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Abstract. A pseudo-self-similar tiling is a hierarchical tiling of Euclidean space which
obeys a nonexact substitution rule: the substitution for a tile is not geometrically similar to
itself. An example is the Penrose tiling drawn with rhombi. We prove that a nonperiodic
repetitive tiling of the plane is pseudo-self-similar if and only if it has a finite number of
derived Voronotilings up to similarity. To establish this characterization, we settle (in the
planar case) a conjecture of E. A. Robinson by providing an algorithm which converts
any pseudo-self-similar tiling dR? into a self-similar tiling ofR? in such a way that the
translation dynamics associated to the two tilings are topologically conjugate.

1. Introduction

Much is known from an ergodic theoretic standpoint regard@iysimilar tilings (some
fundamental references being [15], [17], [18], and [20]). However, there is a closely
related class oftilings, theseudo-self-similar tilings which we would like to claim have

the same dynamical properties. Pseudo-self-similar tilings have a hierarchical structure:
if the entire tiling is expanded by a well-chosen similarityR3f then one can recover the

tile in the original tiling at any poirt € R" by looking in a finite window arouns in the
expanded tiling. A famous example of a pseudo-self-similar tiling is the Penrose tiling
drawn with “thick” and “thin” rhombi, which are decorated with arrows to specify how
they are allowed to fit together. Each expanded rhombus is replaced by configurations
of rhombi in the original size, but the smaller tiles do not fit onto it exactly—some parts
stick out over the edge, as shown in Fig. 1. However, the Penrose rhombs can be cut
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Fig. 1. Expanded thick and thin Penrose rhombi and their replacements.

into triangles which then satisfy the strict self-similarity condition, and this procedure
is reversible, see p. 540 of [7]. In this situation we say that the original tiling and the
modified version arenutually locally derivable (MLD) . The concept of mutual local
derivability was originally discussed in [2].

The main motivation for this paper comes from the work of the first author [14],
where it was conjectured that nonperiodic tiling is pseudo-self-similar if and only
if it has finitely many derived Voroindilings up to similarity The “if” direction was
established in [14], where it was also shown that self-similar tilings have a finite derived
Voronai'family. It was necessary to show that any pseudo-self-similar tilifgafould
be converted to a self-similar tiling in order to prove the “only if” direction. This provides
a result which is interesting in its own right. We combined the result with the methods
of [14] to confirm the characterization in the planar case.

The use of derived Vorondilings is motivated by a similar construct in symbolic
dynamical systems theory. Tilings and their translation dynamical systems are continu-
ous, higher-dimensional cousins of infinite symbolic sequences and their shift dynamical
systems. One can recode a sequence in terms of some recurreMhimttie sequence
by noting thereturn words for W: these are the words in the sequence starting at an
occurrence oW and ending at the next occurrenceWdf Originally, primitive substi-
tutive sequences were characterized by Durand [6] as those which have a finite number
of recodings when one considers the recodings for every initial word in the sequence.
Later the condition was expanded to include recodings for arbitrary words [9]. In higher
dimensions the return words are more difficult to mimic, as the notion of the “next”
copy of a set of tiles i¥” is unclear. Voronotiles give a convenient geometric solution:
two occurrences are “next to” one another if their Vorooells are adjacent. Pseudo-
self-similar tilings generalize primitive substitutive sequences, so the characterization
arrived at in this paper represents a nontrivial generalization of the characterization
given in [6].

To show the MLD between pseudo-self-similar and self-similar tilingRa&f we
present an algorithm which takes any pseudo-self-similar tilifRfaind redraws it as a
self-similar tiling, using an iterative process. The procedure involves first converting the
tiling to a derived Voronotiling as in [14]. This tiling is very easy to work with since
it is composed entirely of tiles which are convex polygons. Next, we use the pseudo-
self-similarity to determine an initial redrawing of the tile boundaries, which produces
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a tiling which is not yet self-similar, but much closer to being so. We iterate the process,
redrawing at each step, until in the limit we have obtained a self-similar tiling. The tiles of
this limiting tiling may be nonconvex and have fractal boundaries, but they will be seen
to be topological disks. We should note that the method of “redrawing the boundary” has
been used before: see, e.g., [3], [5], and [10]. We should especially mention the work of
Kenyon [11], since our methods are very similar to his at several points.

The paper is organized as follows. In Section 2 we collect all the basic definitions.
The results are stated in Section 3. The main theorem is proved in Sections 4 and 5.
The characterization of pseudo-self-similar tilings in terms of derived Vordinas is
obtained in Section 6. Section 7 contains concluding remarks.

2. Preliminaries

Here we collect the definitions and set up the terminology. The reader should be warned
that there is a great deal of inconsistency in terminology in the literature on this subject.
We usually do not attempt to trace the history of the terms we use; some of the early
references are [2], [4], and [20]. We closely follow [14] in our definitions.

Generally speaking, a tiling d&? is a covering of the plane by finitely many basic
shapes (tiles), which overlap only on their boundaries.

We will find that it is convenient to have labelings (visually interpreted as colorings)
for our tiles, allowing us to distinguish congruent tile shapes if we choose. So we fix a
finite set of labelsd. Taking a compact sé&& C R? which is the closure of its interior, and
alabell € A, we define grototile t as a pair(A, ). Thesupport of t is supft) = A;
thelabel (or tile type) oft is|(t) = |. Throughout the papédranslations are the only
allowable transformations of prototiles, standing in contrast to the work of Radin and
others (see[15], [16], and references therein) which allows arbitrary rotation of prototiles.

Definition 2.1. Given a finite prototile set, atile T is a pair(supgt) — g, (t)) for
someg € R? andt e r. We let supgT) = suppt) — g andl(T) = I(t). We say

T = {Tj = (suppt, —g).1(t): j €N, t, e, g e R}

is atiling if R? = Uj sup(T;) and in(supT;)) Nint(supfT;)) = @ fori # |.

Different tilings that we consider need not have the same prototile set. For conve-
nience of notation we suppress subscripts and refer toZatile asT € 7. When
considering two tilings, it is natural to identify them if they are equal, up to a one-to-one
correspondence of the label sets.

A T-patch P is a finite subset of the tiling". Thesupport of a patch P is defined
by supgP) = J{supaT): T € P}. The diameter of a patch P is diamP) =
diam(supg P)). Thetranslate of a tile T by a vectorg € R?is T 4+ g = (supfT) +
g,1(T)). The translate ofa patdhisP+g = {T +g: T € P}. We say that two patches
P, P, aretranslationally equivalent if P, = P; 4 g for someg e R?.

The following definition will be useful in the proof of our main theorem.
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Definition 2.2. A patch with a marked tile is a pair(P, T) whereP is a patch and
T e P. Two patches with marked tilg®;, T;) and(P,, T,) are said to be translationally
equivalent ifP, = P, + g andT, = T; + g for someg € R2.

Definition 2.3. We say that a tiling/” hasfinite local complexity (abbreviated as an
FLC tiling ), if for any R > 0, there are finitely many -patches of diameter less than
R, up to translation.
To a subseE ¢ R? and a tilingZ we can associate&-patch as follows:
[F17 =(T e T: suppT) N F # ¢}.
An important patch is the one associated to a pgiatR?, given by y]7 := [{y}]”.

Notation. We denote byBr(y) the closed ball of radiuR centered aly and write
Nr(F) = {x € R?: dist(x, F) < R}.

Definition 2.4. (See [2].) LetZ; and7; be two tilings. We say thak; is locally deriv-
able (LD) from 73 with a radiusR > 0 if for all x, y € R?,

[BrOOIZ =B +(x—y) = [XZ=[y]2+x-y). (2.2)

If 71 is LD from 7; and7; is LD from 73, then we say thaf; and7, are mutually
locally derivable (MLD).

Remark. Mutual local derivability is a useful equivalence relation. It is natural in the
context of atiling dynamical system defined as the translation action on a space of
tilings (see [14], [15], and [18] for definitions). In fact, MLD is the tiling analog of

a finite block code in symbolic dynamics. If two tilings are MLD, then the associated
translation dynamical systems are topologically conjugate [14], hence they have the same
dynamical and ergodic-theoretic properties. (We should note, however, that a topological
conjugacy between tiling systems does not, in general, imply that the tilings are MLD,
see [13] and [16].)

The following lemma is immediate from the definitions.

Lemma 2.5. Suppose thaf; and 7, are two tilings and7; is LD from 7; with the
radius R Then for any L> R and any compact setg,FF» ¢ R? with F, = F; + g,

INL(F)]Z = [NL(FD]" +9 = [NL_r(F2] = [NL_r(FD]% +g.
The definition of LD can be extended to include functions.

Definition 2.6. Let®: X — R? be a function for som& < R2. We say thatb is LD
from atiling 7 with a radiusR > 0 if Vx, y € X,

[BRX)]T = [Br(]”T + (x—y) = &(X) = DY)+ (X—Y). (2.2)
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Definition 2.7. A tiling 7 is calledrepetitive if for any patchP c 7 there is a real
numberR > 0suchthatforany e R?thereis & -patchP’ such that supiP’) ¢ Bgr(X)
andP’ is a translate oP. The minimal suchR, denotedR(P), is called theepetitivity
radius of P. A repetitive tiling is calledinearly repetitive if there exists a constant
C > 0 such that

R(P) < Cdiam(P) forany PcC 7.

We should note that repetitive tilings are called “almost periodic” in [14] and “locally
isomorphic” in [18].

In everything that follows, we lep: R> — R? be an expanding, orientation-
preserving similitude; that isp is a linear map such that for some> 1 we have
lpgl = Alg| for all g € R?. We call such & anexpansion mapand refer tax as the
sizeof the expansion. Clearly, = ||¢| = +/detp. Because it is orientation-preserving,
there can be no reflections, so if we vi@# as the complex plane, the expansiooan
be identified with the multiplication by a complex numlger|¢| = A. We can define
the expansiop?7 of a tiling 7: it is the tiling given byUt <7 (¢(suppT)), I (T)).

Definition 2.8. Let ¢: R? — R? be an expansion map. A repetitive FLC tiliAgis
said to bgpseudo-self-similar with expansiory if 7 is LD from ¢ 7. A repetitive FLC
tiling 7 is calledself-similar with expansiong if

(i) foranytileT = (A,1) € 7, there is & -patch whose support is(A), formally
lint(p(A)]7, and
(i) if =T —gfortwo7-tilesT = (A, 1), T' = (A, ), andg € R?, then

[int(e(AN]T = [int(e(AN]” — ¢(9).

Definition 2.9. A'tiling 7 is said to benonperiodic if 7 — g # 7 for any nonzero
g e R?2

Remark. Itis easy to see that a self-similar tiling is pseudo-self-similar. In [14] it is
required that a pseudo-self-similar tilirg is MLD with ¢7. We will show that this
property holds whenever is nonperiodic. It is known (see Chapter 10 of [7]) that
nonperiodicity is necessary fgrZ7 to be LD from7 . We should note that the property
“7T andg7 are MLD” was already considered by Baake and Schlottmann [1] under the
name “inflation—deflation symmetry.”

For the characterization of pseudo-self-similar tilings, we recall the construction of
the derived Voronofamily from [14].

Definition 2.10. Suppose thal is a repetitive tiling ofR?. Letr > 0, P, = [B,(0)]”
and create thicator set
L, = {q € R? such that there exis8 ¢ 7 with P, = P —q.

Let R(r) be the repetitivity radius dP; so that every ball of radiuR(r) in 7 contains a
translate of?; . Thederived Voronoi'tiling 7; has a tilety for eachg € £, with support

supity) = {(x e R% |q—x| < |g' — x| forallq’ € L;};
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tq is labeled by the translational equivalence class of the p&gh[ (9)]7 . Thederived
Voronoi family is defined by#(7) = {Z;: r > 0}.

Given an expanding similitude: R?> — R2, we say a family of tilingsF is
p-finite if there existSy, ..., Su in F sothatforanyZ € F,thereisan € {1, ..., M}
and aj € Z* with 7 = ¢! S;. (Recall that we identify two tilings if they are equal up to
a one-to-one correspondence between the label sets.)

3. Results
Recall that all tilings considered in this paper are assumed to be repetitive.

Theorem 3.1. Let7 be a pseudo-self-similar tiling of the plane with expansjon
Then for any ke N sufficiently large there exists a tiling’” which is self-similar with
expansiorpX, such that7 is MLD with 7’. Moreoverall the tiles of 7" are topological
disks

This settles a conjecture of E. A. Robinson (personal communication). Using the
methods of[14], we deduce from Theorem 3.1 the following result which was conjectured
in [14].

Theorem 3.2. A nonperiodi¢ repetitive tiling of R? is pseudo-self-similar if and
only if its derived Voronbfamily is ¢ -finite for an expandingorientation-preserving
similitude.

Theorem 3.1 also allows us to extend many of the results available for self-similar
tilings to the case of pseudo-self-similar tilings.

Corollary 3.3. Suppose thal is a pseudo-self-similar tiling @2 with expansionp.
Then

(i) 7 islinearly repetitive
(ii) if 7 is nonperiodi¢then it is MLD withe7 .

This corollary follows from Theorem 3.1 above and Lemma 2.3 and Theorem 1.1 of
[19].

A complex numbet is called acomplex Perron numberif it is an algebraic integer
whose Galois conjugates, other thgrare all less thaft | in modulus.

Corollary 3.4. Suppose thal is a pseudo-self-similar tiling of the plane with expan-
siong corresponding to the multiplication by a complex numb€eFhent is a complex
Perron number

Proof. By Theorem 3.1 and Thurston’s characterization of expansion constants for
self-similar tilings [20, Theorem 10.14¥ is Perron for alk sufficiently large. However,
this implies that itself is Perron, see Lemma 5 of [12]. |
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Combining Theorem 3.1 with Corollary 2.2 of [14] and the results of [18], one obtains
a wealth of information about translation dynamical systems associated with pseudo-
self-similar tilings. For instance, every such tiling dynamical system is uniquely ergodic
but not strongly mixing. If the complex expansion constaigta complex Pisot number
(i.e., all its Galois conjugates, other thanare less than one in modulus), then the
associated tiling dynamical system is not weakly mixing.

4. Proof of Theorem 3.1

Any sufficiently well-behaved tilingS has a well-definedoundary graph 3S. For
convenience, we assume in the definition of this graph that the supportssefilals are
convex polytopes. The boundary grap$i hasverticesgiven by the points ifR? which
intersect supports of three or more tiles arhesgiven by the connected sets R?
which intersect supports of exactly two tiles. The graphis connected, and we denote
the vertex and edge sets By(0S) andE(3S), respectively.

Lemma4.1l. Itis enough to prove TheoreBlfor tilings with the following additional
properties

the supports of all -tiles are convex polygons (4.1

every vertex of the boundary grapfi™ has degreé. (4.2

Proof. Fixr > 0 and consider the derived Vorantiling 7;, as in Definition 2.10. It
is proved in 4.2 of [14] thaf; is MLD with 7, so we also have that7 is MLD with
¢7;. Since7 is LD from ¢7, and LD is a transitive relation, we obtain tHitis LD
from ¢7;.

Itis well known that the Vorondiling has tiles that are convex polytopes intersecting
along whole faces (sides in our case). Some vertices may have degree larger than 3, so
for every vertexv with more than three edges going out, we create a new tile. We find
a > 0 less than one-third of the shortest edg&0édnd put new vertices at the distance
a of v on every edge going out @f We then connect them to get a closed convex curve
and delete everything inside (the pointand the line segments going out of it). We
obtain a new tile with convex support. We enlarge the label set by addindabels
that are in one-to-one correspondence with the translational equivalence classes of the
patches{]7 .

It is clear that now every vertex has degree 3 and the supports of other tiles remain
convex. Denote the new tiling bz] Observe thaf is MLD with 7, since this procedure
is reversible. Slmllarlygﬂ' is MLD with ¢7;. Thus,7 is a pseudo-self-similar tiling
with all the desired properties, and the lemma follows. O

The key step in the proof of Theorem 3.1 is the construction of the function
described in the next proposition. This map takes the graph ahd “redraws” the
edges by approximating them with paths in the grapa ofo 7.
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Denote by| - | the arc length measure @7 ; this will be well defined for tilings
satisfying (4.1). Letlyy = dw (7)) = supdiam(supgT)): T € 7}, whichis finite by FLC.

Proposition 4.2. Let7 be a pseudo-self-similar tiling with expansion magatisfying
(4.1) and (4.2),and lete > 0. Then for all k € N sufficiently large there exists a
continuous injective may: 97 — d(¢ ¥T) = ¢~ ¥ 37 which takes edges @17 onto
unions of edges @i 97 and which satisfies

() Forallx € 07, |[x — ¥(X)| < e.
(i) Thereisp € (0, 1) such that for any & E(37) and? € W(e) N E(d(p*T)),
the restrictionW¥ |y -1, is linear and| ¥ ~1(0)| < ple|.
(iii) There is R> 0 such that¥ is LD from7 with a radius R

Next we deduce Theorem 3.1, postponing the proof of the proposition to the next
section. Fixk, with AX > 2, andW, given by the proposition. Let

W = o Kk for n> 1. (4.3)

Note that¥ = @, The map¥™: 97 — R?is well defined since*w (37) c 97.
It is clear that¥™ are all continuous and injective. We have forral- 1 andx € 97

W0 — M0 = Jo ™ (@ W) (x) — o TP W) ()]
= I ™M@ W) (X) — V(W) <27, (4.4)
by Proposition 4.2(i), since is a similitude with expansion size This implies that

the sequenc# ™ converges uniformly to a continuous functigr®: 37 — R?, and,
moreover,

X — W>(x)| < ﬁ < 2¢ forall xe€9d7. (4.5)

By the definition of&™ we havew ™D = ¢ —*w™yky hence
W = g Ku@pky, (4.6)
This has several useful consequences. First, observe that
P*(W®IT)) C ¥>XOT). 4.7

Second, we claim thab® is injective, provided that > 0 is sufficiently small. Indeed,
suppose that, y € 97 with ¥>°(x) = w>(y). By (4.5) we have thak — y| < 4s. We
see from (4.6) that it is also true that® ((¢*¥)"x) = W ((pkW)"y) foralln e N, and
SO it must be thal(p*¥)"x — (p*W)"y| < 4¢ as well. Assume that € (0, 1) is such
that

4e < min{dist(e,, &): e, & € E(07), e1Ne = @},

Then (w‘i\y)“x and (¢*w)"y are always on the same edge or adjacent edgéd'in
Denote¥ := ¢*W. Suppose first tha?"x and ¥"y are on the same edgg. Then
w"-1x andw"1y are on some edgg of 97, the pointsl"~2x and "2y are on the
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same edgé, of 97, etc., until we get thak andy are on some edgé, of 37 . By
Proposition 4.2(ii),\fln|en is linear andx — y| < p"|¢n| < p"max|el: e € E(AT)}. If
U"x and ¥y lie on adjacent edges, we get— y| < 20" max|el: e € E(d7)} by a
similar argument, considering the common vertex of these edges. In either case, letting
n — oo, we obtain thak = y. This proves tha’* is injective.

Now we are ready to define the tiling which we will prove is self-similar. Sirce
is injective, for each tilel = (A,1) € 7 the image?*(d A) is a Jordan curve. By the
Jordan curve theoren¥/*° (3 A) separates the plane into precisely two components of
which > (9 A) is the common boundary. Denote the closure of the bounded component
by A. It is homeomorphic to the closed disk and will be the support of a new tile. For
future reference note that

A C Ny (A) (4.8

by (4.5). Next we give a labeling to this tile. Recall this the radius of LD of¥ from
7. Clearly, W is LD from 7 with any larger radius, so we can chod®eas large as we
wish without loss of generality. Assume that

R> (r+2:K+dy+2/05-1), (4.9)

wherer is the radius of LD ofp*7 onto7 . The label’ of A’ is defined as the translational
equivalence class of the patdNg(A)]7 with the marked tileT (see Definition 2.2).

Claim. 7' :={T' = (A,l'): T e T}isatiling of R?.

Proof. Denote sup() = {supaT): T € 7}. For anyA € supp?), by (4.5) at
least a portion oft > (37\d A) lies in the unbounded component®f\ W= (3 A). Since
97 \dA is connected, so i¥*(37\dA). Thus by the injectivity ofy>*° we have that
W37\ A) lies in the unbounded component®f\ > (3 A). This implies that for
anyB € sup7), B # A, we have intA') Nnint(B") = @.

It remains to verify that supg@”) := [ J{A: A € sup7)} = R? Let A € supp7).
By the Jordan—Schoenflies theorem (see Theorem 9.25 of [8]), the homeomorphism
Y* A A — 9A can be extended to the homeomorphismm A — A'. Then the
functionh: R? — R? given byh(x) := ha(x) for x € A, is well-defined, continuous,
and one-to-one (here we use that/&) N int(B’) = @ for A # B in supp?7)). We
also havelh(x) — x| < dw + 2¢ by (4.8). Since a one-to-one continuous mapping
of a compact space is a homeomorphisnrestricted to any compact subset Rf
is a homeomorphism on its image. Lete R?, and consider the baB, (z) for some
t > dw+2¢. Thenthe imagh(B;(2)) is simply connected and the image of the boundary
h(dB;(2)) must contain in its bounded component the painthuszis in the image of
h, so it is in the support of at least offé-tile. Thus we have shown that tiles R?, as
desired. O

Next we show that the tiling” is LD from 7 using the following lemma.

Lemma4.3. Lete € (0,1),k € N, ¥, R be as in Propositiod.2, with R satisfying
(4.9),and let® be another continuous function froid" to R2, which is LD fromT with
the radius RThen® := ¢ ¥®¢kW is LD from7T with the same radius R
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Proof. Suppose that,y € 97 and
[BrOOIT = [Br(Y]” + (x — ). (4.10

Applying ¢ yields

[Bir(@X)]*7 = [Bur(@*N]*7T + ¢ (x — y).
Therefore, by Lemma 2.5,

[Bir—r (@*30]7 = [Buror (Y17 + ¢ (x — ).
In view of Proposition 4.2(i), this implies

[Brror e (W O] = [Brr—r e (@ W () + 0 (y = 3)]7 + ¢¥(x = y).

On the other hand, sinc# is LD from 7 with the radiusR, (4.10) implies¥(x) =
W(y) + (X — y) and hence

PW(X) = PV (Y) + (X — ). (4.11)
Combined with the previous equation, this yields
[Birr ke (@ WO = [Bixror e (@ W(YN]T + (¢ (x) — "W (y)).

SinceaAkR —r — Ake > Rby (4.9), we can use that is LD from 7 with the radiusR
and (4.11) to conclude that

D W(x) = P W (y) + *(x — ).

Applying ¢ ¥ gives that® is LD from 7 with the radiusR, as desired. O

Now we apply Lemma 4.3 to the functioh = W™; then® = v, We get by
induction thatw™ are all LD from7 with the radiusR. Passing to the limit yields that
Y is LD from 7 with the radiusR. We are going to show tha&t’ is LD from 7 with
the radiusR + dyv + 2¢. Suppose that

[Bredy+2: X)]7 = [Bridy+2: (W] 7 + (X — ). (4.12)

Let T, = (A}, 1) € [X]7', whered A} = W>(3A;) for someT; = (Aq, 1) € 7. The
Hausdorff distance betweely and A] is less than 2 by (4.5). By (4.12),

T, i=A,)i=T1+(y—x)€7T. (4.13

We haveNg(A1) C Brydy+2:(X). Thus by (4.12), Nr(AD]7 = [Nr(A2]7 + (x —y)
andA; = Az + (X — y), which implies¥*® (3 A1) = W*(9A2) + (X — y) sincew™
is LD from 7 with the radiusR. Therefore,A; = A, + (x — y) andy € A,. By
(4.12) and (4.13), the patches with marked tilg¥r(A1)]7, T1) and([Nr(A2)]7, T2)
are translationally equivalent, and herghas the same label &,. This proves that
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T, = (A, 1) e [y]7 and concludes the proof thd@t is LD from 7" with the radius
R+ dw + 2.
Now we show thaf is LD from 7" with the radius 2. Suppose that

[Bo:(0)]7" = [Ba(W]7 + (x —y). (4.14)

Let Ty = (As,l) € [x]7 and letT; = (A}, l") be the corresponding’-tile. Then
ALNBy(X) # Wby (4.5), hencd] € [B2:(x)]7 and (4.14) implies thaly, = (A, 1) ==
T+(y—Xx) € T'. LetT, be theT -tile corresponding td,. By the definition of7 '-labels,
the patches with marked til&gNg(A1)]7, T1) and([Nr(A2)]7, T,) are translationally
equivalent, hence

Ar=A,+g and Nr(AD]” = [Nr(A]” +g (4.15)

for someg € R?. Sincew™ is LD from 7 with the radiusR, we conclude thaf\; =
A, + g, but we already know thak] = A, + (x —y), henceg = x — y. We have shown
thatTy = T, + (x — y) and T € [y]7, concluding the proof thaf is LD from 7”.

Lastly, we show thaf” is a self-similar tiling ofR? with expansion®. By (4.7), for
any 7'-tile (A, 1), the Jordan curvek(d A') is a subset 0d7”. The interior of every
T'-tile must lie entirely in one of the two componentsRsf o (8 A'), thereforepk(A') is
the support of &'-patch [in(g*(A)]7 . Let T, = (A}, 1) andT, = (A,, ') be 7 -tiles
with the same label. According to Definition 2.8, we must show thétit= A] — o'
for someg’ € R?, then

[int (@ (AN]7" = [int(@"(A]T - ¢*g". (4.16)
SinceT, andT, have the same label, we know that (4.15) holds for sgraeR?, where

A; is such thab Aj = (9 A) fori = 1, 2. From the fact tha¥> is LD from 7" with
the radiusk we conclude tha#t\, = A} — g henceg’ = g. Now (4.15) implies

[Nir(¢ AT = [Nir(¢*ADTY T — g¥g.
SinceT is LD from ¢*7 with the radiug’, we have from Lemma 2.5 that
[Nirr (@ A]7 = [Noxror (0*ADTT — 9@,

Using that7” is LD from 7 with the radiusR+dy +2¢ andiA*R—r —R—dy —2¢ > 2)Xe
by the choice oR (see (4.9)), we conclude that

[Nz (@ AD]T = [N (¥ AD]T — 0¥

Sincegk Al C Nyke (0¥ A), i = 1,2, by (4.8) andpk A, = oA — g/, this implies
(4.16) as desired.

Itremains to note that” has FLC and is repetitive since these properties are preserved
by MLD. Thus we have constructed the tilifg which is MLD from 7 and which is a
self-similar tiling of R?, finishing the proof of Theorem 3.1. |
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5. Proof of Proposition 4.2.

For anya, b € R?, denote by 4, b] the line segment frora to b. Recall thatdy, is the
largest diameter of a support of/atile andN; (A) denotes the closed neighborhood of
A of radiusr.

Lemmab5.1. Let7 be an FLC tiling satisfyind4.1)and a b € V(37). Then there
exists a continuoysne-to-one mapping: [0, 1] — 97 such that (0) = a, (1) = b,
¢([0, 1]) C Na, ([a, b)),

[¢(t) —a—t(b—a)| <5dyu forall t €][0,1], (5.1

and for any¢ € ¢([0, 1]) N E(37) the restrictions |1, is linear.

Note There are several ways to prove this rather straightforward statement. We do not
claim that the constant 5 is optimal.

Proof. Forx,y e R? let G[x, y] denote the union of boundaries of thoZetiles
whose supports intersect,[y]. Clearly, G[x, y] is connected; we can consider this set
as a connected subgraphaf. Suppose first thaa — b| < 4dy. Then we consider
the shortest path connectiagandb in G[a, b]. It is simple, and any piecewise linear
parameterizatiog of this path will have the desired properties.

Next suppose thaa — b| > 4dy. We can choose pointg = a, a1, ...,a, = b, so
thata; < a1 in the natural order org], b] and

2dy < lag — & 11| < 3dpm for i=0,...,n—1

Fixa € VOT)N[a]? fori =1,...,n—1andleta) = a, &, = b. Thena/ and

a ., are vertices ofG[a;, a,1]. Let I'; be the shortest path connectiaganda/_ , in
Glai, a+1]. We have thaf; is simple andly C Ng, ([&, &+1]). The unionU{‘:‘Ol T
connects to b but it may fail to be a simple path, so we have to do some “pruning.”
Observe that

Ii_1 N T C Nagy, ([@-1, &]) N Ng, ([&, & +1]) = Bay, (&),

and the neighborhoody,, (&) are disjoint for different’s by construction.

SincerT’ is simple, it has a linear ordering witlj being the smallest point araj,
being the largest point. For=1,...,n — 1 leta’ be the smallest point iif;_; such
thata” € I';. Theng” is a vertex inBg,, (8) NV (97) and taking the union of edges less
thana” in I'i_; and edges greater thafiin I'; yields a simple path. Doing this for all
yields a simple patlr connectinga andb in Ng,, ([a, b]).

Letag = a, a; = b, and defing: [a, b] — T to be a continuous one-to-one mapping
such thaty([&, & 1]) is mapped to the part ¢f from & toa” ;, fori =0,...,n—1,
andg is linear on the preimage of each edge. Then

lp(X) — X| < dm + | — &41| < 4dy forall x e [a,a;1].

The functiong(t) = ¢(a + t(b — a)) has all the desired properties and the proof is
complete. |
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Fig. 2. The choice oK.

Proof of Propositiord.2. We can take as small as we wish, so we assume thatess
than the minimal distance between the vertice8df By FLC, we can chooskK > 10
so that for any two edges, £, with a common vertex,

Ng/k (€1) N Ngyk (€2) C Bgja(@), (5.2
as seen in Fig. 2. Chooges N so that
A %dw < ¢/(2K) < ¢/20. (5.3)

For each verterm € V (37) choose a vertea' € V(¢ X37) neara, so thatja’ — a| <
17 %dy. Using thaty=*T is LD from 7 we make sure that the choiceafdepends only
on a7 -patch of some fixed radius arouadmaore precisely, there exists &> 0 such
that for anya, b € V(37), if [ Br(a)]7 = [Br(b)]7 + (a — b) thena’ = b’ + (a — b).
We can takeR as the radius of LD of” ontog 7).

Next consider an edge= [a, b] € E(37). Apply Lemma 5.1 to the tiling 7 to
find a simple pati™(¢) C N;—«q, ([&, b]), with a parameterizatiogy: [0, 1] — I'(£)
satisfying

lz(t) —a —t(b —a)| <5 *dy  for te]0,1],
which implies
o) —a—t(b—a) <61 dy  for te[0,1] (5.4)

by the choice o', b'. The same thing is done for all edges, again using LD to make sure
that the choice of (¢) and¢, depends only on & -patch of some fixed radius around
the edge. Since we are considertfigected edgebere, we also use LD to ensure that

if ¢=[ab] and ¢:=[b,a], then ) =¢(@—t) and I'(¢) =T().

(5.5)
Observe that

L'(¢) C Ny, ([&', BT) C Ngjxgy, ([, B]) € Nesk ([, b])

by (5.3). If¢, and?, are two edges with a common vertgthenl™ (£1) NI (€2) C B, ja(a)
by (5.2).
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Recall that each vertex of7 has degree 3 by (4.2). Fix a vertavand let¢y, £, €3
be the edges coming out of it. One can “prune” some edgesifr@y) U T (¢2) UT (£3)
in order to make this union into a tree with three branches stemming from a vertex in
¢~ K97 neara’. We show how to do it below (but note that there are many alternatives).
Lets = ¢, fori < 3. Recall that; (0) = & fori < 3. Let

to; = max{t € [0, 1]: &o(t) € T'(41)}

and considef™ (£2) = &([t2, 1]), so thatl’(¢1) andI’(¢£;) intersect in a single point.
Next, let

ts = max{t € [0, 1]: ¢3(t) € T'(£1) UT'(£2)}

and consider”’ (¢3) = ¢3([ts, 1]), so thatl™’ (¢3) intersects in a single point with (¢£,) U
['(¢1). Finally, let

ty = min{t € [0, 1]: ¢1(t) € F/(ﬁz) U F/(€3)}

and considefr’(¢1) = ¢1([t1, 1]), eliminating a possible “dead branch” (see Fig. 3). Itis
easy to see that, := I''(£1) UT"(€2) UT'(£3) is a subgraph 0~ 97 homeomorphic
to £; U ¢, U £3. It has a unique vertex of degree 3 which we der@te typical scenario
is depicted in Fig. 3. Itis clear thate V(¢ %37) N B.,4(a) and all the modifications
occurred inB,,4(a). These neighborhoods for different verticesre disjoint by the
choice ofe. We make sure that this procedure is performed the same way near every
vertex depending only on&-patch of some fixed radius around the vertex. Let=
Uaev@r) ['a- This is a subset ap k37 homeomorphic t&7, and we define the map
¥ as a specific homeomorphism frai to I''.

Let¢ = [a,b] € E(@7) and lety (£) be the simple path i’ connectingd with
b obtained fromI'(¢) by the above described modification neaandb. Note that
'(¢) Ny (£) forms the bulk ofy (£) by construction. Equip (¢) with the linear ordering
makinga the smallest element (thus, we considas a directed edge). Let

a' = minfy (&) NV (¢ *97)\B,/a(a)],

thatis,a” is the first vertex oy (£) outsideB, 4(a). Considety (¢, a”) = {x € y (£): X <
a”}, the initial part ofy (¢) from & to a”. Theny (¢, a”) is nonempty and/ (¢, a”) C

r’(/@ﬂ
(£ /r

. i
/
TN F‘I(A)/,/%T
‘\l
( )
N

Fig. 3. DefiningI(¢;) anda.
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B./3(a) sincer Kdy < ¢/(2K) < ¢/3 — ¢/4. Sincea” ¢ B:/4(a), we havea” € I'(¢£)
andthereis 4 € (0, 1) sgchtha;_'g(tg,a) = a”.Whenwe do this procedure foe= [b, a],
we similarly getb” € y (¢£) N T'(£) = y(¢) N T'(¢) nearb andt; ,, € (0, 1). Now let

Y@+tb—a) =) for tpa <t <tz (5.6)

This is unambiguous due to (5.5). Next we defibieon [a, a + t,a(b — @)] to be a
continuous one-to-one map ontgl, a”) such thaw (a) = &, ¥(a+t,a(b—a)) =a”,
andV is linear on the preimage of every edgeHi@d¢%7). Again we make sure that
everything depends only ona-patch of some fixed radius around the edge, which is
possible since K7 is LD from 7. Notice that¥ will be defined on the whole of,
since the part of the edge ndsis taken care of when we considerSinced T is a union

of its edges¥: 97 — I is now completely defined.

We claim that¥ has all the desired properties. We check condition (i) of Proposi-
tion 4.2. By (5.4) and (5.3) we have thdt(x) — x| < ¢ on the part of the edge where
(5.6) applies. Lek = a+t(b—a) € ¢, with0 < t < t,,. Sincea” = ¢ (t.a), we
have by (5.4) thaa” — a —t, (b — a)| < 61" dy, and so the triangle inequality yields
ltea(b —a)| — |@” — a| < 6 dy. Sincea” € B,3(a), by (5.3),

X —a| = [t(b—a)| < |tra(b—a)| < &/3+ 61 Kdy < &/3+ 6¢/20 < 2¢/3.

On the other handy ([a, a+t;a(b—a)]) = y (¢, a”) C B,s3(a), so|¥(x) —al <¢&/3
and hencéW (x) — x| < . This concludes the verification of Proposition 4.2(i). Itis clear
that the preimage of anye W (37) is a proper subset of the edge 97 itis inside; by
the finiteness property of our construction we can chgoae the largest proportion of
|[w—1(¢)| to|el; clearly,p < 1.By constructiony is linear on the preimage of every edge
in E(¢~%87). It remains to note tha¥ is LD from 7 since our construction depended
only on a7 -patch of fixed radius in a translation-invariant way. O

6. Proof of Theorem 3.2

Recall the construction of the derived Vororainily F(7°) from Definition 2.10. We
restate Theorem 3.2:

A nonperiodic repetitive tiling of R? is pseudo-self-similar if and only if its derived
Vorond family isy-finite for an expandingprientation-preserving similitude .

Proof. The sufficient condition is proved in Theorem 5.2 of [14]. We show thatis
a nonperiodic pseudo-self-similar tiling with expansion ngaghen the familyF(7) is
¢™-finite for somem € N.

We use Theorem 3.1 to obtain an integger- 1 and a self-similar tilingZ” with
expansion mapX that is MLD with 7. Suppose thaR > 0 is chosen to be the radius
of MLD between the two tilings, and let be the radius of MLD ofk7" with 77 (the
latter are MLD by [19] sinc€ " is nonperiodic).

We use a “core argument” like that used in [14] to show that every tilifg(#) is the
same, up to similarity, as one given by a finite list of “extensions” that comefrormhe
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coreis given byE = [0]7, which will be presentinside any central paeh= [B; (0)]7".
Write the locator set for a patdd ¢ 7" asC'(P) = {q € R? such that there exis®’'
T’ with P = P’ — g}. We establish that there is a list®f-patches, F», ..., Fyand
vectorsgs, Oz, - . . , Om SO that for alk sufficiently large there exist, ..., in, | € Z with

Ly =g ( L'(F)+ qij) (6.1)
j=1

and that the tiles of; can be relabeled (in a one-to-one fashion) by the elements of
2[I1 AAAAA In}

Fixr > R+ p, and find thd € N such that

R+ akp<r <R+ ap, (6.2)

| |+1
i=0 i=0

wherei = |l¢]||. (We do not need to consider< R + p, as the number of derived
Voronai'tilings with suchr is finite by FLC.)

Now P, = [B:(0)]7 forcesP/ = [B_r(0)]7" in the sense that for any € R?
such thatP, + x appears ir7, we have that/_ + x appears ir7”’. Note that this
implies £, C £'(P/_g). The 7’-patch P/_g in turn forces the centrah*7’-patch of
radiusr — R— p, which forces the centrgl*7"’-patch of radius — R— p — AKp, and so
on until finally they'*7”-patch ofB, (0) for somen > 0 is determined. In particular, the
T -patchP; forces the core patahl(E) in ¢'*7”7, and so we have that, c ¢'*(£/(E)).

We can put an upper bound on the repetitivity radR(s) of the 7-patch P, as a
constant multiple of since7 is linearly repetitive by Corollary 3.3. So we choose a
numberA > 0 so thatR(r) < A'*A for all r. We use this number to define a radMs
for the extensions as follows:

VKM — R > 2%A > 2R(r) forall | eN. (6.3)
The extension&,, F,, .. ., F, are defined to be representatives of the translation equiv-
alence classes 0B}y (q)]” for all q € £'(E). Letdy, O, ..., gm be the elements of

L'(E) with Ff — g N E = E. Note that
L(E) = (L' (F1) +a1) U(L'(F2) +02) U--- U (L (Fm) + m)- (6.4)

Since we knowthat, c ¢'¥(£'(E)), we can examine eagtf (F;) to determine whether
ornotitforces acopy o, in 7. SinceF; = [Bw (g)]7 , theg'*7’-patchy'* F; forces the
patch Bym (¢'“0)]7 (here we use tha’ is self-similar, so any*7"-patch subdivides
in a prescribed way into @’-patch), which in turn forces the patcBfy_r(¢'“q)]7 .
By (6.3), M — R > 2R(r), and hence'¥F; not only determines whether there is
a copy of P, at ¢'*q, but if so, it also determines the label of the tijeq in 7Z;. Let
i1,...,in be the indices which correspond to extensions that feyc&Ve see now that
(6.1) holds for this choice of indices, and the labeling ofTheiles is also determined.
(Note that several distinct patcheBy kv (¢'*q;, )17 may force Bore) (9™ 617, while
the translational equivalence class of the latter is the laligl 9fe 7, . We can relabel by
the subset ofiy, . . ., in} consisting of thosg which force Barr) (¢'*q)]7 ; clearly this
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is a one-to-one relabeling.) Sing& is a similitude, the Vorondilings corresponding

to any locator ser and its expansiop'* £ are¢'*-similar, and there are only a finite
number of ways the relabelings could have been chosen for til§s Bince the choice

of extensions was independentrgfve see that the familgF(7) is ¢'*-finite. O

7. Concluding Remarks

1. We believe that our results generalize to tilingsR§fwhend > 2. Derived Vorono
tilings exist in higher dimensions, and they keep their convenient geometric and com-
binatorial properties, but the addition of more dimensions brings more elements to the
combinatorial structure than the usual vertices, edges, and facets. It is probably possible
to extend the algorithm which redraws the edges of tiles to a redrawing of higher-
dimensional tile boundaries, but the details can get quite involved.

2.1t would be interesting to extend our results to the case of tilings in which rotations
of prototiles are allowed along with translations. Of course, if only rational (madylo
rotations occur, we can increase the number of prototiles and still deal with translational
equivalence classes. Radin and others have contributed to the theory of substitution tilings
in which prototiles occur in infinitely many orientations; see [15], [16], and references
therein.

Note that FLC would now have to be defined up to translation and rotation, and the
definition of LD would have to be modified. L& be the group of Euclidean motions of
the plane preserving orientatioB;is generated by translations and rotations. We would
say that7; is LD from 7 if there existsR > 0 such that for every, y € R? andg € G
with g(y) = X,

[BrOOI" =g[Br)]" = [X]Z=g[y]"
In the definition of a self-similar tiling (Definition 2.8) replace the last condition by
(i") if T' = g(T) for someg € G, thenP(¢T’) = (¢gp 1) P(pT).

Much of the proof of Theorem 3.1 extends to this setting, but there are some difficulties,
so the question remains open. Note that throughout the paper we referred to a number
of results on tilings in translational-FLC setting, among them the characterization of
expansion constants for self-similar tilings, the (absence of) mixing results for asso-
ciated dynamical systems, the unique composition property, and the implidititen
Vorond family= pseudo-self-similalNone of these is known in the more general setting
discussed here.
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