the original island.

Whenv is a boundary vertex of an islarid however, the matter is more subtle. It is
tempting to think that the error involves how much was subtracted frofyahat is,
that the error involves the 3 or the 6 that we subtract. On the contrary, the error resides
in the valence term itself. One can decompose the valence termdera sum. Let
tvali (v) denote the valence efin the islandL;. Let tvab(v) denote the valence afin
the complement of the islands @i. Then to find the total valence in an annulfs,
calculate the sunzip:O tval; (v). The only correction that must be made is to replace the
tvali (v) as calculated in the pseudoisland with the;tugl as calculated in the original
island. Corollary 30 has already calculated the result.

Hence we may determine the total contribution of an island to the tile valence sums.
If L is an island stationed &g, then for allk > kg + 1, we will let ka be the number of
vertices contained ih that belong to the saty. If k — kg — 1 exceeds the depth of the
island, then of coursr\ will be 0.

Proposition 31. Let L be an island stationed ag kvith a depth of nDefine g for all
positive integers k as follows

0 it k<ko,
6+ > (val(v)—3) if k=Kko+1,
a1|€ = [v|=ko+1

k—ko
ab., + Y. Y (tvalw) - 6) if k>Kko+2,

j=2 vl=ko+]
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where the sums are taken only over the appropriate vertices ifihen the following
statements are true

1. at = 0ifk < ko;
2. a5 > X, — X ifko+ 1<k <ko+n;
3. af = 0ifk > ko +n.

Proof. The first conclusion is simply the definition af for k < ko. To prove the rest,

we perform induction on the depth of the island. First suppose that the depth is 1, i.e.,
the only interior vertices of the island areVR ;2. Since the boundary vertices are the
only vertices ofL which are inV,,1, each of the interior vertices must be connected

to a boundary vertex by an edge. Thus the island is an island core. Label the boundary
verticesvy, ..., Uiy and label the interior verticesy, ..., Wyt e
XkL(J+1

g, = 6+ ) (val(w) — 3
i1
> 6-3+Xc,,— X  (byLemma 29)

L L
= Koz~ Nt
Also,
Xl|<_0+2
L L

Qoo = By g+ Z(tval(wi) —6)

i=1
X||<'0+1 XkL0+2

6+ Z(tval(vi) -3)+ Z(tval(wi) —6)
i=1 i=1

=6-6 (by Lemma 29)

Clearlya , will be zero fork > 2.

So we have proved the proposition for islands of depth 1; now we suppose we have
proved it for islands of depth. Let L have a depth ofi + 1. By Lemma 26, all vertices
in the island that belong t¥y,n+2 are encircled by a cycle of vertices (in the island)
that belong tdvy,n+1; furthermore, we obtained these cycles by using the construction
lemmas, and hence by Lemma 27 we may choose these cycles such that the interiors
of the regions bounded by them are disjoint. Each of the vertices enclosed in these
cycles must be iV +nt2 and hence have an edge connecting it to the cycle enclosing
it; thus, each of these cycles is the boundary of an island core. Label these island cores
Ly, ..., Lp. Replace each of them with a pseudoisland of the same size. We have now
reduced the depth of the island by 1; call this reduced islarie know the following
aboutL:

L L L
Bot1 > Mgtz ™ Ko+t

L L L
orn > Xigintl ~ Xig+ne

allzo+n+1 = 0.
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Observe that replacing the island cores by the pseudoislands did not affect any vertices
iN Vig+1, - - -, Vig+n. We may thus say

L L L
o1 > K2 = Ko+l

L L L
Aoin > Hotnt1 ~ Xigan:

Now the difference betweeay; ., anday ., will be the difference between the
tile valence sums on the interior of the pseudoislands and the tile valence sums on the
interior of the island coreg&;, ..., L. We commit a slight abuse of terminology and
notation by considering each of these island cdreas an island stationed & + n.
Then the difference between the tile valence sum on the interior afid on the interior
of the pseudoisland replacing it will b%@n)ﬂ- By Lemma 27 the interiors of the island

coresL; are disjoint; hencey__, kaO‘erz = X .ns2- BY Lemma 28 we can see that

p Li L
Dz Xg+nt1 = Xignt1 T P-
Putting this together,

P
L _ L Li
A iny1 = Qgynp1 T Za(ko+n)+1

i=1

v

p
0+ > B+ X¢nsa — Xyns)  (by Lemma 29 and the proof above)
i=1

v

L L
3p+ Xiog+n+2 — (Xk0+n+1 +p)

L L
Xign+2 ~ Kign1-

\Y

Finally, note that

_ p P
B ini1 = Apinia T D Auames = 0+ Y |6+ > (tvalw) —3)
i=1 i=1

velj
Jv|=kg+n+1

and that
p

Z (tval(w) — 6) = Z Z (tval(w) — 6).

wel i=1 welL;
|w|=kg+n+2 |w|=kg+n-+2

Thus we may say

L
Xk0+n+2

Binsz = Bgenir+ ), (Val(w) —6)
i=1

p p
6p +> > (valw) -3 + Y > (tvalw) —6)

i=1 veLj i=1 welL;
|v|=ko+n+1 |w|=kg+n+2

= 6p—6p (by Lemma 29)
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SinceL only has a depth af+1,a; will be zero for all values ok greater thako+n+2,
and thus we have proved the proposition. O

We later have occasion to sum the numiagrsHence we state the following corollary:

Corollary 32. Let L be anisland stationed ag kith a depth of nThen for all positive
values of k

k

L L
>z bt
=1

Proof. We show thaQ}‘:1 a- > —x . By Proposition 31 we know that

a-=0 for k < ko,
ar > X —X  for k+l<k<ko+n,
a-=0 for ko+n <Kk

If k < ko, then cIearIyZ;‘:1 a-=0> —xg,,, and

ko+1 Ko

L L L L L
Yoai =D al +ag > 0+ Kguz — Xgso):
=1 =1

We now use induction. Suppose we have shown that, for $gsgch thaky + 1 <
k < ko +n, we haveZ}‘:l a- > X 1 — X - Then, fork + 1, we have

k+1

K
Dok = & +an
=1 =1

> (Xepq — XkLo+1) + (X2 — X1)
= XII<_+2 - Xk|5+1~
This induction shows that for ad such thaky + 1 < k < kg + n, we haveZ}‘zl a]-L >
X1 — X 41, @nd henc{};l ar > —Xg .-
Finally, it is clear from Proposition 31 that for aky> ko + n,

ko+n

k

L _ L L
PIRTED R -
j=1 =1

Now we want to show that the presence of islands in a well-triangulated annulus with
islands cannot decrease its modulus.

Proposition 33. Let X be a well-triangulated annulus with islan@®uppose X has n
top verticesand let M be the fat flow modulus of. Xhen
3

M>_—.
—2n
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Proof. Supposev is a vertex on the boundary of an island, and suppodees not lie
on the top ofX. We know thatw is connected to a bottom vertexby an edge. As we
have done before, replacdy two bottom vertices’ andv”, and replacev by a bottom
vertexw’, whose neighbors on the bottom to either sideréndv”.

Perform this operation on every vertex that does not lie on the toplmit which is
on the boundary of an island. The result will be a well-triangulated ann(jjugossibly
still with islands. Note that the number of top verticesXjfis still n. Any island inX
has become either a region with all of its boundary vertices on the bottom, or a region
with some boundary vertices on the top and the rest on the bottom. We consider these
two cases separately.

Let Mo be the fat flow modulus oX{. How doesM, compare withM, the modulus
of X? Letwg be an optimal fat flow weight function foX;. Since every tile inX;
corresponds to a tile itX, we can apply the functiomg to the original tiling X. By
the correspondence of the tiles,,; (X) = A,,(X;). Note that every fat flow irXj is a
subset of a fat flow irX, and every fat flow inX contains a fat flow inX;. Therefore,
Huo (X) = H,, (X5). Thus, we have
HZ,00 _ HZ (Xp)

- -

wo wo

- AwO(X) o AWQ(Xé)) N

0-

Now we consider the two cases. In the first case all boundary vertices are on the
bottom. Since the region of the former island is still bounded by a cycle of vertices, the
leftmost and rightmost boundary vertices must be connected by a single edge lying in the
interior of X;. We remove all tiles lying between the bottom and this edge (see Fig. 11),
thus discarding all tiles that originally belonged to the island. In general, if the tiling was
called X}, before the operation, then we call the tiling resulting from the operagjpn.

Note thatX| . , has the same number of top verticeségs

How does the modulus of[,,, compare with the modulus of? Letwn,1 be an
optimal weight function onX ;. Extendwn1 to X}, by letting wn,1(t) = 0 for all
tiles in X{\ X[, 4. Clearly Hy, , (X)) = Huy,,,(X{ ) and A, (X)) = Ay, (X[ 11)-
Therefore, ifMy, 1 is the fat flow modulus oK[, and M, is the fat flow modulus of
X, we have
Hr%n+1(x;1+1) _ H1ﬁn+1(xli1) <

(Xp) —

Awn+1 (X;‘H»l) B A

Consider the second case, in which some boundary vertices are on the top. Suppose
thatty, ..., t, are the tiles in the island that are adjacent to the top boundary vertices.

Mn+1 = n-

Wn+1

former
island

Fig. 11. Removing an island when no island vertices were on the top.
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former
island

Fig. 12. Removing an island when some island vertices were on the top.

We remove all tiles lying between the tilés ..., t, and the bottom. (See Fig. 12.)
Note that islands might remain in place after this operation, coming from tiles inside the
original island. As before, if the tiling before the operation s then the tiling after

the operation will be calle&,, ;. Note thatX[ ,, has the same number of top vertices
asA,. The same argument as in the previous case shows ublthat< M.

Since there can only be a finite number of tilesdinwe may perform this operation
until we obtain a well-triangulated annulus (without island§)q > 0) having the same
number of top verticea as doesX. By Proposition 19 > 3/(2n). Hence, we may
conclude that

3
MZMOZMli"'quZZ- O
At last we are in a position to see that islands will not affect the parabolicity of a disk
triangulation graph, thus proving Theorem 6.

Theorem 6. Let G be a disk triangulation graph of bounded valenket vy be a
vertex of G For any vertex of Glet |v| denote the minimum number of edges in a path
connectingy to vg. Let

an = Z(val(v) —6).

[v|<n

If the sequencéa,} is boundedthen G is parabolic

Proof  Let{A, 20 be the decomposition @ given by Proposition 24. Recall tha
is a closed topological disk and eaéh (for j > 1) is a well-triangulated annulus with
islands such that the bottom vertices ar&/jrand the top vertices are ¥ ;.

We first remove all islands fror® and calculate the corresponding valence sums;
afterwards we take islands into account.

Let G be the graphG altered by replacing each island (in the concentric well-
triangulated annuli with islands;) with a pseudoisland of the same size. Each annulus
A; in our decomposition is thereby replaced with a well-triangulated ann@qILiB G
such that all bottom vertices &; are inV; and all top vertices are i ;1.

In the graphG we define

A = Z(val(v) —6).

veG
[vl<k

We use the decompositiqm_\j } of G to partition the valence excess su@sas follows.
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For each nonnegative intederlet

I = Z(val(v) —6).

vehy

lv]=k

Note that the integerg, do not change ondeis so large tha#\, contains no vertices
from V. Thus we may choose a positive integktarger than all of the integers Jy,
wherek = 0, 1, 2, .... The integerd allows us to bound the contributions of the disk
Ay = A to the valence excess sums

Each annulusA, has setsBy, Ty, and I, of bottom, top, and interior vertices, re-
spectively, which contribute to the surag Denote the number of vertices in each set
by ck = |Bkl|, nk = |Tk|, andxx = |lx|. Now defineb, = ZBk(tvaI(v) — 3); define
tc = >_q, (tval(v) — 3); and defingyx = ), (tval(v) — 6). The tile valence counts d
andT,, of course, take into account only tiles M.

Taking into account that the boundary verticesAgfserve as bottom vertices @
and that, fokk > 0, the top vertices of\, serve as bottom vertices @1, we obtain
the following equality:

k—1
ék:(Jk—b1)+Z(bj +ij+t) + b= — b+ by,
=

whereb; +ij +t; = 0 by Proposition 11 sincé is a well-triangulated annulus without
islands.

Now we take the islands into account. We combine the numfieabove and the
numbersa"; of Proposition 31 to estimate the original sums3nnamely,

ac=» (val(v) — 6).

veG
[v|=k

The logic of forming the sunay from & and the island numbe@ is as follows. Fix
k > 2. Begin withG. Note thatd, contains the summands yva) — 6 for the vertices
of Ag = A such thatv| < k, as well as for all vertices of Ay, ..., A._1. Note that
there can only be two factors contributing to the differences bet@eanday:

1. Avertexv of G suchthatv| < kliesintheinterior of anislant of A, ..., Ac_1
and hence does not appeaGn

2. A vertexv of G such thatjv| < k lies on the boundary cycle of an island of
As, ..., Ac_1 but does not have the same valenc&ias it had inG.

However, as noted in Corollary 30 and in the statement, proof, and discussion of
Proposition 31, addinE{akL | dist(dL, vg) < k} to & precisely corrects both defects.
Hence we have the precise equality

ac=a+ Y. a=(k-b)+b+ >  a.

dist(aL,vp) <k dist(dL,vp) <k
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If p« is the number of islands containing vertiaesuch thatv| < k, we may index the
islandsL asLy, ..., L, and write

Pk
akz(Jk—bl)-i-bk-i-Z&ki.
i=1

By hypothesis, the sequenéay} of valence excess numbers is bounded. Thus there
exists aB such that, < B for all k; hence, by Proposition 10, we know that

Pk Pk
(Jk—b1)+nk+Xk—Ck+Za|'{‘ S(Jk—bl)—i-b|<+z:<’=\||{i =& < B,
=

i=1

and hence

Pk
Nk < B+Ck—Xk—Za|l(-i—\]k+bl
i=1

Pk
S(B+J+b1)+ck—<xk+2aki). )
i=1
We do some more induction. We know
Py
m<B+I+b)+a—[x+) a').
i=1

Suppose, for some< Kk,

| | Pj
n 5I(B+J+b1)+cl—<2xj+22ak“). )

j=1 j=1li=1
Then, by (1),
Pr+1 L
Ny < (B+J +b1)+C|+1—XI+1_ZaIJIrl

i=1
Pr+1 L )
(B+J+b)+n—xp—» &), (sinceg,s=n)
i=1

1+1 I+1 P
I+D(B+J+by)+c— (ij+22aiL'>

=1 j=1i=1

IA

by (2). Thus, fok in particular,

nkgk(B+J+b1)+c1—(ij+zzatj‘

1 =~
N
|| =~
iR
1 o
iR
L
v
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Now, sinceai'; = 0 if L contains no vertices ofy,

Mx

IIL_

s 1M~
M- 1

o

1

I
i

i=1]j

Px L

= _szbrl‘*' Pk
i=1

by Corollary 32, where; is the station oL;.
Lemma 28 asserts that there are at 18a8t, x;‘iﬂ — px interior vertices. Hence we
have

So

and we conclude that
Ng < k(B+J +b1)+C1.

This inequality is true for all values & However, eacl\ is a well-triangulated annulus
with islands. Therefore, by Proposition 33 M is the modulus oA, then

My > > .
2ng ~ 2(k(B+ J +by) +c1)

Let M be the fat flow modulus o&. Then, by the Layer Theorem,

o0
M > ZMK
k=1
[e o]
> §Z !
2{k(B+J+by)+c
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