Discrete Comput Geom 26:527–541 (2001) DOI: 10.1007/s00454-001-0035-x

Solution of the Illumination Problem for Bodies with md M = 2

V. Boltyanski

El Centro de Investigación en Matematicas, A.P. 402, 36000 Guanajuato, GTO, Mexico boltian@cimat.mx

Abstract. We solve here the *Gohberg–Markus–Hadwiger Covering Problem* (or, what is the same, the *illumination problem*) for compact, convex bodies $M \subset \mathbb{R}^n$ with $\mathrm{md} M = 2$. Moreover, we outline an idea for a complete solution, using $\mathrm{md} M$.

1. Introduction

Let $M \subset \mathbb{R}^n$ be a be a compact, convex body, let $q \in \mathbb{R}^n$ be an arbitrary point, and let k be a real number with 0 < k < 1. The image of M under the homothety with center q and ratio k is said to be a *diminished copy* of M. The least integer p such that M can be covered by p diminished copies of M is denoted by b(M).

In 1957 Gohberg and Markus proved the following theorem (by singular conditions in the USSR, their article was not published until 1960 [21]).

Theorem 1. If $M \subset R^2$ is a compact, convex figure distinct from a parallelogram, then b(M) = 3. For every parallelogram b(M) = 4.

An equivalent theorem (in another form) was proved by Levi [27].

Observing that $b(M) = 2^n$ for every *n*-dimensional parallelotope, Gohberg and Markus formulated the following problem:

Prove that $b(M) \le 2^n$ for every compact, convex body $M \subset \mathbb{R}^n$, the equality being held only for parallelotopes.

The same problem was formulated by Hadwiger [23], based on [27]. Therefore we call it the *GMH problem*.

Boltyanski [8] formulated the Illumination Problem. A boundary point a of a convex

body $M \subset \mathbb{R}^n$ is *illuminated* by the direction of a nonzero vector $e \in \mathbb{R}^n$ if, for $\lambda > 0$ small enough, the point $a + \lambda e$ belongs to the interior of M. Furthermore, we say that the directions of nonzero vectors e_1, \ldots, e_p *illuminate* the boundary of M if every point $x \in \operatorname{bd} M$ is illuminated by at least one of these directions. The least integer p such that there exist nonzero vectors e_1, \ldots, e_p , whose directions illuminate the boundary of M, is denoted by c(M).

Theorem 2 [8]. For every compact, convex body $M \subset \mathbb{R}^n$, the equality b(M) = c(M) holds.

This theorem allows us to give another form of the GMH problem:

Illumination Problem. Prove that $c(M) \le 2^n$ for every compact, convex body $M \subset \mathbb{R}^n$, the equality being held only for parallelotopes.

Furthermore, Hadwiger [24] formulated the problem to illuminate the boundary of a compact, convex body $M \subset \mathbb{R}^n$ by a minimal number of *point light sources* situated in \mathbb{R}^n . For compact, convex bodies in \mathbb{R}^n , the Levi problem [27], the GMH problem [21], [23], the illumination problem [8], and the problem of illuminating by point sources [24] are equivalent (see Theorem 34.3 in [17]).

There are some partial results in this direction. If a compact, convex body $M \subset \mathbb{R}^n$ is smooth (this means that every boundary point *a* is *regular*, i.e., there is only one support hyperplane of *M* through *a*), then b(M) = n + 1. This may be implied from [22]. In [8] Boltyanski proved a more general theorem: If a compact, convex body $M \subset \mathbb{R}^n$ has no more than *n* nonregular boundary points, then b(M) = n + 1. For n = 3, Charazishvili [20] obtained a finer result: If a compact, convex body $M \subset \mathbb{R}^3$ has no more than four nonregular boundary points, then b(M) = 4.

Lassak [26] proved that if a compact, convex three-dimensional body M is centrally symmetric, then $b(M) \le 8$. In the same paper [26] Lassak proved that for every threedimensional body M of constant width the inequality $b(M) \le 6$ holds. Furthermore, Bezdek [4] justified the illumination problem for every convex polytope $M \subset R^3$ with affine symmetry, i.e., $c(M) \le 8$ in that case. Using information recently obtained, Dekster proved that $c(M) \le 8$ for every three-dimensional compact, convex body that is symmetric about a plane.

Martini [28] established that for every n-dimensional zonotope distinct from a parallelotope the inequality $c(M) \le 3 \cdot 2^{n-2}$ holds. We call this inequality Martini's estimate. Boltyanski and Soltan proved [19] that Martini's estimate holds for all zonoids and Boltyanski [13] established this estimate for all belt bodies. In [16] Boltyanski and Martini described all belt bodies for which Martini's estimate holds and proved the inequality $c(M) \le 5 \cdot 2^{n-3}$ for other belt bodies.

We note that Bezdek [5] found the dual formulation of the illumination problem (see Lemma 1 in Section 4 below). With the help of that formulation, Bezdek [6] gave dual proofs for several of the above-mentioned results. Finally, in [7] Bezdek and Bisztriczki proved that the illumination problem has a positive solution for all *n*-dimensional cyclic polytopes.

Solution of the Illumination Problem for Bodies with md M = 2

2. The Functional md

In 1976 Boltyanski introduced the functional md [10]. Let H be a subset of the unit sphere S^{n-1} that is not one-sided, i.e., H is not contained in any closed hemisphere of S^{n-1} . In other words, there is no vector $e \neq 0$ with $\langle a, e \rangle \leq 0$ for every $a \in H$.

Furthermore, let a_0, a_1, \ldots, a_m be vectors in $\mathbb{R}^n, 1 \le m \le n$. We say that the vectors are *minimally dependent* if

- (i) they are positively dependent (i.e., there are positive coefficients $\lambda_0, \lambda_1, \ldots, \lambda_m$ with $\lambda_0 a_0 + \lambda_1 a_1 + \cdots + \lambda_m a_m = 0$);
- (ii) any *m* of the vectors a_0, a_1, \ldots, a_m are linearly independent.

In other words, a_0, a_1, \ldots, a_m are minimally dependent if they are the vertices of an *m*-dimensional simplex that contains the origin in its relative interior.

Finally, by md *H* we denote the greatest integer *m* such that *H* contains *m* minimally dependent vectors (md H = 0 if there is no system of minimally dependent vectors in *H*). Note that $0 \le \text{md } H \le n - 1$ if *H* is one-sided, whereas $1 \le \text{md } H \le n$ if *H* is not one-sided.

The first result obtained with the help of md H was a generalization of the classical Helly theorem. We formulate this result, since it is connected with the illumination problem.

Let $H \subset S^{n-1}$ be a subset that is not one-sided. A closed half-space P of \mathbb{R}^n is said to be *H*-convex if its outward unit normal belongs to *H*. Furthermore, a closed set $M \subset \mathbb{R}^n$ is said to be *H*-convex [9] if it is representable as the intersection of a family of *H*-convex half-spaces.

Theorem 3 [10]. Let M_1, \ldots, M_q be *H*-convex sets in $\mathbb{R}^n, q \ge \text{md } H + 2$. If every md H + 1 of the sets has a point in common, then $M_1 \cap \cdots \cap M_q \neq \emptyset$.

A similar theorem holds for any infinite family of H-convex sets if at least one of them is compact.

Now let $M \subset \mathbb{R}^n$ be a compact, convex body. By $H(M) \subset S^{n-1}$ we denote the set of all vectors, each of which is the unit outward normal of M at a regular boundary point. For brevity, the integer md H(M) is denoted by md M. The set H(M) is not one-sided, and therefore $1 \leq \text{md } M \leq n$.

Furthermore, we denote the family of all translates of M by T(M) and its Helly dimension [29] by $\lim T(M)$, i.e., the minimal integer p such that for every subfamily $\{M_1, \ldots, M_q\} \subset T(M)$ with q > p + 1 the following assertion holds: if every p + 1 of the sets M_1, \ldots, M_q has a point in common, then $M_1 \cap \cdots \cap M_q \neq \emptyset$.

Szökefalvi-Nagy [31] established the following result:

Theorem 4. Let $M \subset R^n$ be a compact, convex body. The equality himT(M) = 1 holds if and only if M is an n-dimensional parallelotope.

It is easily shown that md M = 1 if and only if M is a parallelotope. Thus the Szökefalvi-Nagy theorem may be formulated in the following form: *The equality* him

T(M) = 1 holds if and only if $\operatorname{md} M = 1$. In [10] there is a generalization of this assertion for arbitrary $\operatorname{md} M$:

Theorem 5. For every compact, convex body $M \subset \mathbb{R}^n$, the equality him T(M) =md M holds.

We remark that the Szökefalvi-Nagy theorem contains little more than the particular case md M = 1 of Theorem 5. Indeed, Theorem 4 contains a *geometrical description* of all compact, convex bodies with him T(M) = 1. In this connection the following problem arises:

Szökefalvi-Nagy Problem: Give a geometrical description of all compact, convex bodies with him T(M) = m (i.e., md M = m) for m = 2, ..., n.

(Note that the term *Szökefalvi-Nagy problem* was introduced by Boltyanski.) This problem is solved in [15] and [12] for m = 2. The following theorem [15] describes all three-dimensional bodies with md M = 2; the *stacks* and the *outcuts* mentioned in its statement are defined below.

Theorem 6. For a compact, convex body $M \subset \mathbb{R}^3$ that is distinct from a parallelotope, the equality md M = 2 holds in and only in the following three cases: (a) M is the direct vector sum of a segment and a two-dimensional figure distinct from a parallelogram; (b) M is a stack; (c) M is an outcut.

Now we give descriptions of the stacks and outcuts mentioned in Theorem 6. A compact, convex body $M \subset R^3$ is a *stack* if it is representable (up to a translate) in the following form. Let I_1 , I_2 , I_3 be three segments with a common endpoint 0 which are not contained in a plane. Denote the parallelogram $I_i \oplus I_j$ by P_{ij} . Let $F_1 \subset P_{13}$ (respectively, $F_2 \subset P_{23}$) be a compact, convex figure that contains the side I_1 (respectively, I_2) of the parallelogram and at least one point of its opposite side, but does not contain this opposite side. Furthermore, let U_1 (respectively, U_2) be the infinite cylinder with the basis F_1 (respectively, F_2) and the generator parallel to I_2 (respectively, I_1). Then $M = U_1 \cap U_2$.

A compact, convex body $M \subset \mathbb{R}^3$ is an *outcut* if it is representable (up to a translate) in the following form. Let I_1 , I_2 , I_3 be as above. For every two indices i < j = 2, 3 choose a compact, convex figure $G_{ij} \subset I_i \oplus I_j$ that contains both the segments I_i , I_j , but does not coincide with the parallelogram $I_i \oplus I_j$. Furthermore, let V_{ij} be the infinite cylinder with the basis G_{ij} and the generator parallel to the segment (taken from I_1 , I_2 , I_3) distinct from I_i , I_j . Then $M = V_{12} \cap V_{13} \cap V_{23}$.

The articles [1]–[3], [11], and [25] contain further results on the Szökefalvi-Nagy problem. Some other applications of md *M* are given in Section 44 of [17].

3. An Idea of a Solution

First we discuss the illumination problem for the case n = 3. Let $M \subset R^3$ be a compact, convex body. If md M = 1, then c(M) = 8.

If md M = 2, then M is one of the bodies described in Theorem 6. It is easily

shown that in case (a) the equality c(M) = 6 holds. Indeed, let $M = I \oplus F$ where I = [a, b] is a segment and F is a compact, convex two-dimensional figure distinct from a parallelogram. The cylinder M has two bases $a \oplus F$ and $b \oplus F$. It is necessary to have three directions to illuminate all points of the base $a \oplus F$. None of these directions illuminates any point of the opposite base $b \oplus F$. Therefore it is necessary to have three more directions to illuminate all points of the base $b \oplus F$. Thus c(M) = 6.

Furthermore, if we have case (b) of Theorem 6, i.e., M is a stack, then c(M) = 5. Indeed, in the above description of the stack, denote by e_1, e_2, e_3 the endpoints of the segments I_1, I_2, I_3 distinct from 0, respectively. We say that $I_1 \oplus I_2$ is the *lower* base of the stack M and denote its *upper* base by P, i.e., $P = M \cap \Gamma$ where Γ is the support plane of M parallel to the lower base. We remark that P is a parallelogram (which may degenerate into a segment or a point) with the sides parallel to ones of the lower base. In addition, every side of P is smaller than the corresponding side of the lower base (since the figure F_1 does not coincide with $I_1 \oplus I_3$ and analogously for F_2). Therefore the stack M is not the direct vector sum as in case (a). Consider the directions of four vectors:

$$p_1 = e_1 + e_2 + \lambda e_3, \qquad p_2 = e_1 - e_2 + \lambda e_3, p_3 = -e_1 + e_2 + \lambda e_3, \qquad p_4 = -e_1 - e_2 + \lambda e_3$$

If $\lambda > 0$ is small enough, these four directions illuminate the whole boundary of M except for a small neighborhood of the upper base P. Furthermore, denote by p_5 the vector emanating from the center of the upper base of M and going to the center of the lower base. Since the sides of the upper base are *smaller* than the corresponding sides of the lower base, the direction of the vector p_5 illuminates the upper base P with its neighborhood. Thus the boundary of M is illuminated by five directions, i.e., $c(M) \leq 5$. On the other hand, consider the vertices a_1, a_2, a_3, a_4 of the lower base $I_1 \oplus I_2$ and the center a_5 of the upper base. Every two of these five points is *antipodal*, i.e., is situated in two parallel support planes of M. Consequently, no direction simultaneously illuminates *two* of the points a_1, a_2, a_3, a_4, a_5 , and therefore $c(M) \geq 5$. This proves the equality c(M) = 5.

At last, if *M* is an outcut, then again c(M) = 5. Indeed, let e_1, e_2, e_3 be as above. Consider the directions of the vectors

$$q_1 = -e_1 + \lambda(e_2 + e_3), \qquad q_2 = -e_2 + \lambda(e_1 + e_3), \qquad q_3 = -e_3 + \lambda(e_1 + e_2),$$
$$q_4 = e_1 + e_2 + e_3, \qquad q_5 = -e_1 - e_2 - e_3.$$

If $\lambda > 0$ is small enough, these five directions illuminate the whole boundary of M. To prove this, we set $G = G_{12} \cup G_{13} \cup G_{23}$, $Q = cl(bd M \setminus G)$ and denote the intersection $Q \cap G_{ij}$ by B_{ij} , i < j = 2, 3. Let g_{ij} be a point of the arc B_{ij} not belonging to the relative boundary of the parallelogram $I_i \oplus I_j$, i < j = 2, 3. Then (if $\lambda > 0$ is small enough) the direction of q_1 illuminates the part of the arc B_{12} with endpoints b_1 , g_{12} and the direction of q_2 illuminates the part of the arc B_{12} with endpoints b_2 , g_{12} . Therefore both directions illuminate all points of the arc B_{12} . By similar reasoning, the directions of q_1, q_2, q_3 illuminate all points of the set $B_{12} \cup B_{13} \cup B_{23}$. Furthermore, every point of the set $G \setminus (B_{12} \cup B_{13} \cup B_{23})$ is illuminated by the direction of q_4 . Finally, all points of the set $Q \setminus (B_{12} \cup B_{13} \cup B_{23})$ are illuminated by the direction of q_5 . Thus the boundary of M is illuminated by five directions, i.e., $c(M) \leq 5$. On the other hand, consider the five points 0, e_1 , e_2 , e_3 , b where $b \in bd V_{12} \cap bd V_{13} \cap bd V_{23}$ is distinct from 0. Every two of these five points is antipodal, and therefore $c(M) \ge 5$. This proves the equality c(M) = 5.

Combining cases (a)–(c) considered in Theorem 6, we obtain that if $\operatorname{md} M = 2$, then $c(M) \leq 6$, i.e., $c(M) \leq 2^3 - 2^1$. Consequently, to solve the illumination problem for three-dimensional bodies, it is enough to establish that if $\operatorname{md} M = 3$, then $c(M) \leq 7$, i.e., $c(M) \leq 2^3 - 2^0$. Nevertheless, the exotic nature of the bodies $M \subset R^3$ with $\operatorname{md} M = 3$ remains outside the framework of this article.

The above discussion leads us to the following:

Hypothesis. If $M \subset R^n$ is a compact, convex body with $\operatorname{md} M = m \ge 2$, then $c(M) \le 2^n - 2^{n-m}$.

In this article we justify this hypothesis for m = 2, i.e., we prove the following assertion:

Main Theorem. Let $M \subset \mathbb{R}^n$ be a compact, convex body with $\operatorname{md} M = 2$. Then $c(M) \leq 2^n - 2^{n-2}$, i.e., Martini's estimate $c(M) \leq \frac{3}{4} \cdot 2^n$ holds.

To prove the Main Theorem, first we give the polar descriptions for the illumination problem and the functional md.

4. Polar Description of the Problem

In what follows we suppose that R^n is an *n*-dimensional, vectorial Euclidean space that is self-adjoint (i.e., the scalar product is introduced in R^n).

For every point $x \in \mathbb{R}^n$ distinct from the origin 0, we denote its *polar hyperplane* by x^* , i.e., $x^* = \{y: \langle x, y \rangle = 1\}$. Similarly, for every hyperplane $\Gamma \subset \mathbb{R}^n$ not containing 0, we denote its *polar point* (i.e., the point for which the polar hyperplane coincides with Γ) by Γ^* . Furthermore, for every compact, convex body containing 0 in its interior, we denote its *polar body* by M^* :

$$M^* = \{ y \colon \langle y, a \rangle \le 1 \text{ for all } a \in M \}.$$

Let $M \subset \mathbb{R}^n$ be a compact, convex body containing 0 in its interior, and let M^* be its polar body. Let P_1, \ldots, P_k be half-spaces of \mathbb{R}^n with $0 \in \text{bd } P_i$, $i = 1, \ldots, k$. We say that the system of half-spaces $\{P_1, \ldots, P_k\}$ co-illuminates the body M^* if, for every proper face F of M^* (i.e., $F \neq M^*$), there is an index $i \in \{1, \ldots, k\}$ such that $F \subset \text{int } P_i$. By $c^*(M^*)$ we denote the least integer k for which there exists a co-illuminating system $\{P_1, \ldots, P_k\}$ for the body M^* .

Lemma 1. For every compact, convex body $M \subset \mathbb{R}^n$ containing the origin in its interior, the equality $c(M) = c^*(M^*)$ holds.

This lemma is already known. For example, Soltan and Soltan [30] applied this lemma in their solution of the X-raying problem for three-dimensional polytopes. Moreover,

there is a stronger form of this lemma in [4]. Nevertheless, for completeness, we give a proof of this lemma.

Proof. Denote the integer c(M) by k, and let p_1, \ldots, p_k be unit vectors whose directions illuminate the boundary of M. Consider the half-spaces P_1, \ldots, P_k with outward normals p_1, \ldots, p_k , respectively, which contain the origin in their boundary hyperplanes:

$$P_i = \{x \colon \langle p_i, x \rangle \le 0\}, \qquad i = 1, \dots, k.$$

Let *F* be a proper face of the body M^* and let Γ be a support hyperplane of M^* that contains *F*. Then $x = \Gamma^*$ is a boundary point of *M*. For every point $z \in F$ the equality $\langle z, x \rangle = 1$ holds. Let $j \in \{1, ..., k\}$ be an index such that the direction of the vector p_j illuminates the point $x \in bd M$, i.e., $x + \lambda p_j \in int M$ for $\lambda > 0$ small enough. We fix such a number λ . For each point x' contained in a small neighborhood of $x + \lambda p_j$ the inequality $\langle z, x' \rangle \leq 1$ holds, and therefore $\langle z, x + \lambda p_j \rangle < 1$. Since $\langle z, x \rangle = 1$, we have $\langle z, \lambda p_j \rangle < 0$, and consequently $\langle z, p_j \rangle < 0$. This means that $z \in int P_j$. This is true for every point $z \in F$, and hence $F \subset int P_j$. Thus the system $\{P_1, \ldots, P_k\}$ co-illuminates the body M^* , i.e., $c^*(M^*) \leq c(M)$.

We now prove the inverse inequality. Denote the integer $c^*(M^*)$ by l, and let Q_1, \ldots, Q_l be half-spaces with the boundaries through 0 which co-illuminate the body M^* . Denote by q_1, \ldots, q_l the unit outward normals of the half-spaces Q_1, \ldots, Q_l , respectively. We show that the directions of the vectors q_1, \ldots, q_l illuminate the boundary of M.

Indeed, let $u \in bd M$. Then u^* is a support hyperplane of the body M^* . The intersection $G = u^* \cap M^*$ is a proper face of the body M^* . Let $j \in \{1, ..., l\}$ be an index for which $G \subset int Q_j$, i.e., $\langle v, q_j \rangle < 0$ for every point $v \in G$. Since the set G is compact, there exists a number $\mu > 0$ such that $\langle v, q_j \rangle < -\mu$ for every $v \in G$. Hence there exists a neighborhood W of G such that $\langle v, q_j \rangle < 0$ for every point $v \in W$. Moreover, since $\langle v, u \rangle \leq 1$ when $v \in M^*$, we have

$$\langle v, u + \lambda q_i \rangle = \langle v, u \rangle + \langle v, \lambda q_i \rangle \le 1 + \lambda \langle v, q_i \rangle < 1$$

for every point $v \in M^* \cap W$ and every $\lambda > 0$.

Furthermore, since $u^* \cap (M^* \setminus W) = \emptyset$, for every point $v \in M^* \setminus W$ the inequality $\langle v, u \rangle < 1$ holds. By compactness of the set $M^* \setminus W$, there exists $\varepsilon > 0$ such that $\langle v, u \rangle < 1 - \varepsilon$ for every $v \in M^* \setminus W$. This implies

$$\langle v, u + \lambda q_i \rangle < 1$$
 for $v \in M^* \setminus W$

if $\lambda > 0$ is small enough. We fix such a number λ . Combining both the cases $v \in M^* \cap W$ and $v \in M^* \setminus W$, we conclude that for every point $v \in M^*$ the inequality $\langle v, u + \lambda q_j \rangle < 1$ holds. This means that $u + \lambda q_j$ is an *interior* point of the body M, i.e., the point u is illuminated by the direction of the vector q_j . Thus the directions of the vectors q_1, \ldots, q_l illuminate the boundary of M, i.e., $c(M) \le c^*(M^*)$.

Recall that a boundary point b of a convex body $N \subset \mathbb{R}^n$ is *exposed* if there exists a support hyperplane Γ of N such that $\Gamma \cap N = \{b\}$. The set of all exposed boundary points of N is denoted by exp N.

Lemma 2. Let $M \subset \mathbb{R}^n$ be a compact, convex body with the origin 0 in its interior and let M^* be its polar body. Let, furthermore, $\Gamma \subset \mathbb{R}^n$ be a support hyperplane of M^* that has only one point b in common with M^* . Then Γ^* is a regular boundary point of M and b^* is the only support hyperplane of M through Γ^* . Conversely, if Γ^* is a regular boundary point of M and b^* is the only support hyperplane of M through Γ^* , then b is an exposed boundary point of M^* and Γ is a support hyperplane of M^* which has only the point b in common with M^* . Moreover, in both the cases, b is the outward normal of M at the point Γ^* .

This lemma is already known (see, for example, Theorem 3.2 in [17]).

Now we can give a polar description of the functional md. Let $M \subset \mathbb{R}^n$ be a compact, convex body containing the origin 0 in its interior, and let M^* be its polar body. By $\mathrm{md}^*(M^*)$ we denote the largest integer k for which there are points $b_0, b_1, \ldots, b_k \in \exp(M^*)$ such that $\mathrm{conv}\{b_0, b_1, \ldots, b_k\}$ is a k-dimensional simplex containing 0 in its relative interior.

Lemma 3. Let $M \subset \mathbb{R}^n$ be a compact, convex body containing the origin 0 in its interior, and let M^* be its polar body. Then $\mathrm{md}^*(M^*) = \mathrm{md} M$.

Proof. Denote the integer $\operatorname{md}^*(M^*)$ by k. Let b_0, b_1, \ldots, b_k be the exposed boundary points of M^* such that $\operatorname{conv}\{b_0, b_1, \ldots, b_k\}$ is a k-dimensional simplex containing 0 in its relative interior. Let $\Gamma_0, \Gamma_1, \ldots, \Gamma_k$ be support hyperplanes of M^* with $\Gamma_i \cap M^* = \{b_i\}$, $i = 0, 1, \ldots, k$. By virtue of Lemma 2, Γ_i^* is a regular boundary point of M, and b_i^* is the support hyperplane of M through $\Gamma_i^*, i = 0, 1, \ldots, k$. Moreover, b_i is an outward normal of the body M at the point Γ_i^* , i.e., $b_i = \mu_i p_i$ where $\mu_i > 0$ and p_i is the unit outward normal of M at the point $\Gamma_i^*, i = 0, 1, \ldots, k$. Since 0 is a relative interior point of the simplex $\operatorname{conv}\{b_0, b_1, \ldots, b_k\}$, there are positive numbers $\lambda_0, \lambda_1, \ldots, \lambda_k$ such that $\lambda_0 b_0 + \lambda_1 b_1 + \cdots + \lambda_k b_k = 0$, i.e.,

$$\lambda_0\mu_0p_0+\lambda_1\mu_1p_1+\cdots+\lambda_k\mu_kp_k=0,$$

and moreover every k of the vectors b_0, b_1, \ldots, b_k (i.e., every k of the vectors p_0, p_1, \ldots, p_k) are linearly independent. This means that the vectors p_0, p_1, \ldots, p_k are minimally dependent. Hence, md $M \ge k$, i.e., md $M \ge \text{md}^*(M^*)$.

Now we prove the opposite inequality. Denote the integer md(M) by l. Let Γ_0^* , Γ_1^* , ..., Γ_l^* be regular boundary points of M such that the unit outward normals p_0 , p_1 , ..., p_l of the body M at these points are minimally dependent. Denote the support hyperplanes of M at these points by b_0^* , b_1^* , ..., b_l^* , respectively. By virtue of Lemma 2, b_i is an exposed boundary point of M^* and Γ_i is a support hyperplane of M^* which has only the point b_i in common with M^* , i = 0, 1, ..., l. Since the vectors $p_0, p_1, ..., p_l$ are minimally dependent, every l of them is linearly independent and there are positive numbers $v_0, v_1, ..., v_l$ such that $v_0p_0 + v_1p_1 + \cdots + v_kp_k = 0$. Furthermore, $b_i = \mu_i p_i$, i = 0, 1, ..., l, where $\mu_0, \mu_1, ..., \mu_l$ are positive numbers. Therefore we have the dependence

$$\frac{v_0}{\mu_0} \quad b_0 + \frac{v_1}{\mu_1} \quad b_1 + \dots + \frac{v_l}{\mu_l} \quad b_l = 0$$

with positive coefficients. This means that b_0, b_1, \ldots, b_l are the vertices of an *l*-dimensional simplex containing 0 in its relative interior. Hence, $\operatorname{md}^*(M^*) \ge l$, i.e., $\operatorname{md}^*(M^*) \ge \operatorname{md} M$.

5. Convex Bodies with md M = 2

In this section we formulate the solution of the Szökefalvi-Nagy problem for the case $\operatorname{md} M = 2$ given in [12]. We explain this solution here, since it is used below in the proof of the Main Theorem.

Let *M* be a compact, convex body with $\operatorname{md} M = 2$ and let $M = M_1 \oplus \cdots \oplus M_q$ be its decomposition into the direct vector sum of indecomposable convex sets. Since $\operatorname{md} M$ is the maximal of the integers $\operatorname{md} M_1, \ldots, \operatorname{md} M_q$ (see Theorem 25.4 in [17]), every integer $\operatorname{md} M_i$ is not greater than 2 ($i = 1, \ldots, q$), and for at least one index *i* the equality $\operatorname{md} M_i = 2$ holds. Without lost of generality, we may suppose that for an integer *p*, $1 \le p \le q$, we have $\operatorname{md} M_1 = \cdots = \operatorname{md} M_p = 2$ and (if p < q) $\operatorname{md} M_{p+1} = \cdots = \operatorname{md} M_q = 1$, i.e., the summands M_{p+1}, \ldots, M_q are *segments* (since they are indecomposable).

Therefore to solve the Szökefalvi-Nagy problem for md M = 2, it remains to give a geometrical description of all compact, convex, indecomposable bodies with md M = 2. This is made in Theorem 7 below. First we give some necessary definitions.

Definition 1. A compact, convex, indecomposable body $M \subset \mathbb{R}^n$ is said to be an *n*-dimensional *stack* if it is representable (up to a translate) in the following form. Let I_1, \ldots, I_n be *n* segments with a common endpoint 0 which are not contained in a hyperplane. Furthermore, let $F_j \subset I_j \oplus I_n$ be a compact, convex figure that contains the side I_j of the parallelogram $I_j \oplus I_n$ and at least one point of its opposite side, $j = 1, \ldots, n-1$. Finally, let $U_j = F_j \oplus L_{jn}$ where L_{jn} is the (n - 2)-dimensional subspace containing all segments I_1, \ldots, I_n except I_j and I_n . Then $M = U_1 \cap \cdots \cap U_{n-1}$.

Definition 2. A compact, convex, indecomposable body $M \,\subset R^n$ is said to be an *n*-dimensional *outcut* if it is representable (up to a translate) in the following form. Let I_1, \ldots, I_n be as above. For every two indices $i < j \leq n$ choose a compact, convex figure $G_{ij} \subset I_i \oplus I_j$ that contains both the segments I_i, I_j , but does not coincide with the parallelogram $I_i \oplus I_j$. Furthermore, let $V_{ij} = G_{ij} \oplus L_{ij}$ where L_{ij} is the (n-2)-dimensional subspace containing all segments I_1, \ldots, I_n except I_i, I_j . Then $M = \bigcap_{i < j} V_{ij}$.

Definition 3. A compact, convex, indecomposable body $M \subset \mathbb{R}^n$ is said to be an *n*-dimensional *stack-outcut* if it is representable (up to a translate) in the following form. Let I_1, \ldots, I_n be as above. Let *k* be an integer, $2 \le k < n$, and let $\varphi: \{k + 1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ be a map that is onto in the case k = 2. For every two indices $i < j \le k$ choose a compact, convex figure $G_{ij} \subset I_i \oplus I_j$ that contains both the segments I_i, I_j , but does not coincide with the parallelogram $I_i \oplus I_j$. Furthermore, for every index $j \ge k + 1$ choose a compact, convex figure $F_j \subset I_j \oplus I_{\varphi(j)}$ that contains the side I_j of the parallelogram $I_j \oplus I_{\varphi(j)}$ and at least one point of its opposite side. Finally, let $V_{ij} = G_{ij} \oplus L_{ij}$ and $U_j = F_j \oplus L_{j\varphi(j)}$. Then $M = (\bigcap_{i < j < k} V_{ij}) \cap (\bigcap_{j > k} U_j)$.

Definition 4. A polytope $M \subset R^4$ containing the origin in its interior (and any its translate) is said to be a *particular four-dimensional polytope* if there is a basis e_1 , e_2 , e_3 , e_4 of R^4 such that

$$M^* = \operatorname{conv}\{e_1, e_2, e_3, e_4, -e_1 - e_2, -e_1 - e_3, -e_2 - e_4, -e_3 - e_4, e_1 + e_2 + e_3 + e_4\}.$$

Theorem 7. Let $M \subset \mathbb{R}^n$ be a compact, convex, indecomposable body. The equality $\operatorname{md} M = 2$ holds in and only in the following five cases:

- (i) n = 2 and M is a compact, convex, two-dimensional figure distinct from a parallelogram.
- (ii) $n \ge 3$ and M is an n-dimensional stack.
- (iii) $n \ge 3$ and M is an n-dimensional outcut.
- (iv) $n \ge 4$ and M is an n-dimensional stack-outcut.
- (v) n = 4 and M is a particular four-dimensional polytope.

The proof is given in [12].

6. Proof of the Main Theorem

First we give estimates of the number c(M) for the bodies described in Definitions 1–4.

Lemma 4. Let $M \subset \mathbb{R}^n$ be an n-dimensional stack. Then $c(M) < \frac{3}{4} \cdot 2^n$.

Proof. We use the description of the stack given in Definition 1. Let e_1, \ldots, e_n be the endpoints of the segments I_1, \ldots, I_n distinct from 0, respectively. Denote by $S \subset \mathbb{R}^n$ the (n-1)-dimensional subspace containing I_1, \ldots, I_{n-1} . For every $t \in [0, 1]$ denote by $S^{(t)}$ the hyperplane of \mathbb{R}^n parallel to S and passing through the point te_n . Since for every $j = 1, \ldots, n-1$ the subspace L_{jn} is contained in S, the intersection $S^{(t)} \cap U_j$ coincides with $(S^{(t)} \cap F_j) \oplus L_{jn}$. Moreover, the intersection $I_j^{(t)} = S^{(t)} \cap F_j$ is a segment parallel to I_j , the length of $I_j^{(t)}$ being less than the length of I_j if t is close enough to 1 (since M is indecomposable and hence F_j does not coincide with the parallelogram $I_j \oplus I_n$). This implies

$$S^{(t)} \cap M = S^{(t)} \cap U_1 \cap \dots \cap U_{n-1}$$

= $\bigcap_{j=1}^{n-1} ((S^{(t)} \cap F_j) \oplus L_{jn}) = \bigcap_{j=1}^{n-1} (I_j^{(t)} \oplus L_{jn}),$

i.e., $P^{(t)} = S^{(t)} \cap M$ is an (n - 1)-dimensional parallelotope with edges parallel to the segments I_1, \ldots, I_{n-1} .

For t = 0 the parallelotope $P^{(0)}$ is the *lower* base of the stack M. For t = 1 the parallelotope $P^{(1)}$ is the *upper* base, i.e., $P^{(1)} = M \cap \Gamma$ where $\Gamma \subset R^n$ is the support

hyperplane of *M* parallel to the lower base. We note that $P^{(1)}$ is an (n-1)-dimensional parallelotope which may degenerate into a parallelotope of a smaller dimension or into a point, and the edges of $P^{(1)}$ are parallel to ones of the lower base. Denote by *p* the vector emanating from the center of the upper base of *M* and going to the center of the lower base. Since the sides of the upper base are *smaller* than the corresponding sides of the lower base, the direction of the vector *p* illuminates the upper base $P^{(1)}$ and its neighborhood. In other words, there is a number τ , $0 < \tau < 1$, such that the part of bd *M* above $S^{(\tau)}$ is illuminated by *p*.

Consider now 2^{n-1} vectors $\pm e_1 \pm \cdots \pm e_{n-1}$. These vectors illuminate all vertices (and hence all relative boundary points) of the (n-1)-dimensional parallelotope $P^{(\tau)}$. Consequently there is a positive number λ such that the directions of 2^{n-1} vectors $\pm e_1 \pm \cdots \pm e_{n-1} + \lambda e_n$ also illuminate the relative boundary of $P^{(\tau)}$. Hence, these 2^{n-1} vectors illuminate the relative boundary of $P^{(t)}$ for $0 < t < \tau$. Moreover, the 2^{n-1} vectors considered illuminate all points of the lower base $P^{(0)}$. Thus $2^{n-1} + 1$ vectors $p, \pm e_1 \pm \cdots \pm e_{n-1} + \lambda e_n$ illuminate the whole boundary of M, i.e., $c(M) \leq 2^{n-1} + 1 < \frac{3}{4} \cdot 2^n$.

Remark. In fact, the obtained estimate $c(M) \le 2^{n-1} + 1$ is exact. Indeed, consider all vertices of the lower base $P^{(0)}$ and the center of the upper base. Every two of these $2^{n-1} + 1$ points is *antipodal*, and therefore $c(M) \ge 2^{n-1} + 1$. This proves the equality $c(M) = 2^{n-1} + 1$.

Lemma 5. Let $M \subset \mathbb{R}^n$ be an n-dimensional outcut. Then $c(M) < \frac{3}{4} \cdot 2^n$.

Proof. We use the description of the outcut given in Definition 2. Let e_1, \ldots, e_n be the endpoints of the segments I_1, \ldots, I_n distinct from 0, respectively. Consider all vectors of the kind $-v + \lambda(e_1 + \cdots + e_n)$ where λ is a fixed positive number and v is the sum of an *odd* number of the summands e_1, \ldots, e_n . The number of the vectors of this kind is equal to

$$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots = 2^{n-1}.$$

Supplementing one more vector $e_1 + \cdots + e_n$, we obtain $2^{n-1} + 1$ vectors. We show that for $\lambda > 0$ small enough the directions of these vectors illuminate the whole boundary of the outcut M.

Indeed, consider the figure G_{ij} . Every point $x \in (\text{rint } G_{ij}) \cup I_i \cup I_j$ is illuminated by the direction of the vector $e_1 + \cdots + e_n$, since the point $x + \lambda(e_1 + \cdots + e_n)$ belongs to the interior of M.

Now consider a point $y \in G_{ij}$ that does not belong to $(\operatorname{rint} G_{ij}) \cup I_i \cup I_j$. Denote the coordinates of y in the basis e_1, \ldots, e_n by y_1, \ldots, y_n . Both the numbers y_i, y_j are positive and at least one of them is less than 1 (since G_{ij} is distinct from the parallelogram $I_i \oplus I_j$). Let, for definiteness, $0 < y_i < 1$. Then the direction of the vector $e_j + \lambda(e_1 + \cdots + e_n)$ illuminates the point y. This shows that all points of the set $\bigcup_{i,j} G_{ij}$ are illuminated by the $2^{n-1} + 1$ vectors considered. In other words, if $x \in \operatorname{bd} M$ belongs to a two-dimensional subspace of \mathbb{R}^n spanned by two vectors taken from e_1, \ldots, e_n , then y is illuminated.

Now consider a point $y \in bd M$ that belongs to a four-dimensional subspace of \mathbb{R}^n spanned by four vectors taken from e_1, \ldots, e_n , say, y belongs to the subspace spanned by e_1, e_2, e_3, e_4 . We may suppose that y does not belong to a two-dimensional subspace as above, i.e., at least *three* of its coordinates y_1, y_2, y_3, y_4 are distinct from zero. Moreover, no more than one of the coordinates is equal to 1 (since any figure G_{ij} is distinct from the parallelogram $I_i \oplus I_j$). Let, for definiteness, $0 \le y_1 < 1, 0 < y_4 \le 1$, and $0 < y_2 \le y_3 < 1$. Then the direction of the vector $-(e_2 + e_3 + e_4) + \lambda(e_1 + \cdots + e_n)$ illuminates the point y (as in the cases $y \in S$ and $y \notin S$ where S is the three-dimensional subspace of \mathbb{R}^n spanned by four vectors taken from e_1, \ldots, e_n , then y is illuminated by the direction of at least one of the $2^{n-1} + 1$ vectors considered.

Similarly, if $y \in bd M$ belongs to a six-dimensional subspace of \mathbb{R}^n spanned by six vectors taken from e_1, \ldots, e_n , then y is illuminated by at least one of the $2^{n-1} + 1$ directions considered, etc.

Remark. In fact, the obtained estimate $c(M) \leq 2^{n-1} + 1$ is exact. We show this for a particular outcut (a similar reasoning can be realized for any outcut). Namely, let e_1, \ldots, e_n be a basis in \mathbb{R}^n . Furthermore, let α be a number with $0 < \alpha < 1$. For every pair of indices i < j taken from the set $\{1, \ldots, n\}$, we denote the set conv $\{0, e_i, e_j, \alpha e_i + \alpha e_j\}$ by G_{ij} and construct the outcut $M' \subset \mathbb{R}^n$ with these sets $G_{ij}, 1 \leq i < j \leq n$. Denote by F the set contained in bd M' that includes the points $0, e_1, \ldots, e_n$ and all points $x_1e_1 + \cdots + x_ne_n$ such that an *odd* number (not lesser than three) of coordinates x_1, \ldots, x_n take the value α , other coordinates being equal to zero. Every two points of the set F are *antipodal* boundary points of the outcut M'. For example, consider the points

$$a = (\alpha, \alpha, \alpha, 0, \dots, 0), \qquad b = (\alpha, \alpha, \alpha, \alpha, \alpha, 0, \dots, 0).$$

The point *b* belongs to the support hyperplane $x_4 + x_5 = 2\alpha$, and the point *a* belongs to the parallel support hyperplane $x_4 + x_5 = 0$, i.e., the points *a* and *b* are antipodal (similarly for any two points of the set *F*). Since the number of the points of the set *F* is equal to $2^{n-1} + 1$, we have $c(M') \ge 2^{n-1} + 1$. This proves the equality $c(M') = 2^{n-1} + 1$.

Lemma 6. Let $M \subset \mathbb{R}^n$ be an *n*-dimensional stack-outcut. Then the inequality $c(M) < \frac{3}{4} \cdot 2^n$ holds.

Proof. The stack-outcut is a "combination" of the stack and the outcut, and the proof of Lemma 6 is obtained as a union of the proofs of Lemmas 4 and 5. We only indicate the vectors whose directions illuminate the boundary of the stack-outcut, and do not repeat details of the previous reasonings.

We use the description of the stack-outcut given in Definition 3. Let e_1, \ldots, e_n be the endpoints of the segments I_1, \ldots, I_n distinct from 0, respectively. Consider all vectors of the kind $-v \pm e_{j+1} \pm \cdots \pm e_n + \lambda(e_1 + \cdots + e_n)$ where λ is a fixed positive number and v is the sum of an *odd* number of the vectors e_1, \ldots, e_k . The number of these vectors is equal to 2^{n-1} . We add the vector $e_1 + \cdots + e_n$. The directions of these $2^{n-1} + 1$ vectors illuminate the whole boundary of M.

Lemma 7. Let $M \subset R^4$ be a four-dimensional particular polytope. Then $c(M) < \frac{3}{4} \cdot 2^4$.

Proof. The polar polytope M^* has *nine* vertices:

 $e_1, e_2, e_3, e_4, -e_1 - e_2, -e_1 - e_3, -e_2 - e_4, -e_3 - e_4, e_1 + e_2 + e_3 + e_4$

(by Definition 4). In [18] is shown that M^* has *eighteen* edges:

$$\begin{array}{l} [e_1, e_1 + e_2 + e_3 + e_4], \ [e_2, e_1 + e_2 + e_3 + e_4], \ [e_3, e_1 + e_2 + e_3 + e_4], \\ [e_4, e_1 + e_2 + e_3 + e_4], \ [-e_1 - e_2, -e_1 - e_3], \ [-e_1 - e_2, -e_2 - e_4], \\ [-e_1 - e_3, -e_3 - e_4], \ [-e_2 - e_4, -e_3 - e_4], \ [e_1, -e_2 - e_4], \ [e_1, -e_3 - e_4], \\ [e_2, -e_3 - e_4], \ [e_3, -e_2 - e_4], \ [e_1, e_4], \ [e_2, -e_1 - e_3], \\ [e_3, -e_1 - e_2], \ [e_4, -e_1 - e_2], \ [e_4, -e_1 - e_3], \ [e_2, e_3]. \end{array}$$

Furthermore, M^* has *fifteen* two-dimensional faces: nine parallelograms,

$$\begin{bmatrix} e_1, -e_3 - e_4, -e_1 - e_3, e_4 \end{bmatrix}, \begin{bmatrix} e_1, -e_2 - e_4, -e_1 - e_2, e_4 \end{bmatrix}, \\ \begin{bmatrix} e_3, -e_1 - e_2, e_4, e_1 + e_2 + e_3 + e_4 \end{bmatrix}, \begin{bmatrix} e_2, -e_1 - e_3, e_4, e_1 + e_2 + e_3 + e_4 \end{bmatrix}, \\ \begin{bmatrix} e_3, -e_2 - e_4, e_1, e_1 + e_2 + e_3 + e_4 \end{bmatrix}, \begin{bmatrix} e_2, -e_4 - e_3, e_1, e_1 + e_2 + e_3 + e_4 \end{bmatrix}, \\ \begin{bmatrix} e_2, -e_4 - e_3, -e_4 - e_2, e_3 \end{bmatrix}, \begin{bmatrix} e_2, -e_1 - e_3, -e_1 - e_2, e_3 \end{bmatrix}, \\ \begin{bmatrix} -e_1 - e_2, -e_1 - e_3, -e_4 - e_2 \end{bmatrix},$$

and six triangles,

$$[e_1, e_4, e_1 + e_3 + e_3 + e_4], [e_2, e_3, e_1 + e_3 + e_3 + e_4], [e_1, -e_2 - e_4, -e_3 - e_4], \\ [e_4, -e_1 - e_2, -e_1 - e_3], [e_2, -e_1 - e_3, -e_3 - e_4], [e_3, -e_1 - e_2, -e_2 - e_4].$$

Note that six two-dimensional faces (four parallelograms and two triangles) adjoin every vertex of M^* . Three two-dimensional faces (two parallelograms and one triangle) adjoin every edge.

By Euler's theorem, $c_0 - c_1 + c_2 - c_3 = 0$ where c_i is the number of *i*-dimensional faces of the polytope M^* , i = 1, 2, 3, 4. Since $c_0 = 9, c_1 = 18, c_2 = 15$, we obtain $c_3 = 6$, i.e., M^* has *six* three-dimensional faces W_1, \ldots, W_6 . Let Π_1, \ldots, Π_6 be open half-spaces with the boundaries through 0 such that $\Pi_i \supset W_i$, $i = 1, \ldots, 6$. Then *every* face of M^* is contained in at least one of these open half-spaces (since every face is contained in a three-dimensional one). This means that $c^*(M^*) \le 6$. By Lemma 1, we have $c(M) = 6 < \frac{3}{4} \cdot 2^4$.

Remark. In fact, $c^*(M^*) = 6$ (and hence c(M) = 6), since no pair of three-dimensional faces of M^* is situated in one open half-space (with the boundary hyperplane through 0).

Proof of the Main Theorem. Let $M \subset \mathbb{R}^n$ be a compact, convex body with $\operatorname{md} M = 2$. Consider its decomposition $M = M_1 \oplus \cdots \oplus M_q$ into the direct vector sum of compact, convex, indecomposable sets. We may suppose that for an integer p, $1 \le p \le q$, we have md $M_1 = \cdots = \text{md } M_p = 2$ and (if p < q) md $M_{p+1} = \cdots = \text{md } M_q = 1$, i.e., the summands M_{p+1}, \ldots, M_q are segments. Denote the dimension of the set M_k by n_k , $k = 1, \ldots, p$. If we verify that for the sets M_1, \ldots, M_p Martini's estimate holds, i.e., $c(M_k) \leq \frac{3}{4} \cdot 2^{n_k}$ for $k = 1, \ldots, p$, then we obtain

$$\begin{aligned} c(M) &= c(M_1) \cdot \cdots \cdot c(M_p) \cdot 2^{q-p} \\ &\leq \left(\frac{3}{4} \cdot 2^{n_1}\right) \cdot \cdots \cdot \left(\frac{3}{4} \cdot 2^{n_p}\right) \cdot 2^{q-p} = \left(\frac{3}{4}\right)^p \cdot 2^n \leq \frac{3}{4} \cdot 2^n \end{aligned}$$

(since $n = n_1 + \cdots + n_p + q - p$), which proves the Main Theorem. Thus it remains to verify that the equalities $c(M_k) \le \frac{3}{4} \cdot 2^{n_k}$, $k = 1, \ldots, p$, hold. To this end, we consider separately cases (i)–(v) of Theorem 7.

- (i) $n_k = 2$ and M_k is a two-dimensional figure distinct from a parallelogram. In this case $c(M_k) = 3 = \frac{3}{4} \cdot 2^{n_k}$, i.e., Martini's estimate is exact.
- (ii) $n_k \ge 3$ and M_k is an n_k -dimensional stack. In this case, by Lemma 4, $c(M_k) < \frac{3}{4} \cdot 2^{n_k}$, i.e., Martini's estimate is strict.
- (iii) $n_k \ge 3$ and M_k is an n_k -dimensional outcut. In this case, by Lemma 5, $c(M_k) < \frac{3}{4} \cdot 2^{n_k}$, i.e., Martini's estimate is strict.
- (iv) $n_k \ge 4$ and M_k is an n_k -dimensional stack-outcut. In this case, by Lemma 6, we also have $c(M_k) < \frac{3}{4} \cdot 2^{n_k}$, i.e., Martini's estimate is strict.
- (v) $n_k = 4$ and M_k is a four-dimensional particular polytope. In this case, by Lemma 7, $c(M_k) < \frac{3}{4} \cdot 2^4 = \frac{3}{4} \cdot 2^{n_k}$, i.e., Martini's estimate is strict.

Remark. The above reasoning shows that for a compact, convex body $M \subset \mathbb{R}^n$ with $\operatorname{md} M = 2$, the equality $c(M) = \frac{3}{4} \cdot 2^n$ holds if and only if $M = Q \oplus I_1 \oplus \cdots \oplus I_{n-2}$ where Q is a two-dimensional figure distinct from a parallelogram and all I_j are segments. In all other cases $c(M) < \frac{3}{4} \cdot 2^n$.

References

- E. Baladze: A complete solution of the Szökefalvi-Nagy problem for zonohedra. Soviet Math. Dokl. 34(3) (1987), 458–461.
- 2. E. Baladze: A solution of the Szökefalvi-Nagy problem for zonoids. Soviet Math. Dokl. 41 (1990).
- 3. E. Baladze and V. Boltyanski: Belt bodies and the Helly dimension. Sb. Math. 186 (1995).
- K. Bezdek: The problem of illumination of the boundary of a convex body by affine subspaces. *Mathematica* 38 (1991), 362–375.
- 5. K. Bezdek: Hadwiger's covering conjecture and its relatives. Amer. Math. Monthly 99(10) (1992), 954–956.
- K. Bezdek: Hadwiger–Levi's covering problem revisited. Ed.: J. Pach, New Trends in Discrete and Computational Geometry. Springer-Verlag, New York, 1993, pp. 199–233.
- K. Bezdek and T. Bisztriczki: A proof of Hadwiger's covering conjecture for dual cyclic polytopes. *Geom. Dedicata* 68 (1997), 29–41.
- 8. V. Boltyanski: The problem of illuminating the boundary of a convex body (in Russian). *Izv. Mold. Fil. AN SSSR* **10**(76) (1960), 77–84.
- 9. V. Boltyanski: On certain classes of convex sets. Soviet Math. Dokl. 17(1) (1976), 10-13.
- 10. V. Boltyanski: Helly's theorem for H-convex sets. Soviet Math. Dokl. 17(1) (1976), 78-81.
- V. Boltyanski: Generalization of a certain theorem of B. Szökefalvi-Nagy. Soviet Math. Dokl. 17(3) (1976), 674–677.
- 12. V. Boltyanski: A new step in the solution of the Szökefalvi-Nagy problem. *Discrete Comput. Geom.* 8 (1992), 27–49.

Solution of the Illumination Problem for Bodies with md M = 2

- 13. V. Boltyanski: A solution of the illumination problem for belt bodies. Math. Notes 58 (1996).
- 14. V. Boltyanski: Hindering systems for convex bodies. Sb. Math. 188(3-4) (1997), 327-339.
- V. Boltyanski and T. Chabukiani: Solution of the Szökefalvi-Nagy problem for three-dimensional convex bodies. *Soviet Math. Dokl.* 30(3) (1984), 755–757.
- V. Boltyanski and H. Martini: Covering belt bodies by smaller homothetical copies. *Beiträge Algebra Geom.* (2) (2001).
- V. Boltyanski, H. Martini, and P. Soltan: *Excursions into Combinatorial Geometry*. Springer-Verlag, Berlin, 1997.
- V. Boltyanski and E. Morales Amaya: Cardinalities of primitive fixing systems for convex bodies. *Discrete Comput. Geom.* 24(2–3) (2000), 209–218.
- V. Boltyanski and P. Soltan: A solution of Hadwiger's problem for zonoids. *Combinatorica* 12 (1992), 381–388.
- A. Charazishvili: On the problem of illumination (in Russian). Soobshch. Akad. Nank. Gruzin. 71(1) (1973), 289–291.
- I. Gohberg and A. Markus: One problem on covering convex figures by similar figures (in Russian). *Izv.* Mold. Fil. AN SSSR 10(76) (1960), 87–90.
- H. Hadwiger: Überdeckung einer Menge durch Mengen kleineren Durchmessers. *Comment. Math. Helv.* 18 (1945/46), 73–75.
- 23. H. Hadwiger: Ungelöste Probleme, Nr. 20. Elem. Math. 12 (1957), 121.
- 24. H. Hadwiger: Ungelöste Probleme, Nr. 38. Elem. Math. 15 (1960), 130-131.
- J. Kincses: The classification of 3- and 4-Helly-dimensional convex bodies. *Geom. Dedicata* 22 (1987), 283–301.
- 26. M. Lassak: Covering three-dimensional convex bodies with smaller homothetical copies. *Tagungsbericht* 32 (1984), *Math. Forschungsinstitut Oberwolfach.*
- F. W. Levi: Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns. Arch. Math. 6 (1955), 369–370.
- H. Martini: Some results and problems around zonotopes. *Intuitive Geometry*. Coll. Math. Soc. János Bolyai 48. North-Holland, Amsterdam, 1987, pp. 383–418.
- 29. P. Soltan: Helly's theorem for d-convex sets (in Russian). Dokl. Akad. Nauk SSSR 205(3) (1972), 537-539.
- 30. P. Soltan and V. Soltan: On the X-raying of convex bodies. Soviet Math. Dokl. 33(1) (1986), 42-44.
- B. Szökefalvi-Nagy: Ein Satz über Parallelverschiebungen konvexer Körper. Acta Sci. Math. 15(3–4) (1954), 169–177.

Received August 23, 2000, and in revised form January 22, 2001. Online publication August 9, 2001.