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1. Introduction

Given a line¢ in R and two real numbers 8 r < R, thecylindrical shellZ (¢, r, R)
is the closed region lying between the two co-axial cylinders of radiid R with £ as
their axis, i.e.,

(R ={peR® r<d(p,o <R}

whered(p, ¢) is the Euclidean distance between pomtand line ¢. The width of
S, r,R) is R—r. Let Sbe a set oh points inR3. One can measure how well
fits a cylindrical surface by computing a cylindrical surfate- C(S) so that the maxi-
mum distance between any point®andC is minimized. If¢ andp are the axis and the
radius ofC andé is the maximum distance betwe€andS, thenS c X (¢, p—0, p+9).
Hence, the problem of approximatir®by a cylindrical surface is equivalent to com-
puting a cylindrical shelE*(S) of minimum width that contain§.

The main motivation for computing a minimum-width cylindrical shell comes from
computational metrology. In order to measure the quality of a manufactured cylinder
we sample a s& of points on the surface @f using coordinate measuring machines and
then fit a cylindrical surface throughiso that the maximum distance between the points
of Sand the cylinder is minimized. For example, this is one of the criteria suggested in
the recent ASME Y14.5M standard to determine how closelkgesembles a cylinder
[17], [18].

In the last few years much work has been done on measuring the circularity of a
planar point set, which is defined as the width of the thinnest annulus that contains the
point set [2], [5], [11]-[14]. The best known exact algorithm run©im®+?) time, for
anys$ > 0 [5], and near-linear approximation algorithms are proposed in [2], [9], and
[11]. In three dimensions, Chan [9] has shown that the minimum-width spherical shell
(a region enclosed between two concentric spheres) containingelement point set
Scan be computed in tim®(n?). The same paper also presents linear-time algorithms
that compute an approximation to the minimum-width enclosing spherical shell in any
dimension; see also [2]. There has also been some work on computing the smallest
cylinder enclosing a point set i3 [1], [15]. Agarwal et al. [1] developed a@ (n3+%)-
time algorithm, for anys > 0, for computing the smallest enclosing cylinder. They
also proposed &l + ¢)-approximation algorithm (i.e., an algorithm that produces an
enclosing cylinder whose radius is at ma@&t+ ¢) times the minimum radius) that
runs in O(n/s?) time. This has been improved by Chan [9]@i(n/e) or to O(n +
1/¢%).

Finding the minimum-width cylindrical shell*(S) that contains a given point set is
harder than computing a minimum-width enclosing spherical shell, computing a smallest
enclosing cylinder, or computing a thinnest annulus containing a planar point set. Actu-
ally, the second and third problems are special cases of computing a thinnest cylindrical
shell—finding a smallest enclosing cylinder is the same as finding a minimum-width
cylindrical shell whose inner radius is 0; and finding a thinnest cylindrical shell with the
axis parallel to a given directiom is the same as finding a thinnest annulus containing
the projection ofSin directionn onto a plane orthogonal t@ Since a cylindrical shell
is specified by six parameters—four parameters define the axis of the shell and the re-
maining two define the inner and outer radii of the shall*¢S) is in general “defined”
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by a subsefA C S of six points, in the sense that*(S) is one of theO(1) cylindrical
shells that contairA on their inner and outer boundaries. This suggests the following
naive procedure for computing*(S): For each subsed C Sof size six, compute the
O(1) cylindrical shells containingh on their inner and outer boundary. For each such
shell =, check inO(n) time whetherS C X. Return the thinnest among those shells
that containS. This nave approach leads to ad(n’)-algorithm for computings*(S)

under an appropriate model of computation in which the roots of a fixed-degree poly-
nomial can be computed i@ (1) time. As the first result of this paper, we describe, in
Section 2, an improve® (n®)-time algorithm for computing*(S). We are not aware

of any faster algorithm for the exact problem. Recently, Devillers and Preparata pro-
posed a linear-time constant-factor approximation algorithm for the minimum-width
cylindrical shell problem under the assumption that the points are “almost” cylindrical
[10].

Since computing=*(S) is so expensive, we develop a more efficient approximation
algorithm for computing a cylindrical shell that contaisind has width at mosto*,
wherew* is the width of£* (S) andcis a constant. We first prove in SectionBally-type
theorem forz*(S), which we believe to be of independent interest, and which asserts
roughly the following: LetA C Sbe a subset of four points so that the volume of the
tetrahedron spanned b4 is close to the largest volume of a tetrahedron spanned by
any four points ofS. For a directiom e S? and a point seX, let w*(X, n) denote the
minimum width of a cylindrical shell containing and with axis directiom. Then for
any directiom, »*(S, n) < ¢- max,esw*(AU {p}, n), for an absolute constant> 1.

The constant that our analysis yields is about 56, but we believe that the theorem also
holds with a much smaller constant. Using this observation, we develop in Section 4 an
O(n?*%)-time algorithm, for anys > 0, to compute a cylindrical shell of width at most
about 5&* that containsS.

2. Computing X*(S) Exactly

In this section we describe a(n°)-time algorithm for computing*(S). Without loss

of generality assume that the axis Bf(S) is not parallel to thexy-plane; the case of

a horizontal axis can be handled by a simpler algorithm, whose details are omitted. A
cylinderC with a nonhorizontal axia can be parametrized by a 5-tuide, ap, as, as, r),
wherer is the radius ofC and where the axis df is the linea = {p+tq | t € R},

p = (a1, a, 0) is the intersection point ad with the xy-plane, andy = (ag, a4, 1) is

the direction vector oé. Let x be a point inR3. The orthogonal projection of to the
lineais p+ ((x— p)-a/lqha/lall = p+ ((x— p) - a/lql?a. Hence, the distance
betweerx anda is

(p—x)-q H
lall? '

Sincex liesinthe cylindeC ifand only ifd(x, a) < r, after some algebraic manipulation
we obtain thak = (X1, X2, X3) lies insideC if and only if

d(x,a) = H(p—X)—

f (X1, X2, X3, @1, @, 8g, &) < (a3 + a2 + Lr?,
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where
f (X1, X2, X3, &1, &, 83, 84)
= [(@2 + D&l + (a3 + 1)aZ — 2ayapasau] + 2[arasay — ar(aZ + D]x
+ 285 — a(83 + DX + 2[a183 + ar84]Xs — 2[agau] X1 X
— 2[ag]X1Xs — 2[aa]X2Xz + [L] (O + x3) + [aZ] (X3 + X3)
+ [@3] (X2 + X3). (2.1)

Hence, a poink lies in a cylindrical shelb = (a, a, as, a4, r, R) with axisa =
(a1, &, a3, a4), parametrized as above, inner radiyand outer radiuR if and only if

ré@3+ai+1) < f(xq, X, X3, &1, &, &g, &) < R?(@5 +af + 1). (2.2)
We set

¢1(0) = apagay — & (aj + 1),
02(0) = ardgay — (a3 + 1),
p3(0) = aa3 + aay,

pa(0) = agay,
ps(0) = as,
pe(0) = aa,
p1(0) = &,
ps(0) = &,

po(0) = r?@%+a2+1) — (a2 + 1a? — (a2 + 1)a2 + 2aarasay,
p10(0) = R*@3+4 a2+ 1) — (a5 + 1a? — (a3 + 1)a2 + 2ajapazay,

Yo(X) = X2 +x2,  Yi(X) = 2xq,

PYa(X) = 2Xo, Y3(X) = 2X3,
Ya(X) = —2X1Xo, Ys5(X) = —2X1X3,
Ye(X) = —2XpXs, Y7(X) = X5 + X3,

Yg(X) = X&+ X2,

Then the constraint (2.2) can be rewritten as a linear constraint:
8
Hx(0): ¢o(0) < Yo(X) + pri (@)Y (X) < ¢10(0).
i=1

For any pointp € R3, define the wedgél, C R, formed by the intersection of two
halfspaces, as

i=1

8
Hp = {(YL-naylo) | Yo < Yo(P) + Y Yivi(p) < Yiog -
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Setp(o) = (p1(0), ..., p10(0)) € R, Let P = Mpes Hp be the convex polyhedron
defined by the intersection of th@ 2orresponding halfspaceB.hasO(n®°) faces and
can be computed i©(n°) time [8]. A cylindrical shell (with nonhorizontal axisy
containsSif and only if (o) € P.

Let W C R* x (R*)? denote the six-dimensional set of all cylindrical shells (with
nonhorizontal axis) that contais. Theng (W) is the intersection oP with the six-
dimensional surfac® = {¢(0) | o € R*x (R*)?}. After having computedP, ¥ can be
computed irD(n%) time, e.g., by triangulating into O(n%) simplices and then, for every
simplexz in the triangulation, computingN ®. Finally, for each simplex, we compute
in O(1) time (under an appropriate model of computation in which the roots of a constant-
degree polynomial can be computeddril) time) the minimum-width cylindrical shell
o such thap(o) € T N ¢ (V). Hence, we have established the following result.

Theorem 2.1. Given a set S of n points iR3, a minimum-width cylindrical shell
containing S can be computed in(&) time

3. A Helly-Like Property of Cylindrical Shells

Let S be a set oh points inRR3, and lett > 1 be a constant. For any finite point set
X c R® of at least four points, le(X) denote the maximum volume of a simplex
spanned by four points oX. Let T be a tetrahedron spanned by pointsSo#vhose
volume isu(S)/t. Let A = {a;,...,a4} € S denote the set of vertices df. The

simplexT has the following useful property.

Lemma 3.1. Let f be any k-flagtfor k = 0, 1, 2. Then for any p= S we have
d(p, f) = (4t —1)- maxd@, f). (€CN0)
=I=

Proof. Let A c RR® be the locus of all pointg so that each of the simplicesa,azq,
ayaxa4q, a1a3a4q, andazazasq has volume at most Vol (T); see Fig. 1. By assumption,

¢

Fig. 1. A two-dimensional version of the regian, for t slightly larger than 1.
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we haveS C A. Leth; be the plane containing\ {& }, and letA; be the slab bounded by
two planes parallel th; and atdistanced(a;, h;) fromit. ThenA = ﬂi“zl Aj;seeFig. 1.

Using barycentric coordinates, we can represent any gpiatA asq = Zle Aid,
wherezi“:1 A =land|Ai| <t,fori=1,...,4.Fori =1,...,4, leth be the point
in f nearest t@;, and putg* = Zf‘zl Aib € f. We then have

d(, f) < d(q,q"

4 4

d (jz:)4aj,jizl4bi>
i=1 i=1

4

PRACE bi)H

i=1

4

> Ixilda@, f)

i=1

(4t —1) - maxd@, f),

IA

IA

for eachg € A, where the last inequality follows by observing that n@?(:l [Ail,
subject tOZiA':l)»i = 2land|A| <tfori =1,...,4,is 4 — 1. This implies the
assertion of the lemma. O

Fix a directionn e S?, the unit sphere of directions, and tet= 7™ be the plane
normalton and passing through the origin. For a poirg R3, letx* denote its orthogonal
projection torr. SetS* = {p* | p € S}. Similarly, defineA* to be the projection oA
torm.

Corollary 3.2.

(i) Let o andp be the center and radius of the smallest disk enclosingrhen 3
is contained in the disk of radiugt — 1) centered at o
(i) Forany line¢ lyinginr,

maxd(p*, £) < (4t — 1) maxd(a*, £).
peS acA

Proof. Part (i) follows by applying Lemma 3.1 to the line in directinrand passing
througho. The second part is proved by applying Lemma 3.1 to the plane orthogonal to
s and passing through O

The following geometric lemma lies at the heart of the main result of this section. Let
D(x, 8) denote the disk of diametércentered at a point.

Lemma 3.3. Let Aabc be a triangle in the planeand lett > 1 and0 < o <
Width(Aabc) /3.4 be two parameterdDefineA = A(r) to be the locus of all points x
such that the area of each of the trianglasbx, Aacx, Abcx is at most times the
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(i (i)

Fig. 2. (i) Setup of the lemma; (ii) geometric interpretation of the inversion.

area of Aabc Let C and C be two circleseach of which meets all three disk§d) w),
D(b, w), D(c, w). Then for any z C N A we have

d(z, C’) < (6.95t + 35w
(see Fig 2(i)).

Remark 3.4. Informally, the lemma asserts that if two circles are close to each other
near the three points, b, c, then they remain close to each other witkiin Without
confinement ta\, the assertion may fail, as is easily checked.

Proof. We parametrize points d@ usinginversion as follows. Pick pointsi € C N
D(a,w),v € CND(b, w), w € CN D(c, w). (Note that the condition o implies that

the disksD(a, w), D(b, w), D(c, w) are pairwise disjoint.) Without loss of generality,
we may assume that the orderwfv, w, andz alongC in the clockwise direction is
u,v,z,w. Writtv = u+ p, w = u+d, andz = u + ¢. Apply an inversion to the
plane that takes to infinity. For example, using complex numbers, we may use the
transformatiorf — 1/(& — u). This transformation mags to a straight line containing
the images 1p, 1/q, and ¥ ¢ of v, w, andz, respectively, so that/t liesbetweerl/p

and 1/ g. Hence there is a real parametee [0, 1], such that

1 X 1-A

: p+ a (3.2)
or
¢ = pq
Mg+ A-np

The following geometric interpretation will be useful in the subsequent analysis. Put
s=Aq+ (1 —A)pandx = u+ s. The pointx lies on the edgew of the triangleuvw

and splitsitinthe ratia.:(1—A); thatis|x —v| = Ajlw —v| and|]x —w| = (1—1)|w —v|.
Sincepq = ¢s(or p/s = ¢/q), the trianglervux andAzuw are similar. Analogously,
Awux andAzuw are similar. See Fig. 2(ii).
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This implies that

Mw — v] _ lw — Z] and A—-M|w —v]| _ |U—Z|'
ISl al ISl |pI

Sinceu, v, z, w are cocircular{vuw = 7 — Lvzw, therefore si vuw) = sin(Lvzw).
Multiplying the two equalities in (3.3), we obtain

(3.3)

AL =)|w—v]? = |s|?- W
|pllql
_ |s|2~ lv —2z| - |Jw — z| sin(Lvzw)
Ipl - |g] sin(£vuw)
— s Area(Avwz).
AreaAuvw)

We prove below in Corollary 3.6 that
Area(Avwz) < 4.05t - Area(Auvw). 3.4)

Intuitively, this is to be expected because the areaobw (resp. Avwz) is a good
approximation of the area d@fabc(resp.Abc2); arigorous proof is given in Lemma 3.5
below.

We thus have

A1 = 1) |w — v|? < 4.05t|s|°. (3.5)
Letd = Zuvw. Using the law of cosines, we have
IsI? = |pI? + A%|w — v|? — 24| p||w — v| cOSH
and
191? = [pI* + |w — v|* — 2/ pllw — v| cosy.
Eliminating co® from the last two equations, we obtain
sl = A1q12 + L — 2)[plZ — AL — 1) |w —v|% (3.6)
Combining (3.5) and (3.6), we get
Mal® + (1= n)pl? < (405t + 1) Is|*. 37

Apply a symmetric transformation to parametri2é Pick pointsu’ € C’' N D(a, w),
v e C’'ND(b,w), w € C'ND(c,w). Writev' = U + p/, w’ = U +q/, and put

;o p'q’ ,
Z=U+—— "+ €C.
+Aq’+(1—k)p’e
Set
_ Pq _ Pa’
M+A-)p rg+A-1p°
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Puté = p' — pandny = g’ — g. Observe thaft|, || < w. We have

A (ptH@+N
MAA-0p  A@+m+A-(p+é)

_ R+ A@—=Mpl-181-Inl+ MalPEl+ @ = MIpPnl

- Aq+ @A —-2)pl- 2@+ + A -1)(p+8)I
The denominator in the last expression is at l¢gigts| — w). Moreover,|s| is larger
than the height tow in Auvw. As we show below in Lemma 3.5, this height is at least
Width(Aabc) — w > 2.4w (again, this holds becaugalvw is a good approximation of
Aabq). Therefore

18] =

Islw? + (A [q|* + (1 — V)| pl?)
Isl(Is| — ) '
Using (3.7) and the fact th#| > 2.4w, we obtain

1 n 4.05t +1
w

Isl/w—=1 " 1-ow/ls|

<5 12(4.05t + 1))
s (s+———)e
7 7

18] <

1]

< (6.95r + 2.5 w.
Therefore,
d(z,C) < d(z,Z) <d(u,u) + 8]
< (6.95r + 3.5 w.
This completes the proof of the lemma. O

We still need to establish the following lemma.

Lemma 3.5.

94
(a) AredAuvw) > g5 Area(Aabo).

(b) Arearvwz) < (%1 + 32;) Area(Aabo).

(c) |Width(Auvw) — Width(Aabo)| < w.

Proof. We have
2 Area(Aabo) = |ab x ac|
and
2 Area Auvw) = |Uv x Uw| = |[(@b+ ua+ bv) x (@c+ ua+ cw)|.
Putp = Ua+ bv andg = Wa+ civ, and note thalp|, |§| < ». We thus have
IB x ac| + |ab x §] + | p x d

2|AreaAuvw) — Area(Aabg)| <
< o(|abl + |ac + ).
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. \ ,v
N
w

Fig. 3. lllustration to Lemma 3.5

Let hyp, hyc denote the heights dfabcto the sidesb, ac, respectively. By assumption,
we have

habs haCa |ab|v |aC| Z 34(0, (38)

which implies that

2|Area(Auvw) — Area(Aabo)| < 2(|abl - hap + ac| - hac + ]ab] - hap)

390
= Sgg Area(Aabo),

or
Area(Auvw) > (1 — 32) Area(Aabo) = S5 Area(Aabo).
This establishes (a).

To prove (b), we note that AréAvwz) is maximized whemz is a vertex of the region
A(7). Using the fact that the slope of is almost the same as thattad, it can be shown
that the pointz maximizing AregAvwz) must coincide with an endpoint of the edge
of A(r) parallel tobc and lying on the opposite side af see Fig. 2(i). In this case
d(z, £y = td(a, €pe) and AredAbcz) = 7 Area(Aabo).

Arguing as in (a), we have

2 AreaAbc2) = |zb x Zd
and
2 Area Avwz) = |Zv x Zw| = |(Zb+ bv) x (Zc+ cw)|.
Note thatbv|, |civ| < w/2. We thus have
2|Area(Avwz) — Area(Abcz)| < |bv x Zd + |zb x G| + |bv x Cw|

% (|£b| +1Zd + %) .

IA

The two verticesz;, z» of A(r) wherez can lie satisfybzy = rac andcz = rab.
Consider the vertex; (the treatment of; is fully symmetric). We have

lbzy| = rlac]
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and
Icz1| = cb+ bz| = |cb+ rdc = |(r — 1)ac+ ab| < (z — 1)|ac| + |ab.

Hence
w - N w w N - w
- (|z1b| +|Zic| + E) <3 ((21: — 1)|aq| + |ab] + 5) .

Using the inequalities (3.8), we obtain, as in (a),

52r—-1) 5 25
2|Area(Avwz) — Area(Abcz)| < (T t7 7t ﬁ;) Area(Aabo),
or
5t 25
Area(Avwz) < Area(Aabo) (T + 17 + T56) '

as asserted, thus establishing (b).

Finally, to prove (c), suppose that the width/sfbcis the heighty, to the edgédc.
ThenAabcis contained in the strip of width h, whose boundary lines pass through
the edgebc and the vertexa. The strip of widthh,. + w, obtained by translating each
line of o by w/2 away fromo, containsau, v, andw. Therefore,

Width(Auvw) < Width(Aabo) + .

The reverse inequality is proved in exactly the same manner. O

The first two parts of the above lemma along with the fact that 1 imply the
following.

Corollary 3.6. AreaAvwz) < 4.05t - Area(Auvw).

We are now in position to prove the main result of this section.

Theorem 3.7. Suppose there exists > 0 such that for each g S* there exists an
annulus of widthw that encloses AU { p}. Then there exists an annulus of width at most
55.6tw that encloses S

Proof. If Width(A*) < 6.95w, then Corollary 3.2(ii) implies that the width & is at
most 695(4t — 1)w. Since a slab can be regarded as a degenerate anBtilcan be
enclosed by an annulus of width at most@im. So assume that WidtA*) > 6.95w.

Suppose, without loss of generality, thisd; aja; is the largest-area triangle spanned
by three of the points oA*. We have

Width(Aajaja3) > Width(A")/2 > 3.4w.

Fix a pointg € S*. By Corollary 3.2(ii), the area of each of the trianglea;ajq,
Aajajq, Aajajq is at most(4t — 1) - Area(Aajasay). Let. A be an annulus of width
that containsA* U {q}, and letC be the mid-circle of4d. Let . 4* be the annulus of width
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55.6tw that hasC as its mid-circle. We claim that* containsS*. Indeed, leg’ be any
point of S, and let.4’ be an annulus of width that containsA* U {g'}. Let C’ be the
mid-circle of A". Clearly,C, C’, andAajajaj satisfy the conditions in Lemma 3.3 (with
7 = 4t — 1), which implies

d(q,C) < (6.95(4t — 1) + 3.5)w < 27.8tw,

implying thatq € .A*, as claimed. O

4. Approximating X*(S)

In this section we apply the results of the preceding section to obtain an algorithm for
computing a cylindrical shell of width at mo€(w*(S)) that encloses an-element
point setS c R3. We first describe an algorithm for computing a sub&et S of four
points so thajt(A) > (1 — e)u(S), for some constart > 0; recall thatu(X) is the
maximum volume of a simplex spanned by the pointXof

Lemma4.1. Given a set of n points ii®® and a parametee > 0, we can compute
in O(nlog(1/¢) + (1/¢)*®log(1/¢)) time a subset A of four points so thatA) >
L —e)u(S.

Proof (Sketch. We first compute a boB enclosingS whose volume is at most-$

¢ times the minimum volume of any box containii®) This can be done IO (n +
1/¢*%) time using the algorithm of Barequet and Har-Peled [7]. Suppose, with no loss
of generality, thatB is axis-aligned and the coordinates of the endpoints of its main
diagonal arg0, 0, 0) and(ly, |y, |,). Choose a sufficiently large constant- 1 and set

a = ¢/c. Draw a three-dimensional grid

{liely. (i + Daly] x [jaly, (j + Daly] x [ked,, (K+ Dal,] [0 <i, j. k < [1/a])

of sizeO(1/a®). Let Q be the set of grid vertices adjacent to the grid cells that contain
at least one point 6. Q can be computed i@ (nlog(1/¢) + 1/¢%) time. For each pair
1<i,j < [1/a], if there are more than two points @ whosex- andy-coordinates
arei and j, respectively, we keep only two of them—the ones with the maximum
and minimum values ok. Q now has at mos©(1/«?) points. We then compute, in
O((1/a?) log(1/a)) time, the seV < Q of vertices of the convex hull d). By a result

of Andrews [6],|V| = O(1/a*?). Next, we compute iD(|V|3log|V|) time the largest
volume tetrahedrogy 020304 Spanned by (we omit details of the rather straightforward
algorithm for doing so). Lety € Sbe a nearest neighbor gf, fori = 1,...,4. We
returnA = {ay, ap, ag, a4}. Using a somewhat tedious analysis, similar to the one in [7],
it can be shown that (A) > (1 — &)u(S). O

Sete = ﬁ) and compute irD(n) time a setA C Sof four points such that (A) >
(1 — &)u(S), using the above lemma. LEE denote the unit sphere of directionsRs.
For eachq € Swe define a real-valued functid®, on S?, so that, fom € S?, Fy(n)

is the width of a thinnest annulus within the plamé&’ that contains the orthogonal
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projections ofA U {g} on the planer™. Clearly, F, is a piecewise-algebraic function
of “constant description complexity” (in the terminology of [16]). LEtdenote the
pointwise maximum of Fylqges, letn e S? be a direction that minimizeg, and let
w = E().

Lemma4.2. o < w*(S) < 56w.

Proof. The fact thatv = min,cse Maxyes Fq(v) implies that, for eaclv S?, there
existsq € Ssuch that any cylindrical shell that contaiAs) {g} and has axis-direction
must have width at least. Hence the minimum width of a cylindrical shell that encloses
Sis at leastw.

On the other hand, singe(A) > (1 — ¢)u(S), which corresponds to settirtg=
1/(1 —¢) = 7/6.95 in Lemma 3.3, Theorem 3.7 implies that there exists a cylindrical
shell with axis-directiom and width at most 55 - tw = 56w that containss. O

The algorithm is now straightforward. We compi&én O(n?*?) time, for anys > 0,
using, e.g., the algorithm of [4], and then examine each vertex, edge, and face of (the
graph of)E to find the global minimum oE. Suppose the minimum is attained at some
directionn by a pointq € S. We projectS orthogonally ontar ™, and compute the
minimum-width annulus4 within 7™ that contains the projected s8t. This can be
done in additional timeD(n?) [12]. (Alternatively, we can compute i@(1) time the
radiusp and the mid-circleC* of the minimum width annulus containing™ u {q™}
and set4 to be the annulus of width %6and with mid-circleC*.) We then "lift” A in
the directionn to obtain a cylindrical shell, of the same width, that encloSeBy the
preceding analysis, we obtain the following.

Theorem 4.3. Given a set S of n points iR®, one can computén O(n?+?) time, for
anyé > 0, a cylindrical shell that contains ,3vhose width is at mo&tw*(S).

Remark 4.4. We believe that our approach can be strengthened to give a near-linear-
time algorithm. Intuitively, we need to show that one does not have to search over
all directionsn e S2. Instead, we conjecture that it suffices to search over the one-
dimensional locus of axis directions of cylinders that pass through four poir@shait

span a “large-volume” simplex. However, at present we do not know whether this holds.

5. Conclusions

In this paper we presented a constant-factor approximation algorithm for the minimum-
width cylindrical shell problem that runs in near-quadratic time. We also presented an
algorithm for computing the thinnest cylindrical shell containing a point set. We conclude
by mentioning two open problems:

1. Is there a faster algorithm for computing the minimum-width cylindrical shell
containing a point set iR3?

2. Develop a(1 + ¢)-approximation algorithm for the minimum-width cylindrical
shell problem that runs in near-linear time (or even in near-quadratic time).
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Note added in proof Recently Har-Peled and Varadarajan have developéddtas)-
approximation algorithm for the minimum-width cylindrical shell problem whose run-
ning time isn/e°®,



