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Abstract. We solve here th&ohberg—Markus—Hadwiger Covering Probléan, what is
the same, thélumination problem for compact, convex bodigd c R" withmd M = 2.
Moreover, we outline an idea for a complete solution, usingnd

1. Introduction

Let M c R" be a be a compact, convex body,det R" be an arbitrary point, and lé&t
be a real number with & k < 1. The image ofM under the homothety with centgr
and ratiok is said to be @iminished copwf M. The least integep such thatV can be
covered byp diminished copies oM is denoted byp(M).

In 1957 Gohberg and Markus proved the following theorem (by singular conditions
in the USSR, their article was not published until 1960 [21]).

Theorem 1. If M C R? is a compactconvex figure distinct from a parallelogram
then M) = 3. For every parallelogram M) = 4.

An equivalent theorem (in another form) was proved by Levi [27].
Observing that(M) = 2" for every n-dimensional parallelotope, Gohberg and
Markus formulated the following problem:

Prove thab(M) < 2" for every compact, convex body c R", the equality being held
only for parallelotopes.

The same problem was formulated by Hadwiger [23], based on [27]. Therefore we
call it the GMH problem
Boltyanski [8] formulated thdlumination Problem A boundary point of a convex
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body M C R"isilluminatedby the direction of a nonzero vectere R" if, for A > 0
small enough, the poirat + Ae belongs to the interior oM. Furthermore, we say that
the directions of nonzero vectags . . ., g, illuminatethe boundary oM if every point

x € bdM is illuminated by at least one of these directions. The least integerch that
there exist nonzero vectoes, . . ., €y, whose directions illuminate the boundaryi{

is denoted by(M).

Theorem 2 [8]. Forevery compagtonvex body Mc R", the equality §M) = c(M)
holds

This theorem allows us to give another form of the GMH problem:

lllumination Problem. Prove that(M) < 2" for every compact, convex body c
R", the equality being held only for parallelotopes.

Furthermore, Hadwiger [24] formulated the problem to illuminate the boundary of a
compact, convex bodiyl ¢ R" by a minimal number opoint light sourcesituated in
R". For compact, convex bodies RI', the Levi problem [27], the GMH problem [21],
[23], the illumination problem [8], and the problem of illuminating by point sources [24]
are equivalent (see Theorem 34.3 in [17]).

There are some partial results in this direction. If a compact, convexldodyR" is
smooth (this means that every boundary paiigregular, i.e., there is only one support
hyperplane oM througha), thenb(M) = n + 1. This may be implied from [22]. In [8]
Boltyanski proved a more general theordfra compactconvex body Mc R" has no
more than n nonregular boundary pointeen M) = n + 1. Forn = 3, Charazishvili
[20] obtained a finer resultf a compactconvex body Mc R has no more than four
nonregular boundary poinfshen (M) = 4.

Lassak [26] proved that a compactconvex three-dimensional body M is centrally
symmetricthen (M) < 8. In the same paper [26] Lassak proved fioatevery three-
dimensional body M of constant width the inequaligvh) < 6 holds Furthermore,
Bezdek [4] justified the illumination problem for every convex polytdgec R with
affine symmetry, i.e.c(M) < 8 in that case. Using information recently obtained,
Dekster proved that(M) < 8 for every three-dimensional compacbnvex body that
is symmetric about a plane

Martini [28] established thdbr every n-dimensional zonotope distinct from a paral-
lelotope the inequality@l) < 3-2"-2 holds We call this inequalitiMartini’s estimate
Boltyanski and Soltan proved [19] that Martini’s estimate holds for all zonoids and
Boltyanski [13] established this estimate for all belt bodies. In [16] Boltyanski and Mar-
tini described all belt bodies for which Martini’s estimate holds and proved the inequality
c(M) < 5. 273 for other belt bodies.

We note that Bezdek [5] found the dual formulation of the illumination problem (see
Lemma 1 in Section 4 below). With the help of that formulation, Bezdek [6] gave dual
proofs for several of the above-mentioned results. Finally, in [7] Bezdek and Bisztriczki
proved that the illumination problem has a positive solution fonalimensional cyclic
polytopes.
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2. The Functional md

In 1976 Boltyanski introduced the functional md [10]. LUdtbe a subset of the unit
sphereS'~! that is not one-sided, i.eH is not contained in any closed hemisphere of
S1. In other words, there is no vecter£ 0 with (a, ) < O for everya € H.

Furthermore, ledy, ay, . .., an be vectors irR", 1 < m < n. We say that the vectors
areminimally dependent

(i) they are positively dependent (i.e., there are positive coefficients, ..., Am
with Ao2g + 181 + - - - + Am@m = 0);
(i) any m of the vectors, ay, ..., an are linearly independent.

In other wordsag, a, . .., an are minimally dependent if they are the vertices of an
m-dimensional simplex that contains the origin in its relative interior.

Finally, by mdH we denote the greatest integesuch thatH containam minimally
dependent vectors (nd = O if there is no system of minimally dependent vectors in
H). Note that 0< mdH < n— 1if H is one-sided, whereasd mdH < nif H is not
one-sided.

The first result obtained with the help of ritlwas a generalization of the classical
Helly theorem. We formulate this result, since it is connected with the illumination
problem.

Let H ¢ S ! be a subset that is not one-sided. A closed half-sgacd R" is
said to beH -convexf its outward unit normal belongs tbl. Furthermore, a closed set
M c R"is said to beH-convex9] if it is representable as the intersection of a family
of H-convex half-spaces.

Theorem 3 [10]. Let My, ..., My be H-convex sets in"Rg > mdH + 2. If every
mdH + 1 of the sets has a point in commahen My N --- N Mg # ¢.

A similar theorem holds for any infinite family dfl-convex sets if at least one of
them is compact.

Now letM C R" be a compact, convex body. By(M) c S"! we denote the set of
all vectors, each of which is the unit outward normalfat a regular boundary point.
For brevity, the integer m#l (M) is denoted by mdi. The setH (M) is not one-sided,
and therefore k. mdM < n.

Furthermore, we denote the family of all translateshbfby T (M) and its Helly
dimension [29] by hirt (M), i.e., the minimal integep such that for every subfamily
{My, ..., Mg} € T(M) with q > p+ 1 the following assertion holds: if every+ 1 of
the setdMy, ..., Mg has a point in common, the; N --- N Mg # .

Szkefalvi-Nagy [31] established the following result:

Theorem 4. Let M C R" be a compagtconvex bodyThe equalityhimT (M) = 1
holds if and only if M is an n-dimensional parallelotope

It is easily shown that mM = 1 if and only if M is a parallelotope. Thus the
Saskefalvi-Nagy theorem may be formulated in the following forfitne equalityhim
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T(M) = 1 holds if and only ifmdM = 1. In [10] there is a generalization of this
assertion for arbitrary mifl :

Theorem 5. For every compactconvex body Mc R", the equalityhimT(M) =
mdM holds

We remark that the SKefalvi-Nagy theorem contains little more than the particular
case mav = 1 of Theorem 5. Indeed, Theorem 4 contairgeametrical description
of all compact, convex bodies with hif(M) = 1. In this connection the following
problem arises:

Szskefalvi-Nagy Problem: Give a geometrical description of all compacbnvex
bodies withhimT(M) = m(i.e, mdM =m) form=2,...,n.

(Note that the ternSdkefalvi-Nagy problemvas introduced by Boltyanski.) This
problem is solved in [15] and [12] fan = 2. The following theorem [15] describes all
three-dimensional bodies with nil = 2; the stacksand theoutcutsmentioned in its
statement are defined below.

Theorem 6. For acompactconvex body M- R3 thatis distinct from a parallelotope

the equalitymd M = 2 holds in and only in the following three cas¢a) M is the direct
vector sum of a segment and a two-dimensional figure distinct from a parallelpgram
(b) M is a stack (c) M is an outcut

Now we give descriptions of the stacks and outcuts mentioned in Theorem 6. A
compact, convex bodil c R3 is astackif it is representable (up to a translate) in the
following form. Letl,, I, 13 be three segments with a common endpoint 0 which are not
contained in a plane. Denote the parallelogiag | by P;. LetF, C Pi3 (respectively,

F, C P,3) be a compact, convex figure that contains the $jdeespectively),) of the
parallelogram and at least one point of its opposite side, but does not contain this opposite
side. Furthermore, la); (respectivelyU,) be the infinite cylinder with the basis;
(respectivelyF,) and the generator parallel tg (respectivelyl1). ThenM = U; NU,.

A compact, convex bodyl ¢ R®is anoutcutif it is representabléup to a translatein
the following form. Letl4, I,, I3 be as above. For every two indides j = 2, 3 choose
a compact, convex figur@;; C |; @ I; that contains both the segmentsl;, but does
not coincide with the parallelogram & |;. Furthermore, leV;; be the infinite cylinder
with the basiss;; and the generator parallel to the segnigaiten fromiy, 1, 13) distinct
from I;, |j. ThenM = V12N Vi3 N Vos.

The articles [1]-[3], [11], and [25] contain further results on thek&falvi-Nagy
problem. Some other applications of mbare given in Section 44 of [17].

3. An ldea of a Solution
First we discuss the illumination problem for the case 3. LetM c R®be a compact,

convex body. If maM = 1, thenc(M) = 8.
If mdM = 2, then M is one of the bodies described in Theorem 6. It is easily
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shown that in case (a) the equalityM) = 6 holds. Indeed, leM = | & F where

| = [a, b] is a segment andF is a compact, convex two-dimensional figure distinct
from a parallelogram. The cylind& has two basea® F andb @ F. It is necessary to
have three directions to illuminate all points of the basg F. None of these directions
illuminates any point of the opposite base® F. Therefore it is necessary to have three
more directions to illuminate all points of the bdse F. Thusc(M) = 6.

Furthermore, if we have case (b) of Theorem 6, iM.is a stack, them(M) = 5.
Indeed, in the above description of the stack, denote;bg,, e; the endpoints of the
segmentd, I, I3 distinct from Q respectively. We say that & 1, is thelower base of
the stackM and denote itsipperbase byP, i.e., P = M N T whererl is the support
plane ofM parallel to the lower base. We remark tliats a parallelogram (which may
degenerate into a segment or a point) with the sides parallel to ones of the lower base. In
addition, every side oP is smaller than the corresponding side of the lower base (since
the figureF; does not coincide witly & |3 and analogously foF,). Therefore the stack
M is not the direct vector sum as in case (a). Consider the directions of four vectors:

pL=¢€1 + &+ Aejs, P2 =€ — & + Aej,
Pz = —€1 + € + Ae€3, Ps = —€1 — € + A&s.

If » > 0 is small enough, these four directions illuminate the whole boundaiy of
except for a small neighborhood of the upper bBsd-urthermore, denote bgs the
vector emanating from the center of the upper badé @nd going to the center of the
lower base. Since the sides of the upper basealerthan the corresponding sides
of the lower base, the direction of the vecimy illuminates the upper bade with its
neighborhood. Thus the boundaryidfis illuminated by five directions, i.ec(M) < 5.
On the other hand, consider the vertiegsa,, az, a4 of the lower base; @ |, and the
centeras of the upper base. Every two of these five pointritipodal i.e., is situated in
two parallel support planes & . Consequently, no direction simultaneously illuminates
two of the pointsay, ay, ag, a4, as, and therefor&(M) > 5. This proves the equality
c(M) =5.

At last, if M is an outcut, then agaic(M) = 5. Indeed, lek, &, &3 be as above.
Consider the directions of the vectors

1 = —e1 + A(e2 + €3), =—-+Ai(e1+6), Qz=—-€+Ai(e1+e),
s =€ + & + €3, Os=—€ — & —6s.

If » > 0is small enough, these five directions illuminate the whole boundaky.dfo
prove this, we seG = G1, U G13 U Gas, Q = cl(bd M\ G) and denote the intersection
QNGj by Bj,i < j =2 3. Letg; be a point of the ard;; not belonging to the
relative boundary of the parallelograiné® 1j,i < j = 2,3. Then (ifA > 0 is small
enough) the direction af; illuminates the part of the a8, with endpointdy, g;, and
the direction ofg, illuminates the part of the arB;, with endpoints,, g;». Therefore
both directions illuminate all points of the aBj,. By similar reasoning, the directions
of g1, 02, gz illuminate all points of the seB;, U B13 U Bys. Furthermore, every point of
the setG\ (B2 U B3 U Byg) is illuminated by the direction ady. Finally, all points of
the setQ\ (B12 U B3 U Bypg) are illuminated by the direction afs. Thus the boundary
of M is illuminated by five directions, i.ec(M) < 5. On the other hand, consider the
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five points Q ey, &, €3, b whereb € bdV;, N bdViz N bdVys is distinct from 0. Every
two of these five points is antipodal, and therefo¢(®) > 5. This proves the equality
c(M) =5.

Combining cases (a)—(c) considered in Theorem 6, we obtain thatMmd2, then
c(M) < 6, i.e.,c(M) < 22 — 21, Consequentlyto solve the illumination problem for
three-dimensional bodiesis enough to establish thatiidM = 3, thendM) < 7,i.e,
c(M) < 28 — 20, Nevertheless, the exotic nature of the bodies: R® with mdM = 3
remains outside the framework of this article.

The above discussion leads us to the following:

Hypothesis. If M c R" is a compactconvex body wittmdM = m > 2, then
c(M) <2n—2n-m

In this article we justify this hypothesis fan = 2, i.e., we prove the following
assertion:

Main Theorem. Let M C R" be a compagctconvex body wittmdM = 2. Then
c(M) < 2" — 22 j e, Martini’'s estimate ¢M) < % - 2" holds

To prove the Main Theorem, first we give the polar descriptions for the illumination
problem and the functional md.

4. Polar Description of the Problem

In what follows we suppose th&" is ann-dimensional, vectorial Euclidean space that
is self-adjoint (i.e., the scalar product is introducedriY.

For every poinix € R" distinct from the origin 0, we denote ifolar hyperplaneby
x*,i.e.,x* = {y: (X, y) = 1}. Similarly, for every hyperplanE c R" not containing O,
we denote itpolar point(i.e., the point for which the polar hyperplane coincides with
') by I'*. Furthermore, for every compact, convex body containing 0 in its interior, we
denote itpolar bodyby M*:

M* = {y:(y,a) <1foralla e M}.

Let M C R" be a compact, convex body containing 0 in its interior, andMétbe
its polar body. LetPy, ..., P« be half-spaces oR" with 0 € bdPR,,i = 1,...,k. We
say that the system of half-spadés, . .., P} co-illuminateshe bodyM* if, for every
proper facd- of M* (i.e.,F £ M*),thereisanindeke {1, ..., k}suchthat cC intR.
By c¢*(M*) we denote the least integefor which there exists a co-illuminating system
{P1, ..., B} for the bodyM*.

Lemma 1. For every compagctconvex body Mc R" containing the origin in its
interior, the equality €M) = c¢*(M*) holds

This lemmaiis already known. For example, Soltan and Soltan [30] applied this lemma
in their solution of the X-raying problem for three-dimensional polytopes. Moreover,
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there is a stronger form of this lemma in [4]. Nevertheless, for completeness, we give a
proof of this lemma.

Proof. Denotetheintege(M)byk, andletpy, ..., pxbe unitvectors whose directions
illuminate the boundary d¥1. Consider the half-spacé, . . ., P with outward normals
Pi1, - .-, Pk, respectively, which contain the origin in their boundary hyperplanes:

P = {x:(pi, x) <0}, i=1...,k

Let F be a proper face of the body* and letl” be a support hyperplane M* that
containsF. Thenx = I'* is a boundary point oM. For every point € F the equality
(z,x) =1 holds. Letj € {1, ..., k} be an index such that the direction of the veqtpr
iluminates the poink € bdM, i.e.,x + Ap; € intM for A > 0 small enough. We fix
such a numbek. For each poink’ contained in a small neighborhood ©f Ap; the
inequality(z, x’) < 1 holds, and thereforg, x + Ap;) < 1. Since(z, x) = 1, we have
(z, Ap;) < 0, and consequentlyz, p;) < 0. This means that € int P;. This is true for
every pointz € F, and henceé= C intP;. Thus the systerfiPy, ..., P} co-illuminates
the bodyM*, i.e.,c*(M*) < ¢c(M).

We now prove the inverse inequality. Denote the intejéi *) by |, and letQg, .. .,
Q| be half-spaces with the boundaries through 0 which co-illuminate the klgd{pe-
note byqs, ..., g the unit outward normals of the half-spad@@s ..., Q;, respectively.
We show that the directions of the vectogs. . ., g illuminate the boundary of1.

Indeed, leti € bd M. Thenu* is a support hyperplane of the bolll*. The intersection
G = u*nN M*is a proper face of the body*. Let j € {1, ...,1} be an index for which
G C intQ;, i.e., (v,q;) < 0 for every pointv € G. Since the seG is compact, there
exists a number > 0 such thatv, gj) < —u for everyv € G. Hence there exists a
neighborhoodV of G such that{v, ;) < O for every pointv € W. Moreover, since
(v, u) < 1whenv € M* we have

(L, U+ AQ) = (v, U) + (v, AQ)) < 14+ A(v,qj) <1

for every pointv € M* N W and everyr > 0.

Furthermore, since* N (M*\W) = ¢, for every pointv € M*\W the inequality
(v,u) < 1 holds. By compactness of the Jdt*\W, there exists > 0 such that
(v,u) < 1— ¢ foreveryv € M*\W. This implies

(v,u+agj) <1 for ve MH\W

if A > 0is small enough. We fix such a numbeCombining both the casese M*NW
andv € M*\W, we conclude that for every pointe M* the inequalityv, u+1g;) < 1
holds. This means that+ Ag; is aninterior point of the bodyM, i.e., the pointu is
illuminated by the direction of the vectqy. Thus the directions of the vectags ..., g
illuminate the boundary o, i.e.,c(M) < c*(M*). O

Recall that a boundary poifitof a convex bodyN c R" is exposedf there exists
a support hyperplang of N such tha” N N = {b}. The set of all exposed boundary
points of N is denoted by expl.
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Lemma2. Let M C R" be a compagtconvex body with the origifl in its interior
and let M* be its polar bodyLet, furthermore I' ¢ R" be a support hyperplane of M
that has only one point b in common with*MhenI* is a regular boundary point of
M and by is the only support hyperplane of M through. Converselyif I'* is a regular
boundary point of M andbis the only support hyperplane of M throu@ti, then b is
an exposed boundary point of MindT is a support hyperplane of Mwhich has only
the point b in common with K Moreoverin both the casesb is the outward normal
of M at the pointl™.

This lemma is already known (see, for example, Theorem 3.2 in [17]).

Now we can give a polar description of the functional md. Met R" be a compact,
convex body containing the origin 0 in its interior, and Mt be its polar body. By
md*(M*) we denote the largest integlkrfor which there are pointbg, by, ..., by €
exp(M*) such that confby, by, ..., by} is ak-dimensional simplex containing O in its
relative interior.

Lemma3. Let M c R" be a compagtconvex body containing the origiiin its
interior, and let M* be its polar bodyThenmd*(M*) = md M.

Proof. Denote the integer midM*) by k. Letbg, by, ..., bk be the exposed boundary
points ofM* such that confbg, by, .. ., bk} is ak-dimensional simplex containing O in its
relative interior. Lefg, I'1, .. ., 'k be support hyperplanes bf* with It N M* = {b;},

i =0,1,..., k. By virtue of Lemma 2[';* is a regular boundary point &fl, andb,* is
the support hyperplane &fl throughl".*,i = 0,1, ..., k. Moreover,b; is an outward
normal of the bodyM at the pointl’;*, i.e.,bj = w; pi wherew; > 0 andp; is the unit
outward normal oM at the point,*,i =0, 1, ..., k. Since O is a relative interior point
of the simplex confby, by, ..., by}, there are positive numbexsg, A4, ..., Ak such that
Xobo + Aiby 4+ -+ kb =0, i.e.,

AomoPo + Aipapr+ - - 4 Ak P = 0,

and moreover everl of the vectordy, by, .. ., by (i.e., everyk of the vectorspg, p1,
..., p«) are linearly independent. This means that the vegberg, ..., pkx are mini-
mally dependent. Hence, M > k, i.e., mdM > md*(M*).

Now we prove the opposite inequality. Denote the intege¢vhdby |. Let T}, I';,
..., I'} beregular boundary points bf such that the unit outward normadg, ps, ..., p
of the bodyM at these points are minimally dependent. Denote the support hyperplanes
of M at these points by, bi, ..., b, respectively. By virtue of Lemma 2y is an
exposed boundary point &fl* andT is a support hyperplane &fi* which has only
the pointb; in common withM*,i = 0,1, ...,I. Since the vectorgg, p1, ..., p are
minimally dependent, evelhyof themis linearly independent and there are positive num-
bersvg, vi, ..., v such thatgpo + vipr + - - - + vk px = 0. Furthermoreb;, = u; p;,

i =0,1,...,1, whereug, u1, ..., w are positive numbers. Therefore we have the
dependence

V, V V)

2 bt —= byt — b =0

Mo M1 12
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with positive coefficients. Thismeansthgi by, . . ., by are the vertices of drdimensional
simplex containing 0 in its relative interior. Hence, todl*) > I, i.e., md'(M*) >
mdM. O

5. Convex Bodies with mdM = 2

In this section we formulate the solution of theoBefalvi-Nagy problem for the case
mdM = 2 given in [12]. We explain this solution here, since it is used below in the
proof of the Main Theorem.

Let M be a compact, convex body with nMl = 2 and letM = My @ --- & Mq
be its decomposition into the direct vector sum of indecomposable convex sets. Since
mdM is the maximal of the integers nMy, ..., mdMy (see Theorem 25.4 in [17]),
every integer md\; is not greater than 2 = 1,...,q), and for at least one index
i the equality mav; = 2 holds. Without lost of generality, we may suppose that for
an integerp, 1 < p < g, we have mM; = --- = mdM, = 2 and (ifp < q)
mdMp1 = --- = mdMg = 1, i.e., the summand®l, 4, . .., My aresegmentgsince
they are indecomposable).

Therefore to solve the 8kéfalvi-Nagy problem for mdil = 2, it remains to give a
geometrical description of all compact, convex, indecomposable bodies with ;m@.
This is made in Theorem 7 below. First we give some necessary definitions.

Definition 1. A compact, convex, indecomposable bokly c R" is said to be an
n-dimensionaktackif it is representable (up to a translate) in the following form. Let
l1, ..., Iy ben segments with a common endpoint 0 which are not contained in a hyper-
plane. Furthermore, & C |; @ I, be a compact, convex figure that contains the side

of the parallelogrant; & I, and at least one point of its opposite siflex 1,...,n—1.
Finally, letU; = F; @ Ljn wherelL;, is the(n — 2)-dimensional subspace containing
all segmentdy, ..., I, exceptl; andl,. ThenM = Ui N ---NUp_1.

Definition 2. A compact, convex, indecomposable bddyc R" is said to be am-
dimensionaloutcutif it is representable (up to a translate) in the following form. Let
l1,..., I, be as above. For every two indices< j < n choose a compact, convex
figure Gj; C I; @ |; that contains both the segmerlis |, but does not coincide
with the parallelogram; & I;. Furthermore, leV;; = Gjj @ Li; wherel;; is the

(n — 2)-dimensional subspace containing all segmdnis. ., I, exceptl;, I;. Then
M= ﬂi<j Vij -

Definition 3. A compact, convex, indecomposable bddyc R" is said to be am-
dimensionaktack-outcuff it is representable (up to a translate) in the following form.
Letly,..., I, be as above. Ldtbe aninteger, 2 k < n, and letp: {(k+1,...,n} —

{1, ..., k} beamapthatisontointhe cdse- 2. Foreverytwoindices< j < kchoose
acompact, convex figui®;; C |; @ |; that contains both the segmeitsl;, but does not
coincide with the parallelograri @ 1. Furthermore, for every index > k + 1 choose

a compact, convex figurg; C Ij @ I, that contains the sidg of the parallelogram
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l; & l, () and at least one point of its opposite side. FinallyMgt= Gj; @ L;; and
UJ = Fl (&) Lj(/i(])' ThenM = (ﬂi<j§k \/I]) N (ﬂj>k UJ)

Definition 4. A polytopeM C R*containing the originin its interior (and any its trans-
late) is said to be particular four-dimensional polytopithere is a basig, e, €3, &4
of R* such that

M* = convey, €, €3, €4, —€1 — €, —€1 — €3, —€ — €4, —€3 — €4, €1 + €2 + €3 + E4}.

Theorem 7. Let M C R" be a compagtconvexindecomposable bod¥he equality
mdM = 2 holds in and only in the following five cases

(i) n = 2 and M is a compagtconvex two-dimensional figure distinct from a
parallelogram
(i) n>3and M is an n-dimensional stack
(i) n > 3and M is an n-dimensional outcut
(iv) n>4and M is an n-dimensional stack-outcut
(v) n=4and M is a particular four-dimensional polytope

The proof is given in [12].

6. Proof of the Main Theorem
First we give estimates of the numtxM) for the bodies described in Definitions 1-4.

Lemma4. Let M cC R" be an n-dimensional stackhen ¢M) < % - 2N,

Proof. We use the description of the stack given in Definition 1.dset. ., e, be the
endpoints of the segmenits, ..., |, distinct from Q respectively. Denote b$ c R"
the (n — 1)-dimensional subspace containihg. .., I,_1. For everyt € [0, 1] denote
by SV the hyperplane oR" parallel toS and passing through the poitg,. Since for
everyj = 1,...,n — 1 the subspackj, is contained inS, the intersectior§® N U;
coincides with(S¥ N Fj) @ Lj». Moreover, the intersectiodf” = S N F; is a segment

parallel tol;, the length ofl *’ being less than the length of if t is close enough to
1 (sinceM is indecomposable and henEg does not coincide with the parallelogram
l; @ In). This implies

SYAM = SPNnU;N---NUK1

n-1 n-1
=N S"nFHeLn=0"eLpn,
j=1 j=1

i.e., P® =SY N M isan(n — 1)-dimensional parallelotope with edges parallel to the
segmentdy, ..., lh_1.

Fort = 0O the parallelotopeP© is thelower base of the stacM. Fort = 1 the
parallelotopeP® is theupperbase, i.e.P® = M N T wherel' ¢ R" is the support
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hyperplane oM parallel to the lower base. We note tiR{t) is an(n — 1)-dimensional
parallelotope which may degenerate into a parallelotope of a smaller dimension or into
a point, and the edges & are parallel to ones of the lower base. Denoteplthe
vector emanating from the center of the upper basd @nd going to the center of the
lower base. Since the sides of the upper basemualerthan the corresponding sides

of the lower base, the direction of the vecilluminates the upper base® and its
neighborhood. In other words, there is a numbgb < t < 1, such that the part of
bdM aboveS™ is illuminated byp.

Consider now 21 vectorste; + - - - &+ e,_1. These vectors illuminate all vertices
(and hence all relative boundary points) of imne— 1)-dimensional parallelotopB ™.
Consequently there is a positive numheuch that the directions of 2! vectorste; +
...+ en_1 + Ag, also illuminate the relative boundary Bf”). Hence, these™2?! vectors
iluminate the relative boundary d®® for 0 < t < t. Moreover, the 2! vectors
considered illuminate all points of the lower b€ . Thus 2 + 1 vectorsp, +e; +
..+ &,_1+ Ag, illuminate the whole boundary dfl, i.e.,c(M) < 2" 14+1 < % .2n.0

Remark. In fact, the obtained estimatgM) < 2"-1 + 1 is exact. Indeed, consider
all vertices of the lower base© and the center of the upper base. Every two of these
2"-1 4+ 1 points isantipodal and therefore(M) > 2"-1 + 1. This proves the equality
c(M) =214 1.

Lemma5. Let M c R" be an n-dimensional outcuthen ¢M) < f—'{ -2",

Proof. We use the description of the outcut given in Definition 2.&set . ., e, be the
endpoints of the segments, . . ., I, distinct from Q respectively. Consider all vectors
of the kind—v + A(e1 + - - - + &,) wherea is a fixed positive number andis the sum
of anoddnumber of the summands, . . ., €,. The number of the vectors of this kind is

equal to
n n n onet
<1> + <3> + <5) + T 2 .

Supplementing one more vecr+ - - - + €, , we obtain 2-1 4 1 vectors. We show that
for A > 0 small enough the directions of these vectors illuminate the whole boundary of
the outcutM.

Indeed, consider the figuf®;; . Every pointx € (rint Gij) U I; U [; is illuminated by
the direction of the vectag + - - - + €y, since the poink + A(e; + - - - + &,) belongs to
the interior ofM.

Now consider a poiny € G;jj that does not belong t@int G;;) U |; U I;. Denote the
coordinates oy inthe basi®y, ..., €, byyi, ..., yn. Boththe numberg, y; are positive
and atleast one of them is less than 1 (si@ges distinct from the parallelogramé ;).
Let, for definiteness, & y; < 1. Then the direction of the vectey + A(ey + - - - + &)
illuminates the pointy. This shows that all points of the s@i,j G;j; are illuminated
by the 2-1 4 1 vectors considered. In other wordsxife bdM belongs to a two-
dimensional subspace &" spanned by two vectors taken fromn . .., ,, theny is
illuminated.
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Now consider a poiny € bdM that belongs to a four-dimensional subspac&bdf
spanned by four vectors taken fraq) . . . , e,, say,y belongs to the subspace spanned by
€1, &, €3, &,. We may suppose thatdoes not belong to a two-dimensional subspace as
above, i.e., at leagitreeof its coordinatey, Yo, Y3, Y4 are distinct from zero. Moreover,
no more than one of the coordinates is equal to 1 (since any fgyris distinct from
the parallelogrant; @ I;). Let, for definiteness, & y; <1,0< ys < 1,and O< y» <
y3 < 1. Then the direction of the vecter(e, + €3 + €1) + A(e1 + - - - + &) illuminates
the pointy (as in the caseg € Sandy ¢ SwhereSis the three-dimensional subspace
spanned by, e3, €1). Thus ify € bdM belongs to a four-dimensional subspace=6f
spanned by four vectors taken fram . . ., e,, theny is illuminated by the direction of
at least one of the"2! + 1 vectors considered.

Similarly, if y € bdM belongs to a six-dimensional subspaceR3fspanned by six
vectors taken froney, ..., e,, theny is illuminated by at least one of thé2 + 1
directions considered, etc. O

Remark. In fact, the obtained estima@M) < 2"~1 + 1 is exact. We show this

for a particular outcut (a similar reasoning can be realized for any outcut). Namely, let
e, ..., e,beabasisii". Furthermore, lat be anumberwith < & < 1. Forevery pair
ofindicesi < j takenfromthesdtl, ..., n}, we denote the setcof®¥; g, g, a& + o€}

by Gij and construct the outc’ C R" with these set&;;, 1 <i < j < n. Denote

by F the set contained in b’ that includes the points, @, ..., e, and all points
X161+ - -+Xn€, such thatawddnumber (not lesser than three) of coordinates. . , X,

take the value, other coordinates being equal to zero. Every two points of the se¢
antipodalboundary points of the outc’. For example, consider the points

a=(a,a,,0,...,0), b=(x,0,0,,2,0,...,0).

The pointb belongs to the support hyperplare+ xs = 2«, and the poing belongs
to the parallel support hyperplanxg + x5 = 0, i.e., the pointsa andb are antipodal
(similarly for any two points of the sdt). Since the number of the points of the Beis
equalto 271 +1, we havee(M’) > 2"-1+ 1. This proves the equalityM’) = 2" 141,

Lemma6. LetM C R"beann-dimensional stack-outcihen the inequality@) <
3 n

2. 2" holds

4

Proof. The stack-outcut is a “combination” of the stack and the outcut, and the proof
of Lemma 6 is obtained as a union of the proofs of Lemmas 4 and 5. We only indicate the
vectors whose directions illuminate the boundary of the stack-outcut, and do not repeat
details of the previous reasonings.

We use the description of the stack-outcut given in Definition 3elet. . , e, be the
endpoints of the segments, ..., I, distinct from Q respectively. Consider all vectors
ofthekind—v €41+ --- e+ Ar(er+ - - + &) wherea is a fixed positive number
andv is the sum of amddnumber of the vectors, . . ., &. The number of these vectors
is equal to 2-1. We add the vectag + - - - +€,. The directions of these'2! 4 1 vectors
illuminate the whole boundary d¥l. |
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Lemma 7. LetM c R*beafour-dimensional particular polytogehen¢M) < %-24.

Proof. The polar polytopévl* hasninevertices:

€, €, €3, €, —€ —€, —€ — €, —€& —€, —€3— 64, e1+e2+e:3+e4

(by Definition 4). In [18] is shown tha¥* haseighteeredges:

[eLe+e+e+te] [ eat+et+e+e] [e+6+ e+ e,
[&s. 81+ &+ &+ &), [—€1— 6, —€ —6], [-€— &, —& — e,
[—e1— €3, —e3— e, [-& — e, —e3—&y], [e1, —& — €], [€1, —€3 — &y],
[€2, —€3 —€&4], [€3, —€2 — €], [e1, &), [&2, —€1 — &3],

[63, —€1 — €], [€1, —€1 — &), [€4, —€1 — &3], [&, &3]

FurthermoreM* hasfifteentwo-dimensional faces: nine parallelograms,

[61, —€3 — €4, —€1 — €3, €], [€1, —€ — €4, —€1 — &, €],

[63, -6 —€&.,64,61+ &+ 63+ €, [, —€ — 63,64, + & + €3+ €],
(63, —&2—es, e, &1+ &+ e+ e, [€ € —€,6,6 + &+ e+ e,
[62, —€1— €3, —61— &, €3], [&2, —€1 — &, -6 — &, &],
[—e1— €, —€ —€3 —€ — €, —& — &),

and six triangles,

[e1, 64,81+ 3+ 63+ €, [&2,635,61+6+6€3+6], [€1, € — €, —63— &),
[e4, —&1 — &, —€1 — &3], [0, —€1 — €3, —e3 — €], [63, —€1 — &, —&) — €4].

Note that six two-dimensional faces (four parallelograms and two triangles) adjoin every
vertex ofM*. Three two-dimensional faces (two parallelograms and one triangle) adjoin
every edge.

By Euler's theorem¢y — ¢1 4+ ¢; — ¢z = 0 whereg; is the number of-dimensional
faces of the polytopd*, i = 1, 2,3, 4. Sincecy = 9, ¢c; = 18,¢, = 15, we obtain
c3 = 6, i.e., M* hassix three-dimensional faced/, ..., Ws. Let Iy, ..., [T be open
half-spaces with the boundaries through 0 suchhad W;,i =1, ..., 6. Thenevery
face of M* is contained in at least one of these open half-spaces (since every face is
contained in a three-dimensional one). This meansah@l*) < 6. By Lemma 1, we
havec(M) =6 < 3. 24, O

Remark. Infact,c*(M*) = 6 (and hence(M) = 6), since no pair of three-dimensional
faces ofM* is situated in one open half-space (with the boundary hyperplane through 0).

Proof of the Main Theorem LetM C R" be a compact, convex body with nwl = 2.
Consider its decompositiddl = M; & - - - @ My into the direct vector sum of compact,
convex, indecomposable sets. We may suppose that for an intedex p < g, we
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have mdM; = --- = mdM, = 2 and (ifp < 9) mdMp;1 = --- =mdMy =1, i.e,,
the summandM,1, ..., My are segments. Denote the dimension of theVaeby ny,
k=1,...,p. If we verify that for the setd, ..., M, Martini's estimate holds, i.e.,
c(My) < 3. 2%fork =1,..., p, then we obtain

c(M) = ¢(My) - -+ -c(Mp)-297P
< (%.2“1). .(%.znp).zq—P:(%)P.znf%.zﬂ

(sincen = ny+---4+np + g — p), which proves the Main Theorem. Thus it remains to
verify that the equalities(My) < % -2% k=1,...,p, hold. To this end, we consider
separately cases (i)—(v) of Theorem 7.

(i) nx = 2 andM is a two-dimensional figure distinct from a parallelogram. In this
casec(My) =3 = % - 2™ i.e., Martini’s estimate is exact.

(i) ng > 3 andMy is anng-dimensional stack. In this case, by Lemma&dyly) <
% - 2™ i.e., Martini’s estimate is strict.

(i) ng > 3 andMy is anng-dimensional outcut. In this case, by Lemma@yly) <
3.2™, i.e., Martini’s estimate is strict.

(iv) ng > 4 andMy is anng-dimensional stack-outcut. In this case, by Lemma 6, we
also havec(My) < % - 2™, i.e., Martini’s estimate is strict.

(v) nk, = 4 and M is a four-dimensional particular polytope. In this case, by
Lemma 7¢c(My) < 2 .24 = 2. 2% j.e., Martini’s estimate is strict. O

Remark. The above reasoning shows that for a compact, convex hbdy R" with
mdM = 2, the equalite(M) = %.2” holdsifandonlyifM = Q@ 11®---®I,_2where
Q is a two-dimensional figure distinct from a parallelogram and;adlre segments. In
all other cases(M) < 2. 2.
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