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Abstract. In this paper we are interested in thePentomino Exclusion Problemdue to
Golomb:Find the minimum number of unit squares to be placed on a k× n chessboard
so as to exclude all pentominoes. Using an appropriate definition of density of a tiling, we
obtain the asymptotic value of this number, and we establish this number for thek × n
chessboard whenk ≤ 4.

1. Introduction

A polyominois a pattern formed by the connection of a specified number of equal-sized
squares along common edges (see [2]). Apentominois a polyomino composed of five
squares. Theinterior boundaryδint(P) of a polyominoP is the set of squares ofP having
a common edge with the “exterior” ofP. Theexterior boundaryδext(P) of a polyomino
P is the interior boundary of the complement ofP. Theperimeterof a polyominoP is
|δint(P)|. For a given polyominoP,1(P) denotes the area ofP.

Consider the adjacency relationsα andβ, which defines what is usually called re-
spectively 8-connectivity and 4-connectivity in discrete geometry, between squares in
Z2: write CαC′ (resp.CβC′) iff C andC′ have a common vertex (resp. edge).

For a given polyominoP, we can build a graphG(P) = (V, E) defined byV =
{p|p is the center of a unit square inP} andE = {U V |UαV}. A vertexv of G(P) can
be seen as a square ofR2, so for brevity sometimesv should be seen as the unique
corresponding square (see Fig. 1). Moreover,G(Z2) is in graph-theoretical language
usually called thetotal infinite complete grid graphwhich can be defined as a total
product of two infinite paths.

Golomb [2] proposed the followingPentomino Exclusion Problem, denoted (PEPk×n):
Find the minimum number of unit squares to be placed on a k× n chessboard so as to
exclude all pentominoes.

In a previous paper [3] we introduced a notion of density of a tiling with (for example)
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Fig. 1. A polyomino P, the graphG(P).

polyominoes. Using this definition in the next section, we determine the asymptotic value
(i.e., the density of a tiling where the tiles are polyominoes composed of less than five
squares) of the Pentomino Exclusion Problem and other related problems.

Finally, in Section 3, we investigate (PEPk×n) problems whenk = 4.

2. Assymptotic Results

In order to state our results we need some preliminary definitions.
We denote by (G1) the problem:

Find the minimum density of unit squares to be placed on the plane so as to exclude all
polyominoes of area> 1.

For instance, the Pentomino Exclusion Problem in the plane is equivalent to the problem
(G4).

An admissiblesolution of (G1) is a setS of squares centered onZ2 such that any
connected component in theβ adjacency ofR2−S has area less than or equal to1. The
squares belonging to an admissible solutionS are filled in (i.e. black) and the others are
left white.

We now need a measure, called “density,” defined on an admissible solution of (G1)
in order to compare two admissible solutions. IfT is a finite subset ofZ2, a natural way
to define the density ofS relative toT is |S ∩T |/|T−S|. We now show a way to extend
this definition to the infinite case:

For an admissible solutionS of (G1), observe that if we remove one “crossing edge”
of eachK4 (complete graph on four vertices) inG(S), then the resultingplane graph
G′(S) defines a tiling ofR2 (see Fig. 2) where the tiles are the faces ofG′(S). For a face
(or a tile) 〈C〉 of G′(S) there corresponds a unique polyominoC whereδext(C) ⊂ S.
Some of these tiles correspond to some connected components (in theβ connectivity)
of Z2 − S. Other tiles are triangles corresponding to three mutually adjacent elements
of S (in this caseC = ∅).

Let D be a finite subset ofR2. The density of an admissible solutionS of (G1) relative
to D is

d(S, D) = black area ofD̄

white area ofD̄
,
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Fig. 2. S andG′(S).

whereD̄ is the union of all faces ofG′(S) which intersectD. Notice thatD̄ defines a
polyomino P with unit squares fromS, and each square in the interior boundary ofP
belongs toS. Moreover, observe thatd(S, D) is well-defined since each face ofG′(S)
define a polyomino with bounded area.

Let Br be a ball ofR2 of radiusr . Then

d(S) = lim inf
r→∞ d(S, Br ) and d̄(S) = lim sup

r→∞
d(S, Br ),

are called thelower andupperdensity, respectively. If these two values coincide, their
common value is calleddensity d(S, D). This kind of definition of density is more or
less standard (see, for example, [4]). In [3] we proved:

Theorem 1. Let1n be the maximum number of squares belonging to a polyomino of
perimeter n with n= 4q+ r > 0 and0≤ r ≤ 3;1n is given by the following function:

1n =


2q2+ 2q + 1 if r = 0,
2q2+ 3q + 1 if r = 1,
2q2+ 4q + 2 if r = 2,
2q2+ 5q + 3 if r = 3.

Theorem 2. Let n= 4q + r ≥ 5, with 0≤ r ≤ 3, be an integer such that1 ≥ 1n. If
q > 1 and1−1n ≤ dq/2e, then an optimal solutionS of (G1) satisfies

d(S) ≥ (n+ 4)/2− 1

1n
.

For any1 ≥ 1n, we have

d̄(S) ≤


(n+ 4)/2− 1

1n
if r ∈ {0,2},

(n+ 5)/2− 1

1n
if r ∈ {1,3}.
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As noticed in [3], a direct consequence of Theorem 2 is that whenr ∈ {0,2}, q > 1
and when1−1n ≤ dq/2e the density of an optimal solution of (G1) exists and is equal
to

(n+ 4)/2− 1

1n.

Moreover, this density is independent from the position of the ballBr .
In this section we complete Theorem 2 for1 ≤ 7 since the first values given by

Theorem 2 deal with1 ≥ 8.

Theorem 3. The only admissible solution of(G0) is S = Z2. An optimal solution of
(G1) satisfies

d(S) = 1 when 1 ≤ 2,
d̄(S) ≤ 1
d(S) ≥ 5

6

}
when 1 = 3,

d(S) = 3
4 when 1 = 4,

d(S) = 3
5 when 1 = 5,

d̄(S)≤ 3
5

d(S)≥ 7
12

}
when 1 = 6,

d(S) = 4
7 when 1 = 7.

Proof. LetS be an optimal solution of (G1). Let D ⊂ R2 and let

D̄ =
⋃

{〈C〉∈G′(S) | 〈C〉∩D 6=∅}
〈C〉.

First we claim that:

It may be assumed that every〈C〉 has no hole. (1)

If 〈C〉 has a hole, then move it closer to the exterior boundary of〈C〉 in order to obtain
a new face〈C′〉 with no hole. If we repeat this operation for any〈C〉 having a hole, then
we obtain a new admissible solution of (G1) with the same density.

Now we assume that any face ofG′(S) has no hole. Using the structure ofZ2, we
claim that

d(S, D) =
∑
〈C〉∈D̄(|δext(C)|/2− 1)∑

〈C〉∈D̄ |C|
. (2)

If P is the polyomino defined bȳD, then, by Pick’s theorem, we obtain that the area
of D̄ is given by|P − δint(P)| + |δint(P)|/2− 1 and the area of each〈C〉 is given by
|C| + |δext(C)|/2− 1, since by assumption no〈C〉 has a hole. Now by additivity of the
area and since{〈C〉|〈C〉 ∈ D̄} is a tiling of D̄, we have that

∑
〈C〉∈D̄(|δext(C)|/2− 1) is

equal to the number of squares inS ∩ P not in the interior boundary ofP, plus half the
number of squares in the interior boundary ofP which corresponds to the black area of
D̄. Also,

∑
〈C〉∈D̄ |C| is the number of squares inP not inS, which corresponds to the

white area ofD̄.
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Fig. 3. 1≤ 1 ≤ 2.

From (2), we have

d(S, D) ≥ min
〈C〉∈D̄

|δext(C)|/2− 1

|C| . (3)

Hence, to obtain the lower bounds ond(S), it is sufficient to check that

|δext(C)| ≥



4 if |C| = 1,
6 if |C| = 2,
7 if |C| = 3,
8 if |C| = 4,
8 if |C| = 5,
9 if |C| = 6,
10 if |C| = 7.

To prove the upper bounds on̄d(S) it is sufficient to exhibit tilings having the ap-
propriate density (see Figs. 3–6). To determine the density of the tilings described in
Figs. 3–6, it is sufficient to observe that, by (2), we have

d(S, D) ≤ max
〈C〉∈D̄

|δext(C)|/2− 1

|C| . (4)

3. Finite Cases

In this section we investigate the problem (PEPk×n) for some values ofk andn. We
denote byGk,n an instance of (PEPk×n). For givenk andn,C1, . . . ,Cn (resp.R1, . . . , Rk)
denote thecolumns(resp. therows) of Gk,n. The squares ofGk,n are denoted bysi, j where
{si, j } = Ri ∩ Cj . A freepolyomino of a solutionS of (PEPk×n) is a polyomino which
does not intersectS.

First we give some upper bounds on the cardinality of a solution of (PEPk×n) for small
values ofk andn. It is easy to see that:

Lemma 1. Every solutionS to (PEP2×3) satisfies|S| ≥ 2.
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Fig. 4. 1 = 4.

Theorem 4. LetSk,n be an optimal solution of(PEPk×n). Then

|Sk,n| =
bn/5c if k = 1,

2bn/3c if k = 2,
n if k = 3 and n≥ 2.

Proof. Whenk = 1, the theorem is obvious. Whenk = 2, then Theorem 4 is a direct
consequence of Lemma 1. Ifk = 3, then letS be a solution of (PEP3×n). We prove the
lower bound by induction onn. It is easy to see that ifn ≤ 3, then Theorem 4 holds.
Assume thatn > 3. By Lemma 1, we have|S ∩ (C1∪C2)| ≥ 2. Now, Theorem 4 holds
by induction hypothesis onC3 ∪ · · · ∪ Cn.

Fig. 5. 5≤ 1 ≤ 6.
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Fig. 6. 1 = 7.

To achieve the proof of Theorem 4, we exhibit a solution:

S =
{

si, j | i = 2 if j is even
i + j ≡ 0[4], otherwise

}
satisfying|S| = n.

Lemma 2. Every solutionS to (PEP4×4) satisfies|S| ≥ 5. Moreover, there exists a
unique, up to rotation, solution F (see Fig. 7) with only five squares in(PEP4×4).

Proof. LetS be a solution of (PEP4×4) with less than six squares. We claim that

S ∩ Ci 6= ∅ and S ∩ Ri 6= ∅ for all i = 1, . . . ,4. (5)

Indeed, assume, in the opposite case, thatS ∩ R1 = ∅ or S ∩ R2 = ∅. If S ∩ R2 = ∅,

Fig. 7. The solutionF of (PEP4×4) and a solutionS.
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thenR2 ∪ R3 ⊆ S. If S ∩ R1 = ∅, thenR1 ⊆ S. Now, by (1),|S ∩ (R3 ∪ R4)| ≥ 2. In
any case, by symmetry, we obtain that|S| > 5, a contradiction.

Case1: none of the squares s1,1, s1,4, s4,1 and s4,4 belongs toS. In this case, by (5), we
may assume thats2,1 ∈ S.

By Lemma 1 applied on(C1∪C2)∩(R2∪R3∪R4) and on(C3∪C4)∩(R2∪R3∪R4),
we have|S ∩ (R2 ∪ R3 ∪ R4)| ≥ 4. Hence, since|S| ≤ 5, we haves1,3 6∈ S.

By Lemma 1 applied on(C1∪C2)∩(R2∪R3∪R4) and on(C3∪C4)∩(R1∪R2∪R3),
we have|S − {s1,1, s1,2, s3,4, s4,4}| ≥ 4. Hence, since|S| ≤ 5, we haves4,3 6∈ S.

By (5), we haves4,2 ∈ S. So, by symmetry and by (5), we may assume thats2,1 ∈ S.
Since|S| ≤ 5 and since, by Lemma 1,|(S ∩ (R1 ∪ R2 ∪ R3)) ∩ (C3 ∪ C4)| ≥ 2, we

haveS ∩ (R1∪ R2) = {s1,2, s2,1, s4,2}. However, now observe that{s3,1, s4,1, s2,2, s3,2, s}
induces a free pentomino for anys ∈ {s2,3, s3,3}. Thuss2,3, s3,3 ∈ S.

Since|S| ≤ 5, we have that(C3∪C4)−S contains a free pentomino, which contradicts
the fact thatS is a solution of (PEP4×4).

Case2: s1,1 belongs toS. Assume thats1,1 ∈ S.
By Lemma 1, we have|(S ∩ (R1 ∪ R2)) ∩ (C2 ∪ C3 ∪ C4)| ≥ 2 and|(S ∩ (R3 ∪

R4)) ∩ (C2 ∪ C3 ∪ C4)| ≥ 2. Hence, since|S| ≤ 5, we obtain thats1,2, s1,3 ands1,4 do
not belong toS. Moreover, by symmetry, we obtain thats2,1, s3,1 ands4,1 do not belong
to S.

By Lemma 1, we have|(S ∩ (R1 ∪ R2)) ∩ (C2 ∪ C3 ∪ C4)| ≥ 2 and|(S ∩ (R3 ∪
R4)) ∩ (C1 ∪ C2 ∪ C3)| ≥ 2. Hence, since|S| ≤ 5, we obtain thats4,3 ands4,4 do not
belong toS. Moreover, by symmetry, we obtain thats3,4 6∈ S.

We must have{s2,2, s2,4, s4,2} ⊂ S. Finally, since|S| ≤ 5 and by (5) we must have
s3,3 ∈ S, which completes the proof of lemma.

The unique solution, up to rotation, isS = {s1,1, s2,2, s2,4, s3,3, s4,2}.

We denote byF(s) a solutionS of (PEP4×4) of cardinality five wheres ∈ S is a
“corner” (see Fig. 7).

In order to study the structure of a solution of (PEPk×n), we now need some additional
definitions. AP(3,4) configurationof a solutionS of a (PEP4×n) (for somen) is a column
Ci such thats2,i ∈ S ands1,i belong to a white polyomino inG4,i of size 4 ands3,i , s4,i

belong to a white polyomino inG4,i of size 3. AP(4) configurationof a solutionS of
a (PEP4×n) (for somen) is a columnCi such that three squares ofCi belong to a white
polyomino inG4,i of size 4. Note that the fourth column of anF(s) is either aP(3,4)
or a P(4) configuration.

Lemma 3. Let i ≤ n− 5. If Ci is a P(4) configuration ofS, then|S ∩ (Ci+1∪Ci+2∪
Ci+3∪Ci+4)| ≥ 7. If Ci is a P(3,4) configuration ofS, then|S ∩ (Ci+1∪Ci+2∪Ci+3∪
Ci+4)| ≥ 6. Moreover, if we have|S ∩ (Ci+1 ∪ Ci+2 ∪ Ci+3 ∪ Ci+4)| = 6, then Ci+4 is
a P(3,4) or a P(4) configuration(see Fig. 7).

Proof. First, suppose thatCi is a P(4) configuration. Then at least three squares must
belong toS ∩Ci+1. Moreover, by Lemma 1,|S ∩ (Ci+2∪Ci+3∪Ci+4∩ (R1∪ R2))| ≥ 2
and|S ∩ (Ci+2∪Ci+3∪Ci+4∩ (R3∪ R4))| ≥ 2, so we obtain that|S∩ (Ci+1∪Ci+2∪
Ci+3 ∪ Ci+4)| ≥ 7.
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Now suppose thatCi is a P(3,4) configuration. Thens1,i+1 ∈ S. We claim that:

We may assume that|S ∩ Ci+1| ≤ 2. (6)

Indeed, in the opposite case by Lemma 1 applied onCi+2 ∪ Ci+3 ∪ Ci+4, we obtain
S ∩ (Ci+1 ∪ · · · ∪ Ci+4)| ≥ 7.

If s3,i+1 6∈ S, thens2,i+1 ands4,i+1 belong toS, which contradicts claim (6). As-
sume now thats3,i+1 ∈ S. This implies thats4,i+2 ∈ S. We may assume thats3,i+2 6∈
S. Since by Lemma 1 applied on(R2 ∪ R3 ∪ R4) ∩ (Ci+3 ∪ Ci+4) and sinceS ∩
{s2,i+1, s1,i+2, s2,i+2, s1,i+3, s1,i+4} 6= ∅, we obtain that|S ∩ (Ci+1 ∪ · · · ∪ Ci+4)| ≥ 7.
We claim that:

We may assume that|S ∩ (Ci+2− s4,i+2)| = 1, |S ∩ Ci+3| = 1 and
|S ∩ Ci+4)| = 1. (7)

If S∩(Ci+2−s4,i+2) = ∅, thenS∩Ci+3 ⊇ {s1,i+3, s2,i+3, s3,i+3}. Moreover,S∩(Ci+4∪
{s4,i+3}) 6= ∅; and so|S ∩ (Ci+1∪· · ·∪Ci+4)| ≥ 7. If |S ∩Ci+2| ≥ 3, then, by Lemma 1
applied onCi+3 ∪ Ci+4, we obtain that|S ∩ (Ci+1 ∪ · · · ∪ Ci+4)| ≥ 7.

To prove that we may assume|S ∩ Ci+3| = 1 and|S ∩ Ci+4)| = 1, it is sufficient to
observe thatS intersects columnsCi+3, Ci+4 and that|S ∩ (Ci+1 ∪ Ci+2)| = 4.

By Lemma 1 applied on(Ci+3∪Ci+4)− {s, s′}, we can see that we may assume that
s= s4,i+3 ands′ = s4,i+4 (resp.s= s1,i+3 ands′ = s1,i+4) do not belong toS.

This last remark implies thatS intersects both{s2,i+3, s2,i+4} and {s3,i+3, s3,i+4}.
Combining (7), and the previous remarks, we obtain that the only solutions when
|S ∩ (Ci+1 ∪ · · · ∪ Ci+4)| < 7 areS = {s1,i+1, s3,i+1, s2,i+2, s4,i+2, s2,i+3, s3,i+4} and
S = {s1,i+1, s3,i+1, s2,i+2, s4,i+2, s3,i+3, s2,i+4}. In any case,Ci+4 (up to rotation) is re-
spectively aP(4) or a P(3,4) configuration.

Lemma 4. Let2≤ i ≤ n− 4. If Ci−1 and Ci+4 are a P(4) or a P(3,4) configuration
of S, then|S ∩ (Ci ∪ Ci+1 ∪ Ci+2 ∪ Ci+3)| ≥ 8.

Proof. First assume thatCi andCi+4 areP(3,4) configurations.
If s2,i−1 ∈ Ci−1 ands2,i+4 ∈ Ci+4, then, similarly as in the proof of Lemma 3, we have

thats1,i , s1,i+3, s3,i , s4,i+1, s4,i+2 ands3,i+3 are inS. We conclude by applying Lemma 1
on (Ci+1 ∪ Ci+2) ∩ (R1 ∪ R2 ∪ R3).

If s2,i−1 ∈ Ci−1 ands3,i+4 ∈ Ci+4, then, similarly as in the proof of Lemma 3, we have
thats1,i , s4,i+3, s3,i , s4,i+1, s1,i+2 ands2,i+3 are inS. It is now straightforward to check
that we need three more squares to exclude all pentominoes inCi−1 ∪ Ci ∪ · · · ∪ Ci+4.

If Ci−1 is a P(3,4) configuration andCi+4 is a P(4) configuration, then, similarly
as in the proof of Lemma 3, we have thats1,i , s3,i ands4,i+1 are inS. Moreover, since
Ci+4 is a P(4) configuration,|S ∩ Ci+3| ≥ 3, we conclude by applying Lemma 1 on
(Ci+1 ∪ Ci+2) ∩ (R1 ∪ R2 ∪ R3).

By symmetry, the lemma holds again ifCi+4 is a P(3,4) configuration andCi−1 is a
P(4) configuration.

If Ci−1 andCi+4 are bothP(4) configurations, then|S ∩ (Ci ∪ Ci+3)| ≥ 6. Hence,
we complete the proof of Lemma 4 by applying Lemma 1 on(Ci+1 ∪ Ci+2) ∩
(R1 ∪ R2 ∪ R3).
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Fig. 8. The solutions of (PEP4×n).

From Lemmas 3 and 4, we obtain:

Theorem 5. An optimal solution of(PEP4×n) with n= 4q ≥ 4 has cardinality6q−1.
Moreover, up to rotation, any optimal solution of(PEP4×4q) can be described as shown
in Fig. 8.

Proof. We consider an intermediate problem, denoted by (PEP′
4×4q): If the column C0

is a P(3,4) configuration, then what is the smallest cardinality of a set which excludes
all pentominoes in C1 ∪ C2 ∪ · · · ∪ Cn?

We claim that:

Any solutionS of (PEP4×4q) has cardinality at least 6q − 1. Any
solutionS ′ of (PEP′4×4q) has cardinality at least 6q. Moreover, if
|S| = 6q − 1, then, up to rotation,C4q is a P(3,4) or a P(4)
configuration andC1 is a P(4) configuration. If|S ′| = 6q, then, up
to rotation,C4q is a P(4) or a P(3,4) configuration. (8)

The proof works by induction onq. If q = 1, then Theorem 5 follows from Lemmas 2
and 3. Assume now thatq > 1.

CaseA: S is a solution to(PEP4×4q). Let A1, . . . , Aq be a partition ofG4,n where the
Ai ’s are blocks of four consecutive columns. Observe that, by the induction hypothesis,
we have|S ∩ (A2 ∪ · · · ∪ Aq)| ≥ 6(q − 1)− 1, |S ∩ A1| ≥ 5.

SubcaseA.1: |S ∩ (A2 ∪ · · · ∪ Aq)| > 6(q − 1) − 1. If |S ∩ (A2 ∪ · · · ∪ Aq)| >
6(q − 1), then, by Lemma 2, we obtain|S| ≥ 6q, and so the claim holds. Assume that
|S ∩ (A2 ∪ · · · ∪ Aq)| = 6(q− 1). If |S ∩ A1| > 5, then the claim holds similarly as in
the previous case. So, we may assume that|S ∩ A1| = 5. Hence,|S| = 6q − 1.

If |S∩A2| ≥ 7, then, by the induction hypothesis applied on columnsA3, . . . , Aq and
since|S| = 6q− 1, we obtain|S ∩ A2| = 7 and|S ∩ (A3 ∪ · · · ∪ Aq)| = 6(q− 2)− 1.
However, now by the induction hypothesis applied on columnsA3, . . . , Aq, we have
thatS ∩ A3 is either aP(4) or a P(3,4) configuration. So, in any case, this contradicts
Lemma 4.

Thus, by Lemma 3, we have|S ∩ A2| = 6 and soS ∩ C4 is a P(3,4) configuration.
Observe thatS ∩ (A2 ∪ · · · ∪ Aq) is a solutionS ′ of (PEP′4×4q) of cardinality 6(q − 1).
Thus, by the induction hypothesis, claim (8) holds.

SubcaseA.2: |S ∩ (A2 ∪ · · · ∪ Aq)| = 6(q − 1)− 1. Without loss of generality, we
may assume that|S ∩ A1| = 6. Moreover, by the induction hypothesis, we have either
|S ∩ A2| = 5 or |S ∩ Aq| = 5.
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If |S ∩ A2| = 5, then we may assumeq > 2 for otherwise we conclude as in
Subcase A.1. Hence,S ∩ A2 is a P(4) configuration. Thus,|S ∩ A1| = 6 contradicts
Lemma 3.

If |S ∩ A2| = 6, then, by Lemma 3,S ∩ A2 is a P(3,4) configuration. So claim (8)
holds by Lemma 3.

CaseB: S is a solution to(PEP′4×4q). Let A1, . . . , Aq be a partition ofG4,n where the
Ai ’s are blocks of four consecutive columns. Observe that by the induction hypothesis
we have|S ∩ (A2 ∪ · · · ∪ Aq)| ≥ 6(q − 1)− 1, |S ∩ A1| ≥ 6.

If |S∩ A2∩· · ·∩ Aq| > 6(q−1)−1 and if|S∩ A1| > 6, then clearly the claim holds.
If |S ∩ A1| = 6, then, by Lemma 3,S ∩ (A2 ∪ · · · ∪ Aq) is a solution of (PEP′4×4(q−1)).
So claim (8) holds, by the induction hypothesis.

Suppose that|S ∩ (A2∪ · · · ∪ Aq)| = 6(q− 1)− 1. By the induction hypothesis, we
have either|S ∩ A2| = 5 or |S ∩ Aq| = 5.

If |S ∩ A2| = 5, thenC5 is a P(4) configuration and so, by Lemma 4,|S ∩ A1| ≥ 8.
Hence, claim (8) holds.

If |S ∩ Aq| = 5, thenC5 is aP(4) or aP(3,4) configuration and so, by Lemma 4 and
sinceC0 is a P(3,4) configuration, we obtain again that|S ∩ A1| ≥ 8, which completes
the proof of claim (8).

Now, as in the proof of claim (8), we have that any optimal solutionS of (PEP4×4q)
has cardinatity 6q − 1 and is obtained as shown in Fig. 8.

Using the same technique employed in the proofs of Lemmas 2–4, we can prove that
any solutionS andS ′ of (PEP4+r ) and respectively (PEP′4+r ) satisfies

|S ∩ (C1 ∪ · · · ∪ C4+r )| ≥
7 if r = 1,

8 if r = 2,
10 if r = 3,

and|S ′ ∩ (C1 ∪ · · · ∪ C4+r )| ≥ |S ∩ (C1 ∪ · · · ∪ C4+r )| + 1.
Finally, by a simple induction and using Theorem 5, we can prove that

S ∩ G4,4q+r =


6q − 1 if r = 0,
6q + 1 if r = 1,
6q + 2 if r = 2,
6q + 4 if r = 3.

Unfortunately, forr 6= 0, the optimal solutions are not “unique.”

4. Concluding Remarks

It is straightforward from Lemmas 2 and 3 to prove that any solution of (PEP8×8) has
at least 24 squares. We do not give the details of the proof here since Bosch [1] solved
it using a computer and an integer linear programming approach. Our approach should
be helpful to solve (PEPk×n)-type problems for any fixedk. Another family of problems
should be to consider other lattices instead of the chessboard (grid).
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