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Abstract. In this paper we are interested in tRentomino Exclusion Problemue to
Golomb: Find the minimum number of unit squares to be placed onxarkchessbhoard
S0 as to exclude all pentominogdsing an appropriate definition of density of a tiling, we
obtain the asymptotic value of this number, and we establish this number férthe
chessboard whek < 4.

1. Introduction

A polyominais a pattern formed by the connection of a specified number of equal-sized
squares along common edges (see [2]pehtominds a polyomino composed of five
squares. Thimterior boundaryin:(P) of a polyominoP is the set of squares & having

a common edge with the “exterior” ¢f. Theexterior boundaryex(P) of a polyomino

P is the interior boundary of the complement®f The perimeterof a polyominoP is
|8int(P)|. For a given polyomind®, A(P) denotes the area ¢f.

Consider the adjacency relatioasand 8, which defines what is usually called re-
spectively 8-connectivity and 4-connectivity in discrete geometry, between squares in
72 write CaC’ (resp.CBC’) iff C andC’ have a common vertex (resp. edge).

For a given polyomind?, we can build a grapli(P) = (V, E) defined byV =
{pl p is the center of a unit square M} andE = {UV|U«aV}. A vertexv of G(P) can
be seen as a square Bf, so for brevity sometimes should be seen as the unique
corresponding square (see Fig. 1). Moreo@(Z?) is in graph-theoretical language
usually called theotal infinite complete grid graphvhich can be defined as a total
product of two infinite paths.

Golomb [2] proposed the followinBentomino Exclusion ProblemenotedPER, . ):

Find the minimum number of unit squares to be placed onxarkchessboard so as to
exclude all pentominoes

In a previous paper [3] we introduced a notion of density of a tiling with (for example)
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Fig. 1. A polyomino P, the graphG(P).

polyominoes. Using this definition in the next section, we determine the asymptotic value
(i.e., the density of a tiling where the tiles are polyominoes composed of less than five
squares) of the Pentomino Exclusion Problem and other related problems.

Finally, in Section 3, we investigate (PER) problems whek = 4.

2. Assymptotic Results

In order to state our results we need some preliminary definitions.
We denote by (&) the problem:

Find the minimum density of unit squares to be placed on the plane so as to exclude all
polyominoes of area A.

For instance, the Pentomino Exclusion Problem in the plane is equivalent to the problem
(Ga).

An admissiblesolution of (G,) is a setS of squares centered & such that any
connected component in tifeadjacency oR? — S has area less than or equaltoThe
squares belonging to an admissible solutibare filled in (i.e. black) and the others are
left white.

We now need a measure, called “density,” defined on an admissible solution of (G
in order to compare two admissible solutionsT Ifs a finite subset o2, a natural way
to define the density & relative toT is|SNT|/|T —S|. We now show a way to extend
this definition to the infinite case:

For an admissible solutiofi of (G, ), observe that if we remove one “crossing edge”
of eachK, (complete graph on four vertices) &(S), then the resultinglane graph
G/(S) defines a tiling ofR? (see Fig. 2) where the tiles are the faceS6§S). For a face
(or a tile) (C) of G/(S) there corresponds a unique polyomi@ovherese,(C) C S.

Some of these tiles correspond to some connected components (rctmectivity)
of Z? — S. Other tiles are triangles corresponding to three mutually adjacent elements
of S (in this caseC = ).

Let D be afinite subset d&?2. The density of an admissible solutiSrof (G, ) relative
toDis

black area oD

déS, D)= ——e,
white area ofD
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Fig. 2. S andG/(S).

whereD is the union of all faces o&’(S) which intersectD. Notice thatD defines a
polyomino P with unit squares fron&, and each square in the interior boundaryPof
belongs taS. Moreover, observe thak(S, D) is well-defined since each face Gf(S)
define a polyomino with bounded area.

Let B, be a ball ofR? of radiusr. Then

d(8) =liminf d(S. B;) and d(S) = limsupd(S, B;),
—>00 r—oo
are called thdower andupperdensity, respectively. If these two values coincide, their
common value is calledensity dS, D). This kind of definition of density is more or
less standard (see, for example, [4]). In [3] we proved:

Theorem 1. Let A, be the maximum number of squares belonging to a polyomino of
perimeter n withn=4q+r > 0and0 <r < 3; Ap is given by the following function

20°+29+1 if r=0,
20°+3g+1 if r=1,
202+ 49 +2 if r=2,
20 +5q9 + 3 if r=3

An:

Theorem 2. Letn=4qg+r > 5,with0 <r < 3,be an integer such that > A,. If
g > landA — A, < [q/2], then an optimal solutio of (G,) satisfies

4S) = n+4)/2— 1'
Forany A > Ap, we have )
] —(n+42/2—1 it re{02),
I UER VR it el 3).

An
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As noticed in [3], a direct consequence of Theorem 2 is that wher0, 2}, q > 1
and whemA — A, < [q/2] the density of an optimal solution of (3 exists and is equal
to

n+4/2-1
Anp.
Moreover, this density is independent from the position of the Ball

In this section we complete Theorem 2 far < 7 since the first values given by
Theorem 2 deal witlh > 8.

Theorem 3. The only admissible solution ¢(B) is S = Z2. An optimal solution of
(Gp) satisfies

d(s) = when A <2,
ds) <1 _
Q(S)zg} when A =3,
dS) =3 when A =4,
d(S) =3 when A =5,
ds)<

()= > } when A =6,
d(S) =15
d(S) = 3 when A =7.

Proof. LetS be an optimal solution of (§). Let D ¢ R? and let

{{C)eG'(S) | (C)ND=M}

First we claim that:
It may be assumed that eve{@) has no hole. D

If (C) has a hole, then move it closer to the exterior boundafCofin order to obtain
a new facgC’) with no hole. If we repeat this operation for af@) having a hole, then
we obtain a new admissible solution of {Bwith the same density.

Now we assume that any face 6f(S) has no hole. Using the structure #f, we
claim that

> c)e(8ext(C)1/2 = 1)

Z(C)ED IC|

If P is the polyomino defined by, then, by Pick’s theorem, we obtain that the area
of D is given by|P — 8in(P)| + [8ine(P)|/2 — 1 and the area of eadit) is given by

IC| 4+ |8ext(C)]/2 — 1, since by assumption N&€) has a hole. Now by additivity of the
area and sinc§C)|(C) € D} is atiling of D, we have thad_ ¢, 5 (18ext(C)[/2 — 1) is
equal to the number of squaresSm P not in the interior boundary d?, plus half the
number of squares in the interior boundaryPofvhich corresponds to the black area of
D. Also, >_c)en ICl is the number of squares I not in S, which corresponds to the

white area oD.

d(s, D) =

2
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Fig.3. 1<A<2.

From (2), we have

45, D) = min e(©@1/2—1
" T (c)ed IC|

Hence, to obtain the lower bounds d6S), it is sufficient to check that

©)

4 if |Cl=1,
6 if |Cl=2,
7 if |C|=3,
[8ext(C)| > 8 if |C| =4,
8 if |C|=5,
9 if |C|=86,
10 if |Cl=7.

To prove the upper bounds a@i(S) it is sufficient to exhibit tilings having the ap-
propriate density (see Figs. 3—6). To determine the density of the tilings described in
Figs. 3-6, it is sufficient to observe that, by (2), we have

16ext(C)[/2 -1

dS, D) < max—————. O 4
(C)eD IC|

3. Finite Cases

In this section we investigate the problem (REP for some values ok andn. We
denote byGy » an instance of (PER,). For giverk andn, Cy, ..., C, (resp.Ry, . .., Rq)
denote theolumngresp. theows) of Gy . The squares @&y ,, are denoted by j where
{s,j} = R NC;j. A freepolyomino of a solutiorS of (PERn) is @ polyomino which
does not intersec.

First we give some upper bounds on the cardinality of a solution of (RERr small
values ofk andn. It is easy to see that:

Lemmal. Every solutionS to (PEBR3) satisfiedS| > 2.
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A=4

Fig. 4. A =4,

Theorem 4. LetSk , be an optimal solution ofPER,). Then

In/5] if k=1,
ISkl = §2Ln/3] if k=2
n if k=3 and n> 2.

Proof. Whenk = 1, the theorem is obvious. Whén= 2, then Theorem 4 is a direct

consequence of Lemma 1.Kf= 3, then letS be a solution of (P

ER.). We prove the

lower bound by induction on. It is easy to see that if < 3, then Theorem 4 holds.
Assume thah > 3. By Lemma 1, we havgs N (C; U Cy)| > 2. Now, Theorem 4 holds

by induction hypothesis 083 U - - - U C,,.

A=5

Fig.5. 5<A<6.
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Fig.6. A=7.

To achieve the proof of Theorem 4, we exhibit a solution:

i =2if jiseven
=l s

i + j = 0[4], otherwis

satisfying|S| = n. O

Lemma 2. Every solutionS to (PER,,4) satisfies|S| > 5. Moreover there exists a
unique up to rotation solution F(see Fig 7) with only five squares i(PER,,4).

Proof. LetS be a solution of (PER.4) with less than six squares. We claim that
SNC #0¥ and SNR #0 forall i=1,...,4 5)

Indeed, assume, in the opposite case,shatR; = orSN R, =d. If SN R, = ¢,

[ ] Fesi []s

Fig. 7. The solutionF of (PER:«4) and a solutiors.
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thenR, UR; C S. If SN Ry = ¢, thenRy € S. Now, by (1),|SN(R3U Ry)| > 2. In
any case, by symmetry, we obtain th&f > 5, a contradiction.

Casel: none of the squares g, S1.4, S1.1 and s 4 belongs taS. In this case, by (5), we
may assume thap ; € S.

By Lemma 1 applied ofC1 UC,) N(R,U R3U Ry) and on(C3UCy) N (R, U R3U Ry),
we havelS N (R, U Rz U Ry)| = 4. Hence, sincéS| < 5, we haves; 3 ¢ S.

By Lemma 1 applied ofiC; UC,) N (R, U R3U Ry) and on(C3UC4) N (R U R URy),
we havelS — {S1.1, S1.2, S3.4, S1.4}| > 4. Hence, sincgS| < 5, we havey 3 ¢ S.

By (5), we haves » € S. So, by symmetry and by (5), we may assume shate S.

Since|S| < 5 and since, by Lemma 165 N (R U R, U Rg)) N (C3 U Cy)| > 2, we
haveS N (RLU Ry) = {S1.2, 2.1, 1.2} However, now observe thids 1, S1.1, 2.2, S3.2, S}
induces a free pentomino for aBye {S; 3, S3.3}. ThusS; 3, S33 € S.

SincelS| < 5, we have thaiC3UC,4) —S contains a free pentomino, which contradicts
the fact thatS is a solution of (PER.4).

Case2: s 1 belongs taS. Assume thas; 1 € S.

By Lemma 1, we havé(S N (R1 U Ry)) N (C,UC3U Cy)| = 2 and|(S N (Rz U
Rs4)) N (C2 U C3UCy)| > 2. Hence, sincéS| < 5, we obtain thas; », S;.3 ands; 4 do
not belong taS. Moreover, by symmetry, we obtain that;, S31 ands, 1 do not belong
to S.

By Lemma 1, we havé(S N (R1 U Ry)) N (Co, U C3U Cy)| > 2 and|(S N (Rz U
R4)) N (C1 U C, U Cy)| > 2. Hence, sincéS| < 5, we obtain thas, 3 ands; 4 do not
belong toS. Moreover, by symmetry, we obtain that, ¢ S.

We must havds; 2, .4, S1.2} C S. Finally, sincelS| < 5 and by (5) we must have
Ss.3 € S, which completes the proof of lemma.

The unique solution, up to rotation, &= {S; 1, .2, .4, $3.3, S4.2}- O

We denote byF (s) a solutionS of (PER;.4) of cardinality five wheres € S is a
“corner” (see Fig. 7).

In order to study the structure of a solution of (RED, we now need some additional
definitions. AP (3, 4) configuratiorof a solutionS of a (PER,n) (for somen) is acolumn
Ci such thak,; € S ands;j belong to a white polyomino i, of size 4 andss;j, Sy
belong to a white polyomino i, of size 3. AP(4) configurationof a solutionS of
a (PER.n) (for somen) is a columnC; such that three squares@f belong to a white
polyomino inGg; of size 4. Note that the fourth column of &1s) is either aP (3, 4)
or a P(4) configuration.

Lemma 3. Leti <n-—5.IfC;isa P(4) configuration ofS, then|SN (Ci, 1 UCi 2 U
Ci13UCi1g)| = 7.1f Cj is a P(3, 4) configuration ofS, then|SN (Cj 1 UCj 2 UCj 53U
Ci14)| = 6. Moreoverif we havelS N (Cij11 UCi 12 UCi3UCi4)| = 6,then G4 is
a P(3, 4) or a P(4) configuration(see Fig 7).

Proof.  First, suppose th&; is a P(4) configuration. Then at least three squares must
belong taS N C; 1. Moreover, by Lemma 1SN (Ci.2UCi,3UCi14N(RIURy))| > 2
and|SN (Ci12UCis3UCiiaN(R3U Ry))| > 2, so we obtain thgiSN (Cij, 1 UCi 1o U
Ci;3UGCiia)l > 7.
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Now suppose that; is a P(3, 4) configuration. Thers i1 € S. We claim that:
We may assume thaf N Ci, 4| < 2. (6)

Indeed, in the opposite case by Lemma 1 appliedCon U Cj,3 U Ci 4, We obtain
SNECiqU---UCipa)| = 7.

If 5141 ¢ S, thensyi1 andssi41 belong toS, which contradicts claim (6). As-
sume now thasz i1 € S. This implies thass ;12 € S. We may assume thag ;> ¢
S. Since by Lemma 1 applied ofR, U Rs U Ry) N (Ci;3 U Ci,4) and sinceS N
{S2i+1s Sti+2, S2i+2, Sti+3, Si+4} # ¥, we obtain thatS N (G U---UCi1a)| > 7.
We claim that:

We may assume tha§ N (Ci2 — s1i42)| = 1,|SNCi3l = 1 and
ISNCita) =1 (7)

If SN(Cit2—s4i42) = 0,thenSNCiis D {Sti+3, S2i+3: Ssi+3}. MoreoverSN(Ci 4V
{s4i43}) #0;andsdSN(Ci1U---UCijtg)| > 7. If |ISNCiy2| > 3, then, by Lemma 1
applied onCj 3 U Cj 4, we obtain thatS N (Cj 1 U---UCjg)| > 7.

To prove that we may assum& N Cij, 3| = 1 and|S N Cj,4)| = 1, it is sufficient to
observe thas intersects column€;, 3, Ci,4 and thatS N (Ci 1 UCi o) = 4.

By Lemma 1 applied oiC;i 3 U Ci.4) — {S, §'}, we can see that we may assume that
S =S1i43 ands’ = 5144 (resp.s = ;43 ands’ = s;j4) do not belong taS.

This last remark implies tha$ intersects bothsyi+3, S2i+4} and {Szi+3, Sz.i+4)-
Combining (7), and the previous remarks, we obtain that the only solutions when
ISN(Ci1U---UCi)| < 7 areS = {Syi41, SBi+1, 2ii+2, S4i+2> ,i+3, i+4) and
S = {S1i+1, SBi+1, ii+2, S4i+2, SBi+3, i+4}- IN any caseCi 4 (up to rotation) is re-
spectively aP (4) or aP (3, 4) configuration. O

Lemmad4. Let2<i <n—4.1fCi_;and G 4 are a P(4) ora P(3, 4) configuration
of S, then|SN (C; UCi11 UCi,2UCi,3)| > 8.

Proof. First assume that; andC;, 4 are P(3, 4) configurations.

If -1 € Ci_1andsy ;4 € Ci4, then, similarly as in the proof of Lemma 3, we have
thatsy i, S1i+3, S3.i» S4i+1, Sui+2 @andss i3 are inS. We conclude by applying Lemma 1
on(Ci;1 UCi;2) N (R1U R U Ra).

If ;-1 € Cj_1andsz ;4 € Ci14, then, similarly as in the proof of Lemma 3, we have
thatsyi, Sai+3, Ssi» ui+1, SLi+2 andsy i3 are inS. It is now straightforward to check
that we need three more squares to exclude all pentomindgsitJ Cj U - - - U Cj 4.

If Ci_1is aP(3,4) configuration andC;_ 4 is a P(4) configuration, then, similarly
as in the proof of Lemma 3, we have tigyf, s3; ands,;+1 are inS. Moreover, since
Cita is a P(4) configuration,|S N Ci; 3| > 3, we conclude by applying Lemma 1 on
(Cit1UCi12) N (R1UR U Ry).

By symmetry, the lemma holds agairdf, 4 is a P(3, 4) configuration andC; _; is a
P (4) configuration.

If Ci_1 andC; 4 are bothP(4) configurations, thenS N (C; U Cj,3)| > 6. Hence,
we complete the proof of Lemma 4 by applying Lemma 1 @1 U Ci2) N
(RIU R U Ry). O
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Or

F S S S s’

Fig. 8. The solutions of (PERp).

From Lemmas 3 and 4, we obtain:

Theorem 5. An optimal solution ofPER,.,) with n = 4q > 4 has cardinalityoq — 1.
Moreover up to rotation any optimal solution ofPER«4q) can be described as shown
in Fig. 8.

Proof. We consider an intermediate problem, denoted by QIQEP. If the column @
is a P(3, 4) configuration then what is the smallest cardinality of a set which excludes
all pentominoes in U C, U --- U C,?

We claim that:

Any solutionS of (PER.4q) has cardinality at leastge— 1. Any

solution S’ of (PEF31X4q) has cardinality at leastogp Moreover, if

|S| = 6q — 1, then, up to rotationCaq is a P(3,4) or a P(4)
configuration andC, is a P(4) configuration. If|S’| = 6q, then, up

to rotation,Cyq is aP(4) or aP (3, 4) configuration. (8)

The proof works by induction oq. If g = 1, then Theorem 5 follows from Lemmas 2
and 3. Assume now that > 1.

CaseA: S is a solution to(PER.4q). Let Ay, ..., Aq be a partition 0fG4 , where the
Aj’s are blocks of four consecutive columns. Observe that, by the induction hypothesis,
we havelS N (AU ---UAg|I >6(g—1) —1,|SN A > 5.

SubcaseA.1: [SN (A U---UA)| >6(q—D -1 IfFISN(AU---UAY| >
6(q — 1), then, by Lemma 2, we obtaj&| > 6q, and so the claim holds. Assume that
SN (AU ---UAg| =6(q—1).If |SN A1| > 5, then the claim holds similarly as in
the previous case. So, we may assume [that A;| = 5. Hence|S| = 6g — 1.

If |ISN Azl > 7, then, by the induction hypothesis applied on colugs . ., Ag and
since|S| = 6g — 1, we obtainS N Ayl = 7and[S N (AsU---U Ag)| = 6(q — 2) — 1.
However, now by the induction hypothesis applied on colurAgs. .., Aq, we have
thatS N Az is either aP(4) or aP(3, 4) configuration. So, in any case, this contradicts
Lemma 4.

Thus, by Lemma 3, we hayé N A;| = 6 and saS N C4 is a P (3, 4) configuration.
Observe tha N (Ax U - - - U A) is a solutionS” of (PEP:Mq) of cardinality Gq — 1).
Thus, by the induction hypothesis, claim (8) holds.

Subcasé\.2: [SN (AU ---U Ag)| = 6(q — 1) — 1. Without loss of generality, we
may assume thas N A;| = 6. Moreover, by the induction hypothesis, we have either
SN Al =50r|SN Ag|l =5.
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If |SN Ayl =5, then we may assune > 2 for otherwise we conclude as in
Subcase A.1. Henc& N A, is a P(4) configuration. Thus|S N A;| = 6 contradicts
Lemma 3.

If |SN Az] = 6, then, by Lemma 3§ N A is aP (3, 4) configuration. So claim (8)
holds by Lemma 3.

CaseB: S is a solution to(PEF21X4q). Let Aq, ..., Aq be a partition 0fG,,, where the
A;’s are blocks of four consecutive columns. Observe that by the induction hypothesis
we havelS N (A U---UAg|=6(—1 —1,[SN Ay > 6.

IfISNAN---NAg| > 6(0—1)—1andif|[SNAy| > 6, then clearly the claim holds.
If |ISN A1l =6, then, by Lemma 3§ N (AU ---U Ay) is a solution of (PEE’X4(q_1)).
So claim (8) holds, by the induction hypothesis.

Suppose thatS N (AU --- U Ag)| = 6(q — 1) — 1. By the induction hypothesis, we
have eithetS N Ayl =50r|SN Aq| = 5.

If |SN Az =5, thenCs is a P(4) configuration and so, by Lemma|& N A;| > 8.
Hence, claim (8) holds.

If |[SN Aq] =5, thenCs is aP(4) or aP (3, 4) configuration and so, by Lemma 4 and
sinceCy is a P (3, 4) configuration, we obtain again th& N A;| > 8, which completes
the proof of claim (8).

Now, as in the proof of claim (8), we have that any optimal soluSoof (PER;,4q)
has cardinatity § — 1 and is obtained as shown in Fig. 8. O

Using the same technique employed in the proofs of Lemmas 2—4, we can prove that
any solutionS andS’ of (PER;;) and respectively (PER,) satisfies

7 if r=1,
|Sﬂ(C1U-~-UC4+r)|Z 8 if r=2,
10 if r=3

and|S'N(CLU---UCs )| = [SN(CLU---UCqyr)| + 1.
Finally, by a simple induction and using Theorem 5, we can prove that

60 —1 if r=0,
6q+ 1 if r=1,
6q + 2 if r=2,
6q + 4 if r=3.

SN G4,4q+r =

Unfortunately, for # 0, the optimal solutions are not “unique.”

4. Concluding Remarks

It is straightforward from Lemmas 2 and 3 to prove that any solution of {REMPas

at least 24 squares. We do not give the details of the proof here since Bosch [1] solved
it using a computer and an integer linear programming approach. Our approach should
be helpful to solve (PER)-type problems for any fixekl. Another family of problems
should be to consider other lattices instead of the chessboard (grid).
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