Solution of the Illumination Problem for Bodies with md $M=2$

V. Boltyanski
El Centro de Investigación en Matematicas, A.P. 402, 36000 Guanajuato, GTO, Mexico boltian@cimat.mx

Abstract

We solve here the Gohberg-Markus-Hadwiger Covering Problem (or, what is the same, the illumination problem) for compact, convex bodies $M \subset R^{n}$ with md $M=2$. Moreover, we outline an idea for a complete solution, using md M.

1. Introduction

Let $M \subset R^{n}$ be a be a compact, convex body, let $q \in R^{n}$ be an arbitrary point, and let k be a real number with $0<k<1$. The image of M under the homothety with center q and ratio k is said to be a diminished copy of M. The least integer p such that M can be covered by p diminished copies of M is denoted by $b(M)$.

In 1957 Gohberg and Markus proved the following theorem (by singular conditions in the USSR, their article was not published until 1960 [21]).

Theorem 1. If $M \subset R^{2}$ is a compact, convex figure distinct from a parallelogram, then $b(M)=3$. For every parallelogram $b(M)=4$.

An equivalent theorem (in another form) was proved by Levi [27].
Observing that $b(M)=2^{n}$ for every n-dimensional parallelotope, Gohberg and Markus formulated the following problem:

Prove that $b(M) \leq 2^{n}$ for every compact, convex body $M \subset R^{n}$, the equality being held only for parallelotopes.

The same problem was formulated by Hadwiger [23], based on [27]. Therefore we call it the GMH problem.

Boltyanski [8] formulated the Illumination Problem. A boundary point a of a convex
body $M \subset R^{n}$ is illuminated by the direction of a nonzero vector $e \in R^{n}$ if, for $\lambda>0$ small enough, the point $a+\lambda e$ belongs to the interior of M. Furthermore, we say that the directions of nonzero vectors e_{1}, \ldots, e_{p} illuminate the boundary of M if every point $x \in \operatorname{bd} M$ is illuminated by at least one of these directions. The least integer p such that there exist nonzero vectors e_{1}, \ldots, e_{p}, whose directions illuminate the boundary of M, is denoted by $c(M)$.

Theorem 2 [8]. For every compact, convex body $M \subset R^{n}$, the equality $b(M)=c(M)$ holds.

This theorem allows us to give another form of the GMH problem:

Illumination Problem. Prove that $c(M) \leq 2^{n}$ for every compact, convex body $M \subset$ R^{n}, the equality being held only for parallelotopes.

Furthermore, Hadwiger [24] formulated the problem to illuminate the boundary of a compact, convex body $M \subset R^{n}$ by a minimal number of point light sources situated in R^{n}. For compact, convex bodies in R^{n}, the Levi problem [27], the GMH problem [21], [23], the illumination problem [8], and the problem of illuminating by point sources [24] are equivalent (see Theorem 34.3 in [17]).

There are some partial results in this direction. If a compact, convex body $M \subset R^{n}$ is smooth (this means that every boundary point a is regular, i.e., there is only one support hyperplane of M through a), then $b(M)=n+1$. This may be implied from [22]. In [8] Boltyanski proved a more general theorem: If a compact, convex body $M \subset R^{n}$ has no more than n nonregular boundary points, then $b(M)=n+1$. For $n=3$, Charazishvili [20] obtained a finer result: If a compact, convex body $M \subset R^{3}$ has no more than four nonregular boundary points, then $b(M)=4$.

Lassak [26] proved that if a compact, convex three-dimensional body M is centrally symmetric, then $b(M) \leq 8$. In the same paper [26] Lassak proved that for every threedimensional body M of constant width the inequality $b(M) \leq 6$ holds. Furthermore, Bezdek [4] justified the illumination problem for every convex polytope $M \subset R^{3}$ with affine symmetry, i.e., $c(M) \leq 8$ in that case. Using information recently obtained, Dekster proved that $c(M) \leq 8$ for every three-dimensional compact, convex body that is symmetric about a plane.

Martini [28] established that for every n-dimensional zonotope distinct from a parallelotope the inequality $c(M) \leq 3 \cdot 2^{n-2}$ holds. We call this inequality Martini's estimate. Boltyanski and Soltan proved [19] that Martini's estimate holds for all zonoids and Boltyanski [13] established this estimate for all belt bodies. In [16] Boltyanski and Martini described all belt bodies for which Martini's estimate holds and proved the inequality $c(M) \leq 5 \cdot 2^{n-3}$ for other belt bodies.

We note that Bezdek [5] found the dual formulation of the illumination problem (see Lemma 1 in Section 4 below). With the help of that formulation, Bezdek [6] gave dual proofs for several of the above-mentioned results. Finally, in [7] Bezdek and Bisztriczki proved that the illumination problem has a positive solution for all n-dimensional cyclic polytopes.

2. The Functional md

In 1976 Boltyanski introduced the functional md [10]. Let H be a subset of the unit sphere S^{n-1} that is not one-sided, i.e., H is not contained in any closed hemisphere of S^{n-1}. In other words, there is no vector $e \neq 0$ with $\langle a, e\rangle \leq 0$ for every $a \in H$.

Furthermore, let $a_{0}, a_{1}, \ldots, a_{m}$ be vectors in $R^{n}, 1 \leq m \leq n$. We say that the vectors are minimally dependent if
(i) they are positively dependent (i.e., there are positive coefficients $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}$ with $\lambda_{0} a_{0}+\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}=0$);
(ii) any m of the vectors $a_{0}, a_{1}, \ldots, a_{m}$ are linearly independent.

In other words, $a_{0}, a_{1}, \ldots, a_{m}$ are minimally dependent if they are the vertices of an m-dimensional simplex that contains the origin in its relative interior.

Finally, by md H we denote the greatest integer m such that H contains m minimally dependent vectors ($\mathrm{md} H=0$ if there is no system of minimally dependent vectors in $H)$. Note that $0 \leq \mathrm{md} H \leq n-1$ if H is one-sided, whereas $1 \leq \mathrm{md} H \leq n$ if H is not one-sided.

The first result obtained with the help of md H was a generalization of the classical Helly theorem. We formulate this result, since it is connected with the illumination problem.

Let $H \subset S^{n-1}$ be a subset that is not one-sided. A closed half-space P of R^{n} is said to be H-convex if its outward unit normal belongs to H. Furthermore, a closed set $M \subset R^{n}$ is said to be H-convex [9] if it is representable as the intersection of a family of H-convex half-spaces.

Theorem 3 [10]. Let M_{1}, \ldots, M_{q} be H-convex sets in $R^{n}, q \geq \mathrm{md} H+2$. If every md $H+1$ of the sets has a point in common, then $M_{1} \cap \cdots \cap M_{q} \neq \emptyset$.

A similar theorem holds for any infinite family of H-convex sets if at least one of them is compact.

Now let $M \subset R^{n}$ be a compact, convex body. By $H(M) \subset S^{n-1}$ we denote the set of all vectors, each of which is the unit outward normal of M at a regular boundary point. For brevity, the integer $\mathrm{md} H(M)$ is denoted by $\mathrm{md} M$. The set $H(M)$ is not one-sided, and therefore $1 \leq \operatorname{md} M \leq n$.

Furthermore, we denote the family of all translates of M by $T(M)$ and its Helly dimension [29] by him $T(M)$, i.e., the minimal integer p such that for every subfamily $\left\{M_{1}, \ldots, M_{q}\right\} \subset T(M)$ with $q>p+1$ the following assertion holds: if every $p+1$ of the sets M_{1}, \ldots, M_{q} has a point in common, then $M_{1} \cap \cdots \cap M_{q} \neq \emptyset$.

Szökefalvi-Nagy [31] established the following result:

Theorem 4. Let $M \subset R^{n}$ be a compact, convex body. The equality $\operatorname{him} T(M)=1$ holds if and only if M is an n-dimensional parallelotope.

It is easily shown that $\mathrm{md} M=1$ if and only if M is a parallelotope. Thus the Szökefalvi-Nagy theorem may be formulated in the following form: The equality him
$T(M)=1$ holds if and only if $\mathrm{md} M=1$. In [10] there is a generalization of this assertion for arbitrary $\mathrm{md} M$:

Theorem 5. For every compact, convex body $M \subset R^{n}$, the equality $\operatorname{him} T(M)=$ md M holds.

We remark that the Szökefalvi-Nagy theorem contains little more than the particular case $\mathrm{md} M=1$ of Theorem 5 . Indeed, Theorem 4 contains a geometrical description of all compact, convex bodies with him $T(M)=1$. In this connection the following problem arises:

Szökefalvi-Nagy Problem: Give a geometrical description of all compact, convex bodies with $\operatorname{him} T(M)=m$ (i.e., $\operatorname{md} M=m$) for $m=2, \ldots, n$.
(Note that the term Szökefalvi-Nagy problem was introduced by Boltyanski.) This problem is solved in [15] and [12] for $m=2$. The following theorem [15] describes all three-dimensional bodies with $\mathrm{md} M=2$; the stacks and the outcuts mentioned in its statement are defined below.

Theorem 6. For a compact, convex body $M \subset R^{3}$ that is distinct from a parallelotope, the equality $\mathrm{md} M=2$ holds in and only in the following three cases: (a) M is the direct vector sum of a segment and a two-dimensional figure distinct from a parallelogram; (b) M is a stack; (c) M is an outcut.

Now we give descriptions of the stacks and outcuts mentioned in Theorem 6. A compact, convex body $M \subset R^{3}$ is a stack if it is representable (up to a translate) in the following form. Let I_{1}, I_{2}, I_{3} be three segments with a common endpoint 0 which are not contained in a plane. Denote the parallelogram $I_{i} \oplus I_{j}$ by $P_{i j}$. Let $F_{1} \subset P_{13}$ (respectively, $F_{2} \subset P_{23}$) be a compact, convex figure that contains the side I_{1} (respectively, I_{2}) of the parallelogram and at least one point of its opposite side, but does not contain this opposite side. Furthermore, let U_{1} (respectively, U_{2}) be the infinite cylinder with the basis F_{1} (respectively, F_{2}) and the generator parallel to I_{2} (respectively, I_{1}). Then $M=U_{1} \cap U_{2}$.

A compact, convex body $M \subset R^{3}$ is an outcut if it is representable (up to a translate) in the following form. Let I_{1}, I_{2}, I_{3} be as above. For every two indices $i<j=2,3$ choose a compact, convex figure $G_{i j} \subset I_{i} \oplus I_{j}$ that contains both the segments I_{i}, I_{j}, but does not coincide with the parallelogram $I_{i} \oplus I_{j}$. Furthermore, let $V_{i j}$ be the infinite cylinder with the basis $G_{i j}$ and the generator parallel to the segment (taken from I_{1}, I_{2}, I_{3}) distinct from I_{i}, I_{j}. Then $M=V_{12} \cap V_{13} \cap V_{23}$.

The articles [1]-[3], [11], and [25] contain further results on the Szökefalvi-Nagy problem. Some other applications of $\mathrm{md} M$ are given in Section 44 of [17].

3. An Idea of a Solution

First we discuss the illumination problem for the case $n=3$. Let $M \subset R^{3}$ be a compact, convex body. If $\mathrm{md} M=1$, then $c(M)=8$.

If $\mathrm{md} M=2$, then M is one of the bodies described in Theorem 6. It is easily
shown that in case (a) the equality $c(M)=6$ holds. Indeed, let $M=I \oplus F$ where $I=[a, b]$ is a segment and F is a compact, convex two-dimensional figure distinct from a parallelogram. The cylinder M has two bases $a \oplus F$ and $b \oplus F$. It is necessary to have three directions to illuminate all points of the base $a \oplus F$. None of these directions illuminates any point of the opposite base $b \oplus F$. Therefore it is necessary to have three more directions to illuminate all points of the base $b \oplus F$. Thus $c(M)=6$.

Furthermore, if we have case (b) of Theorem 6, i.e., M is a stack, then $c(M)=5$. Indeed, in the above description of the stack, denote by e_{1}, e_{2}, e_{3} the endpoints of the segments I_{1}, I_{2}, I_{3} distinct from 0 , respectively. We say that $I_{1} \oplus I_{2}$ is the lower base of the stack M and denote its upper base by P, i.e., $P=M \cap \Gamma$ where Γ is the support plane of M parallel to the lower base. We remark that P is a parallelogram (which may degenerate into a segment or a point) with the sides parallel to ones of the lower base. In addition, every side of P is smaller than the corresponding side of the lower base (since the figure F_{1} does not coincide with $I_{1} \oplus I_{3}$ and analogously for F_{2}). Therefore the stack M is not the direct vector sum as in case (a). Consider the directions of four vectors:

$$
\begin{array}{ll}
p_{1}=e_{1}+e_{2}+\lambda e_{3}, & p_{2}=e_{1}-e_{2}+\lambda e_{3}, \\
p_{3}=-e_{1}+e_{2}+\lambda e_{3}, & p_{4}=-e_{1}-e_{2}+\lambda e_{3} .
\end{array}
$$

If $\lambda>0$ is small enough, these four directions illuminate the whole boundary of M except for a small neighborhood of the upper base P. Furthermore, denote by p_{5} the vector emanating from the center of the upper base of M and going to the center of the lower base. Since the sides of the upper base are smaller than the corresponding sides of the lower base, the direction of the vector p_{5} illuminates the upper base P with its neighborhood. Thus the boundary of M is illuminated by five directions, i.e., $c(M) \leq 5$. On the other hand, consider the vertices $a_{1}, a_{2}, a_{3}, a_{4}$ of the lower base $I_{1} \oplus I_{2}$ and the center a_{5} of the upper base. Every two of these five points is antipodal, i.e., is situated in two parallel support planes of M. Consequently, no direction simultaneously illuminates two of the points $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, and therefore $c(M) \geq 5$. This proves the equality $c(M)=5$.

At last, if M is an outcut, then again $c(M)=5$. Indeed, let e_{1}, e_{2}, e_{3} be as above. Consider the directions of the vectors

$$
\begin{gathered}
q_{1}=-e_{1}+\lambda\left(e_{2}+e_{3}\right), \quad q_{2}=-e_{2}+\lambda\left(e_{1}+e_{3}\right), \quad q_{3}=-e_{3}+\lambda\left(e_{1}+e_{2}\right), \\
q_{4}=e_{1}+e_{2}+e_{3}, \quad q_{5}=-e_{1}-e_{2}-e_{3} .
\end{gathered}
$$

If $\lambda>0$ is small enough, these five directions illuminate the whole boundary of M. To prove this, we set $G=G_{12} \cup G_{13} \cup G_{23}, Q=\operatorname{cl}(\mathrm{bd} M \backslash G)$ and denote the intersection $Q \cap G_{i j}$ by $B_{i j}, i<j=2,3$. Let $g_{i j}$ be a point of the $\operatorname{arc} B_{i j}$ not belonging to the relative boundary of the parallelogram $I_{i} \oplus I_{j}, i<j=2$, 3. Then (if $\lambda>0$ is small enough) the direction of q_{1} illuminates the part of the arc B_{12} with endpoints b_{1}, g_{12} and the direction of q_{2} illuminates the part of the arc B_{12} with endpoints b_{2}, g_{12}. Therefore both directions illuminate all points of the arc B_{12}. By similar reasoning, the directions of q_{1}, q_{2}, q_{3} illuminate all points of the set $B_{12} \cup B_{13} \cup B_{23}$. Furthermore, every point of the set $G \backslash\left(B_{12} \cup B_{13} \cup B_{23}\right)$ is illuminated by the direction of q_{4}. Finally, all points of the set $Q \backslash\left(B_{12} \cup B_{13} \cup B_{23}\right)$ are illuminated by the direction of q_{5}. Thus the boundary of M is illuminated by five directions, i.e., $c(M) \leq 5$. On the other hand, consider the
five points $0, e_{1}, e_{2}, e_{3}, b$ where $b \in \operatorname{bd} V_{12} \cap \mathrm{bd} V_{13} \cap \mathrm{bd} V_{23}$ is distinct from 0 . Every two of these five points is antipodal, and therefore $c(M) \geq 5$. This proves the equality $c(M)=5$.

Combining cases (a)-(c) considered in Theorem 6, we obtain that if $\mathrm{md} M=2$, then $c(M) \leq 6$, i.e., $c(M) \leq 2^{3}-2^{1}$. Consequently, to solve the illumination problem for three-dimensional bodies, it is enough to establish that if $\mathrm{md} M=3$, then $c(M) \leq 7$, i.e., $c(M) \leq 2^{3}-2^{0}$. Nevertheless, the exotic nature of the bodies $M \subset R^{3}$ with $\operatorname{md} M=3$ remains outside the framework of this article.

The above discussion leads us to the following:
Hypothesis. If $M \subset R^{n}$ is a compact, convex body with $\mathrm{md} M=m \geq 2$, then $c(M) \leq 2^{n}-2^{n-m}$.

In this article we justify this hypothesis for $m=2$, i.e., we prove the following assertion:

Main Theorem. Let $M \subset R^{n}$ be a compact, convex body with $\mathrm{md} M=2$. Then $c(M) \leq 2^{n}-2^{n-2}$, i.e., Martini's estimate $c(M) \leq \frac{3}{4} \cdot 2^{n}$ holds.

To prove the Main Theorem, first we give the polar descriptions for the illumination problem and the functional md .

4. Polar Description of the Problem

In what follows we suppose that R^{n} is an n-dimensional, vectorial Euclidean space that is self-adjoint (i.e., the scalar product is introduced in R^{n}).

For every point $x \in R^{n}$ distinct from the origin 0 , we denote its polar hyperplane by x^{*}, i.e., $x^{*}=\{y:\langle x, y\rangle=1\}$. Similarly, for every hyperplane $\Gamma \subset R^{n}$ not containing 0 , we denote its polar point (i.e., the point for which the polar hyperplane coincides with Γ) by Γ^{*}. Furthermore, for every compact, convex body containing 0 in its interior, we denote its polar body by M^{*} :

$$
M^{*}=\{y:\langle y, a\rangle \leq 1 \text { for all } a \in M\}
$$

Let $M \subset R^{n}$ be a compact, convex body containing 0 in its interior, and let M^{*} be its polar body. Let P_{1}, \ldots, P_{k} be half-spaces of R^{n} with $0 \in \operatorname{bd} P_{i}, i=1, \ldots, k$. We say that the system of half-spaces $\left\{P_{1}, \ldots, P_{k}\right\}$ co-illuminates the body M^{*} if, for every proper face F of M^{*} (i.e., $F \neq M^{*}$), there is an index $i \in\{1, \ldots, k\}$ such that $F \subset$ int P_{i}. By $c^{*}\left(M^{*}\right)$ we denote the least integer k for which there exists a co-illuminating system $\left\{P_{1}, \ldots, P_{k}\right\}$ for the body M^{*}.

Lemma 1. For every compact, convex body $M \subset R^{n}$ containing the origin in its interior, the equality $c(M)=c^{*}\left(M^{*}\right)$ holds.

This lemma is already known. For example, Soltan and Soltan [30] applied this lemma in their solution of the X-raying problem for three-dimensional polytopes. Moreover,
there is a stronger form of this lemma in [4]. Nevertheless, for completeness, we give a proof of this lemma.

Proof. Denote the integer $c(M)$ by k, and let p_{1}, \ldots, p_{k} be unit vectors whose directions illuminate the boundary of M. Consider the half-spaces P_{1}, \ldots, P_{k} with outward normals p_{1}, \ldots, p_{k}, respectively, which contain the origin in their boundary hyperplanes:

$$
P_{i}=\left\{x:\left\langle p_{i}, x\right\rangle \leq 0\right\}, \quad i=1, \ldots, k
$$

Let F be a proper face of the body M^{*} and let Γ be a support hyperplane of M^{*} that contains F. Then $x=\Gamma^{*}$ is a boundary point of M. For every point $z \in F$ the equality $\langle z, x\rangle=1$ holds. Let $j \in\{1, \ldots, k\}$ be an index such that the direction of the vector p_{j} illuminates the point $x \in \operatorname{bd} M$, i.e., $x+\lambda p_{j} \in \operatorname{int} M$ for $\lambda>0$ small enough. We fix such a number λ. For each point x^{\prime} contained in a small neighborhood of $x+\lambda p_{j}$ the inequality $\left\langle z, x^{\prime}\right\rangle \leq 1$ holds, and therefore $\left\langle z, x+\lambda p_{j}\right\rangle<1$. Since $\langle z, x\rangle=1$, we have $\left\langle z, \lambda p_{j}\right\rangle<0$, and consequently $\left\langle z, p_{j}\right\rangle<0$. This means that $z \in \operatorname{int} P_{j}$. This is true for every point $z \in F$, and hence $F \subset \operatorname{int} P_{j}$. Thus the system $\left\{P_{1}, \ldots, P_{k}\right\}$ co-illuminates the body M^{*}, i.e., $c^{*}\left(M^{*}\right) \leq c(M)$.

We now prove the inverse inequality. Denote the integer $c^{*}\left(M^{*}\right)$ by l, and let Q_{1}, \ldots, Q_{l} be half-spaces with the boundaries through 0 which co-illuminate the body M^{*}. Denote by q_{1}, \ldots, q_{l} the unit outward normals of the half-spaces Q_{1}, \ldots, Q_{l}, respectively. We show that the directions of the vectors q_{1}, \ldots, q_{l} illuminate the boundary of M.

Indeed, let $u \in \operatorname{bd} M$. Then u^{*} is a support hyperplane of the body M^{*}. The intersection $G=u^{*} \cap M^{*}$ is a proper face of the body M^{*}. Let $j \in\{1, \ldots, l\}$ be an index for which $G \subset \operatorname{int} Q_{j}$, i.e., $\left\langle v, q_{j}\right\rangle<0$ for every point $v \in G$. Since the set G is compact, there exists a number $\mu>0$ such that $\left\langle v, q_{j}\right\rangle<-\mu$ for every $v \in G$. Hence there exists a neighborhood W of G such that $\left\langle v, q_{j}\right\rangle<0$ for every point $v \in W$. Moreover, since $\langle v, u\rangle \leq 1$ when $v \in M^{*}$, we have

$$
\left\langle v, u+\lambda q_{j}\right\rangle=\langle v, u\rangle+\left\langle v, \lambda q_{j}\right\rangle \leq 1+\lambda\left\langle v, q_{j}\right\rangle<1
$$

for every point $v \in M^{*} \cap W$ and every $\lambda>0$.
Furthermore, since $u^{*} \cap\left(M^{*} \backslash W\right)=\emptyset$, for every point $v \in M^{*} \backslash W$ the inequality $\langle v, u\rangle<1$ holds. By compactness of the set $M^{*} \backslash W$, there exists $\varepsilon>0$ such that $\langle v, u\rangle<1-\varepsilon$ for every $v \in M^{*} \backslash W$. This implies

$$
\left\langle v, u+\lambda q_{j}\right\rangle<1 \quad \text { for } \quad v \in M^{*} \backslash W
$$

if $\lambda>0$ is small enough. We fix such a number λ. Combining both the cases $v \in M^{*} \cap W$ and $v \in M^{*} \backslash W$, we conclude that for every point $v \in M^{*}$ the inequality $\left\langle v, u+\lambda q_{j}\right\rangle<1$ holds. This means that $u+\lambda q_{j}$ is an interior point of the body M, i.e., the point u is illuminated by the direction of the vector q_{j}. Thus the directions of the vectors q_{1}, \ldots, q_{l} illuminate the boundary of M, i.e., $c(M) \leq c^{*}\left(M^{*}\right)$.

Recall that a boundary point b of a convex body $N \subset R^{n}$ is exposed if there exists a support hyperplane Γ of N such that $\Gamma \cap N=\{b\}$. The set of all exposed boundary points of N is denoted by $\exp N$.

Lemma 2. Let $M \subset R^{n}$ be a compact, convex body with the origin 0 in its interior and let M^{*} be its polar body. Let, furthermore, $\Gamma \subset R^{n}$ be a support hyperplane of M^{*} that has only one point b in common with M^{*}. Then Γ^{*} is a regular boundary point of M and b^{*} is the only support hyperplane of M through Γ^{*}. Conversely, if Γ^{*} is a regular boundary point of M and b^{*} is the only support hyperplane of M through Γ^{*}, then b is an exposed boundary point of M^{*} and Γ is a support hyperplane of M^{*} which has only the point b in common with M^{*}. Moreover, in both the cases, b is the outward normal of M at the point Γ^{*}.

This lemma is already known (see, for example, Theorem 3.2 in [17]).
Now we can give a polar description of the functional md. Let $M \subset R^{n}$ be a compact, convex body containing the origin 0 in its interior, and let M^{*} be its polar body. By $\mathrm{md}^{*}\left(M^{*}\right)$ we denote the largest integer k for which there are points $b_{0}, b_{1}, \ldots, b_{k} \in$ $\exp \left(M^{*}\right)$ such that $\operatorname{conv}\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$ is a k-dimensional simplex containing 0 in its relative interior.

Lemma 3. Let $M \subset R^{n}$ be a compact, convex body containing the origin 0 in its interior, and let M^{*} be its polar body. Then $\mathrm{md}^{*}\left(M^{*}\right)=\operatorname{md} M$.

Proof. Denote the integer $\mathrm{md}^{*}\left(M^{*}\right)$ by k. Let $b_{0}, b_{1}, \ldots, b_{k}$ be the exposed boundary points of M^{*} such that $\operatorname{conv}\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$ is a k-dimensional simplex containing 0 in its relative interior. Let $\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{k}$ be support hyperplanes of M^{*} with $\Gamma_{i} \cap M^{*}=\left\{b_{i}\right\}$, $i=0,1, \ldots, k$. By virtue of Lemma $2, \Gamma_{i}{ }^{*}$ is a regular boundary point of M, and $b_{i}{ }^{*}$ is the support hyperplane of M through $\Gamma_{i}^{*}, i=0,1, \ldots, k$. Moreover, b_{i} is an outward normal of the body M at the point Γ_{i}^{*}, i.e., $b_{i}=\mu_{i} p_{i}$ where $\mu_{i}>0$ and p_{i} is the unit outward normal of M at the point $\Gamma_{i}^{*}, i=0,1, \ldots, k$. Since 0 is a relative interior point of the simplex $\operatorname{conv}\left\{b_{0}, b_{1}, \ldots, b_{k}\right\}$, there are positive numbers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$ such that $\lambda_{0} b_{0}+\lambda_{1} b_{1}+\cdots+\lambda_{k} b_{k}=0$, i.e.,

$$
\lambda_{0} \mu_{0} p_{0}+\lambda_{1} \mu_{1} p_{1}+\cdots+\lambda_{k} \mu_{k} p_{k}=0
$$

and moreover every k of the vectors $b_{0}, b_{1}, \ldots, b_{k}$ (i.e., every k of the vectors p_{0}, p_{1}, \ldots, p_{k}) are linearly independent. This means that the vectors $p_{0}, p_{1}, \ldots, p_{k}$ are minimally dependent. Hence, $\operatorname{md} M \geq k$, i.e., $\operatorname{md} M \geq \operatorname{md}^{*}\left(M^{*}\right)$.

Now we prove the opposite inequality. Denote the integer $\operatorname{md}(M)$ by l. Let $\Gamma_{0}^{*}, \Gamma_{1}^{*}$, \ldots, Γ_{l}^{*} be regular boundary points of M such that the unit outward normals $p_{0}, p_{1}, \ldots, p_{l}$ of the body M at these points are minimally dependent. Denote the support hyperplanes of M at these points by $b_{0}^{*}, b_{1}^{*}, \ldots, b_{l}^{*}$, respectively. By virtue of Lemma $2, b_{i}$ is an exposed boundary point of M^{*} and Γ_{i} is a support hyperplane of M^{*} which has only the point b_{i} in common with $M^{*}, i=0,1, \ldots, l$. Since the vectors $p_{0}, p_{1}, \ldots, p_{l}$ are minimally dependent, every l of them is linearly independent and there are positive numbers $v_{0}, v_{1}, \ldots, v_{l}$ such that $v_{0} p_{0}+v_{1} p_{1}+\cdots+v_{k} p_{k}=0$. Furthermore, $b_{i}=\mu_{i} p_{i}$, $i=0,1, \ldots, l$, where $\mu_{0}, \mu_{1}, \ldots, \mu_{l}$ are positive numbers. Therefore we have the dependence

$$
\frac{\nu_{0}}{\mu_{0}} \quad b_{0}+\frac{\nu_{1}}{\mu_{1}} \quad b_{1}+\cdots+\frac{v_{l}}{\mu_{l}} \quad b_{l}=0
$$

with positive coefficients. This means that $b_{0}, b_{1}, \ldots, b_{l}$ are the vertices of an l-dimensional simplex containing 0 in its relative interior. Hence, $\operatorname{md}^{*}\left(M^{*}\right) \geq l$, i.e., $\mathrm{md}^{*}\left(M^{*}\right) \geq$ md M.

5. Convex Bodies with $\mathrm{md} M=2$

In this section we formulate the solution of the Szökefalvi-Nagy problem for the case $\mathrm{md} M=2$ given in [12]. We explain this solution here, since it is used below in the proof of the Main Theorem.

Let M be a compact, convex body with md $M=2$ and let $M=M_{1} \oplus \cdots \oplus M_{q}$ be its decomposition into the direct vector sum of indecomposable convex sets. Since $\mathrm{md} M$ is the maximal of the integers $\mathrm{md} M_{1}, \ldots, \mathrm{md} M_{q}$ (see Theorem 25.4 in [17]), every integer $\mathrm{md} M_{i}$ is not greater than $2(i=1, \ldots, q)$, and for at least one index i the equality $\mathrm{md} M_{i}=2$ holds. Without lost of generality, we may suppose that for an integer $p, 1 \leq p \leq q$, we have $\mathrm{md} M_{1}=\cdots=\mathrm{md} M_{p}=2$ and (if $p<q$) $\mathrm{md} M_{p+1}=\cdots=\operatorname{md} M_{q}=1$, i.e., the summands M_{p+1}, \ldots, M_{q} are segments (since they are indecomposable).

Therefore to solve the Szökefalvi-Nagy problem for $\mathrm{md} M=2$, it remains to give a geometrical description of all compact, convex, indecomposable bodies with $\mathrm{md} M=2$. This is made in Theorem 7 below. First we give some necessary definitions.

Definition 1. A compact, convex, indecomposable body $M \subset R^{n}$ is said to be an n-dimensional stack if it is representable (up to a translate) in the following form. Let I_{1}, \ldots, I_{n} be n segments with a common endpoint 0 which are not contained in a hyperplane. Furthermore, let $F_{j} \subset I_{j} \oplus I_{n}$ be a compact, convex figure that contains the side I_{j} of the parallelogram $I_{j} \oplus I_{n}$ and at least one point of its opposite side, $j=1, \ldots, n-1$. Finally, let $U_{j}=F_{j} \oplus L_{j n}$ where $L_{j n}$ is the $(n-2)$-dimensional subspace containing all segments I_{1}, \ldots, I_{n} except I_{j} and I_{n}. Then $M=U_{1} \cap \cdots \cap U_{n-1}$.

Definition 2. A compact, convex, indecomposable body $M \subset R^{n}$ is said to be an n dimensional outcut if it is representable (up to a translate) in the following form. Let I_{1}, \ldots, I_{n} be as above. For every two indices $i<j \leq n$ choose a compact, convex figure $G_{i j} \subset I_{i} \oplus I_{j}$ that contains both the segments I_{i}, I_{j}, but does not coincide with the parallelogram $I_{i} \oplus I_{j}$. Furthermore, let $V_{i j}=G_{i j} \oplus L_{i j}$ where $L_{i j}$ is the ($n-2$)-dimensional subspace containing all segments I_{1}, \ldots, I_{n} except I_{i}, I_{j}. Then $M=\bigcap_{i<j} V_{i j}$.

Definition 3. A compact, convex, indecomposable body $M \subset R^{n}$ is said to be an n dimensional stack-outcut if it is representable (up to a translate) in the following form. Let I_{1}, \ldots, I_{n} be as above. Let k be an integer, $2 \leq k<n$, and let $\varphi:\{k+1, \ldots, n\} \rightarrow$ $\{1, \ldots, k\}$ be a map that is onto in the case $k=2$. For every two indices $i<j \leq k$ choose a compact, convex figure $G_{i j} \subset I_{i} \oplus I_{j}$ that contains both the segments I_{i}, I_{j}, but does not coincide with the parallelogram $I_{i} \oplus I_{j}$. Furthermore, for every index $j \geq k+1$ choose a compact, convex figure $F_{j} \subset I_{j} \oplus I_{\varphi(j)}$ that contains the side I_{j} of the parallelogram
$I_{j} \oplus I_{\varphi(j)}$ and at least one point of its opposite side. Finally, let $V_{i j}=G_{i j} \oplus L_{i j}$ and $U_{j}=F_{j} \oplus L_{j \varphi(j)}$. Then $M=\left(\bigcap_{i<j \leq k} V_{i j}\right) \cap\left(\bigcap_{j>k} U_{j}\right)$.

Definition 4. A polytope $M \subset R^{4}$ containing the origin in its interior (and any its translate) is said to be a particular four-dimensional polytope if there is a basis $e_{1}, e_{2}, e_{3}, e_{4}$ of R^{4} such that
$M^{*}=\operatorname{conv}\left\{e_{1}, e_{2}, e_{3}, e_{4},-e_{1}-e_{2},-e_{1}-e_{3},-e_{2}-e_{4},-e_{3}-e_{4}, e_{1}+e_{2}+e_{3}+e_{4}\right\}$.
Theorem 7. Let $M \subset R^{n}$ be a compact, convex, indecomposable body. The equality $\mathrm{md} M=2$ holds in and only in the following five cases:
(i) $n=2$ and M is a compact, convex, two-dimensional figure distinct from a parallelogram.
(ii) $n \geq 3$ and M is an n-dimensional stack.
(iii) $n \geq 3$ and M is an n-dimensional outcut.
(iv) $n \geq 4$ and M is an n-dimensional stack-outcut.
(v) $n=4$ and M is a particular four-dimensional polytope.

The proof is given in [12].

6. Proof of the Main Theorem

First we give estimates of the number $c(M)$ for the bodies described in Definitions 1-4.
Lemma 4. Let $M \subset R^{n}$ be an n-dimensional stack. Then $c(M)<\frac{3}{4} \cdot 2^{n}$.
Proof. We use the description of the stack given in Definition 1. Let e_{1}, \ldots, e_{n} be the endpoints of the segments I_{1}, \ldots, I_{n} distinct from 0 , respectively. Denote by $S \subset R^{n}$ the $(n-1)$-dimensional subspace containing I_{1}, \ldots, I_{n-1}. For every $t \in[0,1]$ denote by $S^{(t)}$ the hyperplane of R^{n} parallel to S and passing through the point $t e_{n}$. Since for every $j=1, \ldots, n-1$ the subspace $L_{j n}$ is contained in S, the intersection $S^{(t)} \cap U_{j}$ coincides with $\left(S^{(t)} \cap F_{j}\right) \oplus L_{j n}$. Moreover, the intersection $I_{j}^{(t)}=S^{(t)} \cap F_{j}$ is a segment parallel to I_{j}, the length of $I_{j}^{(t)}$ being less than the length of I_{j} if t is close enough to 1 (since M is indecomposable and hence F_{j} does not coincide with the parallelogram $I_{j} \oplus I_{n}$). This implies

$$
\begin{aligned}
S^{(t)} \cap M & =S^{(t)} \cap U_{1} \cap \cdots \cap U_{n-1} \\
& =\bigcap_{j=1}^{n-1}\left(\left(S^{(t)} \cap F_{j}\right) \oplus L_{j n}\right)=\bigcap_{j=1}^{n-1}\left(I_{j}^{(t)} \oplus L_{j n}\right),
\end{aligned}
$$

i.e., $P^{(t)}=S^{(t)} \cap M$ is an $(n-1)$-dimensional parallelotope with edges parallel to the segments I_{1}, \ldots, I_{n-1}.

For $t=0$ the parallelotope $P^{(0)}$ is the lower base of the stack M. For $t=1$ the parallelotope $P^{(1)}$ is the upper base, i.e., $P^{(1)}=M \cap \Gamma$ where $\Gamma \subset R^{n}$ is the support
hyperplane of M parallel to the lower base. We note that $P^{(1)}$ is an ($n-1$)-dimensional parallelotope which may degenerate into a parallelotope of a smaller dimension or into a point, and the edges of $P^{(1)}$ are parallel to ones of the lower base. Denote by p the vector emanating from the center of the upper base of M and going to the center of the lower base. Since the sides of the upper base are smaller than the corresponding sides of the lower base, the direction of the vector p illuminates the upper base $P^{(1)}$ and its neighborhood. In other words, there is a number $\tau, 0<\tau<1$, such that the part of bd M above $S^{(\tau)}$ is illuminated by p.

Consider now 2^{n-1} vectors $\pm e_{1} \pm \cdots \pm e_{n-1}$. These vectors illuminate all vertices (and hence all relative boundary points) of the ($n-1$)-dimensional parallelotope $P^{(\tau)}$. Consequently there is a positive number λ such that the directions of 2^{n-1} vectors $\pm e_{1} \pm$ $\cdots \pm e_{n-1}+\lambda e_{n}$ also illuminate the relative boundary of $P^{(\tau)}$. Hence, these 2^{n-1} vectors illuminate the relative boundary of $P^{(t)}$ for $0<t<\tau$. Moreover, the 2^{n-1} vectors considered illuminate all points of the lower base $P^{(0)}$. Thus $2^{n-1}+1$ vectors $p, \pm e_{1} \pm$ $\cdots \pm e_{n-1}+\lambda e_{n}$ illuminate the whole boundary of M, i.e., $c(M) \leq 2^{n-1}+1<\frac{3}{4} \cdot 2^{n}$.

Remark. In fact, the obtained estimate $c(M) \leq 2^{n-1}+1$ is exact. Indeed, consider all vertices of the lower base $P^{(0)}$ and the center of the upper base. Every two of these $2^{n-1}+1$ points is antipodal, and therefore $c(M) \geq 2^{n-1}+1$. This proves the equality $c(M)=2^{n-1}+1$.

Lemma 5. Let $M \subset R^{n}$ be an n-dimensional outcut. Then $c(M)<\frac{3}{4} \cdot 2^{n}$.

Proof. We use the description of the outcut given in Definition 2. Let e_{1}, \ldots, e_{n} be the endpoints of the segments I_{1}, \ldots, I_{n} distinct from 0 , respectively. Consider all vectors of the kind $-v+\lambda\left(e_{1}+\cdots+e_{n}\right)$ where λ is a fixed positive number and v is the sum of an odd number of the summands e_{1}, \ldots, e_{n}. The number of the vectors of this kind is equal to

$$
\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots=2^{n-1}
$$

Supplementing one more vector $e_{1}+\cdots+e_{n}$, we obtain $2^{n-1}+1$ vectors. We show that for $\lambda>0$ small enough the directions of these vectors illuminate the whole boundary of the outcut M.

Indeed, consider the figure $G_{i j}$. Every point $x \in\left(\operatorname{rint} G_{i j}\right) \cup I_{i} \cup I_{j}$ is illuminated by the direction of the vector $e_{1}+\cdots+e_{n}$, since the point $x+\lambda\left(e_{1}+\cdots+e_{n}\right)$ belongs to the interior of M.

Now consider a point $y \in G_{i j}$ that does not belong to (rint $G_{i j}$) $\cup I_{i} \cup I_{j}$. Denote the coordinates of y in the basis e_{1}, \ldots, e_{n} by y_{1}, \ldots, y_{n}. Both the numbers y_{i}, y_{j} are positive and at least one of them is less than 1 (since $G_{i j}$ is distinct from the parallelogram $I_{i} \oplus I_{j}$). Let, for definiteness, $0<y_{i}<1$. Then the direction of the vector $e_{j}+\lambda\left(e_{1}+\cdots+e_{n}\right)$ illuminates the point y. This shows that all points of the set $\bigcup_{i, j} G_{i j}$ are illuminated by the $2^{n-1}+1$ vectors considered. In other words, if $x \in \operatorname{bd} M$ belongs to a twodimensional subspace of R^{n} spanned by two vectors taken from e_{1}, \ldots, e_{n}, then y is illuminated.

Now consider a point $y \in \operatorname{bd} M$ that belongs to a four-dimensional subspace of R^{n} spanned by four vectors taken from e_{1}, \ldots, e_{n}, say, y belongs to the subspace spanned by $e_{1}, e_{2}, e_{3}, e_{4}$. We may suppose that y does not belong to a two-dimensional subspace as above, i.e., at least three of its coordinates $y_{1}, y_{2}, y_{3}, y_{4}$ are distinct from zero. Moreover, no more than one of the coordinates is equal to 1 (since any figure $G_{i j}$ is distinct from the parallelogram $I_{i} \oplus I_{j}$). Let, for definiteness, $0 \leq y_{1}<1,0<y_{4} \leq 1$, and $0<y_{2} \leq$ $y_{3}<1$. Then the direction of the vector $-\left(e_{2}+e_{3}+e_{4}\right)+\lambda\left(e_{1}+\cdots+e_{n}\right)$ illuminates the point y (as in the cases $y \in S$ and $y \notin S$ where S is the three-dimensional subspace spanned by e_{2}, e_{3}, e_{4}). Thus if $y \in \operatorname{bd} M$ belongs to a four-dimensional subspace of R^{n} spanned by four vectors taken from e_{1}, \ldots, e_{n}, then y is illuminated by the direction of at least one of the $2^{n-1}+1$ vectors considered.

Similarly, if $y \in \operatorname{bd} M$ belongs to a six-dimensional subspace of R^{n} spanned by six vectors taken from e_{1}, \ldots, e_{n}, then y is illuminated by at least one of the $2^{n-1}+1$ directions considered, etc.

Remark. In fact, the obtained estimate $c(M) \leq 2^{n-1}+1$ is exact. We show this for a particular outcut (a similar reasoning can be realized for any outcut). Namely, let e_{1}, \ldots, e_{n} be a basis in R^{n}. Furthermore, let α be a number with $0<\alpha<1$. For every pair of indices $i<j$ taken from the set $\{1, \ldots, n\}$, we denote the set $\operatorname{conv}\left\{0, e_{i}, e_{j}, \alpha e_{i}+\alpha e_{j}\right\}$ by $G_{i j}$ and construct the outcut $M^{\prime} \subset R^{n}$ with these sets $G_{i j}, 1 \leq i<j \leq n$. Denote by F the set contained in bd M^{\prime} that includes the points $0, e_{1}, \ldots, e_{n}$ and all points $x_{1} e_{1}+\cdots+x_{n} e_{n}$ such that an odd number (not lesser than three) of coordinates x_{1}, \ldots, x_{n} take the value α, other coordinates being equal to zero. Every two points of the set F are antipodal boundary points of the outcut M^{\prime}. For example, consider the points

$$
a=(\alpha, \alpha, \alpha, 0, \ldots, 0), \quad b=(\alpha, \alpha, \alpha, \alpha, \alpha, 0, \ldots, 0)
$$

The point b belongs to the support hyperplane $x_{4}+x_{5}=2 \alpha$, and the point a belongs to the parallel support hyperplane $x_{4}+x_{5}=0$, i.e., the points a and b are antipodal (similarly for any two points of the set F). Since the number of the points of the set F is equal to $2^{n-1}+1$, we have $c\left(M^{\prime}\right) \geq 2^{n-1}+1$. This proves the equality $c\left(M^{\prime}\right)=2^{n-1}+1$.

Lemma 6. Let $M \subset R^{n}$ be an n-dimensional stack-outcut. Then the inequality $c(M)<$ $\frac{3}{4} \cdot 2^{n}$ holds.

Proof. The stack-outcut is a "combination" of the stack and the outcut, and the proof of Lemma 6 is obtained as a union of the proofs of Lemmas 4 and 5. We only indicate the vectors whose directions illuminate the boundary of the stack-outcut, and do not repeat details of the previous reasonings.

We use the description of the stack-outcut given in Definition 3. Let e_{1}, \ldots, e_{n} be the endpoints of the segments I_{1}, \ldots, I_{n} distinct from 0 , respectively. Consider all vectors of the kind $-v \pm e_{j+1} \pm \cdots \pm e_{n}+\lambda\left(e_{1}+\cdots+e_{n}\right)$ where λ is a fixed positive number and v is the sum of an odd number of the vectors e_{1}, \ldots, e_{k}. The number of these vectors is equal to 2^{n-1}. We add the vector $e_{1}+\cdots+e_{n}$. The directions of these $2^{n-1}+1$ vectors illuminate the whole boundary of M.

Lemma 7. Let $M \subset R^{4}$ be afour-dimensional particular polytope. Then $c(M)<\frac{3}{4} \cdot 2^{4}$.

Proof. The polar polytope M^{*} has nine vertices:

$$
e_{1}, e_{2}, e_{3}, e_{4},-e_{1}-e_{2},-e_{1}-e_{3},-e_{2}-e_{4},-e_{3}-e_{4}, e_{1}+e_{2}+e_{3}+e_{4}
$$

(by Definition 4). In [18] is shown that M^{*} has eighteen edges:

$$
\begin{gathered}
{\left[e_{1}, e_{1}+e_{2}+e_{3}+e_{4}\right],\left[e_{2}, e_{1}+e_{2}+e_{3}+e_{4}\right],\left[e_{3}, e_{1}+e_{2}+e_{3}+e_{4}\right],} \\
{\left[e_{4}, e_{1}+e_{2}+e_{3}+e_{4}\right],\left[-e_{1}-e_{2},-e_{1}-e_{3}\right],\left[-e_{1}-e_{2},-e_{2}-e_{4}\right],} \\
{\left[-e_{1}-e_{3},-e_{3}-e_{4}\right],\left[-e_{2}-e_{4},-e_{3}-e_{4}\right],\left[e_{1},-e_{2}-e_{4}\right],\left[e_{1},-e_{3}-e_{4}\right],} \\
{\left[e_{2},-e_{3}-e_{4}\right],\left[e_{3},-e_{2}-e_{4}\right],\left[e_{1}, e_{4}\right],\left[e_{2},-e_{1}-e_{3}\right],} \\
{\left[e_{3},-e_{1}-e_{2}\right],\left[e_{4},-e_{1}-e_{2}\right],\left[e_{4},-e_{1}-e_{3}\right],\left[e_{2}, e_{3}\right] .}
\end{gathered}
$$

Furthermore, M^{*} has fifteen two-dimensional faces: nine parallelograms,

$$
\begin{gathered}
{\left[e_{1},-e_{3}-e_{4},-e_{1}-e_{3}, e_{4}\right],\left[e_{1},-e_{2}-e_{4},-e_{1}-e_{2}, e_{4}\right],} \\
{\left[e_{3},-e_{1}-e_{2}, e_{4}, e_{1}+e_{2}+e_{3}+e_{4}\right],\left[e_{2},-e_{1}-e_{3}, e_{4}, e_{1}+e_{2}+e_{3}+e_{4}\right],} \\
{\left[e_{3},-e_{2}-e_{4}, e_{1}, e_{1}+e_{2}+e_{3}+e_{4}\right],\left[e_{2},-e_{4}-e_{3}, e_{1}, e_{1}+e_{2}+e_{3}+e_{4}\right],} \\
{\left[e_{2},-e_{4}-e_{3},-e_{4}-e_{2}, e_{3}\right],\left[e_{2},-e_{1}-e_{3},-e_{1}-e_{2}, e_{3}\right],} \\
{\left[-e_{1}-e_{2},-e_{1}-e_{3},-e_{4}-e_{3},-e_{4}-e_{2}\right]}
\end{gathered}
$$

and six triangles,

$$
\begin{gathered}
{\left[e_{1}, e_{4}, e_{1}+e_{3}+e_{3}+e_{4}\right],\left[e_{2}, e_{3}, e_{1}+e_{3}+e_{3}+e_{4}\right],\left[e_{1},-e_{2}-e_{4},-e_{3}-e_{4}\right],} \\
{\left[e_{4},-e_{1}-e_{2},-e_{1}-e_{3}\right],\left[e_{2},-e_{1}-e_{3},-e_{3}-e_{4}\right],\left[e_{3},-e_{1}-e_{2},-e_{2}-e_{4}\right] .}
\end{gathered}
$$

Note that six two-dimensional faces (four parallelograms and two triangles) adjoin every vertex of M^{*}. Three two-dimensional faces (two parallelograms and one triangle) adjoin every edge.

By Euler's theorem, $c_{0}-c_{1}+c_{2}-c_{3}=0$ where c_{i} is the number of i-dimensional faces of the polytope $M^{*}, i=1,2,3,4$. Since $c_{0}=9, c_{1}=18, c_{2}=15$, we obtain $c_{3}=6$, i.e., M^{*} has $s i x$ three-dimensional faces W_{1}, \ldots, W_{6}. Let Π_{1}, \ldots, Π_{6} be open half-spaces with the boundaries through 0 such that $\Pi_{i} \supset W_{i}, i=1, \ldots, 6$. Then every face of M^{*} is contained in at least one of these open half-spaces (since every face is contained in a three-dimensional one). This means that $c^{*}\left(M^{*}\right) \leq 6$. By Lemma 1 , we have $c(M)=6<\frac{3}{4} \cdot 2^{4}$.

Remark. In fact, $c^{*}\left(M^{*}\right)=6$ (and hence $c(M)=6$), since no pair of three-dimensional faces of M^{*} is situated in one open half-space (with the boundary hyperplane through 0).

Proof of the Main Theorem. Let $M \subset R^{n}$ be a compact, convex body with md $M=2$. Consider its decomposition $M=M_{1} \oplus \cdots \oplus M_{q}$ into the direct vector sum of compact, convex, indecomposable sets. We may suppose that for an integer $p, 1 \leq p \leq q$, we
have $\operatorname{md} M_{1}=\cdots=\operatorname{md} M_{p}=2$ and (if $p<q$) $\mathrm{md} M_{p+1}=\cdots=\operatorname{md} M_{q}=1$, i.e., the summands M_{p+1}, \ldots, M_{q} are segments. Denote the dimension of the set M_{k} by n_{k}, $k=1, \ldots, p$. If we verify that for the sets M_{1}, \ldots, M_{p} Martini's estimate holds, i.e., $c\left(M_{k}\right) \leq \frac{3}{4} \cdot 2^{n_{k}}$ for $k=1, \ldots, p$, then we obtain

$$
\begin{aligned}
c(M) & =c\left(M_{1}\right) \cdot \cdots \cdot c\left(M_{p}\right) \cdot 2^{q-p} \\
& \leq\left(\frac{3}{4} \cdot 2^{n_{1}}\right) \cdot \cdots \cdot\left(\frac{3}{4} \cdot 2^{n_{p}}\right) \cdot 2^{q-p}=\left(\frac{3}{4}\right)^{p} \cdot 2^{n} \leq \frac{3}{4} \cdot 2^{n}
\end{aligned}
$$

(since $n=n_{1}+\cdots+n_{p}+q-p$), which proves the Main Theorem. Thus it remains to verify that the equalities $c\left(M_{k}\right) \leq \frac{3}{4} \cdot 2^{n_{k}}, k=1, \ldots, p$, hold. To this end, we consider separately cases (i)-(v) of Theorem 7.
(i) $n_{k}=2$ and M_{k} is a two-dimensional figure distinct from a parallelogram. In this case $c\left(M_{k}\right)=3=\frac{3}{4} \cdot 2^{n_{k}}$, i.e., Martini's estimate is exact.
(ii) $n_{k} \geq 3$ and M_{k} is an n_{k}-dimensional stack. In this case, by Lemma 4, $c\left(M_{k}\right)<$ $\frac{3}{4} \cdot 2^{n_{k}}$, i.e., Martini's estimate is strict.
(iii) $n_{k} \geq 3$ and M_{k} is an n_{k}-dimensional outcut. In this case, by Lemma 5, $c\left(M_{k}\right)<$ $\frac{3}{4} \cdot 2^{n_{k}}$, i.e., Martini's estimate is strict.
(iv) $n_{k} \geq 4$ and M_{k} is an n_{k}-dimensional stack-outcut. In this case, by Lemma 6, we also have $c\left(M_{k}\right)<\frac{3}{4} \cdot 2^{n_{k}}$, i.e., Martini's estimate is strict.
(v) $n_{k}=4$ and M_{k} is a four-dimensional particular polytope. In this case, by Lemma 7, $c\left(M_{k}\right)<\frac{3}{4} \cdot 2^{4}=\frac{3}{4} \cdot 2^{n_{k}}$, i.e., Martini's estimate is strict.

Remark. The above reasoning shows that for a compact, convex body $M \subset R^{n}$ with md $M=2$, the equality $c(M)=\frac{3}{4} \cdot 2^{n}$ holds if and only if $M=Q \oplus I_{1} \oplus \cdots \oplus I_{n-2}$ where Q is a two-dimensional figure distinct from a parallelogram and all I_{j} are segments. In all other cases $c(M)<\frac{3}{4} \cdot 2^{n}$.

References

1. E. Baladze: A complete solution of the Szökefalvi-Nagy problem for zonohedra. Soviet Math. Dokl. 34(3) (1987), 458-461.
2. E. Baladze: A solution of the Szökefalvi-Nagy problem for zonoids. Soviet Math. Dokl. 41 (1990).
3. E. Baladze and V. Boltyanski: Belt bodies and the Helly dimension. Sb. Math. 186 (1995).
4. K. Bezdek: The problem of illumination of the boundary of a convex body by affine subspaces. Mathematica 38 (1991), 362-375.
5. K. Bezdek: Hadwiger's covering conjecture and its relatives. Amer. Math. Monthly 99(10) (1992), 954-956.
6. K. Bezdek: Hadwiger-Levi's covering problem revisited. Ed.: J. Pach, New Trends in Discrete and Computational Geometry. Springer-Verlag, New York, 1993, pp. 199-233.
7. K. Bezdek and T. Bisztriczki: A proof of Hadwiger's covering conjecture for dual cyclic polytopes. Geom. Dedicata 68 (1997), 29-41.
8. V. Boltyanski: The problem of illuminating the boundary of a convex body (in Russian). Izv. Mold. Fil. AN SSSR 10(76) (1960), 77-84.
9. V. Boltyanski: On certain classes of convex sets. Soviet Math. Dokl. 17(1) (1976), 10-13.
10. V. Boltyanski: Helly's theorem for H-convex sets. Soviet Math. Dokl. 17(1) (1976), 78-81.
11. V. Boltyanski: Generalization of a certain theorem of B. Szökefalvi-Nagy. Soviet Math. Dokl. 17(3) (1976), 674-677.
12. V. Boltyanski: A new step in the solution of the Szökefalvi-Nagy problem. Discrete Comput. Geom. $\mathbf{8}$ (1992), 27-49.
13. V. Boltyanski: A solution of the illumination problem for belt bodies. Math. Notes 58 (1996).
14. V. Boltyanski: Hindering systems for convex bodies. Sb. Math. 188(3-4) (1997), 327-339.
15. V. Boltyanski and T. Chabukiani: Solution of the Szökefalvi-Nagy problem for three-dimensional convex bodies. Soviet Math. Dokl. 30(3) (1984), 755-757.
16. V. Boltyanski and H. Martini: Covering belt bodies by smaller homothetical copies. Beiträge Algebra Geom. (2) (2001).
17. V. Boltyanski, H. Martini, and P. Soltan: Excursions into Combinatorial Geometry. Springer-Verlag, Berlin, 1997.
18. V. Boltyanski and E. Morales Amaya: Cardinalities of primitive fixing systems for convex bodies. Discrete Comput. Geom. 24(2-3) (2000), 209-218.
19. V. Boltyanski and P. Soltan: A solution of Hadwiger's problem for zonoids. Combinatorica 12 (1992), 381-388.
20. A. Charazishvili: On the problem of illumination (in Russian). Soobshch. Akad. Nank. Gruzin. 71(1) (1973), 289-291.
21. I. Gohberg and A. Markus: One problem on covering convex figures by similar figures (in Russian). Izv. Mold. Fil. AN SSSR 10(76) (1960), 87-90.
22. H. Hadwiger: Überdeckung einer Menge durch Mengen kleineren Durchmessers. Comment. Math. Helv. 18 (1945/46), 73-75.
23. H. Hadwiger: Ungelöste Probleme, Nr. 20. Elem. Math. 12 (1957), 121.
24. H. Hadwiger: Ungelöste Probleme, Nr. 38. Elem. Math. 15 (1960), 130-131.
25. J. Kincses: The classification of 3- and 4-Helly-dimensional convex bodies. Geom. Dedicata 22 (1987), 283-301.
26. M. Lassak: Covering three-dimensional convex bodies with smaller homothetical copies. Tagungsbericht 32 (1984), Math. Forschungsinstitut Oberwolfach.
27. F. W. Levi: Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns. Arch. Math. 6 (1955), 369-370.
28. H. Martini: Some results and problems around zonotopes. Intuitive Geometry. Coll. Math. Soc. János Bolyai 48. North-Holland, Amsterdam, 1987, pp. 383-418.
29. P. Soltan: Helly's theorem for d-convex sets (in Russian). Dokl. Akad. Nauk SSSR 205(3) (1972), 537-539.
30. P. Soltan and V. Soltan: On the X-raying of convex bodies. Soviet Math. Dokl. 33(1) (1986), 42-44.
31. B. Szökefalvi-Nagy: Ein Satz über Parallelverschiebungen konvexer Körper. Acta Sci. Math. 15(3-4) (1954), 169-177.

Received August 23, 2000, and in revised form January 22, 2001. Online publication August 9, 2001.

