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Abstract. We give simple necessary and sufficient conditions for self-affine tiles inR2

to be homeomorphic to a disk.

1. Introduction

Throughout this note we consider integral self-affine tiles with standard digit sets. Such
are tilesT := T(A,D) satisfying

A(T) = T +D (1)

or

T =
⋃
d∈D

A−1(T + d), (2)

whereA is an expanding 2× 2 matrix of integers, andD ⊂ Z2 with |D| = |detA| is a
complete set of coset representatives forZ2/AZ2. See [1]–[3], [5]–[8], [10], [13]–[15],
and [19]–[21].

Moreover, we assume thatT(A,D) tiles by the latticeZ2, that is,T + Z2 is a tiling
of R2. Such tiles are calledself-affineZ2-tiles. There are standard methods for checking
this property [13]–[15], [20]. When the digit setD is primitive, only in special cases
may the corresponding tileT(A,D) not be aZ2-tile, see [14].

∗ The second author was supported in part by the National Science Foundation, Grant DMS-0070586 and
a grant from the Center for Wavelets, Approximation and Information Processing in the National University
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Fig. 1. Edge neighbors intersect in a Sierpinski gasket.

The simplest example of a self-affineZ2-tile is the unit square, divided inton × n
small squares:

A = nI =
[
n 0
0 n

]
and D =

{[
i
j

]∣∣∣∣ i, j = 1, . . . ,n

}
.

Figure 1 was obtained from this example, withn = 2, just replacing the residue [1,1]T

by [−1,−1]T . (In order to get the symmetric picture, we have chosen coordinates which
are not rectangular. The origin is in the center of Fig. 1 while the vertices of the triangle
correspond to [1,0]T , [0,1]T and [−1,−1]T .) Figures 2 and 3 were obtained from the
4× 4 square by replacing two residues in an obvious manner. There are infinitely many
other ways in which residues can be exchanged but nearly all of them lead to tiles with
holes or with disconnected interior.

Question. Given a self-affineZ2-tile T(A,D), under what conditions isT(A,D)
homeomorphic to a disk?

Lattice tilings by topological disks must satisfy certain combinatorial properties. We
state them here, and they are the keys to answering our question. We say that two tiles
T ′ andT ′′ in a tiling areneighborsif T ′ ∩ T ′′ 6= ∅. We call the tilesvertex neighborsif
their intersection is a single point. They areedge neighborsif their intersection contains
a point inside int(T ′ ∪ T ′′), and hence uncountably many points (see Section 3). Note
that there might be other types of neighbors.
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Fig. 2. A disconnected tile with six neighbors.

If the tiles are topological disks, an edge will be an arc, as usual. The tile in Fig. 1 will
intersect an edge neighbor in a more complicated set (actually in a Sierpinski gasket).

It should be pointed out that for a given integral self-affineZ2-tile T(A,D) there is
a simple algorithm to determine its neighbors [19].

Proposition 1.1[3, Lemma 5.1]. LetÄ be a topological disk which tilesR2 by lattice
translates of the latticeL. Then in the tilingÄ+ L one of the following must be true:

(i) Ä has no vertex neighbors and six edge neighborsÄ± α,Ä± β,Ä± (α + β)
for someα, β ∈ L, andZα + Zβ = L.

(ii) Ä has four edge neighborsÄ± α,Ä± β and four vertex neighborsÄ± α ± β
for someα, β ∈ L, andZα + Zβ = L.

Fig. 3. A tile with eight neighbors which is not a disk.
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Now letF be a finite subset ofZ2.We say a subsetE ⊂ Z2 isF-connectedif for any
u, v ∈ E there existu0 = u,u1, . . . ,un = v ∈ E with ui+1− ui ∈ F .

Proposition 1.2(see [18]). Let the self-affineZ2-tile T = T(A,D) be a topological
disk whose edge neighbors are T+ F , F ⊂ Z2. ThenD isF-connected.

Proof. Note thatA(T) = T + D is a topological disk. LetD1, . . . ,Dk be theF-
connected components ofD and assume thatk > 1. Let Ti = T + Di . The setT1 ∩ T2

is countable sinceT + d1 andT + d2 are not edge neighbors ford1 ∈ D1,d2 ∈ D2. The
same is true forTi ∩ Tj with i 6= j . ThusA(T) becomes disconnected when a countable
set is removed. This is not possible for a disk.

2. Main Results

The main contribution of this paper is to show that the necessary conditions given in
Propositions 1.1 and 1.2 are also sufficient. These seem to be the first sufficient conditions
for tiles to be disk-like, and they solve a problem in [18]. It turns out that the type of
neighbors is not essential, only their number and relative lattice position.

Theorem 2.1. Let T(A,D) be a self-affineZ2-tile. Suppose that T has not more than
six neighbors T+ F . Then T is a topological disk if and only ifD isF-connected.

Theorem 2.2. Let T(A,D) be a self-affineZ2-tile. Suppose that T has eight neighbors
T + {±α,±β,±(α + β),±(α − β)}. Then T is a topological disk if and only ifD is
{±α,±β}-connected.

We give some examples to examine these conditions. The tile in Fig. 1 has six edge
neighbors, andD isF-connected. However, it is not a disk since there are six other vertex
neighbors. Figure 2 shows a tile with six neighbors which is disconnected becauseD is
notF-connected. In Fig. 3 we have eight neighbors as assumed in Theorem 2.2, and the
tile is connected. It is not a disk, however, sinceD is not connected with respect to the
edge neighbors only.

Figure 4 shows that the mere assumption of eight neighbors in Theorem 2.2 would not

suffice. HereA =
[

0 3
1 1

]
andD = {[0,0]T , [1,0]T , [−1,0]T }. The tile in the middle

is T, and the three tiles of the middle row formA(T). It is obvious thatT has six edge
neighbors±α = ±[1,0]T , ±β = ±[−2,1]T and±(α + β). Moreover, the upper left
and lower right neighbors±β meet with their long narrow peaks in the center ofT. This
is only indicated by the picture, for a proof see 6.1 of [3]. ThusT is not a topological
disk, andT has two more vertex neighbors±2β.

For small numbersm = |D| of pieces, all possible disk-likeZ2-tiles have been
classified up to affine conjugacy. Form = 2 there are three and form = 3 seven
nonisomorphic cases [3], form = 4 their number is twenty-nine [7], [18]. The proof
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Fig. 4. A tile with eight neighbors and disconnected interior.

that the tiles are disk-like was given “by inspection.” Even for tiles like the twindragon
which are well known to be topological disks, no proof of this property seems to be
published. Theorems 2.1 and 2.2, together with the algorithm in [19], now provide
rigorous arguments.

Example. We just indicate the proof for the twindragon whereA =
[

1 1
1 −1

]
and

D = {[0,0]T , [1,0]T }. The neighbors areF = {±[1,0]T ,±[0,1]T ,±[1,−1]T }. Thus
we have the six neighbors case of Theorem 2.1, and it is enough to see the first neighbor in
order to conclude thatD isF-connected. Similarly, all cases form≤ 4 can be checked.

Our technique also allows us to characterize the connectedness of a self-affine tile in
n-dimensional space (see [8] and [11]).

Theorem 2.3. Let T(A,D) be a self-affine set inRn for an integer matrix A∈ Mn(Z)
andD ⊂ Zn. Let T+ F be the neighbors of T whereF ⊂ Zn. Then T is connected if
and only ifD isF-connected.

We note that in Theorem 2.3 we do not requireT(A,D) to be a tile. For general data
(A,D) the self-affine setT(A,D) given by (1) may not be a tile. A neighbor ofT is
nevertheless well defined for general self-affine sets.
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Theorems 2.1 and 2.3 combine to give

Corollary 2.4. Let T(A,D) be a self-affineZ2-tile with not more than six neighbors.
Then T is a topological disk if and only if T is connected.

3. A Topological Result

In this section we prove the key topological lemma for our theorems, as suggested by
the referees. Our result is connected with two fundamental theorems of plane topology
and geometry: the Jordan curve theorem [12], [22] and the Riemann mapping theorem.
A more general statement with a more complicated proof was found recently by Luo
and Tan [16].

Theorem 3.1. Let T(A,D) be a self-affineZ2-tile such that the interiorint T is con-
nected. Then T is a topological disk.

Proof. We know already that (1)T is the closure of its interior, and (2) intT is con-
nected. We now observe that (3)T is simply connected. That is, each simple closed curve
C ⊂ T contracts to a point within the setT , briefly, T contains no holes.

If there are holes, they must contain points of another tileT + α in the lattice tiling.
Since the interior ofT + α is connected, it must be completely surrounded byT, which
is not possible. Note that intT is also simply connected by (1)–(3) as well as by the
above argument.

Finally, we show that (4)T is locally connected, see [4]. The connectedness ofT
implies that each piece in the self-affine hierarchy ofT is connected. Thus for each point
x ∈ T and each levelk, the union of all levelk pieces containingx forms a connected
neighborhoodUk(x) of x. The family of these (closed) neighborhoods is a neighborhood
base ofx.

It follows from classical results in plane topology that a compact setT with properties
(1)–(4) must be a topological disk.

One way to deduce this from the literature is as follows. Since intT is simply con-
nected, the Riemann mapping theorem provides a conformal homeomorphismh0: D→
int T from the open unit diskD to intT. Moreover,h0 can be extended to a continuous
mappingh: D → T from the closed unit disk toT if and only if the boundary∂T
of T is locally connected [17, Theorem 2.1]. This condition follows from (3) and (4)
by the Torhorst theorem, see p. 124 of [22]. Finally, a theorem of Carath´eodory (see
Theorem 2.6 of [17]) says thath is a homeomorphism if∂T has no cutpoints, which
follows from (3).

4. Proof of the Theorems

Proof of Theorem2.3. It is clear thatT + d andT + d′ are neighbors if and only if
d − d′ ∈ F . It is known that the connectedness of a self-affine set can be expressed
as the connectedness of the graph which has the pieces as vertices and edges between
neighbors [4, Proposition 2] (see [11]). ForA(T) this means thatD isF-connected.
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The following lemma, as well as Theorem 4.2 and Lemma 4.3, does not use any
self-similarity, and the structure of the edges may be as complicated as in our Fig. 3.

Lemma 4.1. Let T be aZ2-tile with neighbors T+ F for someF ⊂ Z2. LetZ[F ]
denote the subgroup ofZ2 generated byF . ThenZ[F ] = Z2.

Proof. Call α1, α2 ∈ Z2 neighbors ifα1 − α2 ∈ F . Let F0 = {0} andFn+1 be the
neighbors ofFn, n ≥ 0. Define

G =
⋃
n≥0

Fn.

Clearly,G ⊆ Z[F ] (in fact they are equal). Assume thatG 6= Z2. ThenH = Z2\G is
nonempty. SetÄ = T + G andÄ′ = T +H. It follows thatÄ∩Ä′ = ∅. However, both
Ä andÄ′ are closed sets andÄ ∪ Ä′ = R2. This contradicts the connectedness ofR2.
ThereforeG = Z2 and henceZ[F ] = Z2.

To prove the sufficiency ofF-connectedness in Theorem 2.1 and of the stronger
{±α,±β}-connectedness in Theorem 2.2, we can now assume thatT is connected (and
hence arcwise connected [4]). It remains to show that the interior intT of T is connected.
First we strengthen our assumptions in the case of not more than six neighbors.

Theorem 4.2. Let T be a connectedZ2-tile with at most six neighbors. Then there are
α, β in Z2 such that the set of neighbors is T+ F withF = {±α,±β,±(α + β)}.

Proof. LetÄ := T + F andÄ̃ := R2\(T ∪Ä). The Hausdorff distance (see p. 65 of
[6]), d(T, Ä̃) = δ is positive sinceT is separated from̃Ä. For ε > 0 let Bε(z) denote
the open disk of radiusε centered atz. The collection of open disks{Bε(z): z ∈ T}
coversT . So by compactness we may findz1, . . . , zk ∈ T such thatTε =

⋃k
j=1 Bε(zj )

coversT . Tε is connected becauseT is. NowTε is a finite union of disks, so∂Tε consists
of a finite number of simple piecewise smooth closed Jordan curves. Assume thatC
is the Jordan curve of the outer boundary. For eachy ∈ Z2\{0} let zy ∈ C such that
〈zy, y〉 = max{〈z, y〉: z ∈ C}. It is easy to see thatzy + y ∈ C + y is outsideC and
d(zy+ y,C) ≥ 1. There exists a pointz′ ∈ T + y with d(z′, zy+ y) < ε, and this point
z′ must be outsideC if ε < 1

2.
Chooseε < min{δ/2, 1

2}. Then for eachy ∈ F the tileT + y has points outsideC. It
also has points insideC becauseT + y intersectsT . Furthermore,d(Tε, Ä̃) > δ/2. So
C ⊂ intÄ. Because each neighbor ofT has both points inside and outsideC, and because
T is connected,C must intersect all neighbors ofT . ParametrizeC by z(t), t ∈ [0,1]
with z(0) = z(1). We now partitition [0,1] by 0= t0 < t1 < t2 < · · · < tk = 1 such
that each segmentCi = z([ti−1, ti ]) of the curveC has diam(Ci ) < δ/2. This partitition
yields a sequence

y11, . . . , y1 j1, y11, . . . , y2 j1, . . . , yk1, . . . , ykjk

in F such that{yi j : 1 ≤ j ≤ ji } consists of ally ∈ F such that(T + y) ∩ Ci 6= ∅.
Pruning the sequence so that any two adjacent elements in the sequence are distinct we
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obtain a new sequencey1, . . . , ym, ym+1 = y1. Since eachy ∈ F appears at least once
in (yi j ) it must appear also at least once in the new sequence(yi ). Furthermore, points in
two adjacentCi ’s are less thanδ apart sod(T+ yi , T+ yi+1) < δ. Henceyi+1− yi ∈ F .

Note thatF must be centrally symmetric soF can only have two, four, or six elements.
By Lemma 4.1Z[F ] = Z2. SoF contains at least two linearly independent elements.
This immediately rules out two elements forF . If F has four elements, thenF =
{±α,±β} with α andβ independent. Thus one of±α must be followed by one of±β
somewhere in the sequence, yielding one of±α ± β in F , a contradiction. HenceF
must have six elements. Again, in the sequence(yj ) there must be two adjacent elements
α1 andα2 that are independent, yieldingα1− α2 ∈ F . Therefore

F = {±α1,±α2,±(α1− α2)}.

The theorem is proved by settingα = α1 andβ = −α2.

Lemma 4.3. Let T be a connectedZ2-tile with neighbors T+ F , F ⊂ Z2. If F =
{±α,±β,±(α + β),±(α − β)}, then T+ {±α,±β} are edge neighbors. If F =
{±α,±β,±(α + β)}, then T+ F are edge neighbors.

Proof. SinceZα + Zβ = Z2 in both cases by Lemma 4.1 we may, without loss of
generality, assume thatα = [1,0]T andβ = [0,1]T .

Let δ > 0 denote the minimal distance between two disjoint tiles in the lattice tiling.
DenoteS1 = int(T + αZ). This is an open set near thex1-axis which by the assumption
of our lemma separates the setB+ consisting of all tilesT +mβ + nα with positivem
from the setB− consisting of all tiles with negativem. The distance betweenB+ andB−
is≥ δ. Take an integerk with 1/k < δ/2. Write x = [x1, x2]T and let

f (x1) = sup{x2: d(x, B−) < δ/2}

for all x1 = n/k with n ∈ Z. Thus the pointsz= [x1, f (x1)]T fulfill d(z, B−) = δ/2≤
d(z, B+). We extendf as a linear function between these points and let

C1 = graph of f = {z(s) = [s, f (s)]T : s ∈ R}.

Since f (s+ 1) = f (s), the polygonal lineC1 is periodic:C1 = C1+ α. Now we prove
thatC1 ⊂ S1. Takez(s) on a line segment ofC1 and letz(x1) be that vertex of the line
segment for whichf (x1) ≤ f (s). For x′ = [x1, f (s)]T we have

δ/2≤ d(x′, B−) ≤ |x1− s| + d(z(s), B−) < δ/2+ d(z(s), B−),

which impliesd(z(s), B−) > 0. Similarly we see thatd(z(s), B+) > 0. The connected-
ness ofT, and hence ofB− andB+, now implies that all points ofB− lie belowC1 and
all points ofB+ above. HenceC1 ⊆ S1.

Note thatC1 must cross from one tile into another, say fromT to T +mα. Clearly,
m= ±1, or the two tiles are disjoint. Saym= 1. So part ofC1 must lie in int(T∪(T+α)).
Taking a point ofC1 in T ∩ (T + α) we see thatT + α is an edge neighbor ofT.

The proofs for the other cases are identical.
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Let T = T(A,D) be a self-affine tile satisfying (1). Iterating (1) yields

Ak(T) = T +Dk, where Dk := D + AD + · · · + Ak−1D. (3)

Note thatDk = Dk−1+ AkD, with D0 := {0}.

Lemma 4.4. Let T(A,D) be a self-affineZ2-tile with neighbors T+ F , F ⊂ Z2.
If F = {±α,±β,±(α + β)} andD is F-connected, then so isDk for all k ≥ 0. If
F = {±α,±β,±(α + β),±(α − β)} andD is {±α,±β}-connected, then so isDk for
all k ≥ 0.

Proof. In the six neighbors case note thatAk(T) = T + Dk andT is connected. By
Theorem 2.3Dk must beF-connected.

In the eight neighbors case letF0 = {±α,±β}. We proveF0-connectedness ofDk by
induction onk. Observe thatD0 = {0} is clearlyF0-connected, andDk = D + ADk−1.

We assume thatDk−1 isF-connected and show thatDk isF-connected.
It is sufficient to show that foru,u′ ∈ Dk−1 with u−u′ ∈ F there existd,d′ ∈ D such

that(d+Au)−(d′+Au′) is also inF .However,u−u′ ∈ F means thatT+u andT+u′

are edge neighbors. Hence the larger tilesA(T) + Au and A(T) + Au′ are also edge
neighbors: they have uncountably many common points. SinceA(T) = ⋃d∈D T + d,
there must existd,d′ ∈ D such thatT+d+ Au andT+d′ + Au′ also have uncountably
many points. Thus they are edge neighbors and the difference of the vectors is inF by
our assumptions. Lemma 4.4 is proved.

Lemma 4.5. Under the assumptions of Theorem2.1or 2.2, intT is connected.

Proof. We prove that intT is connected under the assumptions of Theorem 2.2. The
other case is virtually identical (in fact a little simpler). Denote

F = {±α,±β,±(α + β),±(α − β)} and F0 = {±α,±β}.
Let z1 andz2 be two points in intT. We construct an arc fromz1 to z2 within int T. Let
K0 ∈ Z such thatK0 > max{|x|: x ∈ T} and letR> 5K0. Choosek sufficiently large so
thatBR(Akzi ) ⊆ Ak(int T). It follows from Ak(T) = T +Dk and theF0-connectedness
ofDk that we may findy0, y1, . . . , yN ∈ Dk such thatyi+1−yi ∈ F0 andAkz1 ∈ T+y0,
Akz2 ∈ T + yN . Hence|Akz1− y0| < K0 and|Akz2− yN | < K0. We prove there exists
an arc connectingAkz1 andAkz2 that lies within int(AkT).

Let δ > 0 be the minimal distance between two disjoint tiles in theZ2-tiling and let
Tε be as in the proof of Theorem 4.2 withε < min(1, δ/4). Then the set

Ä =
⋃

y∈Z2\{yi }
(Tε + y)\

(
BR(Akz1) ∪ BR(Akz2)

)
is an open set whose boundary consists of finitely many circular arcs. Furthermore,
R2\Ä ⊆ int (AkT). Assume thatBR(Akz1) andBR(Akz2) belong to the same connected
component ofR2\Ä. Then we can find an arc inR2\Ä that connectsAkz1 and Akz2.
This arc is in int(AkT). So we may connectz1 andz2 by an arc in intT .
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Now assume thatBR(Akz1) andBR(Akz2) belong to two different connected compo-
nents ofR2\Ä, sayÄ1 andÄ2, respectively. We derive a contradiction. Choose a simple
closed curveC ⊆ ∂Ä1 such thatBR(Akz1) andBR(Akz2) are on separate sides ofC, and
without loss of generality assume thatBR(Akz1) is on the inside ofC. We parametrizeC
by x(t)wheret ∈ [0,1] with x(0) = x(1). As t varies from 0 to 1 the curve wraps around
BR(Akz1). Take pointsxi = x(ti ) for 0 ≤ i ≤ m where 0= t0 < t1 < · · · < tm = 1
such that|xi+1− xi | < δ/4. Eachxi is in the closure ofTε +wi for somewi 6∈ {yj } with
w0 = wm. It is easy to see thatd(T + wi+1, T + wi ) < δ for 0 ≤ i < m. By removing
redundant vertices, we may assume without loss of generality thatwi+1 6= wi for all
0≤ i ≤ m. It follows thatwi+1− wi ∈ F .

Let C1 be the closed piecewise linear curve with verticesw0, w1, . . . , wm. Since each
|xi −wi | ≤ K0+ ε < 2K0, we must have|wi − Akz1| ≥ 3K0 and|wi − Akz2| ≥ 3K0.
Therefored(Akzi ,C1) > 2K0. It follows that C1 must wrap aroundBK0(A

kz1) as it
traversesw0 throughwm while leavingBK0(A

kz2) outside. Hence any path fromy0 to
yN must crossC1. In particular, the piecewise arcC2 with verticesy0, y1, . . . , yN must
intersectC1. This means some line segmentwiwi+1 must intersect some line segment
yj yj+1. However,yj+1 − yj ∈ F0 andwi+1 − wi ∈ F0. It is easy to check that the only
way the two line segments can intersect is that they share at least one common vertex.
This contradicts the assumption that theyj and thewi are disjoint.

Therefore intT must be connected, and Theorem 3.1 applies.
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