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Abstract. If a pointU; is chosen on each edge of a plargon P, then the product of
then signed ratios in which the pointd; divide the edges oP is called acyclic product

for P. The problem is to find geometric constructions for thesuch that, for everp-gon

P, the cyclic product takes a fixed value. Many constructions are known which use lines or
circles. Here we describe constructions that use conic sections.

Introduction
Let P = [V, V4, ..., Vh_1] be ann-gon in the Euclidean plane and lebe a positive
integer(k < n). Also suppose that, far= 0, ..., n — 1, some geometric construction

leads to a pointt); on the edge or diagon¥®] V; .« of P. Then the terneyclic product(for
P) means an expression of the fofrf(|| Vi Ui ||/ |U; Vi k). Here and throughout, when
consideringn-gons, the subscriptsof the vertices/; are to be taken modulm, and the
productis from = 0toi = n— 1. The double modulus signs are used to indisagred
or directedlengths of the indicated line segments. Single modulus s¥iv¥$ are used
when unsigned lengths are required.

Familiar examples of cyclic products which take a constant value are given by
Menelaus’ and Ceva’s theorems [5, Chapter 8]. Dozens of other examples of cyclic
products which take a constant value are known (see [3], [4] and the references given
there). In all of these the point are determined by straight lines and in [6] some con-
structions involving circles were described. In this paper we are concerned with cyclic
product theorems in which the constructions use ellipses or other conic seciions (
ics for short). In this context there are so many possibilities that, in order to keep the
treatment reasonably short, we shall only consider one type of construction that leads to
a cyclic product which takes a fixed value. A typical example is shown in Fig. 3(a) for
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n = 4. HereF; andF; are fixed points and, fdr= 0, 1, 2, 3, Q; is the (unique) conic
throughF1, F, and the three verticed _4, V;, Vi;1 of ann-gon P. If the tangent taQ;
at F; meets the diagonafi _; Vi in the pointU;, then

[ JaV-aUi /1 Vil = 1.

This is the special cade= 1,r = 1 of the first assertion in Theorem 3 of Section 2.
The other theorems vary in the number of fixed points, the vertic&usfed to define

Q, and in the side or diagonal ¢ that is used in the cyclic product. In Section 2 we
state these theorems, followed by their proofs. Section 1 is devoted to some preliminary
results and Section 3 to further discussion, comments and acknowledgements.

The polygons considered in this paper are quite general: vertices may be collinear or
coincide, edges may intersect at relative interior points or overlap, etc. We make only
two requirements. The first is that no three consecutive verticEsark collinear, and
the second depends on the construction under consideration, namely that everything
is well defined. Hence, in particular, whenever a line is defined as the join of two
points then those two points are distinct; when a point is defined as the intersection
of two lines, then those two lines are not parallel; when a conic is defined as passing
through five points, then no three of those points are collinear. Finally, in every cyclic
product that occurs none of the denominators vanish. It would, of course, be possible to
specify the exact restrictions that must hold in each theorem, but as they are essentially
obvious, to do so would needlessly complicate the exposition without increasing its
clarity.

This paper seems to be an excellent illustration of the use of computers in pure
mathematics research. Cyclic products were numerically computed for large numbers of
arbitrarily chosem-gons(3 < n < 20) using Chipmunk and Map® software on an
iMac computer. The results that were obtained suggested the theorems of Section 2. The
proofs also illustrates the power of synthetic geometric reasoning in projective grometry
(in contrast to an analytic approach).

1. Preliminary Results

Here we review some properties of a pentagon inscribed in a conic which seem to be of
interest, and which we shall require in the following two sections.

Firstly suppose tha® = [ Xo, X1, ..., X4] is a pentagon inscribed in a circ@. If the
tangent taQ at X; meets the edge or diagong) X, in U; then we write(Xi; Q; Xj, Xi)
for the signed quotieritX;U; ||/[|U;i X«|l, and notice that

(Xi; Q; X, X (Xi; Qs Xk, Xj) = 1. D
It is convenient to introduce symbols for the following five products:
[p, d, I‘] = (Xp§ Q; Xq, Xr)(xq; Q: X, Xp)(XH Q; Xp, Xq)s (2)

[p’ q.r, S] = (xp§ Q; xq, Xs)(xq§ Q; X, Xp)(xr§ Q; Xs, Xq)
X (XSa Qa Xpa Xr)’ (3)
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[p.g,r,st] = (Xp§ Q; Xq, Xt)(xq§ Q: X, Xp)(XrQ Q; Xs, Xq)
x (Xs; Q5 Xi, Xp)(Xt; Qs va Xs), 4)
(Xp§ Q; xq, xr)(xp; Q; X, Xs)(xp; Q; Xs, xq) (5)

[p;q.r,9] :

and

[p;a,r,s.1] = (Xp§ Q; Xq7 Xr)(xp; Q; X, Xs)(xp; Q; Xs, Xt)
X (Xpa Qa Xta Xq)’ (6)

where(p, g, 1, s, t) isapermutation of0, 1, 2, 3, 4). The following identities are known:

10: [p,a,r] = -1, )

15: [p,q,r,s] = 1, (8)

12: [p,g,r,s t] = —1, 9)

20: [p;q,r, 8] = -1 (10)
and

15: [p;:q,r,s,t] =1, (11

where, if we do not distinguish trivially equalities (for exampfe §,r] = 1/[p,r, q]

which follows from (1)) then the integer on the extreme left of each line is the number of
distinct relations of the given type. Relations (7), (8) and (9) follow from Wu'’s theorem
[Theorem 2.2 of 6], while relations (10) and (11) follow from Menelaus’ theorem for a
triangle or quadrangle with the tangentQaat X, as transversal. (Identities (7) and (10)

are illustrated in Figs. 1 and 2 except that, as to be explained shortly, in these diagrams
Q is shown as an ellipse and not as a circle.)

Fig. 1. Anillustration of the identity p, g, r] = —1 for the ellipseQ.
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Fig. 2. Aniillustration of the identity p; g, r, s] = —1 for the ellipseQ.

Clearly the expressions (2)—(6) are not independent and the following identities hold:

[p.g.r.s] =[p,q.rllp.r. sl p; s, r.qllr: s, q, pl,
[p.a.r.stllp;a.r.s t]lr;s, p.dlls:t, p.r]=[p,q.rllp.r,s|[p,s. t],
[p:a,r,s,t]=[p;q,r.sl[p;s.t,al =[p;r, s t][p;t,q.r],
[p;a.r.sl[p;s.t.al =[p;t,q,r][p;r, s, t]
and

[p:q.r.8][r;s, p.qllg.r.s][s, p.q]l =[q:r.s, pl[s; p.q.r][r.s, pl[p.q.r]

All these identities are easily established by substituting the values given in (2)—(6).
The products on the right sides of (2)—(6) are what Howard Eveslealigpressions.
These are products of quotients of directed lengths of line segments such that:

(1) Each segmentindicated by a term in the numerator lies on the same line as a line
segment indicated by a term in the denominator, and vice versa.

(2) If each term|| XY]|| is replaced by the symbolic producy, then complete can-
cellation takes place.

By Eves’ remarkable theorem [1, Theorem 6.1.9], eleBxpression is a projective
invariant, so all the above identities remain true if we apply to the diagram any (non-
singular) projective transformation. Such atransformation can be found which transforms
the circleQ into any chosen conic. Thus X, ..., X4 are any five points, no three of
which are collinear, an@) is the (unique) non-singular conic through these five points,
then, with the corresponding definitions, relations (7)—(11) will hold.

2. The Main Theorems

We extend the notation of the previous section in the obvious manAgef); B, C)
means the signed quotiefiBU ||/||UC|| whereU is the point at which the tangent to
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Q at A meets the side or diagonBIC of the polygonP. Here, howeverA, B, C are
either fixed points or vertices of thegon P = [V, ..., V,,_1]. These points, as well
as the conicQ, may depend on a paramefefwhich appears in the subscripts) and
we write [[(A; Q; B, C) for the product of the quotientsBU||/|[lUC|| fromi = 0 to
i=n-—1.

In the statement of the following theorems, parametesst may occur in the sub-
scripts of the vertices. The given restrictions on their values ensures that the subscripts
(and therefore the vertices themselves), that appear in the cyclic product symbol, are
distinct. These restrictions are stated in terms of congruences madulo

A cyclic product relation for am-gon is said to beorimitive if it is not a conse-
guence of a corresponding relation for some submultipte &br example, the relation
[1(F; Qi; Vi—2, Vis2) = 1 for a decagon (Theorem 3 with= 10 andr = 2) is not
primitive since it follows from[ [(F; Qi; Vi_1, Vi4+1) = —1 for a pentagon (Theorem 3
with n = 5 andr = 1). Throughout the following theorems we only list primitive
relations.

Theorem 1. For n > 5let Q be the conic through the five vertices Vs, Vi, Vi,
Vi,r and ;s of P, where r and s are positive integers satisfyingr1s < n/2:

(@) Ifn=5sor=s=1,then

[TV Qis Vica, Vi) = [ [V Qis Vg, Vo) = 1. (12)

(b) If n = 7then
r=1s=1

[TVicas Qis Vi, V) = [ [(Vigas Qis Vi, Vo) = —1,
r=1s=2
[TVics Qis Vi, Vi) = [ [Vigss Qi Viea, Vi) = -1, (13)
r=2s=1
[[Vi-2 Qis Vi, Viga) = [ [(Miszs Qis Vis, Vi) = 1.
Theorem 2. For n > 4, let Q; be the conic through a fixed point, Bnd the vertices

Vi_s, Vi, Viyr and V{45 of P, wherer and s are positive integers satisfying 2s < n.
Then

(@ Forn=4,sor=s=1,
[[(F:iQ:Vi.Viio=1  where t=120r3, (14)
and

[TVis Qi Vi, Vil =1 (15)



518 G. C. Shephard
(b) Foralln > 4,

[[(F: Qi:Vi.Vig) = (D" if 3s+2r=0 or 3s+r =0, (16)

[[(F: Qi: Vi, Visrie) = (D" if s+2r=0 or s=r. (17)

(c) Foreven n> 4,

[J(F:QisVies, V)
=[](F: Q:Vigr. Vi) =1 if s=n/2,

[T(F: Qis Vics, Vi) (18)
=[](F: Q:Vi.Viryo) =1 if r+s=n/2

Theorem 3. Let Q bethe conicthroughthe fixed pointg -, and the verticesV,, Vi
and \{,, of P, where r is a positive integer satisfying< n/2. Then for all n> 3 and
k=1or2,

[TFe Qis Vicr, Vi) = [ (Vs Qis Vicr, Vi) = (=)™, (19
(See Fig. 3.)

Theorem 4. Let Q be the conic through the fixed points, F,, Fz and the vertices
Vi, Viyr of P,wherer< n. Thenforalln>3and k= 1,2or 3,

[ [(Fe Qis Vi, Vige) = (=D (20)

If mis the number of fixed points, then Theorems 1, 2, 3 and 4 correspand=o
0, 1, 2 and 3 respectively. Fan = 5 the cyclic products are trivial since they contain
only one term; these are dealt with in Section 1. The absence of any cyclic product
relations in the casm = 4 is a consequence of the following theorem:

Theorem 5. There are no cyclic product relations for n-gons of the form
]_[(A; Qi; B, C) = constant

(where the constant may depend agrbat is independent of the n-gon) Rhen either
B or C is a fixed pointand the other symbols represent either fixed points or vertices
of P.

We believe that Theorems 1-4 cowadirprimitive cyclic product relations which take
a fixed value for alh-gonsP. This belief is based on numerical checking for arbitrarily
chosem-gons for various values ofup to 20. In particular, numerical evidence indicates
that there are no primitive cyclic products of the kind considered in Theoremnl-$o8
orn > 8, though, of course, an infinity of non-primitive such relations exist.

The following lemma is fundamental.






520 G. C. Shephard

(b)
Fig. 4. The proof of the lemma.

Lemmal. Let A B,C, D, E be five distinct points on a conic,@nd suppose the

tangentto Q at A meets the line BC in Then

_I|AEB| |DEC| |ADB|
IAEC| [IDEB| |ADC|’

where the six terms on the right are the signed areas of the indicated triar{§les
Fig. 4(b).)

(A;Q;B,C) = 21
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We recall that the area of a trianglegesitiveif its vertices are listed in a counter-
clockwise direction, and negative if listed in a clockwise direction.

Proof. Consider the pencil of lineE(A, D, B, C) joining E to the other four points.
If o, = Z/AEB, 6, = Z/AEC, 03 = /DEB, 6, = Z/DEC, where each of these angles
lies between- andsx radians, then the cross ratio of this pencil is

sing sing
cr(E(A,D:B,C)) = =+ [ 23

sing, / sinf,
_%|EA|~|EB|~sin91 $|ED| - |[EB] - sin6s
IIEA - |EC|-sind, / 3|ED]|-|EC]| - sindy

IAEB| /IDEB]

= . (22)
IAEC| / IIDEC]
Now let F be any other point o® (see Fig. 4(a)). As above,
IAFB| /IIDFB]
cr(F(A,D;B,C)) = . (23
IAFC| / IIDFC]

By a fundamental property of conics [1, Theorem 6.3.1], these two cross ratios are equal.
Hence, from (22) and (23), after rearranging,

IAFBI _ IDFBI IIAEB| [IDEC]
IAFC|  IDFC| [IAEC| [IDEB]

29

If AF meetsBC in H then by the area principle (see [3]) since the triangheB B] and
[AFC] have the same bas@F] and their heights are proportional tB H| and|C H|,
taking account of signs, the left side of (24) is equa| BH||/|CH].

Consider the limitag — Aon Q (Fig. 4(b)). The chordAF tends to the tangent to
Q at A and so the poinH tends toJ. In the limit we get

IBUI _ IIDABI IAEB| [IDEC]
ICUll IDAC| IAEC| [DEB|

which, since(A; Q; B, C) = ||[BU||/||UC]| is clearly equivalent to (21). O

The proofs of many parts of Theorems 1-4 are very similar; we use the lemma with
suitable substitutions for the poinfs B, C, D and E, take the product from = 0 to
i = n — 1 and then rearrange the terms. The required equalities follow immediately. To
avoid tedious repetitions we give full details in one case only, namely in the proof of part
of Theorem 2. In other cases we only state the required substitution and the form of the
rearranged product.

To prove (16) of Theorem 2(b) we substitteV;, Vi, Vi_s, Vir1s for A, B, C,
D, E respectively in the lemma, yielding

IFVigrisVill  [IViesVigrasVigrl  IIFVisVi|
IFVisrosVierl IVicsVigrsVill IFVi—sVige |l

(F; Qi; Vi, Vigr) = —
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Taking the product fromh = 0 ton — 1 we obtain

[J(F: Qis Vi, Vign)
o] IF Vigr s Vil .l—[nvi_sviwvwrn 1 IFVi—sVill
IF Vigr s Vigr | IVi—sVigr4s Vi IFVi Vi |
] IF Vigr s Vil 1 IF Vi—sMill 1 IVi—sVigrsViae
IFVisVigell L L IRV isVigell IVi—sVi o 4sVill

upon rearranging. Now each of the first two products on the right is equal 19"

To see this, substitute — i — sandi — i +r + s in the numerators of the two
products, respectively, observing that the triangles in the numerator and denominator of
each fraction have opposite orientations. The third product has value 1 as we can see by
substituting either — i —r —s(notingthatt —r —2s=i +r +sif3s+2r = 0)

ori — i +s(notingthati +r +2s=1i —s, if 3s+r = 0) in the numerators. This
proves (16).

Proof of Theoreni. (a) The two assertions in (12) are equivalent to
[0,1,2,3,4]=1[0,2,4,1,3]=-1

which were proved in the previous section, applied to the pentagnivV], Vs, Vs, V4.

(b) All six assertions are proved in a similar manner; we only indicate the proof of the
firstequality in (13). Substituté _s, Vi, Viy1, Viis, Vi_1for A, B, C, D, E respectively
in the lemma. Taking the product from= 0 toi = 6 and rearranging,

[TVis: Qis i, Vi)
. IVi-sVi_aVi | ,1—[||vi+3vi_1vi+1|| ,Huvi_svwsvin _
IVi-aViaVicall 4 L IVicaViaVigall 4 L IViaVioaVill

Proof of Theoren2. (a) Here, sinca = 4 and there is one fixed poin®; is fixed, that
is, independent of. Hence (14) follows from (11) if = 1 or 3, and from (1) it = 2.
Similarly (15) follows from (8).

(b) The first assertion (16) is proved above. For the second, subgtitMes, Vi s,
Vi, Viyr for A, B, C, D, E respectively in the lemma. Taking the product from 0 to
n — 1 and rearranging we obtain

[](F: Qi: Vics, Visris)

_ (_)nl—[ IFVigr Vissll 1—[ IFViVisll l—[ IV Vitr Vigr 4l — (D).
IFViVigr sl IF Vit Vigr sl IVi Vigr Vissll

This proves (17).
(c) SubstituteF, Vi _s, Vi, Viir, Vigras for A, B, C, D, E respectively in the lemma.
Taking products and rearranging,

[J(F: Qi Vies, Vi)

-T1 IFViirisVissll TI IFVierViosll MiarVigresVill -
IF Vi Vil IFVisrisVill [Visr Vigr s Visll
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For the second equality, substitute Vi, Viiris, Vi_s, Vi, for A, B,C, D, E re-
spectively in the lemma. Taking products and rearranging,
[J(F: Qs Vigr. Visris)

-T1 IFViViq|l TI IFVi—sVi|l TI [Vi-sViVirsll
IFVi—sViqrsll IFViVigr sl Vi—sViVisrll

For the third equality substitute, V,_s, Viir, Vi, Viiris for A, B, C, D, E respec-
tively in the lemma. Taking products and rearranging,
[](F: Qs Vi Vign)

-T1 IlFViir4sVisll TI IFViVisll o IMVirasViell
IFViVig |l IFVitrsVigrll IViVigrisViesll 7

Forthe fourth and final equality, substitieVi, Vi s, Vi_s, Viir for A, B,C, D, E
respectively in the lemma. Taking products and rearranging,
[J(F: Qi Vi Vidrss)

:l—[ IF Vi Vil l—[ IFVi_sVill .1—[||Vi—svi+rvi+r+s||=1
IIFVi—sVitrsll IFVigr Vigr sl IVi-sVitr Vil

This proves (18) and concludes the proof of Theorem 2. O

Proof of Theoren3. Consider the caske = 1. SubstituteFs, Vi_, Vi, Fo, V; for
A, B, C, D, E respectively in the lemma. Taking products,

'] [FLVi Vil TI [F2Vi Vi |l TI IFLF2Vi|l

(F1; Qis Vizr, Vigr)
[1Fs Qi Viee. Vi IF Ve R RV

= (-D".

For the second assertion, substitMteV; ., Vi.r, F1, F> for A, B, C, D, E respec-
tively in the lemma. Taking products,

IViF2Vi || I1 [F1F2Vig |l I1 Vi FLVi |l

Vi: Qi; Vi, Vi = ()" . .
[T Qs Vior Mo ()H||\4szi+r|| IF1F2Vi (|| Vi FaVi o |l

= (-D".

This proves (19) and concludes the proof of Theorem 3. O

Proof of Theorend. Substitute=y, Vi, Vi, F2, F3 for A, B, C, D, E respectively in
the lemma. Taking products,

IF1FVi | IF2FsVig | IF1FaVi |
[T Qi Vio Vi) = "] ] I1 11
n

IFiFaVie | L1 IRRevi EEYH
= (-1

This establishes equality (20). |
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Proof of Theorenb. We need to show that B is a fixed point, thed [(A; Q;; B, C)

is not a constant, that is, it does not take the same value forgdhsP. Choose a value
of n > 3. Let Q be a circle of diameted, and suppose that all the fixed points and the
vertices of then-gon P lie on Q. ThenQ; = Qforalli =0,...,n— 1. LetBX be a
diameter ofQ, and suppose that all the points (exc8ptie near toX. WhetherA and

C are fixed points or not, by Lemma 2 of [6], we see

(A; Q; B,C) = —|ABJ?/|AC|?

and[ [(A; Qi; B, C) is a product of such terms. By selectifgso that its vertices, and
all the fixed points other thaB, lie close toX, the term| AC|?> may be made as small as
we wish, whereagAB|? is close tad?. Hence we can maKg[(A; Q;; B, C) as large as
we wish, and therefore it cannot take a constant value. O

3. Other Relations

So far we have restricted attention to the consideration of cyclic products which take a
constant value for alh-gonsP. In addition there are numerous relations between the
values of two, three . ., cyclic products. So many, in fact, that it is impractical to give

an exhaustive treatment, and we restrict ourselves to some suggestions as to how they
may be constructed, and a few examples.

Each of the relations (7)—(11) of Section 1 gives rise to many relations. Consider the
following. Take five points, each of which may be either a fixed point or any vertex of
a givenn-gon P. For example, suppose there ame= 2 fixed pointsF; and F,, and
the chosen vertices ¢t areV;_,, V,, Vi s, wherer ands are positive integers such that
r +s < n. Let Q; be the unique conic through these five points. Notice that, unlike
Theorem 3, initially we do not require= s. Then, by (2) and (7),

(Vizr; Qis Vi, Vigs) (V5 Qi Vigs, Vicr) (Vigss Qi Vi, V) = —1.
Taking the product fromh = 0 toi = n — 1, we obtain the relation
[TViers Qis Vi, Vigs) [TV Qis Vigs, Vico) [ [Migss Qis Ve, Vi) = (=D)"

connecting three cyclic products f&. Further, ifr = s, we know from Theorem 3 that
[T(Vi; Qi Visr, Vier) = (=", and hence we obtain the identity

[TViers Qis Vi, Vi) [ [ Visrs Qis Vi, V) = 1,

which is true for alln-gons, and is easily verified numerically.

Another situation in which the product of two cyclic products takes a fixed value
arises from a process analogous to “asymmetrisation” described in [6]. For example, we
know that, under the conditions of Theorem 3 (equation (20)),

[TV Qs Vicr, Vi) = (=D,

whereQj is the conic through the fixed poinfg, F, and the three vertices, Vi, Vi
of P. Consider

[TV Qis Vier, Vigs) [TV Q15 Vics, Vi), (25)
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wherer ands are positive integers such that-s < n, Q; is the conic through the fixed
pointsFy, F> and the vertice¥,, Vi, Vi;s of P, andQ; is the conic through the same
fixed points and the verticég, V., V;_s of P.

Then the product (25) takes the fixed value 1 fomalt 5, as we can see as follows.
Applying the lemma in the appropriate fashion,

CIMFVicll IFaFoVigsll IViFaVi |
IViF2Viesl  IFtFoVioc | Vi FaVisl

(Mi; Qi; Vier, Vigs) =

and
ViRVl IFLRaVige |l 1V FaVissll

IViFVigell IFaFaVisll IViFaVigell”

Now take the products of each of these expressions fren® toi = n — 1. Clearly all
the terms on the right sides cancel to yield the value 1.

Throughout we have only been concerned with cyclic products that arise in one
particular way, which may be regarded as the analogue of Wu’s theorem for circles [6].
Nevertheless many more constructions are possible, and each leads to cyclic products
whose properties have yet to be investigated. As the constructions and the relations
between the cyclic products become more and more complicated, so their intuitive appeal
diminishes.

However, one such construction seems worthy of mention. If a conic is inscribed in
a pentagorP = [Vo, ..., V4] and touches each sid&V;,; in the pointW; (see Fig. 5),
then it is easy to show that

[TaVaW /W Vi | = 1.

This, and a number of similar results follow from the procedure described in Section 1.:
Any statement about cyclic products which involves onlyraque conic, can, by a
projective transformation, be transformed into one in which the conic is replaced by a
circle. This usually simplifies the geometry considerably.

(Vi; Q3 Vies, Vigr) =

Vs W Vs

Fig. 5. If the conicQ touches the sides of the pentagdfy,[V1, V2, Va, V4] at the pointsA; as shown, then
[TAIVi WA I1/11WE Vi 1) = 1, see Section 3.
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Based on numerical evidence, a few of the results of this paper were conjectured by
Branko Grinbaum and appear in his unpublished lecture notes [2]. The ease with which
our theorems can be deduced from the lemma illustrates the fact that classical synthetic
methods can, under certain circumstances, be much more powerful than, say, an analytic
approach.
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