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Abstract. This paper is concerned with the concept of linear repetitivity in the theory
of tilings. We prove a general uniform subadditive ergodic theorem for linearly repetitive
tilings. This theorem unifies and extends various known (sub)additive ergodic theorems on
tilings. The results of this paper can be applied in the study of both random operators and
lattice gas models on tilings.

1. Introduction

In a recent paper, Lagarias and Pleasants studied linearly and densely repetitive tilings
[10]. It was shown that these structures are diffractive and they proposed to consider
linearly repetitive tilings as models of “perfectly ordered quasicrystals.”

In fact, several special classes of linearly repetitive tilings have attracted much atten-
tion. One such class is given by tilings arising from primitive substitutions. They have
been studied in several contexts [6]-[8], [16], [22], [23], including random &lihger
operators and lattice gas models. Both the study of lattice gas models and the study
of random Sclodinger operators require a uniform subadditive ergodic theorem. The
appropriate theorem has been established in [6]. In the one-dimensional case there is
another important class of examples of linearly repetitive structures, namely, Sturmian
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dynamical systems whose rotation number has bounded continued fraction expansion.
Again, this class allows for a uniform subadditive ergodic theorem. This has been shown
by one of the authors [13] (see [3] and [11] for applications). These results immediately
raise the following question:

(Q) Does linear repetitivity imply a uniform subadditive ergodic theorem?

This question is answered in the affirmative by Theorem 1 in Section 3 of this paper
(see [11] as well). This theorem generalizes the theorem of [13]. Moreover, combined
with the known linear repetitivity of tilings generated by primitive substitution [4], [5],
[23], it gives a conceptual proof for the subadditive ergodic theorem of [6]. Of course,
this theorem also implies an additive ergodic theorem. However, this additive ergodic
theorem is not as effective as the corresponding theorem of [10], as it does not contain
an error estimate (see Section 3).

We emphasize that our point of view is a purely local one. Thus, the key object of our
studies is neither a tiling nor a species of tilings but rather certain sets of pattern classes.
The appropriate sets are defined in Definition 2.1 and termed admissible. The advantage
of this point of view is twofold. Firstly, in this approach, the uniformity of results is
built in as the local structure is uniform for all tilings in the species. Secondly, the role
of asymptotic translation invariance appearing in the subadditive ergodic theorems is
clarified (see Section 4). We defer discussion of the methods used in the proofs of our
results to the corresponding sections.

The article is organized as follows. In Section 2 we review basic facts on tilings and fix
some notation. Section 3 contains a rather general form of a subadditive ergodic theorem.
This is the main result of this paper. It gives an affirmative answer to Question (Q). In
Section 4 we specialize the main theorem to various situations. This recovers several
known (sub)additive ergodic theorems. Finally, in Section 5, we sketch applications of
the foregoing results in the study of random operators associated to tilings.

2. Preliminaries

The aim of this section is to introduce certain notions and to fix some notation.
Consider a set consisting of subsetfRdfwhich are convex, homeomorphic to the
closed unit ball ifRY, and pairwise disjoint up to their boundaries. Such a set of sets is
called a pattern if it is finite. It is called a tiling (&) if the union of its elements equals
the whole space. The elements of tilings and patterns are called tiles. We mention that
the sets in a pattern need not form a connected set.
For certain applications, it is useful to consider decorated tiles and patterns. A pattern
with decorations from a sétis a setM of pairsm = (an, Gyn) With a,, ¢ R4 andcy, € I’
such thafa,: m € M} is a pattern. One should think of a pé&,, c,) as atile colored
or decorated bg,.

Remark 1. Our definition of a tile might seem to be more restrictive than the usual

one in that we require convexity. However, combining the Voronoi contruction and a
suitable decoration procedure one can easily transform an arbitrary tiling into a tiling
with convex tiles without losing information.
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The following definitions apply to both patterns and decorated patterns. However, to
avoid tedious repetitions, they are phrased in terms of patterns only. If a pkttésn
contained in a pattern or tiliny, we writeM C N and say thaM is a subpattern oN.
Similarly, if a tilet belongs to a pattern or tilingyl, we writet € N. For a patterrM,
we define the underlying setM) by

s(M)= [ JmcRr.

meM

The inner radiusi, (M) of a patternM is defined by

rin(M) = maxr € R: 3x e R, K(x,r) C s(M)},
and the outer radiug,«(M) of a patternM is defined by

rou(M) = minfr € R: 3x € RY, K(x,1) D s(M)},

where K (x, r) denotes the closed ball aroumdwith radiusr. The existence of the
minimum and maximum in question follows by compactness(®). For a patterrm
and a closed convex s& homeomorphic to the unit ball wite(M) > B, define the
restrictionM N B of M to B by

MNB={mNB: me M, mnint(B) # #}. D

In the applications we have in min@&, will be either a box (see Section 3) or a closed
ball.

There exists a natural equivalence relation on the set of patterns. Two patterns are
equivalent if and only if they agree up to translation. The class of a pattern is also called
a pattern class or an abstract pattern. Similarly, an abstract tile is the class of a tile up to
translation. (In the literature one can also find the word prototile for these objects.)

The relations £” and “C” (resp., the functionsi, andryy) give rise to relations
(resp., functions) on abstract patterns in the obvious way. The induced relations (resp.,
functions) are denoted by the same symbols. Similarly, concepts such as connectedness
of patterns, disjointness, or distance of tiles in patterns, etc., can easily be carried over
to abstract patterns. This is tacitly done in what follows whenever necessary. Moreover,
we sometimes omit the word abstract in abstract patterns if no confusion can arise.

Our point of view is a purely local one. Thus, the following definition introduces the
main object of our studies.

Definition 2.1. A setP of abstract patterns iR is called admissible if it satisfies the
following conditions:

() PeP,QcC PimpliesQ € P.
(i) There exist 0< I'min, Mmax < 00 With rmin < rin(@) < row(@) < rmax for all
abstract tiles € P.
(iii) Let P e P with representativé® with 0 € P andr > 0 be given. Then there
exists aQ e P with representativ&) with K (0, r) c s(Q) andP c Q.
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Note that by (iii),? contains patterns of arbitrary large diameter (and thus cannot be
finite).

In what follows we are exclusively concerned with admissible #etbor each ad-
missible set, there is a natural set of tilings associated with it. Conversely, to a tiling of
RY, one can associate a set of abstract patterns. This is the content of the next definition.

Definition 2.2.

(a) LetT be a tiling of RY. The setP(T) of abstract patterns associatedTtds
defined to be the set of classes of subpatterris. of

(b) LetP be an admissible set of abstract patterns. A tilinig said to be associated
toPif P(T) C P.

(c) LetP be an admissible set of abstract patterns. The set of all tilingssociated
to P with the topology induced by the metric

d(T, S =min{1, I(T, 9}

for 1I(T,S) =inf{e: TNK(0,1/¢) = (S+1t) N K (O, 1/e), 3t € RY, |It|| < &},
is a topological space denoted &y(P) (see [22]).

Remark 2. It may well be that®2 (P) is empty. However, this cannot happerAfis
linearly repetitive (see Proposition 2.4).

This article is centered around the notion of linear repetitivity. This notion has been
studied in [10] for Delone sets RY. In our context it is given in the following definition.

Definition 2.3. An admissible sef? of patterns is called linearly repetitive if there
exists a constart g > 0 such that every? € P with ro(P) > 1 is contained in every
Q € P withrin(Q) = Cir - Fou(P).

An important property of the tiling space associated to a linearly repefitiiethe
following:

Proposition 2.4. If the admissibléP is linearly repetitivethenQ (P) is not empty and
compact

Proof. This follows by rather standard arguments once it is realized that linear repeti-
tivity implies finiteness of the number of pattern classes with a prescribed maximal outer
radius. For the reader’s convenience, we include a proof in Appendix A. O

We finish this section by discussing the role of Delone sets and the Voronoi con-
struction in our context. Recall that a sub&tof RY is called a Delone set if there
exist positive constants andr; such that each ball iiR? of radius at least; con-
tains a point ofD and each ball of radius at magt does not contain more than one
point of D. The Voronoi construction assigns to eactm a given Delone seb the set
V(x) = {y € RY: dist(x, y) < dist(z, y), z € D}, where dist-, -) denotes Euclidean
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distance. The/ (D) = {V(x): x € D} is a tiling of RY by convex polytopes (see
[21]). Proposition 5.2 of [21] says th@&(V (D)) is admissible for a Delone sét. Thus,
Delone sets give rise to admissible sets. This motivates the following definition.

Definition 2.5. A Delone setD is called linearly repetitive ifP(V (D)) is linearly
repetitive.

Remark 3. Using the following proposition, it is not hard to show that this definition
of linear repetitivity for Delone sets agrees with the definition of [10].

Proposition 2.6. Let D be a Delone sefhen for each x D, the tile V(x) is deter-
mined by the points of D lying inside a ball of radixg around x

Proof. Thisis just Corollary 5.1 in [21] O

3. The Main Theorem

This section is devoted to a proof of a rather general uniform subadditive ergodic theorem.
The proof is similar to that of [13], which in turn uses ideas of [6] (see [3] and [11] for
further details). The formulation relies on patterns on boxes. Thus, we start this section
with a discussion of boxes.

A box B in RY is a subset of the fornB = {(xq, ..., Xq): & <x <b,j=
1,...,d}, wherea; < by € R for eachj. The length of thejth side is denoted by
lj, that is,I; = bj — &. The volume and the surface area of a l®are denoted by
|B| ando (B), respectively. Moreover, let the width(B) of a box B be defined by
o(B) =min{lj: j =1,...,d}. Forr € R*, anr-box is a box whose sidelengths satisfy

r<lj<o, j=1,....d.

The set of all boxes (resp.;boxes) is denoted bB(RY) (resp.,B(r)). A box-pattern
(resp.r-pattern) is a pattervl, wheres(M) is a box (resp.;-box). For a boxB and a
pattern (or tiling)M with s(M) > B, the box-pattern derived fromil by restricting to
B denoted byM N B has been defined in (1).

Now, let an admissible set of abstract pattePrize given. The seP, of abstract box-
patterns derived fron® consists of all abstract patterfswhich have representatives
Q of the formQ = P N B, whereB is a box andP is a representative d@® € P. If B
is anr -box, the abstract pattef@ is called an abstractpattern. The set of all abstract
r-patterns derived fror® is denoted byP(r). Moreover, letP(co) be defined by

P(o0) = |_JP).
r>0
The functiond;, | - |, o, andw induce functions orP, in the obvious way, which will

be denoted by the same symbols. The inclusion relatiom the set of boxes induces a
relation onPy,, again denoted by . That is, the relatio® c Q for P, Q € P, holds if
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and only if there exi'st boxeBp, BQ.and representativ&, Q of P andQ, respectively,
with s(P) = Bp, s(Q) = Bg, andP = Q N Bp. Similarly, the equation

P—Dr
j=1

f(_)r P,P e Po, j =1,...,n,is defined to hold if and only if there exist representatives
P of PandP; of P, j =1,...,n, with

s(P) = P s(P.
j=1

Here, the equatioB = @?:1 B; for boxesB, Bj, ] = 1,..., n,isdefined to hold if and

only if the B; are pairwise disjoint up to their boundaries and their unid.iEquations

of the formP = @;‘Zl P, (resp.,B = EB;‘:l B;) are called decompositions or partitions

of patterns (resp., boxes). The notion of linear repetitivity appropriate to box-patterns is
contained in part (ii) of the next proposition.

Proposition 3.1. LetP be admissible and |&®, be as aboveThen the following are
equivalent

(i) Pislinearly repetitivethat is there exists a constantg such that every @& P
with roue(Q) > 1is contained in every = P with rin(P) > Cr - Fout(Q).

(i) There exists a constangg, such that every R= P(r) withr > 1is contained
in every Qe P(Crp - ).

Proof. This is straightforward. O

We can now introduce the class of subadditive functions.

Definition 3.2. Let P be admissible.

(a) AfunctionF: P, —> Ris called subadditive if there exist nonnegative constants
dr andrg and a nonincreasing functieg: [rg, oo) —> Rwithlim,_  ce(r) =0
such that
(i) F(P) <X F(P)+X[_; cr(@(P))IP | for P = B, Py withw(P) >

e,
(i) [F(P)| < d[P].

(b) A function F: P, — R U {£o0} is called additive if bothF and —F are
subadditive.

We are interested in the means of subadditive functions. Our main result states the
existence of a certain limit of means of this kind. These means are introduced in the next
definition.
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Definition 3.3. Let F be subadditive of. Forr > rg, the means$*(r) andF—(r)
are defined by

F*(r):sup{%: PeP(r)}, F(r):inf{%: PeP(r)}.

The following proposition is well known. In the context of subadditive functions on
Delone sets, it was proved in [10]. For the convenience of the reader, we include a sketch
of the proof.

Proposition 3.4. Let F be a subadditive functioithen the following equation holds

lim Fr(r) =rigrf{F*(r) + cr(N)).

Proof. Denote the infimum byF. We show () F < liminf,_,, F*(r) and (ii)
limsupg . FT(r) <F.
() This is clear by

Iirminf Fra) = Iirminf (FT(m) +ce(n) = rigrf{FJr(r) + ce(n)).

(il) Fix an arbitraryro > rg. Now everyP € P(r) with r > rq arbitrary can be
written as a sum of patterns #A(ro). The subadditivity condition together with a short
calculation then implies

F(P)
|P]
As P € P(r) was arbitrary, (2) implies

< F*(ro) + ce(ro). )

F*(r) < F(ro) + ce(ro)

for allr > rq. This proves (ii) and finishes the proof of the proposition. O

We can now prove the main result of the paper.

Theorem 1. LetP be admissible and linearly repetitive and let F be subadditive on
Ppo. Then the limitdim, _, .. F(r) andlim,_, ., F~(r) exist and are equaln particular,
the equation

lim Fr(r) = lim —
r—o0 IPl>co,PeP(0) |P|

is valid.

Proof. This is proved by contradiction. So, assume liminf F~(r) <
limsup_ ., FT(r). Thus, by Proposition 3.4 there exist a 0, a sequence(k) with
n(k) — oo for k — oo, andQy € P(n(k)) with

F(Qu)

F*(nk)) — 4. 3
X = F7(nk)) )
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Without loss of generality we can assumg) > rg. Choose an arbitrark € N and
consider some arbitrary € P(3c.rpn(K)). Herec g is as defined in Proposition 3.1.
Let P be an arbitrary representative®fwith underlying boxB = s(P). By partitioning
each side oB into three parts of equal length, the bBxcan be decomposed intd 3
congruent smaller boxes, all belongindi@, r pn(K)). Thereis only one of these smaller
boxes which does not intersect the boundarBoCaII it Bini. The decomposition oB
|nt0 smaller boxes induces a decompositiorPointo (CR, pn(k))-patterns. Denote by
Pt the pattern witts(Pn) = Bine. By linear repetitivity, P, contains a representative
Qx of Q. As the distance dBj,; to the boundary oB is bigger than or equal ©rpNK),
the same is true for the distancesgf)y) to the boundary oB. Thus,B can be written

as
n
B=PB8
j=0

with suitableB; € B(n(k)), j =1,...,n,andBy = s(Qy). This induces a decomposi-
tion of P of the formP = @F:o P with P € P(n(k)), j = 1,...,n,andPy = Qx.
By subadditivity ofF and(3) this implies

F(P) _ <NF(P) P, FQUIQ | ¢ R
+ + Py
L IR St

=1

ol [Pl o 1Qkl
< ];F (n(k))|pI 8 B + cr(n(k))
_ F+<n<k))—8%+cF<n<k>)

Here we used the bourl(P;)/|P;| < F*(n(k)), valid for arbitraryP; € P(n(k)).
SinceQx belongs tdP (n(k)) and P belongs toP (3c g pn(K)), we can estimate

Qd _ (ke 1

IP| ~ (2-3cirpn(k)®  (Bcrp)d
Putting all this together, we arrive at

F(P) . o
A < F7(n(k)) 7(60LR,b)d8+CF(n(k)).

SinceP € P(3c g pn(k)) was arbitrary, this implies

1
FT(@3 k) < Fr(nk) - ——4 K)).
(Bcr,pn(k)) = FT(n(k)) Gor )t + ce(n(k))
As this holds for arbitrark € N, we can now take the limit on both sides using
Proposition 3.4 and obtaif < F — §(1/(6c.rp)?), a contradiction. This finishes
the proof. O

As a corollary we get an additive ergodic theorem. This is our version of Theorem 4.1
of[10]. Note, however, that we are not able to estimate the convergence rate (see Remark 4
below).



Linear Repetitivity, | 419

Corollary 3.5. LetP be linearly repetitive and let F be an additive function Bp
Then the following equation holds

lim FT(r) = F(P)

r—o0 w(P)—oo,PeP, |P] .

Proof. The decomposition technique of the proof of Proposition 3.4 applied to the
subadditive functior- gives

. F(P L
limsup FP) < liminf F*(r). 4
w(P)—00,PePy |P| r—o0

Since—F is subadditive as well, this equation immediately implies

. —F(P
limsup (P)
0(P)—>o00,PePy |

< Iirrninf(—F)+(r). (5)

Multiplying by (—1) and using—F)*(r) = —F~(r), we get

F(P) _ . _
—~= > limsupF~(r). 6
w(P)—»oo,PePy |P| T r_,ocp © ©
By (4), (6), and the foregoing theorem, the corollary follows. O

Remark 4. Itis not possible to derive an estimate on the rate of convergence in the sub-
additive thearem. This can be seen from the following examplefLé&t — [0, o]

be an arbitrary monotonically decreasing function. Bgtbe an arbitrary set of box-
patterns derived from an admissitite DefineF: P, — Rby F(P) = |P|f (|P]). As

f is decreasing, the functidn is subadditive. Moreover, we ha¥ g P)/|P| = f (|P)).
Since f was an arbitrary decreasing function, this shows that the rate of convergence in
the subadditive ergodic theorem cannot be estimated.

Remark 5. It appears that uniform subadditive ergodic theorems are special features
of linearly repetitive structures. To support this, in Appendix B we exhibit examples
of strictly ergodic structures for which a uniform subadditive ergodic theorem does not
hold. The examples are given by Sturmian subshifts whose rotation number has rapidly
increasing continued fraction coefficients.

4. Specializing the Main Theorem

In this section we derive various corollaries from the subadditive ergodic theorem. First
we consider (sub)additive functions on boxes on a conrete tiling or Delone set. We then
use our methods to give a direct proof of the (known) unique ergodicity of dynamical
systems arising from linearly repetitive tilings. Finally, we discuss how the theorems of
[6], [10], and [13] fit into our context.

We first introduce the appropriate notion of subadditivity and translation invariance.
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Definition 4.1. Let w be a function on the s&(RY) of all boxes inRY.

(a) The functionw is called subadditive if there exists a constaptand a non-
increasing functior,,: [r,,, oc0) —> R with lim;_,, ¢, (r) = 0 such that
(i) w(B) < Yi_w(B) + X cu(@(B)B| for B = @, B, with

o(B) =1y,
(i) w(B)| < dylBl.

(b) Let T be a Delone set or a tiling. The functiom is called asymptoti-
cally T-invariant if there exists a constanj and a nonincreasing function
€y [Fw, 00) —> Rwith lim;_, e, (r) = 0 such that
(i) |w(B) —w(B+1)] < e,(w(B)|Blif (BNT)+t=(B+t)NnT and

w(B) >ry.

Condition (iii) in this definition is a notion of asymptotic translation invariance. It is
possible to associate to each (sub)additive, asymptotic invariant functefunction
F onP which is (sub)additive and does not differ too much frenmn a suitable sense.
In this way a translation invariant function on boxesRifi is essentially a function on
‘P in disguise. The main theorem then gives existence of the averagesantl this
implies existence of the averageswof This clarifies the role of translation invariance.
A precise version of the outlined procedure will be given in the (proofs of the) following
corollaries.

Corollary 4.2. Let T be a linearly repetitive tiling irRY. Let w be a subadditive
asymptotically T -invariant functiorThen for every sequence, Bith B, € B(r,) and
r, — oo, the limit

jim (B0

n— oo |Bn|

exists and is independent of the sequence

Proof. The strategy of the proofis simple. We construct a subadditive funEtienF,,
onPy(T) and show that the limit in question equals the limitFof(r ), whose existence
is guaranteed by Theorem 1.

DefineF onPy(T) by

F(P) = sugw(s(P)): P =T Nns(P), P representative oP}.

By properties (i) and (ii) ofv, the functionF is subadditive orP,(T). By construction
of F, we have

w(B) n
W <F™(n

for B € B(r) withr > r,, arbitrary. This immediately implies

Iimsupw(B“) < limsupF*(r). 7

n—oo |Bn| r—-o0
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Moreover, by property (iii) ofv, we have

w(B
% e (@(B) > F ()
for B € B(r). This yields
lim inf w(Bn) > liminf E~(r). (8)
n—oo | n| r—00
By (7), (8), and Theorem 1, the statement of the theorem follows. O

Corollary 4.3. Let D be alinearly repetitive Delone setif. Letw be a subadditive
asymptotically D-invariant functiariThen for every sequence, Bith B, € B(r,) and
rhn — oo, the limit

jim (B0

n—oo | Byl

exists and is independent of the sequence

Proof. This follows from the foregoing corollary applied to a colored version of the
Voronoi constructiorV (D) (see Section 2). Here, each tileNh(D) is colored by the
unique pointoD inits interior. To emphasize the coloring, we denote the colored tiling by
V (D, C). The coloring implies that the functian is asymptoticallyv (D, C)-invariant.
Thus, the result follows from the foregoing corollary. O

We now discuss two classes of examples of the above theorems. They are given by
tilings arising from primitive substitutions and tilings arising from Sturmian dynamical
systems whose rotation number has bounded continued fraction expansion.

We start by considering primitive substitutions. They give rise to linearly repetitive
tilings [4], [5], [22]. Thus, we immediately get the following result.

Corollary 4.4. Let S be a primitive substitution and let T be a tiling associated to
P(S) with vertex set ELetw be an asymptotically E-invariant subadditive function on
boxes inRY. Then the limitim,,_, . (w(By)/| Bn|) exists for every sequence Bf boxes
with B, € B(r,) and r, — oo, and it is independent of the sequence

This is essentially the subadditive ergodic theorem of [6]. The theorem of [6] is slightly
more general in that the sequenc¢@g) considered there are only required to be cube-
like van Hove sequences. On the other hand, the notion of subadditivity used there is
more restrictive than the notion used here. Therés required to satisfy a subadditivity
condition on unions of quite general disjoint (up to their boundary) sets with the constant
¢, being zero. In fact, under these assumptions, one should be able to extend our theorem
to hold for arbitrary cube-like van Hove sequences. However, our theoremis good enough
to cover the desired applications.

The other example is given by certain Sturmian dynamical systems; see Appendix B
for some background. As shown in [10], a Sturmian dynamical system is linearly repet-
itive if and only if its rotation number has bounded continued fraction expansion. Thus,
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we immediately obtain the following corollary of Theorem 1 which generalizes Theorem
2 of [13] (see [3] and [11] as well).

Corollary 4.5. Letanirrationale € (0, 1) with bounded continued fraction expansion
be givenLet W(«) be the set of pattern classes of the Sturmian dynamical system with
rotation numbew (see[3] and[13] for detail§. Then for every subadditive function F
onW(w), the limitlimn_, o (F (wn)/|wn]|) exists for every sequence,,) with |wy| going

to infinity. Moreoverthe limit is independent of the sequence

Of course, one could use Corollary 3.5 instead of Theorem 1 to obtain an additive
ergodic theorem. However, this kind of result falls clearly short of the additive theorem of
[10], asitdoes not allow one to estimate the rate of convergence. This has been discussed
in Remark 4 in Section 3.

We close this section by sketching a direct derivation of the unique ergodicity of
dynamical systems associated to linearly repetitive tilings. In fact, the result uses only
the compactness of the underlying space and an additive ergodic theorem. Thus, the
proof applies verbatim to more general systems. The “inner box” technique given below
applies to several contexts (see [11] for further discussion). It will be used in the next
section as well.

Corollary 4.6. Let P be linearly repetitive Then the tiling dynamical system

(Q(P),RY) is uniquely ergodicHere, RY acts onQ(P) in the canonical way via
translation

Proof. We have to show that for any continuofi®n 2 (P), the limits(1/B) fB f(T—

t) dt converge uniformly inT for w(B) going to infinity. The strategy is similar to the
proof of Corollary 4.2 above. We associateftmdditive functionsFs,, and Fis on P.
They are defined as follows:

Fsup(P) = SUp{f (T —-tdt: TNs(P) = P},
s(P)

Fint(P) = inf{f (T —-tdt: Tns(P) = P},
s(P)

whereP is an arbitrary representative Bf(it is not hard to check that these definitions
are independent of the actual choiceRjt Apparently,

n n n n
Fsup (@ PJ) = Z Fsup(P)), Fint (@ F’;) > Z Fint (P}). 9
j=1 j=1 j=1 j=1
Moreover, the following is valid:

|Fsup(P) — Fint(P)| = o(@(P)), 10

where the littleo function only depends on the continuity propertiesfofTo prove
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(10) we use an “inner box” argument. Recall tHfats continuous and thus uniformly
continuous sinc& (P) is compact by Proposition 2.4. Therefore, for each 0, there
existsR such that| f (T) — f(S)| < ¢ wheneverT N B(0, R) = SN B(0, R). This
implies that for allt € s(P) with dist(t, s(P)°) > R, the difference of the integrands

| f(T —1t)— f(S—t)|is smallerthar. For large enough (P), the set of thoseagrees

with the size ofP up to a boundary term. This proves (10). By (9) and (10), the functions
Fsup @and Fins are additive. Thus, the additive ergodic theorem implies the existence of
the limits lim,py— oo (Fsup(P)/IP]) and lim,py— .« (Fint(P)/IP]). By (10), the limits

are equal and the corollary follows. O

5. Applications

In this section we consider applications to random operators associated to tilings. In
this context there are two important quantities whose existence can be established by a
subadditivity argument, namely, the Lyapunov exponent in the one-dimensional case and
the integrated density of states in arbitrary dimensions. Here, we show how the results
of the previous sections can be used to strengthen recent results [3], [8] on the existence
of these quantities (see [11] and [14] as well).

The existence of the integrated density of states for@tihger-type operators asso-
ciated to primitive substitutions is thoroughly discussed in [8]. The discussion given there
relies on abstract operator theory together with a subadditive ergodic theorem. Thus, it
gives essentially the existence of the integrated density of states fardduher-type
operators associated to arbitrary linearly repetitive structures. In fact, the argument of
[8] can be improved and strengthened in several respects [11], [14]. In particular, it turns
out that the existence proof can actually be reduced to an additive ergodic theorem. This
is interesting due to the existence of an error estimate in the additive ergodic theorem.
This might have useful applications.

Let us be more precise. For a tiling or pattévh) the spacé?(M) is defined to be
the space of all square summable sequences indexed by the elemihtketfA be a
self-adjoint operator on a linearly repetitive tilifigwith matrix elementsA(x, y) for
X,y € T. (Here, the tilingT is called linearly repetitive ifP(T) is linearly repetitive.)

We assume tha satisfies the following finite range (FR) and invariance (1) properties:
There exists somR > 0 with:

(FR) A(x, y) vanishes for digk, y) > R.
(D The value of A(x, y) is completely determined by the pattern clais
T: dist(t, {X, y}) < R}].

In fact, the invariance condition implies that the operafocan be defined on every
tiling T of the speciex2(T). To emphasize this, we sometimes wr€T) for the
manifestation ofA onl2(T).

For a boxB in RY, the restrictionA(T)|g of Ato B is the operator ot?(BN T) with
matrix elements

AM)s(X, ¥) = AKX, Y) for X=xNT and y=yNT.
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For a boxB in R andx € R, define the functioﬂ{{(B) by

1 .
k' (B) = B #{An: An < A, An eigenvalues oA(T)|g},
where the number of elements of a finite §eit denoted by 8. Then the following
holds. If the limit lim,g)— oo kI(B) exists, it is called density of states for

Theorem 2. The density of stateim,,g)— o kI(B), exists and is independent of T
In fact, the convergencén «(B)) is uniform in T.

Proof (sketcl).  As in the proof of Corollary 4.2, it suffices to associaté}aa function
which is close tk and satisfies the assumptions of Corollary 3.5. This can be done
using the finite range condition together with the invariance condition. Details can be
found in [14] and [11]. O

Theorem 2 generalizes the corresponding theorem of [8], where Penrose tilings are
considered. Moreover, it only relies on an additive ergodic theorem, whereas [8] uses a
subadditive theorem.

We now turn to the study of the Lyapunov exponent. The sketch below follows the
detailed discussion of the Sturmian case in [3]. An admissibl@ s#tabstract patterns
in one dimension over a finite set of tiles can easily be identified with @sabnsisting
of finite words over a finite alphabét C R. The study of one-dimensional Sddiiger
operators associated W' can be based on the study of the so-called transfer matrices.
For eachE € C, the transfer matrixM (E) gives a mapM(E): W — SL(2, C),
defined byM(E)(w) = T(E, wn) x --- x T(E, wp) for w = wyq ---wp, where for
a € RandE € C, the matrixT (E, a) is defined by

T(E,a) = (EI"" _0). (11)

This map is antimultiplicative if the operation d¥ is a standard concatenation of words.
Since the standard norfn || on SL(2, C) is submultiplicative, the function

F: W — R, F(w) = In||[Mw)|
is subadditive. Thus, the results of Section 3 give the following theorem.

Theorem 3. Let W and F be as abovdf W is linearly repetitive then the limit
limn_ oo (F(wn)/|wn|) exists for each sequence,) in W with |w,| going to infinity
and the limit does not depend on the sequence

The limitin the theorem is called the Lyapunov exponent. It plays an important role in
the study of one-dimensional Scldinger operators. The theorem applies in particular to
systems arising from primitive substitutions and to Sturmian dynamical systems whose
rotation number has bounded continued fraction expansion. This is due to the fact that
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these systems are linearly repetitive, as discussed in Section 4 (see [4], [5], [23], and
[10] as well). Thus, the theorem generalizes the corresponding theorems of [8], [3], and
[11].

We close this section by pointing out two more possible fields of applications for
subadditive ergodic theorems: There is a theory of lattice gas models for tilings arising
from primitive substitutions [6]. This theory is built upon the subadditive theorem of
[6]. Thus, it is very likely that considerable portions of it can be carried over to gas
models on linearly repetitive tilings. Furthermore, there are investigations in [9] on the
structure factor of one-dimensional primitive substitutions. There, averaged quantities
play a key role. Thus, again, a subadditive ergodic theorem might be a useful tool for
further studies.

Appendix A. Compactness of Linearly Repetitive Tiling Spaces

In this section we sketch a proof of Proposition 2.4. It consists of two steps, namely,
establishing a finiteness condition and performing a standard diagonalization procedure;
compare [19] and [20].

Let P be a linearly repetitive admissible set of abstract patterns. We want to show
that Q (P) is compact. Observe first that for every> 0, there are only finitely many
pattern classeB e P with ro(P) < r. To see this, consider any pattern cl&§ssuch
that K (0, g - 1) C s(Q) for some representativ® of Q. Delete fromQ all the tiles
which have empty intersection with (0, ¢ - r) and call the resulting pattei®’ and its
pattern clas®)'. It is clear thatQ’ has finite volume and tha)’ contains every abstract
patternP € P with roy(P) < r. This proves the assertion.

Now, the proof of2(P) # ¢ and of compactness &b (P) can be given along
quite similar lines. We only sketch the proof of compactness. The other proof is similar,
invoking condition (iii) of Definition 2.1.

Consider a sequenceé,)ney in 2 (P). It suffices to prove thatT,)nen has a conver-
gent subsequence. To find this subsequence, we inductively define seqUElfkes,

m € N, such that(Tnl)neN is a subsequence @f)neny and formg > my, (T™)nen
is a subsequence @f.™),cy. This will be done in a way such th&¥,")ncy con-
verges. Choose any monotonically increasing sequepce> oo. Essentially, we
force the sequencélMney to converge onK (0, rm). It is then obvious from the
definition ofd(-, -) that the diagonal sequen¢g!')nen Will be d-Cauchy with obvious
limit tiling.

To define the refinemen ™ ney of (T L)nen (think of (Th)nen s (TO)nen), We
proceed in two steps. First, consider the pattgrof tiles in T™! having nonempty
intersection withK (0, r,). The patterng, have outer radius bounded by + 2r max
(with rmax from Definition 2.1) and hence, by the above observation, their abstract pattern
classesP, belong to a finite set. Hence, one of them, $&yoccurs infinitely often.
Delete all the tilings from the sequenCE" 1),y which haveP, # P. By the Selection
Theorem[7], [19], the remaining sequence has a subsequence such that the corresponding
setsP,, converge with respect to standard Hausdorff metric. Call this sequ&ogen.

By the above remarks, it is easy to see t(iB}) ey iS @ convergent subsequence of

(Tn)nEN-
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Appendix B.  Strictly Ergodic Subshifts for which the Uniform Subadditive
Ergodic Theorem Fails

In this section we present one-dimensional examples which show that our main result
fails if we only require strict ergodicity rather than linear repetitivity (see [11]-[13]
as well). We consider a standard symbolic form of Sturmian tilings of the real line,
that is, we study two-sided sequences over the alphabet {0, 1}. Such sequences
corespond to tilings oR by intervals k, k + 1), k € Z, which are marked with either 0

or 1. Alternatively, one can consider two intervals) of different, finite nonvanishing
length. To each tiling oR consisting of (translated) copies bfindJ one can naturally
associate a sequence overor background on Sturmian sequences we refer the reader
to [1] and [15].

We start by recalling some standard notation. Given a finite alphabet denote
by A* the set of finite words oveA and by AN (resp.,A%) the set of one-sided (resp.,
two-sided) sequences ovAr both called infinite words. Given a finite or infinite word
w, we denote by Sulw) the set of all finite subwords ab. Finally, given two finite
wordsv, w, #,(w) denotes the number of occurrences ah w.

Fix some irrationale € (0,1) and define the words, over the alphabe® by
s1=1%=05 =" 's,ands, = $,5 2 n > 2, where thea, are the
coefficients in the continued fraction expansiorwoBy definition, forn > 2, s,_; is
a prefix ofs,. Therefore, the following (“right”-) limit exists in an obvious sensg,=
liMpoo Sy € AN.

Define the associated set of pattern clasgé®) C A* by W(x) = Sul(c,).
The associated symbolic dynamical systé(«), T) is then given byQ («) = {X €
AZ: Subix) € W(a)} and(TX)n = Xnt1. (Q(e), T) is strictly ergodic for every irra-
tional a. It is linearly repetitive if and only if the sequen¢a, )ney is bounded.

We will prove the following theorem.

Theorem 4. There existv € (0, 1) irrational and a subadditive function F oW («)
with the following propertyThere exist sequences,ﬁ)neN in W(a), k = 1, 2,such that
|wr‘§| —ooasn— oo, k=1,2,and

.. Fw? . F(w?
liminf ( 1”) < limsup ( 2”).
n— oo |wn N—s 00 |wn|

In particular, the limitlim,,— o (F (w)/|w|) does not existhat is the uniform subad-
ditive ergodic theorem does not hold fid¢(«).

The following properties of the words, are well known and will be useful in the
proof of Theorem 4.

Proposition B.1.

(i) Foralln > 2,the word g is a prefix of the word,s 1S,.
(i) Forevery nthere is no nontrivial occurrence of 1 .5, thatis s,8, = wiS w2
impliesw; = ¢ or wy = &.
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We are now in position to give the

Proof of Theorend. Define the functios on W(«) by
G(w) =Y #5 15 W)(IS1-1] + IS]).
n=1

It is clear that all but finitely many of the terms are zero. Moreover, it is obvi-
ous thatG is superadditive. Thus, by Lemma 2.2.3 of [11] or Theorem 1 of [13],

G = limp_ o (G(sh)/|s]) exists, but it is possibly infinite.
By shi1 = sas,_1, forn > 1, we see thaB(s,11) is given by

G(si+1) = an11G(s) + G(si-1) + OT.

Here, the overlap ter® T comes from contributions t& from occurrences of_15,
k < n+1, at one of tha,,; “boundaries” between the different copiesspainds,_; in
Si1 = Si"s,_1. By Proposition 5, we infer that at each such boundary and for lkeach
there actually can be at most one such copy. Moreover, by Proposition 5 and the fact that
the last letters of ands,_1 are different, we must have< n— 1. These considerations
give

G(s11) _ an1G(S) + G(S-1) +ana 33 (S -1l +1s 1)

[Sheal T An11/Sn|

Now, observe thaG(s,) only depends on the numbeasg ..., a,. Thus, we can force
G to be finite ifa, — oo sufficiently fast. However, then we have

Ce1s) _ G- | G®) | [sasl G(sn)
[Si-1S] T Isi-1Sl Isas] Iscasal T Is ] (L Is-al/IsaD)

]

thatis,G(sh—15)/ISh—15| does not converge 8. We can therefore conclude by setting
F = —G1 w% = S$-1S, andwﬁ =S. 0

Remark 6. The proof of Theorem 4 actually provides an uncountable set of numbers
a such that the uniform subadditive ergodic theorem fail94dkx). This set, however,
has Lebesgue measure zero. So, one might wonder whether the result actually can be
extended to a larger class @f

While this paper was under consideration it was shown by one of the authors, that a
Sturmian dynamical system admits a uniform subadditive ergodic theorem if and only
if it is linearly repetitive [11] (see [12] and [13] for related material as well).
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