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Abstract. We solve here theGohberg–Markus–Hadwiger Covering Problem(or, what is
the same, theillumination problem) for compact, convex bodiesM ⊂ Rn with md M = 2.
Moreover, we outline an idea for a complete solution, using mdM .

1. Introduction

Let M ⊂ Rn be a be a compact, convex body, letq ∈ Rn be an arbitrary point, and letk
be a real number with 0< k < 1. The image ofM under the homothety with centerq
and ratiok is said to be adiminished copyof M . The least integerp such thatM can be
covered byp diminished copies ofM is denoted byb(M).

In 1957 Gohberg and Markus proved the following theorem (by singular conditions
in the USSR, their article was not published until 1960 [21]).

Theorem 1. If M ⊂ R2 is a compact, convex figure distinct from a parallelogram,
then b(M) = 3. For every parallelogram b(M) = 4.

An equivalent theorem (in another form) was proved by Levi [27].
Observing thatb(M) = 2n for every n-dimensional parallelotope, Gohberg and

Markus formulated the following problem:

Prove thatb(M) ≤ 2n for every compact, convex bodyM ⊂ Rn, the equality being held
only for parallelotopes.

The same problem was formulated by Hadwiger [23], based on [27]. Therefore we
call it theGMH problem.

Boltyanski [8] formulated theIllumination Problem. A boundary pointa of a convex
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body M ⊂ Rn is illuminatedby the direction of a nonzero vectore ∈ Rn if, for λ > 0
small enough, the pointa + λe belongs to the interior ofM . Furthermore, we say that
the directions of nonzero vectorse1, . . . ,ep illuminatethe boundary ofM if every point
x ∈ bdM is illuminated by at least one of these directions. The least integerp such that
there exist nonzero vectorse1, . . . ,ep, whose directions illuminate the boundary ofM ,
is denoted byc(M).

Theorem 2 [8]. For every compact, convex body M⊂ Rn, the equality b(M) = c(M)
holds.

This theorem allows us to give another form of the GMH problem:

Illumination Problem. Prove thatc(M) ≤ 2n for every compact, convex bodyM ⊂
Rn, the equality being held only for parallelotopes.

Furthermore, Hadwiger [24] formulated the problem to illuminate the boundary of a
compact, convex bodyM ⊂ Rn by a minimal number ofpoint light sourcessituated in
Rn. For compact, convex bodies inRn, the Levi problem [27], the GMH problem [21],
[23], the illumination problem [8], and the problem of illuminating by point sources [24]
are equivalent (see Theorem 34.3 in [17]).

There are some partial results in this direction. If a compact, convex bodyM ⊂ Rn is
smooth (this means that every boundary pointa is regular, i.e., there is only one support
hyperplane ofM througha), thenb(M) = n+ 1. This may be implied from [22]. In [8]
Boltyanski proved a more general theorem:If a compact, convex body M⊂ Rn has no
more than n nonregular boundary points, then b(M) = n+ 1. Forn = 3, Charazishvili
[20] obtained a finer result:If a compact, convex body M⊂ R3 has no more than four
nonregular boundary points, then b(M) = 4.

Lassak [26] proved thatif a compact, convex three-dimensional body M is centrally
symmetric, then b(M) ≤ 8. In the same paper [26] Lassak proved thatfor every three-
dimensional body M of constant width the inequality b(M) ≤ 6 holds. Furthermore,
Bezdek [4] justified the illumination problem for every convex polytopeM ⊂ R3 with
affine symmetry, i.e.,c(M) ≤ 8 in that case. Using information recently obtained,
Dekster proved thatc(M) ≤ 8 for every three-dimensional compact, convex body that
is symmetric about a plane.

Martini [28] established thatfor every n-dimensional zonotope distinct from a paral-
lelotope the inequality c(M) ≤ 3·2n−2 holds. We call this inequalityMartini’s estimate.
Boltyanski and Soltan proved [19] that Martini’s estimate holds for all zonoids and
Boltyanski [13] established this estimate for all belt bodies. In [16] Boltyanski and Mar-
tini described all belt bodies for which Martini’s estimate holds and proved the inequality
c(M) ≤ 5 · 2n−3 for other belt bodies.

We note that Bezdek [5] found the dual formulation of the illumination problem (see
Lemma 1 in Section 4 below). With the help of that formulation, Bezdek [6] gave dual
proofs for several of the above-mentioned results. Finally, in [7] Bezdek and Bisztriczki
proved that the illumination problem has a positive solution for alln-dimensional cyclic
polytopes.
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2. The Functional md

In 1976 Boltyanski introduced the functional md [10]. LetH be a subset of the unit
sphereSn−1 that is not one-sided, i.e.,H is not contained in any closed hemisphere of
Sn−1. In other words, there is no vectore 6= 0 with 〈a,e〉 ≤ 0 for everya ∈ H .

Furthermore, leta0,a1, . . . ,am be vectors inRn,1≤ m≤ n. We say that the vectors
areminimally dependentif

(i) they are positively dependent (i.e., there are positive coefficientsλ0, λ1, . . . , λm

with λ0a0+ λ1a1+ · · · + λmam = 0);
(ii) any m of the vectorsa0,a1, . . . ,am are linearly independent.

In other words,a0,a1, . . . ,am are minimally dependent if they are the vertices of an
m-dimensional simplex that contains the origin in its relative interior.

Finally, by mdH we denote the greatest integerm such thatH containsm minimally
dependent vectors (mdH = 0 if there is no system of minimally dependent vectors in
H ). Note that 0≤ mdH ≤ n− 1 if H is one-sided, whereas 1≤ mdH ≤ n if H is not
one-sided.

The first result obtained with the help of mdH was a generalization of the classical
Helly theorem. We formulate this result, since it is connected with the illumination
problem.

Let H ⊂ Sn−1 be a subset that is not one-sided. A closed half-spaceP of Rn is
said to beH -convexif its outward unit normal belongs toH . Furthermore, a closed set
M ⊂ Rn is said to beH -convex[9] if it is representable as the intersection of a family
of H -convex half-spaces.

Theorem 3 [10]. Let M1, . . . ,Mq be H-convex sets in Rn,q ≥ mdH + 2. If every
mdH + 1 of the sets has a point in common, then M1 ∩ · · · ∩ Mq 6= ∅.

A similar theorem holds for any infinite family ofH -convex sets if at least one of
them is compact.

Now let M ⊂ Rn be a compact, convex body. ByH(M) ⊂ Sn−1 we denote the set of
all vectors, each of which is the unit outward normal ofM at a regular boundary point.
For brevity, the integer mdH(M) is denoted by mdM . The setH(M) is not one-sided,
and therefore 1≤ mdM ≤ n.

Furthermore, we denote the family of all translates ofM by T(M) and its Helly
dimension [29] by himT(M), i.e., the minimal integerp such that for every subfamily
{M1, . . . ,Mq} ⊂ T(M) with q > p+ 1 the following assertion holds: if everyp+ 1 of
the setsM1, . . . ,Mq has a point in common, thenM1 ∩ · · · ∩ Mq 6= ∅.

Szökefalvi-Nagy [31] established the following result:

Theorem 4. Let M ⊂ Rn be a compact, convex body. The equalityhimT(M) = 1
holds if and only if M is an n-dimensional parallelotope.

It is easily shown that mdM = 1 if and only if M is a parallelotope. Thus the
Szökefalvi-Nagy theorem may be formulated in the following form:The equalityhim
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T(M) = 1 holds if and only ifmdM = 1. In [10] there is a generalization of this
assertion for arbitrary mdM :

Theorem 5. For every compact, convex body M⊂ Rn, the equalityhimT(M) =
mdM holds.

We remark that the Sz¨okefalvi-Nagy theorem contains little more than the particular
case mdM = 1 of Theorem 5. Indeed, Theorem 4 contains ageometrical description
of all compact, convex bodies with himT(M) = 1. In this connection the following
problem arises:

Szökefalvi-Nagy Problem: Give a geometrical description of all compact, convex
bodies withhimT(M) = m (i.e., mdM = m) for m= 2, . . . ,n.

(Note that the termSz̈okefalvi-Nagy problemwas introduced by Boltyanski.) This
problem is solved in [15] and [12] form= 2. The following theorem [15] describes all
three-dimensional bodies with mdM = 2; thestacksand theoutcutsmentioned in its
statement are defined below.

Theorem 6. For a compact, convex body M⊂ R3 that is distinct from a parallelotope,
the equalitymdM = 2 holds in and only in the following three cases: (a) M is the direct
vector sum of a segment and a two-dimensional figure distinct from a parallelogram;
(b) M is a stack; (c) M is an outcut.

Now we give descriptions of the stacks and outcuts mentioned in Theorem 6. A
compact, convex bodyM ⊂ R3 is astackif it is representable (up to a translate) in the
following form. Let I1, I2, I3 be three segments with a common endpoint 0 which are not
contained in a plane. Denote the parallelogramIi ⊕ I j by Pi j . Let F1 ⊂ P13 (respectively,
F2 ⊂ P23) be a compact, convex figure that contains the sideI1 (respectively,I2) of the
parallelogram and at least one point of its opposite side, but does not contain this opposite
side. Furthermore, letU1 (respectively,U2) be the infinite cylinder with the basisF1

(respectively,F2) and the generator parallel toI2 (respectively,I1). ThenM = U1∩U2.
A compact, convex bodyM ⊂ R3 is anoutcutif it is representable(up to a translate) in

the following form. LetI1, I2, I3 be as above. For every two indicesi < j = 2,3 choose
a compact, convex figureGi j ⊂ Ii ⊕ I j that contains both the segmentsIi , I j , but does
not coincide with the parallelogramIi ⊕ I j . Furthermore, letVi j be the infinite cylinder
with the basisGi j and the generator parallel to the segment(taken fromI1, I2, I3) distinct
from Ii , I j . ThenM = V12∩ V13∩ V23.

The articles [1]–[3], [11], and [25] contain further results on the Sz¨okefalvi-Nagy
problem. Some other applications of mdM are given in Section 44 of [17].

3. An Idea of a Solution

First we discuss the illumination problem for the casen = 3. LetM ⊂ R3 be a compact,
convex body. If mdM = 1, thenc(M) = 8.

If md M = 2, then M is one of the bodies described in Theorem 6. It is easily
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shown that in case (a) the equalityc(M) = 6 holds. Indeed, letM = I ⊕ F where
I = [a,b] is a segment andF is a compact, convex two-dimensional figure distinct
from a parallelogram. The cylinderM has two basesa⊕ F andb⊕ F . It is necessary to
have three directions to illuminate all points of the basea⊕ F . None of these directions
illuminates any point of the opposite baseb⊕ F . Therefore it is necessary to have three
more directions to illuminate all points of the baseb⊕ F . Thusc(M) = 6.

Furthermore, if we have case (b) of Theorem 6, i.e.,M is a stack, thenc(M) = 5.
Indeed, in the above description of the stack, denote bye1,e2,e3 the endpoints of the
segmentsI1, I2, I3 distinct from 0, respectively. We say thatI1⊕ I2 is thelower base of
the stackM and denote itsupperbase byP, i.e., P = M ∩ 0 where0 is the support
plane ofM parallel to the lower base. We remark thatP is a parallelogram (which may
degenerate into a segment or a point) with the sides parallel to ones of the lower base. In
addition, every side ofP is smaller than the corresponding side of the lower base (since
the figureF1 does not coincide withI1⊕ I3 and analogously forF2). Therefore the stack
M is not the direct vector sum as in case (a). Consider the directions of four vectors:

p1 = e1+ e2+ λe3, p2 = e1− e2+ λe3,

p3 = −e1+ e2+ λe3, p4 = −e1− e2+ λe3.

If λ > 0 is small enough, these four directions illuminate the whole boundary ofM
except for a small neighborhood of the upper baseP. Furthermore, denote byp5 the
vector emanating from the center of the upper base ofM and going to the center of the
lower base. Since the sides of the upper base aresmaller than the corresponding sides
of the lower base, the direction of the vectorp5 illuminates the upper baseP with its
neighborhood. Thus the boundary ofM is illuminated by five directions, i.e.,c(M) ≤ 5.
On the other hand, consider the verticesa1,a2,a3,a4 of the lower baseI1 ⊕ I2 and the
centera5 of the upper base. Every two of these five points isantipodal, i.e., is situated in
two parallel support planes ofM . Consequently, no direction simultaneously illuminates
two of the pointsa1,a2,a3,a4,a5, and thereforec(M) ≥ 5. This proves the equality
c(M) = 5.

At last, if M is an outcut, then againc(M) = 5. Indeed, lete1,e2,e3 be as above.
Consider the directions of the vectors

q1 = −e1+ λ(e2+ e3), q2 = −e2+ λ(e1+ e3), q3 = −e3+ λ(e1+ e2),

q4 = e1+ e2+ e3, q5 = −e1− e2− e3.

If λ > 0 is small enough, these five directions illuminate the whole boundary ofM . To
prove this, we setG = G12∪ G13∪ G23, Q = cl(bdM\G) and denote the intersection
Q ∩ Gi j by Bi j , i < j = 2,3. Let gi j be a point of the arcBi j not belonging to the
relative boundary of the parallelogramIi ⊕ I j , i < j = 2,3. Then (ifλ > 0 is small
enough) the direction ofq1 illuminates the part of the arcB12 with endpointsb1, g12 and
the direction ofq2 illuminates the part of the arcB12 with endpointsb2, g12. Therefore
both directions illuminate all points of the arcB12. By similar reasoning, the directions
of q1,q2,q3 illuminate all points of the setB12∪ B13∪ B23. Furthermore, every point of
the setG\(B12 ∪ B13 ∪ B23) is illuminated by the direction ofq4. Finally, all points of
the setQ\(B12 ∪ B13 ∪ B23) are illuminated by the direction ofq5. Thus the boundary
of M is illuminated by five directions, i.e.,c(M) ≤ 5. On the other hand, consider the
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five points 0,e1,e2,e3,b whereb ∈ bdV12 ∩ bdV13 ∩ bdV23 is distinct from 0. Every
two of these five points is antipodal, and thereforec(M) ≥ 5. This proves the equality
c(M) = 5.

Combining cases (a)–(c) considered in Theorem 6, we obtain that if mdM = 2, then
c(M) ≤ 6, i.e.,c(M) ≤ 23 − 21. Consequently,to solve the illumination problem for
three-dimensional bodies, it is enough to establish that ifmdM = 3, then c(M) ≤ 7, i.e.,
c(M) ≤ 23− 20. Nevertheless, the exotic nature of the bodiesM ⊂ R3 with mdM = 3
remains outside the framework of this article.

The above discussion leads us to the following:

Hypothesis. If M ⊂ Rn is a compact, convex body withmdM = m ≥ 2, then
c(M) ≤ 2n − 2n−m.

In this article we justify this hypothesis form = 2, i.e., we prove the following
assertion:

Main Theorem. Let M ⊂ Rn be a compact, convex body withmdM = 2. Then
c(M) ≤ 2n − 2n−2, i.e., Martini’s estimate c(M) ≤ 3

4 · 2n holds.

To prove the Main Theorem, first we give the polar descriptions for the illumination
problem and the functional md.

4. Polar Description of the Problem

In what follows we suppose thatRn is ann-dimensional, vectorial Euclidean space that
is self-adjoint (i.e., the scalar product is introduced inRn).

For every pointx ∈ Rn distinct from the origin 0, we denote itspolar hyperplaneby
x∗, i.e.,x∗ = {y: 〈x, y〉 = 1}. Similarly, for every hyperplane0 ⊂ Rn not containing 0,
we denote itspolar point (i.e., the point for which the polar hyperplane coincides with
0) by 0∗. Furthermore, for every compact, convex body containing 0 in its interior, we
denote itspolar bodyby M∗:

M∗ = {y: 〈y,a〉 ≤ 1 for all a ∈ M}.
Let M ⊂ Rn be a compact, convex body containing 0 in its interior, and letM∗ be

its polar body. LetP1, . . . , Pk be half-spaces ofRn with 0 ∈ bd Pi , i = 1, . . . , k. We
say that the system of half-spaces{P1, . . . , Pk} co-illuminatesthe bodyM∗ if, for every
proper faceF of M∗ (i.e.,F 6= M∗), there is an indexi ∈ {1, . . . , k} such thatF ⊂ int Pi .
By c∗(M∗) we denote the least integerk for which there exists a co-illuminating system
{P1, . . . , Pk} for the bodyM∗.

Lemma 1. For every compact, convex body M⊂ Rn containing the origin in its
interior, the equality c(M) = c∗(M∗) holds.

This lemma is already known. For example, Soltan and Soltan [30] applied this lemma
in their solution of the X-raying problem for three-dimensional polytopes. Moreover,
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there is a stronger form of this lemma in [4]. Nevertheless, for completeness, we give a
proof of this lemma.

Proof. Denote the integerc(M)byk, and letp1, . . . , pk be unit vectors whose directions
illuminate the boundary ofM . Consider the half-spacesP1, . . . , Pk with outward normals
p1, . . . , pk, respectively, which contain the origin in their boundary hyperplanes:

Pi = {x: 〈pi , x〉 ≤ 0}, i = 1, . . . , k.

Let F be a proper face of the bodyM∗ and let0 be a support hyperplane ofM∗ that
containsF . Thenx = 0∗ is a boundary point ofM . For every pointz ∈ F the equality
〈z, x〉 = 1 holds. Letj ∈ {1, . . . , k} be an index such that the direction of the vectorpj

illuminates the pointx ∈ bdM , i.e., x + λpj ∈ int M for λ > 0 small enough. We fix
such a numberλ. For each pointx′ contained in a small neighborhood ofx + λpj the
inequality〈z, x′〉 ≤ 1 holds, and therefore〈z, x + λpj 〉 < 1. Since〈z, x〉 = 1, we have
〈z, λpj 〉 < 0, and consequently〈z, pj 〉 < 0. This means thatz ∈ int Pj . This is true for
every pointz ∈ F , and henceF ⊂ intPj . Thus the system{P1, . . . , Pk} co-illuminates
the bodyM∗, i.e.,c∗(M∗) ≤ c(M).

We now prove the inverse inequality. Denote the integerc∗(M∗) by l , and letQ1, . . .,
Ql be half-spaces with the boundaries through 0 which co-illuminate the bodyM∗. De-
note byq1, . . . ,ql the unit outward normals of the half-spacesQ1, . . . , Ql , respectively.
We show that the directions of the vectorsq1, . . . ,ql illuminate the boundary ofM .

Indeed, letu ∈ bdM . Thenu∗ is a support hyperplane of the bodyM∗. The intersection
G = u∗ ∩ M∗ is a proper face of the bodyM∗. Let j ∈ {1, . . . , l } be an index for which
G ⊂ intQj , i.e., 〈v,qj 〉 < 0 for every pointv ∈ G. Since the setG is compact, there
exists a numberµ > 0 such that〈v,qj 〉 < −µ for everyv ∈ G. Hence there exists a
neighborhoodW of G such that〈v,qj 〉 < 0 for every pointv ∈ W. Moreover, since
〈v,u〉 ≤ 1 whenv ∈ M∗, we have

〈v,u+ λqj 〉 = 〈v,u〉 + 〈v, λqj 〉 ≤ 1+ λ〈v,qj 〉 < 1

for every pointv ∈ M∗ ∩W and everyλ > 0.
Furthermore, sinceu∗ ∩ (M∗\W) = ∅, for every pointv ∈ M∗\W the inequality

〈v,u〉 < 1 holds. By compactness of the setM∗\W, there existsε > 0 such that
〈v,u〉 < 1− ε for everyv ∈ M∗\W. This implies

〈v,u+ λqj 〉 < 1 for v ∈ M∗\W

if λ > 0 is small enough. We fix such a numberλ. Combining both the casesv ∈ M∗∩W
andv ∈ M∗\W, we conclude that for every pointv ∈ M∗ the inequality〈v,u+λqj 〉 < 1
holds. This means thatu + λqj is an interior point of the bodyM , i.e., the pointu is
illuminated by the direction of the vectorqj . Thus the directions of the vectorsq1, . . . ,ql

illuminate the boundary ofM , i.e.,c(M) ≤ c∗(M∗).

Recall that a boundary pointb of a convex bodyN ⊂ Rn is exposedif there exists
a support hyperplane0 of N such that0 ∩ N = {b}. The set of all exposed boundary
points ofN is denoted by expN.
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Lemma 2. Let M ⊂ Rn be a compact, convex body with the origin0 in its interior
and let M∗ be its polar body. Let, furthermore, 0 ⊂ Rn be a support hyperplane of M∗

that has only one point b in common with M∗. Then0∗ is a regular boundary point of
M and b∗ is the only support hyperplane of M through0∗. Conversely, if 0∗ is a regular
boundary point of M and b∗ is the only support hyperplane of M through0∗, then b is
an exposed boundary point of M∗ and0 is a support hyperplane of M∗ which has only
the point b in common with M∗. Moreover, in both the cases, b is the outward normal
of M at the point0∗.

This lemma is already known (see, for example, Theorem 3.2 in [17]).
Now we can give a polar description of the functional md. LetM ⊂ Rn be a compact,

convex body containing the origin 0 in its interior, and letM∗ be its polar body. By
md∗(M∗) we denote the largest integerk for which there are pointsb0,b1, . . . ,bk ∈
exp(M∗) such that conv{b0,b1, . . . ,bk} is ak-dimensional simplex containing 0 in its
relative interior.

Lemma 3. Let M ⊂ Rn be a compact, convex body containing the origin0 in its
interior, and let M∗ be its polar body. Thenmd∗(M∗) = mdM .

Proof. Denote the integer md∗(M∗) by k. Let b0,b1, . . . ,bk be the exposed boundary
points ofM∗ such that conv{b0,b1, . . . ,bk} is ak-dimensional simplex containing 0 in its
relative interior. Let00, 01, . . . , 0k be support hyperplanes ofM∗ with 0i ∩M∗ = {bi },
i = 0,1, . . . , k. By virtue of Lemma 2,0 ∗i is a regular boundary point ofM , andb ∗i is
the support hyperplane ofM through0 ∗i , i = 0,1, . . . , k. Moreover,bi is an outward
normal of the bodyM at the point0 ∗i , i.e.,bi = µi pi whereµi > 0 andpi is the unit
outward normal ofM at the point0 ∗i , i = 0,1, . . . , k. Since 0 is a relative interior point
of the simplex conv{b0,b1, . . . ,bk}, there are positive numbersλ0, λ1, . . . , λk such that
λ0b0+ λ1b1+ · · · + λkbk = 0, i.e.,

λ0µ0 p0+ λ1µ1 p1+ · · · + λkµk pk = 0,

and moreover everyk of the vectorsb0,b1, . . . ,bk (i.e., everyk of the vectorsp0, p1,
. . . , pk) are linearly independent. This means that the vectorsp0, p1, . . . , pk are mini-
mally dependent. Hence, mdM ≥ k, i.e., mdM ≥ md∗(M∗).

Now we prove the opposite inequality. Denote the integer md(M) by l . Let 0∗0, 0
∗
1,

. . . , 0∗l be regular boundary points ofM such that the unit outward normalsp0, p1, . . . , pl

of the bodyM at these points are minimally dependent. Denote the support hyperplanes
of M at these points byb∗0,b

∗
1, . . . ,b

∗
l , respectively. By virtue of Lemma 2,bi is an

exposed boundary point ofM∗ and0i is a support hyperplane ofM∗ which has only
the pointbi in common withM∗, i = 0,1, . . . , l . Since the vectorsp0, p1, . . . , pl are
minimally dependent, everyl of them is linearly independent and there are positive num-
bersν0, ν1, . . . , νl such thatν0 p0 + ν1 p1 + · · · + νk pk = 0. Furthermore,bi = µi pi ,
i = 0,1, . . . , l , whereµ0, µ1, . . . , µl are positive numbers. Therefore we have the
dependence

ν0

µ0
b0+ ν1

µ1
b1+ · · · + νl

µl
bl = 0
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with positive coefficients. This means thatb0,b1, . . . ,bl are the vertices of anl -dimensional
simplex containing 0 in its relative interior. Hence, md∗(M∗) ≥ l , i.e., md∗(M∗) ≥
mdM .

5. Convex Bodies with mdM = 2

In this section we formulate the solution of the Sz¨okefalvi-Nagy problem for the case
mdM = 2 given in [12]. We explain this solution here, since it is used below in the
proof of the Main Theorem.

Let M be a compact, convex body with mdM = 2 and letM = M1 ⊕ · · · ⊕ Mq

be its decomposition into the direct vector sum of indecomposable convex sets. Since
mdM is the maximal of the integers mdM1, . . . ,mdMq (see Theorem 25.4 in [17]),
every integer mdMi is not greater than 2(i = 1, . . . ,q), and for at least one index
i the equality mdMi = 2 holds. Without lost of generality, we may suppose that for
an integerp, 1 ≤ p ≤ q, we have mdM1 = · · · = mdMp = 2 and (if p < q)
mdMp+1 = · · · = mdMq = 1, i.e., the summandsMp+1, . . . ,Mq aresegments(since
they are indecomposable).

Therefore to solve the Sz¨okefalvi-Nagy problem for mdM = 2, it remains to give a
geometrical description of all compact, convex, indecomposable bodies with mdM = 2.
This is made in Theorem 7 below. First we give some necessary definitions.

Definition 1. A compact, convex, indecomposable bodyM ⊂ Rn is said to be an
n-dimensionalstackif it is representable (up to a translate) in the following form. Let
I1, . . . , In ben segments with a common endpoint 0 which are not contained in a hyper-
plane. Furthermore, letFj ⊂ I j ⊕ In be a compact, convex figure that contains the sideI j

of the parallelogramI j ⊕ In and at least one point of its opposite side,j = 1, . . . ,n−1.
Finally, letUj = Fj ⊕ L jn whereL jn is the(n − 2)-dimensional subspace containing
all segmentsI1, . . . , In exceptI j and In. ThenM = U1 ∩ · · · ∩Un−1.

Definition 2. A compact, convex, indecomposable bodyM ⊂ Rn is said to be ann-
dimensionaloutcut if it is representable (up to a translate) in the following form. Let
I1, . . . , In be as above. For every two indicesi < j ≤ n choose a compact, convex
figure Gi j ⊂ Ii ⊕ I j that contains both the segmentsIi , I j , but does not coincide
with the parallelogramIi ⊕ I j . Furthermore, letVi j = Gi j ⊕ Li j where Li j is the
(n − 2)-dimensional subspace containing all segmentsI1, . . . , In except Ii , I j . Then
M =⋂i< j Vi j .

Definition 3. A compact, convex, indecomposable bodyM ⊂ Rn is said to be ann-
dimensionalstack-outcutif it is representable (up to a translate) in the following form.
Let I1, . . . , In be as above. Letk be an integer, 2≤ k < n, and letϕ: {k+ 1, . . . ,n} →
{1, . . . , k}be a map that is onto in the casek = 2. For every two indicesi < j ≤ k choose
a compact, convex figureGi j ⊂ Ii⊕ I j that contains both the segmentsIi , I j , but does not
coincide with the parallelogramIi ⊕ I j . Furthermore, for every indexj ≥ k+ 1 choose
a compact, convex figureFj ⊂ I j ⊕ Iϕ( j ) that contains the sideI j of the parallelogram
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I j ⊕ Iϕ( j ) and at least one point of its opposite side. Finally, letVi j = Gi j ⊕ Li j and
Uj = Fj ⊕ L jϕ( j ). ThenM = (⋂i< j≤k Vi j ) ∩ (

⋂
j>k Uj ).

Definition 4. A polytopeM ⊂ R4 containing the origin in its interior (and any its trans-
late) is said to be aparticular four-dimensional polytopeif there is a basise1,e2,e3,e4

of R4 such that

M∗ = conv{e1,e2,e3,e4,−e1− e2,−e1− e3,−e2− e4,−e3− e4,e1+ e2+ e3+ e4}.

Theorem 7. Let M ⊂ Rn be a compact, convex, indecomposable body. The equality
mdM = 2 holds in and only in the following five cases:

(i) n = 2 and M is a compact, convex, two-dimensional figure distinct from a
parallelogram.

(ii) n ≥ 3 and M is an n-dimensional stack.
(iii) n ≥ 3 and M is an n-dimensional outcut.
(iv) n ≥ 4 and M is an n-dimensional stack-outcut.
(v) n = 4 and M is a particular four-dimensional polytope.

The proof is given in [12].

6. Proof of the Main Theorem

First we give estimates of the numberc(M) for the bodies described in Definitions 1–4.

Lemma 4. Let M ⊂ Rn be an n-dimensional stack. Then c(M) < 3
4 · 2n.

Proof. We use the description of the stack given in Definition 1. Lete1, . . . ,en be the
endpoints of the segmentsI1, . . . , In distinct from 0, respectively. Denote byS ⊂ Rn

the (n − 1)-dimensional subspace containingI1, . . . , In−1. For everyt ∈ [0,1] denote
by S(t) the hyperplane ofRn parallel toS and passing through the pointten. Since for
every j = 1, . . . ,n − 1 the subspaceL jn is contained inS, the intersectionS(t) ∩ Uj

coincides with(S(t)∩ Fj )⊕ L jn. Moreover, the intersectionI (t)j = S(t)∩ Fj is a segment

parallel to I j , the length ofI (t)j being less than the length ofI j if t is close enough to
1 (sinceM is indecomposable and henceFj does not coincide with the parallelogram
I j ⊕ In). This implies

S(t) ∩ M = S(t) ∩U1 ∩ · · · ∩Un−1

=
n−1⋂
j=1

((S(t) ∩ Fj )⊕ L jn) =
n−1⋂
j=1

(I (t)j ⊕ L jn),

i.e., P(t) = S(t) ∩ M is an(n− 1)-dimensional parallelotope with edges parallel to the
segmentsI1, . . . , In−1.

For t = 0 the parallelotopeP(0) is the lower base of the stackM . For t = 1 the
parallelotopeP(1) is theupperbase, i.e.,P(1) = M ∩ 0 where0 ⊂ Rn is the support
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hyperplane ofM parallel to the lower base. We note thatP(1) is an(n− 1)-dimensional
parallelotope which may degenerate into a parallelotope of a smaller dimension or into
a point, and the edges ofP(1) are parallel to ones of the lower base. Denote byp the
vector emanating from the center of the upper base ofM and going to the center of the
lower base. Since the sides of the upper base aresmaller than the corresponding sides
of the lower base, the direction of the vectorp illuminates the upper baseP(1) and its
neighborhood. In other words, there is a numberτ , 0 < τ < 1, such that the part of
bdM aboveS(τ ) is illuminated byp.

Consider now 2n−1 vectors±e1 ± · · · ± en−1. These vectors illuminate all vertices
(and hence all relative boundary points) of the(n− 1)-dimensional parallelotopeP(τ ).
Consequently there is a positive numberλ such that the directions of 2n−1 vectors±e1±
· · ·±en−1+λen also illuminate the relative boundary ofP(τ ). Hence, these 2n−1 vectors
illuminate the relative boundary ofP(t) for 0 < t < τ . Moreover, the 2n−1 vectors
considered illuminate all points of the lower baseP(0). Thus 2n−1+ 1 vectorsp,±e1±
· · ·±en−1+λen illuminate the whole boundary ofM , i.e.,c(M) ≤ 2n−1+1< 3

4 ·2n.

Remark. In fact, the obtained estimatec(M) ≤ 2n−1 + 1 is exact. Indeed, consider
all vertices of the lower baseP(0) and the center of the upper base. Every two of these
2n−1 + 1 points isantipodal, and thereforec(M) ≥ 2n−1 + 1. This proves the equality
c(M) = 2n−1+ 1.

Lemma 5. Let M ⊂ Rn be an n-dimensional outcut. Then c(M) < 3
4 · 2n.

Proof. We use the description of the outcut given in Definition 2. Lete1, . . . ,en be the
endpoints of the segmentsI1, . . . , In distinct from 0, respectively. Consider all vectors
of the kind−v + λ(e1 + · · · + en) whereλ is a fixed positive number andv is the sum
of anoddnumber of the summandse1, . . . ,en. The number of the vectors of this kind is
equal to (

n
1

)
+
(

n
3

)
+
(

n
5

)
+ · · · = 2n−1.

Supplementing one more vectore1+· · ·+en ,we obtain 2n−1+1 vectors. We show that
for λ > 0 small enough the directions of these vectors illuminate the whole boundary of
the outcutM .

Indeed, consider the figureGi j . Every pointx ∈ (rint Gi j )∪ Ii ∪ I j is illuminated by
the direction of the vectore1+ · · · + en, since the pointx+ λ(e1+ · · · + en) belongs to
the interior ofM .

Now consider a pointy ∈ Gi j that does not belong to(rint Gi j )∪ Ii ∪ I j . Denote the
coordinates ofy in the basise1, . . . ,en by y1, . . . , yn. Both the numbersyi , yj are positive
and at least one of them is less than 1 (sinceGi j is distinct from the parallelogramIi⊕ I j ).
Let, for definiteness, 0< yi < 1. Then the direction of the vectorej + λ(e1+ · · · + en)

illuminates the pointy. This shows that all points of the set
⋃

i, j Gi j are illuminated
by the 2n−1 + 1 vectors considered. In other words, ifx ∈ bdM belongs to a two-
dimensional subspace ofRn spanned by two vectors taken frome1, . . . ,en, then y is
illuminated.
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Now consider a pointy ∈ bdM that belongs to a four-dimensional subspace ofRn

spanned by four vectors taken frome1, . . . ,en, say,y belongs to the subspace spanned by
e1,e2,e3,e4. We may suppose thaty does not belong to a two-dimensional subspace as
above, i.e., at leastthreeof its coordinatesy1, y2, y3, y4 are distinct from zero. Moreover,
no more than one of the coordinates is equal to 1 (since any figureGi j is distinct from
the parallelogramIi ⊕ I j ). Let, for definiteness, 0≤ y1 < 1, 0< y4 ≤ 1, and 0< y2 ≤
y3 < 1. Then the direction of the vector−(e2+ e3+ e4)+ λ(e1+ · · · + en) illuminates
the pointy (as in the casesy ∈ Sandy /∈ SwhereS is the three-dimensional subspace
spanned bye2,e3,e4). Thus if y ∈ bdM belongs to a four-dimensional subspace ofRn

spanned by four vectors taken frome1, . . . ,en , theny is illuminated by the direction of
at least one of the 2n−1+ 1 vectors considered.

Similarly, if y ∈ bdM belongs to a six-dimensional subspace ofRn spanned by six
vectors taken frome1, . . . ,en , then y is illuminated by at least one of the 2n−1 + 1
directions considered, etc.

Remark. In fact, the obtained estimatec(M) ≤ 2n−1 + 1 is exact. We show this
for a particular outcut (a similar reasoning can be realized for any outcut). Namely, let
e1, . . . ,en be a basis inRn. Furthermore, letα be a number with 0< α < 1. For every pair
of indicesi < j taken from the set{1, . . . ,n}, we denote the set conv{0,ei ,ej , αei+αej }
by Gi j and construct the outcutM ′ ⊂ Rn with these setsGi j , 1 ≤ i < j ≤ n. Denote
by F the set contained in bdM ′ that includes the points 0,e1, . . . ,en and all points
x1e1+· · ·+xnen such that anoddnumber (not lesser than three) of coordinatesx1, . . . , xn

take the valueα, other coordinates being equal to zero. Every two points of the setF are
antipodalboundary points of the outcutM ′. For example, consider the points

a = (α, α, α,0, . . . ,0), b = (α, α, α, α, α,0, . . . ,0).

The pointb belongs to the support hyperplanex4 + x5 = 2α, and the pointa belongs
to the parallel support hyperplanex4 + x5 = 0, i.e., the pointsa andb are antipodal
(similarly for any two points of the setF). Since the number of the points of the setF is
equal to 2n−1+1, we havec(M ′) ≥ 2n−1+1. This proves the equalityc(M ′) = 2n−1+1.

Lemma 6. Let M ⊂ Rn be an n-dimensional stack-outcut.Then the inequality c(M) <
3
4 · 2n holds.

Proof. The stack-outcut is a “combination” of the stack and the outcut, and the proof
of Lemma 6 is obtained as a union of the proofs of Lemmas 4 and 5. We only indicate the
vectors whose directions illuminate the boundary of the stack-outcut, and do not repeat
details of the previous reasonings.

We use the description of the stack-outcut given in Definition 3. Lete1, . . . ,en be the
endpoints of the segmentsI1, . . . , In distinct from 0, respectively. Consider all vectors
of the kind−v ± ej+1± · · · ± en + λ(e1+ · · · + en) whereλ is a fixed positive number
andv is the sum of anoddnumber of the vectorse1, . . . ,ek. The number of these vectors
is equal to 2n−1. We add the vectore1+· · ·+en. The directions of these 2n−1+1 vectors
illuminate the whole boundary ofM .
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Lemma 7. Let M ⊂ R4 be a four-dimensional particular polytope.Then c(M) < 3
4 ·24.

Proof. The polar polytopeM∗ hasninevertices:

e1, e2, e3, e4, −e1− e2, −e1− e3, −e2− e4, −e3− e4, e1+ e2+ e3+ e4

(by Definition 4). In [18] is shown thatM∗ haseighteenedges:

[e1,e1+ e2+ e3+ e4], [e2,e1+ e2+ e3+ e4], [e3,e1+ e2+ e3+ e4],

[e4,e1+ e2+ e3+ e4], [−e1− e2,−e1− e3], [−e1− e2,−e2− e4],

[−e1− e3,−e3− e4], [−e2− e4,−e3− e4], [e1,−e2− e4], [e1,−e3− e4],

[e2,−e3− e4], [e3,−e2− e4], [e1,e4], [e2,−e1− e3],

[e3,−e1− e2], [e4,−e1− e2], [e4,−e1− e3], [e2,e3].

Furthermore,M∗ hasfifteentwo-dimensional faces: nine parallelograms,

[e1,−e3− e4,−e1− e3,e4], [e1,−e2− e4,−e1− e2,e4],

[e3,−e1− e2,e4,e1+ e2+ e3+ e4], [e2,−e1− e3,e4,e1+ e2+ e3+ e4],

[e3,−e2− e4,e1,e1+ e2+ e3+ e4], [e2,−e4− e3,e1,e1+ e2+ e3+ e4],

[e2,−e4− e3,−e4− e2,e3], [e2,−e1− e3,−e1− e2,e3],

[−e1− e2,−e1− e3,−e4− e3,−e4− e2],

and six triangles,

[e1,e4,e1+ e3+ e3+ e4], [e2,e3,e1+ e3+ e3+ e4], [e1,−e2− e4,−e3− e4],

[e4,−e1− e2,−e1− e3], [e2,−e1− e3,−e3− e4], [e3,−e1− e2,−e2− e4].

Note that six two-dimensional faces (four parallelograms and two triangles) adjoin every
vertex ofM∗. Three two-dimensional faces (two parallelograms and one triangle) adjoin
every edge.

By Euler’s theorem,c0 − c1 + c2 − c3 = 0 whereci is the number ofi -dimensional
faces of the polytopeM∗, i = 1,2,3,4. Sincec0 = 9, c1 = 18, c2 = 15, we obtain
c3 = 6, i.e., M∗ hassix three-dimensional facesW1, . . . ,W6. Let51, . . . ,56 be open
half-spaces with the boundaries through 0 such that5i ⊃ Wi , i = 1, . . . ,6. Thenevery
face of M∗ is contained in at least one of these open half-spaces (since every face is
contained in a three-dimensional one). This means thatc∗(M∗) ≤ 6. By Lemma 1, we
havec(M) = 6< 3

4 · 24.

Remark. In fact,c∗(M∗) = 6 (and hencec(M) = 6), since no pair of three-dimensional
faces ofM∗ is situated in one open half-space (with the boundary hyperplane through 0).

Proof of the Main Theorem. Let M ⊂ Rn be a compact, convex body with mdM = 2.
Consider its decompositionM = M1⊕ · · ·⊕Mq into the direct vector sum of compact,
convex, indecomposable sets. We may suppose that for an integerp, 1 ≤ p ≤ q, we
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have mdM1 = · · · = mdMp = 2 and (if p < q) mdMp+1 = · · · = mdMq = 1, i.e.,
the summandsMp+1, . . . ,Mq are segments. Denote the dimension of the setMk by nk,
k = 1, . . . , p. If we verify that for the setsM1, . . . ,Mp Martini’s estimate holds, i.e.,
c(Mk) ≤ 3

4 · 2nk for k = 1, . . . , p, then we obtain

c(M) = c(M1) · · · · · c(Mp) · 2q−p

≤ ( 3
4 · 2n1) · · · · · ( 3

4 · 2np) · 2q−p = ( 3
4)

p · 2n ≤ 3
4 · 2n

(sincen = n1+ · · · + np+ q− p), which proves the Main Theorem. Thus it remains to
verify that the equalitiesc(Mk) ≤ 3

4 · 2nk , k = 1, . . . , p, hold. To this end, we consider
separately cases (i)–(v) of Theorem 7.

(i) nk = 2 andMk is a two-dimensional figure distinct from a parallelogram. In this
casec(Mk) = 3= 3

4 · 2nk , i.e., Martini’s estimate is exact.
(ii) nk ≥ 3 andMk is annk-dimensional stack. In this case, by Lemma 4,c(Mk) <

3
4 · 2nk , i.e., Martini’s estimate is strict.

(iii) nk ≥ 3 andMk is annk-dimensional outcut. In this case, by Lemma 5,c(Mk) <
3
4 · 2nk , i.e., Martini’s estimate is strict.

(iv) nk ≥ 4 andMk is annk-dimensional stack-outcut. In this case, by Lemma 6, we
also havec(Mk) <

3
4 · 2nk , i.e., Martini’s estimate is strict.

(v) nk = 4 and Mk is a four-dimensional particular polytope. In this case, by
Lemma 7,c(Mk) <

3
4 · 24 = 3

4 · 2nk , i.e., Martini’s estimate is strict.

Remark. The above reasoning shows that for a compact, convex bodyM ⊂ Rn with
mdM = 2, the equalityc(M) = 3

4 ·2n holds if and only ifM = Q⊕ I1⊕· · ·⊕ In−2 where
Q is a two-dimensional figure distinct from a parallelogram and allI j are segments. In
all other casesc(M) < 3

4 · 2n.

References

1. E. Baladze: A complete solution of the Sz¨okefalvi-Nagy problem for zonohedra.Soviet Math. Dokl. 34(3)
(1987), 458–461.

2. E. Baladze: A solution of the Sz¨okefalvi-Nagy problem for zonoids.Soviet Math. Dokl. 41 (1990).
3. E. Baladze and V. Boltyanski: Belt bodies and the Helly dimension.Sb. Math. 186(1995).
4. K. Bezdek: The problem of illumination of the boundary of a convex body by affine subspaces.Mathe-

matica38 (1991), 362–375.
5. K. Bezdek: Hadwiger’s covering conjecture and its relatives.Amer.Math.Monthly99(10) (1992), 954–956.
6. K. Bezdek: Hadwiger–Levi’s covering problem revisited. Ed.: J. Pach,New Trends in Discrete and Com-

putational Geometry. Springer-Verlag, New York, 1993, pp. 199–233.
7. K. Bezdek and T. Bisztriczki: A proof of Hadwiger’s covering conjecture for dual cyclic polytopes.Geom.

Dedicata68 (1997), 29–41.
8. V. Boltyanski: The problem of illuminating the boundary of a convex body (in Russian).Izv. Mold. Fil .

AN SSSR10(76) (1960), 77–84.
9. V. Boltyanski: On certain classes of convex sets.Soviet Math. Dokl. 17(1) (1976), 10–13.

10. V. Boltyanski: Helly’s theorem forH -convex sets.Soviet Math. Dokl. 17(1) (1976), 78–81.
11. V. Boltyanski: Generalization of a certain theorem of B. Sz¨okefalvi-Nagy.Soviet Math. Dokl. 17(3) (1976),

674–677.
12. V. Boltyanski: A new step in the solution of the Sz¨okefalvi-Nagy problem.Discrete Comput. Geom. 8

(1992), 27–49.



Solution of the Illumination Problem for Bodies with mdM = 2 541

13. V. Boltyanski: A solution of the illumination problem for belt bodies.Math. Notes58 (1996).
14. V. Boltyanski: Hindering systems for convex bodies.Sb. Math. 188(3–4) (1997), 327–339.
15. V. Boltyanski and T. Chabukiani: Solution of the Sz¨okefalvi-Nagy problem for three-dimensional convex

bodies.Soviet Math. Dokl. 30(3) (1984), 755–757.
16. V. Boltyanski and H. Martini: Covering belt bodies by smaller homothetical copies.Beiträge Algebra
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