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Abstract. This paper is concerned with the concept of linear repetitivity in the theory
of tilings. We prove a general uniform subadditive ergodic theorem for linearly repetitive
tilings. This theorem unifies and extends various known (sub)additive ergodic theorems on
tilings. The results of this paper can be applied in the study of both random operators and
lattice gas models on tilings.

1. Introduction

In a recent paper, Lagarias and Pleasants studied linearly and densely repetitive tilings
[10]. It was shown that these structures are diffractive and they proposed to consider
linearly repetitive tilings as models of “perfectly ordered quasicrystals.”

In fact, several special classes of linearly repetitive tilings have attracted much atten-
tion. One such class is given by tilings arising from primitive substitutions. They have
been studied in several contexts [6]–[8], [16], [22], [23], including random Schr¨odinger
operators and lattice gas models. Both the study of lattice gas models and the study
of random Schr¨odinger operators require a uniform subadditive ergodic theorem. The
appropriate theorem has been established in [6]. In the one-dimensional case there is
another important class of examples of linearly repetitive structures, namely, Sturmian
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dynamical systems whose rotation number has bounded continued fraction expansion.
Again, this class allows for a uniform subadditive ergodic theorem. This has been shown
by one of the authors [13] (see [3] and [11] for applications). These results immediately
raise the following question:

(Q) Does linear repetitivity imply a uniform subadditive ergodic theorem?

This question is answered in the affirmative by Theorem 1 in Section 3 of this paper
(see [11] as well). This theorem generalizes the theorem of [13]. Moreover, combined
with the known linear repetitivity of tilings generated by primitive substitution [4], [5],
[23], it gives a conceptual proof for the subadditive ergodic theorem of [6]. Of course,
this theorem also implies an additive ergodic theorem. However, this additive ergodic
theorem is not as effective as the corresponding theorem of [10], as it does not contain
an error estimate (see Section 3).

We emphasize that our point of view is a purely local one. Thus, the key object of our
studies is neither a tiling nor a species of tilings but rather certain sets of pattern classes.
The appropriate sets are defined in Definition 2.1 and termed admissible. The advantage
of this point of view is twofold. Firstly, in this approach, the uniformity of results is
built in as the local structure is uniform for all tilings in the species. Secondly, the role
of asymptotic translation invariance appearing in the subadditive ergodic theorems is
clarified (see Section 4). We defer discussion of the methods used in the proofs of our
results to the corresponding sections.

The article is organized as follows. In Section 2 we review basic facts on tilings and fix
some notation. Section 3 contains a rather general form of a subadditive ergodic theorem.
This is the main result of this paper. It gives an affirmative answer to Question (Q). In
Section 4 we specialize the main theorem to various situations. This recovers several
known (sub)additive ergodic theorems. Finally, in Section 5, we sketch applications of
the foregoing results in the study of random operators associated to tilings.

2. Preliminaries

The aim of this section is to introduce certain notions and to fix some notation.
Consider a set consisting of subsets ofRd which are convex, homeomorphic to the

closed unit ball inRd, and pairwise disjoint up to their boundaries. Such a set of sets is
called a pattern if it is finite. It is called a tiling (ofRd) if the union of its elements equals
the whole space. The elements of tilings and patterns are called tiles. We mention that
the sets in a pattern need not form a connected set.

For certain applications, it is useful to consider decorated tiles and patterns. A pattern
with decorations from a set0 is a setM of pairsm= (am, cm)with am ⊂ Rd andcm ∈ 0
such that{am: m ∈ M} is a pattern. One should think of a pair(am, cm) as a tile colored
or decorated bycm.

Remark 1. Our definition of a tile might seem to be more restrictive than the usual
one in that we require convexity. However, combining the Voronoi contruction and a
suitable decoration procedure one can easily transform an arbitrary tiling into a tiling
with convex tiles without losing information.
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The following definitions apply to both patterns and decorated patterns. However, to
avoid tedious repetitions, they are phrased in terms of patterns only. If a patternM is
contained in a pattern or tilingN, we writeM ⊂ N and say thatM is a subpattern ofN.
Similarly, if a tile t belongs to a pattern or tilingN, we write t ∈ N. For a patternM ,
we define the underlying sets(M) by

s(M) =
⋃

m∈M

m⊂ Rd.

The inner radiusr in(M) of a patternM is defined by

r in(M) = max{r ∈ R: ∃x ∈ Rd, K (x, r ) ⊂ s(M)},

and the outer radiusrout(M) of a patternM is defined by

rout(M) = min{r ∈ R: ∃x ∈ Rd, K (x, r ) ⊃ s(M)},

where K (x, r ) denotes the closed ball aroundx with radiusr . The existence of the
minimum and maximum in question follows by compactness ofs(M). For a patternM
and a closed convex setB homeomorphic to the unit ball withs(M) ⊃ B, define the
restrictionM ∩ B of M to B by

M ∩ B = {m∩ B: m ∈ M,m∩ int(B) 6= ∅}. (1)

In the applications we have in mind,B will be either a box (see Section 3) or a closed
ball.

There exists a natural equivalence relation on the set of patterns. Two patterns are
equivalent if and only if they agree up to translation. The class of a pattern is also called
a pattern class or an abstract pattern. Similarly, an abstract tile is the class of a tile up to
translation. (In the literature one can also find the word prototile for these objects.)

The relations “∈” and “⊂” (resp., the functionsr in and rout) give rise to relations
(resp., functions) on abstract patterns in the obvious way. The induced relations (resp.,
functions) are denoted by the same symbols. Similarly, concepts such as connectedness
of patterns, disjointness, or distance of tiles in patterns, etc., can easily be carried over
to abstract patterns. This is tacitly done in what follows whenever necessary. Moreover,
we sometimes omit the word abstract in abstract patterns if no confusion can arise.

Our point of view is a purely local one. Thus, the following definition introduces the
main object of our studies.

Definition 2.1. A setP of abstract patterns inRd is called admissible if it satisfies the
following conditions:

(i) P ∈ P, Q ⊂ P implies Q ∈ P.
(ii) There exist 0< rmin, rmax < ∞ with rmin ≤ r in(a) ≤ rout(a) ≤ rmax for all

abstract tilesa ∈ P.
(iii) Let P ∈ P with representativėP with 0 ∈ Ṗ andr > 0 be given. Then there

exists aQ ∈ P with representativėQ with K (0, r ) ⊂ s(Q̇) and Ṗ ⊂ Q̇.
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Note that by (iii),P contains patterns of arbitrary large diameter (and thus cannot be
finite).

In what follows we are exclusively concerned with admissible setsP. For each ad-
missible set, there is a natural set of tilings associated with it. Conversely, to a tiling of
Rd, one can associate a set of abstract patterns. This is the content of the next definition.

Definition 2.2.

(a) Let T be a tiling ofRd. The setP(T) of abstract patterns associated toT is
defined to be the set of classes of subpatterns ofT .

(b) LetP be an admissible set of abstract patterns. A tilingT is said to be associated
toP if P(T) ⊂ P.

(c) LetP be an admissible set of abstract patterns. The set of all tilingsT associated
toP with the topology induced by the metric

d(T, S) = min
{

1
2, I (T, S)

}
for I (T, S) ≡ inf{ε: T ∩ K (0,1/ε) = (S+ t) ∩ K (0,1/ε), ∃t ∈ Rd, ‖t‖ ≤ ε},
is a topological space denoted byÄ(P) (see [22]).

Remark 2. It may well be thatÄ(P) is empty. However, this cannot happen ifP is
linearly repetitive (see Proposition 2.4 ).

This article is centered around the notion of linear repetitivity. This notion has been
studied in [10] for Delone sets inRd. In our context it is given in the following definition.

Definition 2.3. An admissible setP of patterns is called linearly repetitive if there
exists a constantcLR > 0 such that everyP ∈ P with rout(P) ≥ 1 is contained in every
Q ∈ P with r in(Q) ≥ cLR · rout(P).

An important property of the tiling space associated to a linearly repetitiveP is the
following:

Proposition 2.4. If the admissibleP is linearly repetitive, thenÄ(P) is not empty and
compact.

Proof. This follows by rather standard arguments once it is realized that linear repeti-
tivity implies finiteness of the number of pattern classes with a prescribed maximal outer
radius. For the reader’s convenience, we include a proof in Appendix A.

We finish this section by discussing the role of Delone sets and the Voronoi con-
struction in our context. Recall that a subsetD of Rd is called a Delone set if there
exist positive constantsr0 and r1 such that each ball inRd of radius at leastr1 con-
tains a point ofD and each ball of radius at mostr0 does not contain more than one
point of D. The Voronoi construction assigns to eachx in a given Delone setD the set
V(x) = {y ∈ Rd: dist(x, y) ≤ dist(z, y), z ∈ D}, where dist(·, ·) denotes Euclidean
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distance. ThenV(D) = {V(x): x ∈ D} is a tiling of Rd by convex polytopes (see
[21]). Proposition 5.2 of [21] says thatP(V(D)) is admissible for a Delone setD. Thus,
Delone sets give rise to admissible sets. This motivates the following definition.

Definition 2.5. A Delone setD is called linearly repetitive ifP(V(D)) is linearly
repetitive.

Remark 3. Using the following proposition, it is not hard to show that this definition
of linear repetitivity for Delone sets agrees with the definition of [10].

Proposition 2.6. Let D be a Delone set. Then for each x∈ D, the tile V(x) is deter-
mined by the points of D lying inside a ball of radius2r1 around x.

Proof. This is just Corollary 5.1 in [21]

3. The Main Theorem

This section is devoted to a proof of a rather general uniform subadditive ergodic theorem.
The proof is similar to that of [13], which in turn uses ideas of [6] (see [3] and [11] for
further details). The formulation relies on patterns on boxes. Thus, we start this section
with a discussion of boxes.

A box B in Rd is a subset of the formB = {(x1, . . . , xd): aj ≤ xj ≤ bj , j =
1, . . . ,d}, whereaj < bj ∈ R for each j . The length of thej th side is denoted by
l j , that is,l j = bj − aj . The volume and the surface area of a boxB are denoted by
|B| andσ(B), respectively. Moreover, let the widthω(B) of a box B be defined by
ω(B) = min{l j : j = 1, . . . ,d}. Forr ∈ R+, anr -box is a box whose sidelengths satisfy

r ≤ l j ≤ 2r, j = 1, . . . ,d.

The set of all boxes (resp.,r -boxes) is denoted byB(Rd) (resp.,B(r )). A box-pattern
(resp.,r -pattern) is a patternM , wheres(M) is a box (resp.,r -box). For a boxB and a
pattern (or tiling)M with s(M) ⊃ B, the box-pattern derived fromM by restricting to
B denoted byM ∩ B has been defined in (1).

Now, let an admissible set of abstract patternsP be given. The setPb of abstract box-
patterns derived fromP consists of all abstract patternsQ which have representatives
Q̇ of the formQ̇ = Ṗ ∩ B, whereB is a box andṖ is a representative ofP ∈ P. If B
is anr -box, the abstract patternQ is called an abstractr -pattern. The set of all abstract
r -patterns derived fromP is denoted byP(r ). Moreover, letP(∞) be defined by

P(∞) =
⋃
r>0

P(r ).

The functionsl j , | · |, σ , andω induce functions onPb in the obvious way, which will
be denoted by the same symbols. The inclusion relation⊂ on the set of boxes induces a
relation onPb, again denoted by⊂. That is, the relationP ⊂ Q for P, Q ∈ Pb holds if
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and only if there exist boxesBP, BQ and representativeṡP, Q̇ of P andQ, respectively,
with s(Ṗ) = BP, s(Q̇) = BQ, andṖ = Q̇ ∩ BP. Similarly, the equation

P =
n⊕

j=1

Pj

for P, Pj ∈ Pb, j = 1, . . . ,n, is defined to hold if and only if there exist representatives
Ṗ of P and Ṗj of Pj , j = 1, . . . ,n, with

s(Ṗ) =
n⊕

j=1

s(Ṗj ).

Here, the equationB =⊕n
j=1 Bj for boxesB, Bj , j = 1, . . . ,n, is defined to hold if and

only if the Bj are pairwise disjoint up to their boundaries and their union isB. Equations
of the formP =⊕n

j=1 Pj (resp.,B =⊕n
j=1 Bj ) are called decompositions or partitions

of patterns (resp., boxes). The notion of linear repetitivity appropriate to box-patterns is
contained in part (ii) of the next proposition.

Proposition 3.1. LetP be admissible and letPb be as above. Then the following are
equivalent:

(i) P is linearly repetitive, that is, there exists a constant cLR such that every Q∈ P
with rout(Q) ≥ 1 is contained in every P∈ P with rin(P) ≥ cLR · rout(Q).

(ii) There exists a constant cLR,b such that every P∈ P(r ) with r ≥ 1 is contained
in every Q∈ P(cLR,b · r ).

Proof. This is straightforward.

We can now introduce the class of subadditive functions.

Definition 3.2. LetP be admissible.

(a) A functionF : Pb −→ R is called subadditive if there exist nonnegative constants
dF andrF and a nonincreasing functioncF: [rF,∞) −→ Rwith limr→∞ cF(r ) = 0
such that
(i) F(P) ≤∑n

j=1 F(Pj )+
∑n

j=1 cF(ω(Pj ))|Pj | for P =⊕n
j=1 Pj withω(Pj ) ≥

rF,
(ii) |F(P)| ≤ dF|P|.

(b) A function F : Pb −→ R ∪ {±∞} is called additive if bothF and−F are
subadditive.

We are interested in the means of subadditive functions. Our main result states the
existence of a certain limit of means of this kind. These means are introduced in the next
definition.
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Definition 3.3. Let F be subadditive onP. For r ≥ r F , the meansF+(r ) andF−(r )
are defined by

F+(r ) = sup

{
F(P)

|P| : P ∈ P(r )
}
, F−(r ) = inf

{
F(P)

|P| : P ∈ P(r )
}
.

The following proposition is well known. In the context of subadditive functions on
Delone sets, it was proved in [10]. For the convenience of the reader, we include a sketch
of the proof.

Proposition 3.4. Let F be a subadditive function. Then the following equation holds:

lim
r→∞ F+(r ) = inf

r≥rF

{F+(r )+ cF(r )}.

Proof. Denote the infimum byF . We show (i) F ≤ lim inf r→∞ F+(r ) and (ii)
lim supr→∞ F+(r ) ≤ F .

(i) This is clear by

lim inf
r→∞ F+(r ) = lim inf

r→∞
(
F+(r )+ cF(r )

) ≥ inf
r≥rF

{F+(r )+ cF(r )}.

(ii) Fix an arbitraryr0 ≥ rF. Now everyP ∈ P(r ) with r ≥ r0 arbitrary can be
written as a sum of patterns inP(r0). The subadditivity condition together with a short
calculation then implies

F(P)

|P| ≤ F+(r0)+ cF(r0). (2)

As P ∈ P(r ) was arbitrary, (2) implies

F+(r ) ≤ F+(r0)+ cF(r0)

for all r ≥ r0. This proves (ii) and finishes the proof of the proposition.

We can now prove the main result of the paper.

Theorem 1. LetP be admissible and linearly repetitive and let F be subadditive on
Pb. Then the limitslimr→∞ F+(r ) andlimr→∞ F−(r ) exist and are equal. In particular,
the equation

lim
r→∞ F+(r ) = lim

|P|→∞,P∈P(∞)
F(P)

|P|
is valid.

Proof. This is proved by contradiction. So, assume lim infr→∞ F−(r ) <

lim supr→∞ F+(r ). Thus, by Proposition 3.4 there exist aδ > 0, a sequencen(k) with
n(k)→∞ for k→∞, andQk ∈ P(n(k)) with

F(Qk)

|Qk| ≤ F+(n(k))− δ. (3)



418 D. Damanik and D. Lenz

Without loss of generality we can assumen(k) ≥ rF. Choose an arbitraryk ∈ N and
consider some arbitraryP ∈ P(3cLR,bn(k)). HerecLR,b is as defined in Proposition 3.1.
Let Ṗ be an arbitrary representative ofP with underlying boxB = s(Ṗ). By partitioning
each side ofB into three parts of equal length, the boxB can be decomposed into 3d

congruent smaller boxes, all belonging toB(cLR,bn(k)). There is only one of these smaller
boxes which does not intersect the boundary ofB. Call it Bint. The decomposition ofB
into smaller boxes induces a decomposition ofṖ into (cLR,bn(k))-patterns. Denote by
Ṗint the pattern withs(Ṗint) = Bint. By linear repetitivity,Ṗint contains a representative
Q̇k of Qk. As the distance ofBint to the boundary ofB is bigger than or equal tocLR,bn(k),
the same is true for the distance ofs(Q̇k) to the boundary ofB. Thus,B can be written
as

B =
n⊕

j=0

Bj

with suitableBj ∈ B(n(k)), j = 1, . . . ,n, andB0 = s(Q̇k). This induces a decomposi-
tion of P of the form P = ⊕n

j=0 Pj with Pj ∈ P(n(k)), j = 1, . . . ,n, andP0 = Qk.
By subadditivity ofF and(3) this implies

F(P)

|P| ≤
n∑

j=1

F(Pj )

|Pj |
|Pj |
|P| +

F(Qk)

|Qk|
|Qk|
|P| +

n∑
j=0

cF(ω(Pj ))
|Pj |
|P|

≤
n∑

j=0

F+(n(k))
|Pj |
|P| − δ

|Qk|
|P| + cF(n(k))

= F+(n(k))− δ |Qk|
|P| + cF(n(k)).

Here we used the boundF(Pj )/|Pj | ≤ F+(n(k)), valid for arbitraryPj ∈ P(n(k)).
SinceQk belongs toP(n(k)) andP belongs toP(3cLR,bn(k)), we can estimate

|Qk|
|P| ≥

(n(k))d

(2 · 3cLR,bn(k))d
= 1

(6cLR,b)d
.

Putting all this together, we arrive at

F(P)

|P| ≤ F+(n(k))− 1

(6cLR,b)d
δ + cF(n(k)).

SinceP ∈ P(3cLR,bn(k)) was arbitrary, this implies

F+(3cLR,bn(k)) ≤ F+(n(k))− 1

(6cLR,b)d
δ + cF(n(k)).

As this holds for arbitraryk ∈ N, we can now take the limit on both sides using
Proposition 3.4 and obtainF ≤ F − δ(1/(6cLR,b)

d), a contradiction. This finishes
the proof.

As a corollary we get an additive ergodic theorem. This is our version of Theorem 4.1
of [10]. Note, however, that we are not able to estimate the convergence rate (see Remark 4
below).
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Corollary 3.5. LetP be linearly repetitive and let F be an additive function onPb.
Then the following equation holds:

lim
r→∞ F+(r ) = lim

ω(P)→∞,P∈Pb

F(P)

|P| .

Proof. The decomposition technique of the proof of Proposition 3.4 applied to the
subadditive functionF gives

lim sup
ω(P)→∞,P∈Pb

F(P)

|P| ≤ lim inf
r→∞ F+(r ). (4)

Since−F is subadditive as well, this equation immediately implies

lim sup
ω(P)→∞,P∈Pb

−F(P)

|P| ≤ lim inf
r→∞ (−F)+(r ). (5)

Multiplying by (−1) and using(−F)+(r ) = −F−(r ), we get

lim inf
ω(P)→∞,P∈Pb

F(P)

|P| ≥ lim sup
r→∞

F−(r ). (6)

By (4), (6), and the foregoing theorem, the corollary follows.

Remark 4. It is not possible to derive an estimate on the rate of convergence in the sub-
additive theorem. This can be seen from the following example. Letf : R+ −→ [0,∞]
be an arbitrary monotonically decreasing function. LetPb be an arbitrary set of box-
patterns derived from an admissibleP. DefineF : Pb −→ R by F(P) = |P| f (|P|). As
f is decreasing, the functionF is subadditive. Moreover, we haveF(P)/|P| = f (|P|).
Since f was an arbitrary decreasing function, this shows that the rate of convergence in
the subadditive ergodic theorem cannot be estimated.

Remark 5. It appears that uniform subadditive ergodic theorems are special features
of linearly repetitive structures. To support this, in Appendix B we exhibit examples
of strictly ergodic structures for which a uniform subadditive ergodic theorem does not
hold. The examples are given by Sturmian subshifts whose rotation number has rapidly
increasing continued fraction coefficients.

4. Specializing the Main Theorem

In this section we derive various corollaries from the subadditive ergodic theorem. First
we consider (sub)additive functions on boxes on a conrete tiling or Delone set. We then
use our methods to give a direct proof of the (known) unique ergodicity of dynamical
systems arising from linearly repetitive tilings. Finally, we discuss how the theorems of
[6], [10], and [13] fit into our context.

We first introduce the appropriate notion of subadditivity and translation invariance.



420 D. Damanik and D. Lenz

Definition 4.1. Letw be a function on the setB(Rd) of all boxes inRd.

(a) The functionw is called subadditive if there exists a constantrw and a non-
increasing functioncw: [rw,∞) −→ R with limr→∞ cw(r ) = 0 such that
(i) w(B) ≤ ∑n

j=1w(Bj ) +
∑n

j=1 cw(ω(Bj ))|Bj | for B = ⊕n
j=1 Bj , with

ω(Bj ) ≥ rw,
(ii) |w(B)| ≤ dw|B|.

(b) Let T be a Delone set or a tiling. The functionw is called asymptoti-
cally T-invariant if there exists a constantrw and a nonincreasing function
ew: [rw,∞) −→ R with limr→∞ ew(r ) = 0 such that
(iii) |w(B) − w(B + t)| ≤ ew(ω(B))|B| if (B ∩ T) + t = (B + t) ∩ T and

ω(B) ≥ rw.

Condition (iii) in this definition is a notion of asymptotic translation invariance. It is
possible to associate to each (sub)additive, asymptotic invariant functionw a function
F onP which is (sub)additive and does not differ too much fromw in a suitable sense.
In this way a translation invariant function on boxes inRd is essentially a function on
P in disguise. The main theorem then gives existence of the averages ofF and this
implies existence of the averages ofw. This clarifies the role of translation invariance.
A precise version of the outlined procedure will be given in the (proofs of the) following
corollaries.

Corollary 4.2. Let T be a linearly repetitive tiling inRd. Let w be a subadditive,
asymptotically T -invariant function. Then for every sequence Bn with Bn ∈ B(rn) and
rn→∞, the limit

lim
n→∞

w(Bn)

|Bn|
exists and is independent of the sequence.

Proof. The strategy of the proof is simple. We construct a subadditive functionF = Fw
onPb(T) and show that the limit in question equals the limit ofF+(r ), whose existence
is guaranteed by Theorem 1.

DefineF onPb(T) by

F(P) = sup{w(s(Ṗ)): Ṗ = T ∩ s(Ṗ), Ṗ representative ofP}.

By properties (i) and (ii) ofw, the functionF is subadditive onPb(T). By construction
of F , we have

w(B)

|B| ≤ F+(r )

for B ∈ B(r ) with r ≥ rw arbitrary. This immediately implies

lim sup
n→∞

w(Bn)

|Bn| ≤ lim sup
r→∞

F+(r ). (7)
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Moreover, by property (iii) ofw, we have

w(B)

|B| + ew(ω(B)) ≥ F−(r )

for B ∈ B(r ). This yields

lim inf
n→∞

w(Bn)

|Bn| ≥ lim inf
r→∞ F−(r ). (8)

By (7), (8), and Theorem 1, the statement of the theorem follows.

Corollary 4.3. Let D be a linearly repetitive Delone set inRd. Letw be a subadditive,
asymptotically D-invariant function. Then for every sequence Bn with Bn ∈ B(rn) and
rn→∞, the limit

lim
n→∞

w(Bn)

|Bn|
exists and is independent of the sequence.

Proof. This follows from the foregoing corollary applied to a colored version of the
Voronoi constructionV(D) (see Section 2). Here, each tile inV(D) is colored by the
unique point ofD in its interior. To emphasize the coloring, we denote the colored tiling by
V(D,C). The coloring implies that the functionw is asymptoticallyV(D,C)-invariant.
Thus, the result follows from the foregoing corollary.

We now discuss two classes of examples of the above theorems. They are given by
tilings arising from primitive substitutions and tilings arising from Sturmian dynamical
systems whose rotation number has bounded continued fraction expansion.

We start by considering primitive substitutions. They give rise to linearly repetitive
tilings [4], [5], [22]. Thus, we immediately get the following result.

Corollary 4.4. Let S be a primitive substitution and let T be a tiling associated to
P(S) with vertex set E. Letw be an asymptotically E-invariant subadditive function on
boxes inRd. Then the limitlimn→∞(w(Bn)/|Bn|) exists for every sequence Bn of boxes
with Bn ∈ B(rn) and rn→∞, and it is independent of the sequence.

This is essentially the subadditive ergodic theorem of [6]. The theorem of [6] is slightly
more general in that the sequences(Bn) considered there are only required to be cube-
like van Hove sequences. On the other hand, the notion of subadditivity used there is
more restrictive than the notion used here. There,w is required to satisfy a subadditivity
condition on unions of quite general disjoint (up to their boundary) sets with the constant
cw being zero. In fact, under these assumptions, one should be able to extend our theorem
to hold for arbitrary cube-like van Hove sequences. However, our theorem is good enough
to cover the desired applications.

The other example is given by certain Sturmian dynamical systems; see Appendix B
for some background. As shown in [10], a Sturmian dynamical system is linearly repet-
itive if and only if its rotation number has bounded continued fraction expansion. Thus,
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we immediately obtain the following corollary of Theorem 1 which generalizes Theorem
2 of [13] (see [3] and [11] as well).

Corollary 4.5. Let an irrationalα ∈ (0,1)with bounded continued fraction expansion
be given. LetW(α) be the set of pattern classes of the Sturmian dynamical system with
rotation numberα (see[3] and [13] for details). Then for every subadditive function F
onW(α), the limit limn→∞(F(wn)/|wn|) exists for every sequence(wn)with |wn| going
to infinity. Moreover, the limit is independent of the sequence.

Of course, one could use Corollary 3.5 instead of Theorem 1 to obtain an additive
ergodic theorem. However, this kind of result falls clearly short of the additive theorem of
[10], as it does not allow one to estimate the rate of convergence. This has been discussed
in Remark 4 in Section 3.

We close this section by sketching a direct derivation of the unique ergodicity of
dynamical systems associated to linearly repetitive tilings. In fact, the result uses only
the compactness of the underlying space and an additive ergodic theorem. Thus, the
proof applies verbatim to more general systems. The “inner box” technique given below
applies to several contexts (see [11] for further discussion). It will be used in the next
section as well.

Corollary 4.6. Let P be linearly repetitive. Then the tiling dynamical system
(Ä(P),Rd) is uniquely ergodic. Here, Rd acts onÄ(P) in the canonical way via
translation.

Proof. We have to show that for any continuousf onÄ(P), the limits(1/B)
∫

B f (T−
t)dt converge uniformly inT for ω(B) going to infinity. The strategy is similar to the
proof of Corollary 4.2 above. We associate tof additive functionsFsup andFinf onP.
They are defined as follows:

Fsup(P) = sup

{∫
s(Ṗ)

f (T − t)dt: T ∩ s(Ṗ) = Ṗ

}
,

Finf(P) = inf

{∫
s(Ṗ)

f (T − t)dt: T ∩ s(Ṗ) = Ṗ

}
,

whereṖ is an arbitrary representative ofP (it is not hard to check that these definitions
are independent of the actual choice ofṖ). Apparently,

Fsup

(
n⊕

j=1

Pj

)
≤

n∑
j=1

Fsup(Pj ), Finf

(
n⊕

j=1

Pj

)
≥

n∑
j=1

Finf(Pj ). (9)

Moreover, the following is valid:

|Fsup(P)− Finf(P)| ≤ o(ω(P)), (10)

where the littleo function only depends on the continuity properties off . To prove
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(10) we use an “inner box” argument. Recall thatf is continuous and thus uniformly
continuous sinceÄ(P) is compact by Proposition 2.4. Therefore, for eachε > 0, there
exists R such that| f (T) − f (S)| ≤ ε wheneverT ∩ B(0, R) = S∩ B(0, R). This
implies that for allt ∈ s(Ṗ) with dist(t, s(Ṗ)c) ≥ R, the difference of the integrands
| f (T − t)− f (S− t)| is smaller thanε. For large enoughω(P), the set of thoset agrees
with the size ofP up to a boundary term. This proves (10). By (9) and (10), the functions
Fsup and Finf are additive. Thus, the additive ergodic theorem implies the existence of
the limits limω(P)→∞(Fsup(P)/|P|) and limω(P)→∞(Finf(P)/|P|). By (10), the limits
are equal and the corollary follows.

5. Applications

In this section we consider applications to random operators associated to tilings. In
this context there are two important quantities whose existence can be established by a
subadditivity argument, namely, the Lyapunov exponent in the one-dimensional case and
the integrated density of states in arbitrary dimensions. Here, we show how the results
of the previous sections can be used to strengthen recent results [3], [8] on the existence
of these quantities (see [11] and [14] as well).

The existence of the integrated density of states for Schr¨odinger-type operators asso-
ciated to primitive substitutions is thoroughly discussed in [8]. The discussion given there
relies on abstract operator theory together with a subadditive ergodic theorem. Thus, it
gives essentially the existence of the integrated density of states for Schr¨odinger-type
operators associated to arbitrary linearly repetitive structures. In fact, the argument of
[8] can be improved and strengthened in several respects [11], [14]. In particular, it turns
out that the existence proof can actually be reduced to an additive ergodic theorem. This
is interesting due to the existence of an error estimate in the additive ergodic theorem.
This might have useful applications.

Let us be more precise. For a tiling or patternM , the spacel 2(M) is defined to be
the space of all square summable sequences indexed by the elements ofM . Let A be a
self-adjoint operator on a linearly repetitive tilingT with matrix elementsA(x, y) for
x, y ∈ T . (Here, the tilingT is called linearly repetitive ifP(T) is linearly repetitive.)
We assume thatA satisfies the following finite range (FR) and invariance (I) properties:
There exists someR≥ 0 with:

(FR) A(x, y) vanishes for dist(x, y) ≥ R.
(I) The value of A(x, y) is completely determined by the pattern class [{t ∈

T : dist(t, {x, y}) ≤ R}].
In fact, the invariance condition implies that the operatorA can be defined on every
tiling T of the speciesÄ(T). To emphasize this, we sometimes writeA(T) for the
manifestation ofA on l 2(T).

For a boxB in Rd, the restrictionA(T)|B of A to B is the operator onl 2(B∩ T) with
matrix elements

A(T)|B(x̃, ỹ) = A(x, y) for x̃ = x ∩ T and ỹ = y ∩ T.
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For a boxB in Rd andλ ∈ R, define the functionkT
λ (B) by

kT
λ (B) =

1

|B| #{λn: λn ≤ λ, λn eigenvalues ofA(T)|B},

where the number of elements of a finite setS is denoted by #S. Then the following
holds. If the limit limω(B)→∞ kT

λ (B) exists, it is called density of states forT .

Theorem 2. The density of states, limω(B)→∞ kT
λ (B), exists and is independent of T.

In fact, the convergence(in ω(B)) is uniform in T.

Proof (sketch). As in the proof of Corollary 4.2, it suffices to associate tokT
λ a function

which is close tokT
λ and satisfies the assumptions of Corollary 3.5. This can be done

using the finite range condition together with the invariance condition. Details can be
found in [14] and [11].

Theorem 2 generalizes the corresponding theorem of [8], where Penrose tilings are
considered. Moreover, it only relies on an additive ergodic theorem, whereas [8] uses a
subadditive theorem.

We now turn to the study of the Lyapunov exponent. The sketch below follows the
detailed discussion of the Sturmian case in [3]. An admissible setP of abstract patterns
in one dimension over a finite set of tiles can easily be identified with a setW consisting
of finite words over a finite alphabetA ⊂ R. The study of one-dimensional Schr¨odinger
operators associated toW can be based on the study of the so-called transfer matrices.
For eachE ∈ C, the transfer matrixM(E) gives a mapM(E): W −→ SL(2,C),
defined byM(E)(w) = T(E, wn) × · · · × T(E, w1) for w = w1 · · ·wn, where for
a ∈ R andE ∈ C, the matrixT(E,a) is defined by

T(E,a) =
(

E − a −1
1 0

)
. (11)

This map is antimultiplicative if the operation onW is a standard concatenation of words.
Since the standard norm‖ · ‖ on SL(2,C) is submultiplicative, the function

F : W −→ R, F(w) = ln‖M(w)‖

is subadditive. Thus, the results of Section 3 give the following theorem.

Theorem 3. LetW and F be as above. If W is linearly repetitive, then the limit
limn→∞(F(wn)/|wn|) exists for each sequence(wn) in W with |wn| going to infinity
and the limit does not depend on the sequence.

The limit in the theorem is called the Lyapunov exponent. It plays an important role in
the study of one-dimensional Schr¨odinger operators. The theorem applies in particular to
systems arising from primitive substitutions and to Sturmian dynamical systems whose
rotation number has bounded continued fraction expansion. This is due to the fact that
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these systems are linearly repetitive, as discussed in Section 4 (see [4], [5], [23], and
[10] as well). Thus, the theorem generalizes the corresponding theorems of [8], [3], and
[11].

We close this section by pointing out two more possible fields of applications for
subadditive ergodic theorems: There is a theory of lattice gas models for tilings arising
from primitive substitutions [6]. This theory is built upon the subadditive theorem of
[6]. Thus, it is very likely that considerable portions of it can be carried over to gas
models on linearly repetitive tilings. Furthermore, there are investigations in [9] on the
structure factor of one-dimensional primitive substitutions. There, averaged quantities
play a key role. Thus, again, a subadditive ergodic theorem might be a useful tool for
further studies.

Appendix A. Compactness of Linearly Repetitive Tiling Spaces

In this section we sketch a proof of Proposition 2.4. It consists of two steps, namely,
establishing a finiteness condition and performing a standard diagonalization procedure;
compare [19] and [20].

Let P be a linearly repetitive admissible set of abstract patterns. We want to show
thatÄ(P) is compact. Observe first that for everyr ≥ 0, there are only finitely many
pattern classesP ∈ P with rout(P) ≤ r . To see this, consider any pattern classQ such
that K (0, cLR · r ) ⊂ s(Q̇) for some representativėQ of Q. Delete fromQ̇ all the tiles
which have empty intersection withK (0, cLR · r ) and call the resulting patterṅQ′ and its
pattern classQ′. It is clear thatQ̇′ has finite volume and thatQ′ contains every abstract
patternP ∈ P with rout(P) ≤ r . This proves the assertion.

Now, the proof ofÄ(P) 6= ∅ and of compactness ofÄ(P) can be given along
quite similar lines. We only sketch the proof of compactness. The other proof is similar,
invoking condition (iii) of Definition 2.1.

Consider a sequence(Tn)n∈N in Ä(P). It suffices to prove that(Tn)n∈N has a conver-
gent subsequence. To find this subsequence, we inductively define sequences(Tm

n )n∈N,
m ∈ N, such that(T1

n )n∈N is a subsequence of(Tn)n∈N and form1 ≥ m2, (Tm1
n )n∈N

is a subsequence of(Tm2
n )n∈N. This will be done in a way such that(Tn

n )n∈N con-
verges. Choose any monotonically increasing sequencerm → ∞. Essentially, we
force the sequence(Tm

n )n∈N to converge onK (0, rm). It is then obvious from the
definition ofd(·, ·) that the diagonal sequence(Tn

n )n∈N will be d-Cauchy with obvious
limit tiling.

To define the refinement(Tm
n )n∈N of (Tm−1

n )n∈N (think of (Tn)n∈N as(T0
n )n∈N), we

proceed in two steps. First, consider the patternṖn of tiles in Tm−1
n having nonempty

intersection withK (0, rm). The patternsṖn have outer radius bounded byrm + 2rmax

(with rmax from Definition 2.1) and hence, by the above observation, their abstract pattern
classesPn belong to a finite set. Hence, one of them, sayP, occurs infinitely often.
Delete all the tilings from the sequence(Tm−1

n )n∈N which havePn 6= P. By the Selection
Theorem [7], [19], the remaining sequence has a subsequence such that the corresponding
setsṖnk converge with respect to standard Hausdorff metric. Call this sequence(Tm

n )n∈N.
By the above remarks, it is easy to see that(Tn

n )n∈N is a convergent subsequence of
(Tn)n∈N.
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Appendix B. Strictly Ergodic Subshifts for which the Uniform Subadditive
Ergodic Theorem Fails

In this section we present one-dimensional examples which show that our main result
fails if we only require strict ergodicity rather than linear repetitivity (see [11]–[13]
as well). We consider a standard symbolic form of Sturmian tilings of the real line,
that is, we study two-sided sequences over the alphabetA = {0,1}. Such sequences
corespond to tilings ofR by intervals [k, k+ 1), k ∈ Z, which are marked with either 0
or 1. Alternatively, one can consider two intervalsI , J of different, finite nonvanishing
length. To each tiling ofR consisting of (translated) copies ofI andJ one can naturally
associate a sequence overA. For background on Sturmian sequences we refer the reader
to [1] and [15].

We start by recalling some standard notation. Given a finite alphabetA, we denote
by A∗ the set of finite words overA and byAN (resp.,AZ) the set of one-sided (resp.,
two-sided) sequences overA, both called infinite words. Given a finite or infinite word
w, we denote by Sub(w) the set of all finite subwords ofw. Finally, given two finite
wordsv,w, #v(w) denotes the number of occurrences ofv in w.

Fix some irrationalα ∈ (0,1) and define the wordssn over the alphabetA by
s−1 = 1, s0 = 0, s1 = sa1−1

0 s−1, andsn = san
n−1sn−2, n ≥ 2, where thean are the

coefficients in the continued fraction expansion ofα. By definition, forn ≥ 2, sn−1 is
a prefix ofsn. Therefore, the following (“right”-) limit exists in an obvious sense,cα =
limn→∞ sn ∈ AN.

Define the associated set of pattern classesW(α) ⊂ A∗ by W(α) = Sub(cα).
The associated symbolic dynamical system(Ä(α), T) is then given byÄ(α) = {x ∈
AZ: Sub(x) ⊂ W(α)} and(T x)n = xn+1. (Ä(α), T) is strictly ergodic for every irra-
tionalα. It is linearly repetitive if and only if the sequence(an)n∈N is bounded.

We will prove the following theorem.

Theorem 4. There existα ∈ (0,1) irrational and a subadditive function F onW(α)
with the following property: There exist sequences(wk

n)n∈N inW(α), k = 1,2,such that
|wk

n| → ∞ as n→∞, k = 1,2, and

lim inf
n→∞

F(w1
n)

|w1
n|

< lim sup
n→∞

F(w2
n)

|w2
n|
.

In particular, the limit lim|w|→∞(F(w)/|w|) does not exist, that is, the uniform subad-
ditive ergodic theorem does not hold forW(α).

The following properties of the wordssn are well known and will be useful in the
proof of Theorem 4.

Proposition B.1.

(i) For all n ≥ 2, the word sn is a prefix of the word sn−1sn.
(ii) For every n, there is no nontrivial occurrence of sn in snsn, that is, snsn = w1snw2

impliesw1 = ε or w2 = ε.
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We are now in position to give the

Proof of Theorem4. Define the functionG onW(α) by

G(w) =
∞∑

n=1

#sn−1sn(w)(|sn−1| + |sn|).

It is clear that all but finitely many of the terms are zero. Moreover, it is obvi-
ous thatG is superadditive. Thus, by Lemma 2.2.3 of [11] or Theorem 1 of [13],
Ḡ = limn→∞(G(sn)/|sn|) exists, but it is possibly infinite.

By sn+1 = san+1
n sn−1, for n ≥ 1, we see thatG(sn+1) is given by

G(sn+1) = an+1G(sn)+ G(sn−1)+ OT.

Here, the overlap termOT comes from contributions toG from occurrences ofsk−1sk,
k ≤ n+1, at one of thean+1 “boundaries” between the different copies ofsn andsn−1 in
sn+1 = san+1

n sn−1. By Proposition 5, we infer that at each such boundary and for eachk,
there actually can be at most one such copy. Moreover, by Proposition 5 and the fact that
the last letters ofsk andsk−1 are different, we must havek ≤ n−1. These considerations
give

G(sn+1)

|sn+1| ≤
an+1G(sn)+ G(sn−1)+ an+1

∑n−1
i=1 (|si−1| + |si |)

an+1|sn| .

Now, observe thatG(sn) only depends on the numbersa1, . . . ,an. Thus, we can force
G to be finite ifan→∞ sufficiently fast. However, then we have

G(sn−1sn)

|sn−1sn| ≥
G(sn−1)

|sn−1sn| +
G(sn)

|sn−1sn| +
|sn−1sn|
|sn−1sn| ≥

G(sn)

|sn| (1+ |sn−1|/|sn|) + 1,

that is,G(sn−1sn)/|sn−1sn| does not converge toG. We can therefore conclude by setting
F = −G, w1

n = sn−1sn, andw2
n = sn.

Remark 6. The proof of Theorem 4 actually provides an uncountable set of numbers
α such that the uniform subadditive ergodic theorem fails forW(α). This set, however,
has Lebesgue measure zero. So, one might wonder whether the result actually can be
extended to a larger class ofα.

While this paper was under consideration it was shown by one of the authors, that a
Sturmian dynamical system admits a uniform subadditive ergodic theorem if and only
if it is linearly repetitive [11] (see [12] and [13] for related material as well).
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