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Abstract. If a point Ui is chosen on each edge of a planen-gon P, then the product of
then signed ratios in which the pointsUi divide the edges ofP is called acyclic product
for P. The problem is to find geometric constructions for theUi such that, for everyn-gon
P, the cyclic product takes a fixed value. Many constructions are known which use lines or
circles. Here we describe constructions that use conic sections.

Introduction

Let P = [V0,V1, . . . ,Vn−1] be ann-gon in the Euclidean plane and letk be a positive
integer(k < n). Also suppose that, fori = 0, . . . ,n− 1, some geometric construction
leads to a pointUi on the edge or diagonalVi Vi+k of P. Then the termcyclic product(for
P) means an expression of the form

∏
(‖Vi Ui ‖/‖Ui Vi+k‖). Here and throughout, when

consideringn-gons, the subscriptsi of the verticesVi are to be taken modulon, and the
product is fromi = 0 to i = n−1. The double modulus signs are used to indicatesigned
or directedlengths of the indicated line segments. Single modulus signs|XY| are used
when unsigned lengths are required.

Familiar examples of cyclic products which take a constant value are given by
Menelaus’ and Ceva’s theorems [5, Chapter 8]. Dozens of other examples of cyclic
products which take a constant value are known (see [3], [4] and the references given
there). In all of these the pointsUi are determined by straight lines and in [6] some con-
structions involving circles were described. In this paper we are concerned with cyclic
product theorems in which the constructions use ellipses or other conic sections (con-
ics for short). In this context there are so many possibilities that, in order to keep the
treatment reasonably short, we shall only consider one type of construction that leads to
a cyclic product which takes a fixed value. A typical example is shown in Fig. 3(a) for
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n = 4. HereF1 andF2 are fixed points and, fori = 0,1,2,3, Qi is the (unique) conic
throughF1, F2 and the three verticesVi−1,Vi ,Vi+1 of ann-gon P. If the tangent toQi

at F1 meets the diagonalVi−1Vi+1 in the pointUi , then∏
(‖Vi−1Ui ‖/‖Ui Vi+1‖) = 1.

This is the special casek = 1, r = 1 of the first assertion in Theorem 3 of Section 2.
The other theorems vary in the number of fixed points, the vertices ofP used to define
Q, and in the side or diagonal ofP that is used in the cyclic product. In Section 2 we
state these theorems, followed by their proofs. Section 1 is devoted to some preliminary
results and Section 3 to further discussion, comments and acknowledgements.

The polygons considered in this paper are quite general: vertices may be collinear or
coincide, edges may intersect at relative interior points or overlap, etc. We make only
two requirements. The first is that no three consecutive vertices ofP are collinear, and
the second depends on the construction under consideration, namely that everything
is well defined. Hence, in particular, whenever a line is defined as the join of two
points then those two points are distinct; when a point is defined as the intersection
of two lines, then those two lines are not parallel; when a conic is defined as passing
through five points, then no three of those points are collinear. Finally, in every cyclic
product that occurs none of the denominators vanish. It would, of course, be possible to
specify the exact restrictions that must hold in each theorem, but as they are essentially
obvious, to do so would needlessly complicate the exposition without increasing its
clarity.

This paper seems to be an excellent illustration of the use of computers in pure
mathematics research. Cyclic products were numerically computed for large numbers of
arbitrarily chosenn-gons(3 ≤ n ≤ 20) using Chipmunk and Mapler software on an
iMac computer. The results that were obtained suggested the theorems of Section 2. The
proofs also illustrates the power of synthetic geometric reasoning in projective grometry
(in contrast to an analytic approach).

1. Preliminary Results

Here we review some properties of a pentagon inscribed in a conic which seem to be of
interest, and which we shall require in the following two sections.

Firstly suppose thatP = [X0, X1, . . . , X4] is a pentagon inscribed in a circleQ. If the
tangent toQ at Xi meets the edge or diagonalXj Xk in Ui then we write(Xi ; Q; Xj , Xk)

for the signed quotient‖Xj Ui ‖/‖Ui Xk‖, and notice that

(Xi ; Q; Xj , Xk)(Xi ; Q; Xk, Xj ) = 1. (1)

It is convenient to introduce symbols for the following five products:

[ p,q, r ] := (Xp; Q; Xq, Xr )(Xq; Q; Xr , Xp)(Xr ; Q; Xp, Xq), (2)

[ p,q, r, s] := (Xp; Q; Xq, Xs)(Xq; Q; Xr , Xp)(Xr ; Q; Xs, Xq)

× (Xs; Q; Xp, Xr ), (3)
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[ p,q, r, s, t ] := (Xp; Q; Xq, Xt )(Xq; Q; Xr , Xp)(Xr ; Q; Xs, Xq)

× (Xs; Q; Xt , Xr )(Xt ; Q; Xp, Xs), (4)

[ p;q, r, s] := (Xp; Q; Xq, Xr )(Xp; Q; Xr , Xs)(Xp; Q; Xs, Xq) (5)

and

[ p;q, r, s, t ] := (Xp; Q; Xq, Xr )(Xp; Q; Xr , Xs)(Xp; Q; Xs, Xt )

× (Xp; Q; Xt , Xq), (6)

where(p,q, r, s, t) is a permutation of(0,1,2,3,4). The following identities are known:

10 : [p,q, r ] = −1, (7)

15 : [p,q, r, s] = 1, (8)

12 : [p,q, r, s, t ] = −1, (9)

20 : [p;q, r, s] = −1 (10)

and

15 : [p;q, r, s, t ] = 1, (11)

where, if we do not distinguish trivially equalities (for example [p,q, r ] = 1/[ p, r,q]
which follows from (1)) then the integer on the extreme left of each line is the number of
distinct relations of the given type. Relations (7), (8) and (9) follow from Wu’s theorem
[Theorem 2.2 of 6], while relations (10) and (11) follow from Menelaus’ theorem for a
triangle or quadrangle with the tangent toQ at Xp as transversal. (Identities (7) and (10)
are illustrated in Figs. 1 and 2 except that, as to be explained shortly, in these diagrams
Q is shown as an ellipse and not as a circle.)

Fig. 1. An illustration of the identity [p,q, r ] = −1 for the ellipseQ.
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Fig. 2. An illustration of the identity [p;q, r, s] = −1 for the ellipseQ.

Clearly the expressions (2)–(6) are not independent and the following identities hold:

[ p,q, r, s] = [ p,q, r ][ p, r, s][ p; s, r,q][r ; s,q, p],

[ p,q, r, s, t ][ p;q, r, s, t ][r ; s, p,q][s; t, p, r ] = [ p,q, r ][ p, r, s][ p, s, t ],

[ p;q, r, s, t ] = [ p;q, r, s][ p; s, t,q] = [ p; r, s, t ][ p; t,q, r ],

[ p;q, r, s][ p; s, t,q] = [ p; t,q, r ][ p; r, s, t ]
and

[ p;q, r, s][r ; s, p,q][q, r, s][s, p,q] = [q; r, s, p][s; p,q, r ][r, s, p][ p,q, r ].

All these identities are easily established by substituting the values given in (2)–(6).
The products on the right sides of (2)–(6) are what Howard Eves callsh-expressions.

These are products of quotients of directed lengths of line segments such that:

(1) Each segment indicated by a term in the numerator lies on the same line as a line
segment indicated by a term in the denominator, and vice versa.

(2) If each term‖XY‖ is replaced by the symbolic productxy, then complete can-
cellation takes place.

By Eves’ remarkable theorem [1, Theorem 6.1.9], everyh-expression is a projective
invariant, so all the above identities remain true if we apply to the diagram any (non-
singular) projective transformation. Such a transformation can be found which transforms
the circleQ into any chosen conic. Thus ifX0, . . . , X4 are any five points, no three of
which are collinear, andQ is the (unique) non-singular conic through these five points,
then, with the corresponding definitions, relations (7)–(11) will hold.

2. The Main Theorems

We extend the notation of the previous section in the obvious manner.(A; Q; B,C)
means the signed quotient‖BU‖/‖UC‖ whereU is the point at which the tangent to
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Q at A meets the side or diagonalBC of the polygonP. Here, however,A, B,C are
either fixed points or vertices of then-gon P = [V0, . . . ,Vn−1]. These points, as well
as the conicQ, may depend on a parameteri (which appears in the subscripts) and
we write

∏
(A; Q; B,C) for the product of the quotients‖BU‖/‖UC‖ from i = 0 to

i = n− 1.
In the statement of the following theorems, parametersr, s, t may occur in the sub-

scripts of the vertices. The given restrictions on their values ensures that the subscripts
(and therefore the vertices themselves), that appear in the cyclic product symbol, are
distinct. These restrictions are stated in terms of congruences modulon.

A cyclic product relation for ann-gon is said to beprimitive if it is not a conse-
quence of a corresponding relation for some submultiple ofn. For example, the relation∏
(F; Qi ;Vi−2,Vi+2) = 1 for a decagon (Theorem 3 withn = 10 andr = 2) is not

primitive since it follows from
∏
(F; Qi ;Vi−1,Vi+1) = −1 for a pentagon (Theorem 3

with n = 5 andr = 1). Throughout the following theorems we only list primitive
relations.

Theorem 1. For n ≥ 5 let Qi be the conic through the five vertices Vi−r−s,Vi−r ,Vi ,
Vi+r and Vi+r+s of P, where r and s are positive integers satisfying r+ s< n/2:

(a) If n = 5, so r ≡ s≡ 1, then∏
(Vi ; Qi ;Vi−1,Vi+1) =

∏
(Vi ; Qi ;Vi−2,Vi+2) = −1. (12)

(b) If n = 7 then
(r ≡ 1, s≡ 1)∏

(Vi−1; Qi ;Vi−2,Vi ) =
∏
(Vi+1; Qi ;Vi ,Vi+2) = −1,

(r ≡ 1, s≡ 2)∏
(Vi−3; Qi ;Vi ,Vi+1) =

∏
(Vi+3; Qi ;Vi−1,Vi ) = −1, (13)

(r ≡ 2, s≡ 1)∏
(Vi−2; Qi ;Vi ,Vi+3) =

∏
(Vi+2; Qi ;Vi−3,Vi ) = −1.

Theorem 2. For n ≥ 4, let Qi be the conic through a fixed point F, and the vertices
Vi−s,Vi ,Vi+r and Vi+r+s of P, where r and s are positive integers satisfying r+2s< n.
Then:

(a) For n = 4, so r ≡ s≡ 1,∏
(F; Qi ;Vi ,Vi+t ) = 1 where t≡ 1,2 or 3, (14)

and ∏
(Vi ; Qi ;Vi−1,Vi+1] = 1. (15)
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(b) For all n > 4,∏
(F; Qi ;Vi ,Vi+r ) = (−1)n if 3s+ 2r ≡ 0 or 3s+ r ≡ 0, (16)∏

(F; Qi ;Vi−s,Vi+r+s) = (−1)n if s+ 2r ≡ 0 or s≡ r. (17)

(c) For even n> 4,∏
(F; Qi ;Vi−s,Vi )

=
∏
(F; Qi ;Vi+r ,Vi+r+s) = 1 if s ≡ n/2,∏

(F; Qi ;Vi−s,Vi+r ) (18)

=
∏
(F; Qi ;Vi ,Vi+r+s) = 1 if r + s≡ n/2.

Theorem 3. Let Qi be the conic through the fixed points F1, F2 and the vertices Vi−r ,Vi

and Vi+r of P, where r is a positive integer satisfying r< n/2. Then for all n≥ 3 and
k = 1 or 2, ∏

(Fk; Qi ;Vi−r ,Vi+r ) =
∏
(Vi ; Qi ;Vi−r ,Vi+r ) = (−1)n. (19)

(See Fig. 3.)

Theorem 4. Let Qi be the conic through the fixed points F1, F2, F3 and the vertices
Vi ,Vi+r of P, where r< n. Then for all n≥ 3 and k= 1,2 or 3,∏

(Fk; Qi ;Vi ,Vi+r ) = (−1)n. (20)

If m is the number of fixed points, then Theorems 1, 2, 3 and 4 correspond tom =
0,1,2 and 3 respectively. Form = 5 the cyclic products are trivial since they contain
only one term; these are dealt with in Section 1. The absence of any cyclic product
relations in the casem= 4 is a consequence of the following theorem:

Theorem 5. There are no cyclic product relations for n-gons of the form∏
(A; Qi ; B,C) = constant

(where the constant may depend on n, but is independent of the n-gon P) when either
B or C is a fixed point, and the other symbols represent either fixed points or vertices
of P.

We believe that Theorems 1–4 coverall primitive cyclic product relations which take
a fixed value for alln-gonsP. This belief is based on numerical checking for arbitrarily
chosenn-gons for various values ofn up to 20. In particular, numerical evidence indicates
that there are no primitive cyclic products of the kind considered in Theorem 1 forn = 6
or n ≥ 8, though, of course, an infinity of non-primitive such relations exist.

The following lemma is fundamental.
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(a)

(b)

Fig. 3. An illustration of Theorem 3.
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(a)

(b)

Fig. 4. The proof of the lemma.

Lemma 1. Let A, B,C, D, E be five distinct points on a conic Q, and suppose the
tangent to Q at A meets the line BC in U. Then

(A; Q; B,C) = −‖AE B‖
‖AEC‖ ·

‖DEC‖
‖DE B‖ ·

‖ADB‖
‖ADC‖ , (21)

where the six terms on the right are the signed areas of the indicated triangles. (See
Fig. 4(b).)
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We recall that the area of a triangle ispositiveif its vertices are listed in a counter-
clockwise direction, and negative if listed in a clockwise direction.

Proof. Consider the pencil of linesE(A, D, B,C) joining E to the other four points.
If θ1 = ∠AE B, θ2 = ∠AEC, θ3 = ∠DE B, θ4 = ∠DEC, where each of these angles
lies between−π andπ radians, then the cross ratio of this pencil is

cr(E(A, D; B,C)) = sinθ1

sinθ2

/
sinθ3

sinθ4

=
1
2|E A| · |E B| · sinθ1

1
2|E A| · |EC| · sinθ2

/
1
2|E D| · |E B| · sinθ3

1
2|E D| · |EC| · sinθ4

= ‖AE B‖
‖AEC‖

/‖DE B‖
‖DEC‖ . (22)

Now let F be any other point onQ (see Fig. 4(a)). As above,

cr(F(A, D; B,C)) = ‖AFB‖
‖AFC‖

/‖DFB‖
‖DFC‖ . (23)

By a fundamental property of conics [1, Theorem 6.3.1], these two cross ratios are equal.
Hence, from (22) and (23), after rearranging,

‖AFB‖
‖AFC‖ =

‖DFB‖
‖DFC‖ ·

‖AE B‖
‖AEC‖ ·

‖DEC‖
‖DE B‖ . (24)

If AF meetsBC in H then by the area principle (see [3]) since the triangles [AFB] and
[ AFC] have the same base [AF] and their heights are proportional to|B H| and|C H|,
taking account of signs, the left side of (24) is equal to‖B H‖/‖C H‖.

Consider the limit asF → A on Q (Fig. 4(b)). The chordAF tends to the tangent to
Q at A and so the pointH tends toU . In the limit we get

‖BU‖
‖CU‖ =

‖D AB‖
‖D AC‖ ·

‖AE B‖
‖AEC‖ ·

‖DEC‖
‖DE B‖

which, since(A; Q; B,C) = ‖BU‖/‖UC‖ is clearly equivalent to (21).

The proofs of many parts of Theorems 1–4 are very similar; we use the lemma with
suitable substitutions for the pointsA, B,C, D andE, take the product fromi = 0 to
i = n− 1 and then rearrange the terms. The required equalities follow immediately. To
avoid tedious repetitions we give full details in one case only, namely in the proof of part
of Theorem 2. In other cases we only state the required substitution and the form of the
rearranged product.

To prove (16) of Theorem 2(b) we substituteF,Vi ,Vi+r ,Vi−s,Vi+r+s for A, B, C,
D, E respectively in the lemma, yielding

(F; Qi ;Vi ,Vi+r ) = − ‖FVi+r+sVi ‖
‖FVi+r+sVi+r ‖ ·

‖Vi−sVi+r+sVi+r ‖
‖Vi−sVi+r+sVi ‖ ·

‖FVi−sVi ‖
‖FVi−sVi+r ‖ .
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Taking the product fromi = 0 ton− 1 we obtain∏
(F; Qi ;Vi ,Vi+r )

= (−)n
∏ ‖FVi+r+sVi ‖
‖FVi+r+sVi+r ‖ ·

∏ ‖Vi−sVi+r+sVi+r ‖
‖Vi−sVi+r+sVi ‖ ·

∏ ‖FVi−sVi ‖
‖FVi−sVi+r ‖

= (−)n
∏ ‖FVi+r+sVi ‖
‖FVi−sVi+r ‖ ·

∏ ‖FVi−sVi ‖
‖FVi+r+sVi+r ‖ ·

∏ ‖Vi−sVi+r+sVi+r ‖
‖Vi−sVi+r+sVi ‖

upon rearranging. Now each of the first two products on the right is equal to(−1)n.
To see this, substitutei → i − s and i → i + r + s in the numerators of the two
products, respectively, observing that the triangles in the numerator and denominator of
each fraction have opposite orientations. The third product has value 1 as we can see by
substituting eitheri → i − r − s (noting thati − r − 2s ≡ i + r + s if 3s+ 2r ≡ 0)
or i → i + s (noting thati + r + 2s ≡ i − s, if 3s+ r ≡ 0) in the numerators. This
proves (16).

Proof of Theorem1. (a) The two assertions in (12) are equivalent to

[0,1,2,3,4] = [0,2,4,1,3] = −1

which were proved in the previous section, applied to the pentagon [V0,V1,V2,V3,V4].
(b) All six assertions are proved in a similar manner; we only indicate the proof of the

first equality in (13). SubstituteVi−3,Vi ,Vi+1,Vi+3,Vi−1 for A, B,C, D, E respectively
in the lemma. Taking the product fromi = 0 to i = 6 and rearranging,∏

(Vi−3; Qi ;Vi ,Vi+r )

= −
∏ ‖Vi−3Vi−1Vi ‖
‖Vi−3Vi+3Vi+1‖ ·

∏ ‖Vi+3Vi−1Vi+1‖
‖Vi−3Vi−1Vi+1‖ ·

∏ ‖Vi−3Vi+3Vi ‖
‖Vi+3Vi−1Vi ‖ = −1.

Proof of Theorem2. (a) Here, sincen = 4 and there is one fixed point,Qi is fixed, that
is, independent ofi . Hence (14) follows from (11) ift = 1 or 3, and from (1) ift = 2.
Similarly (15) follows from (8).

(b) The first assertion (16) is proved above. For the second, substituteF , Vi−s, Vi+r+s,

Vi , Vi+r for A, B,C, D, E respectively in the lemma. Taking the product fromi = 0 to
n− 1 and rearranging we obtain∏
(F; Qi ;Vi−s,Vi+r+s)

= (−)n
∏ ‖FVi+r Vi−s‖
‖FVi Vi+r+s‖ ·

∏ ‖FVi Vi−s‖
‖FVi+r Vi+r+s‖ ·

∏ ‖Vi Vi+r Vi+r+s‖
‖Vi Vi+r Vi−s‖ = (−1)n.

This proves (17).
(c) SubstituteF , Vi−s,Vi ,Vi+r ,Vi+r+s for A, B,C, D, E respectively in the lemma.

Taking products and rearranging,∏
(F; Qi ;Vi−s,Vi )

=
∏ ‖FVi+r+sVi−s‖

‖FVi+r Vi ‖ ·
∏ ‖FVi+r Vi−s‖
‖FVi+r+sVi ‖ ·

∏ ‖Vi+r Vi+r+sVi ‖
‖Vi+r Vi+r+sVi−s‖ = 1.
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For the second equality, substituteF , Vi+r ,Vi+r+s,Vi−s,Vi , for A, B,C, D, E re-
spectively in the lemma. Taking products and rearranging,∏

(F; Qi ;Vi+r ,Vi+r+s)

=
∏ ‖FVi Vi+r ‖
‖FVi−sVi+r+s‖ ·

∏ ‖FVi−sVi+r ‖
‖FVi Vi+r+s‖ ·

∏ ‖Vi−sVi Vi+r+s‖
‖Vi−sVi Vi+r ‖ = 1.

For the third equality substituteF , Vi−s,Vi+r ,Vi ,Vi+r+s for A, B,C, D, E respec-
tively in the lemma. Taking products and rearranging,∏

(F; Qi ;Vi−s,Vi+r )

=
∏ ‖FVi+r+sVi−s‖

‖FVi Vi+r ‖ ·
∏ ‖FVi Vi−s‖
‖FVi+r+sVi+r ‖ ·

∏ ‖Vi Vi+r+sVi+r ‖
‖Vi Vi+r+sVi−s‖ = 1.

For the fourth and final equality, substituteF , Vi ,Vi+r+s,Vi−s,Vi+r for A, B,C, D, E
respectively in the lemma. Taking products and rearranging,∏

(F; Qi ;Vi ,Vi+r+s)

=
∏ ‖FVi+r Vi ‖
‖FVi−sVi+r+s‖ ·

∏ ‖FVi−sVi ‖
‖FVi+r Vi+r+s‖ ·

∏ ‖Vi−sVi+r Vi+r+s‖
‖Vi−sVi+r Vi ‖ = 1.

This proves (18) and concludes the proof of Theorem 2.

Proof of Theorem3. Consider the casek = 1. SubstituteF1,Vi−r ,Vi+r , F2,Vi for
A, B,C, D, E respectively in the lemma. Taking products,∏

(F1; Qi ;Vi−r ,Vi+r ) = (−)n
∏ ‖F1Vi Vi−r ‖
‖F1Vi Vi+r ‖ ·

∏ ‖F2Vi Vi+r ‖
‖F2Vi Vi−r ‖ ·

∏ ‖F1F2Vi−r ‖
‖F1F2Vi+r ‖

= (−1)n.

For the second assertion, substituteVi ,Vi−r ,Vi+r , F1, F2 for A, B,C, D, E respec-
tively in the lemma. Taking products,∏

(Vi ; Qi ;Vi−r ,Vi+r ) = (−)n
∏ ‖Vi F2Vi−r ‖
‖Vi F2Vi+r ‖ ·

∏ ‖F1F2Vi+r ‖
‖F1F2Vi−r ‖ ·

∏ ‖Vi F1Vi−r ‖
‖Vi F1Vi+r ‖

= (−1)n.

This proves (19) and concludes the proof of Theorem 3.

Proof of Theorem4. SubstituteF1,Vi ,Vi+r , F2, F3 for A, B,C, D, E respectively in
the lemma. Taking products,∏

(F1; Qi ;Vi ,Vi+r ) = (−)n
∏ ‖F1F3Vi ‖
‖F1F3Vi+r ‖ ·

∏ ‖F2F3Vi+r ‖
‖F2F3Vi ‖ ·

∏ ‖F1F2Vi ‖
‖F1F2Vi+r ‖

= (−1)n.

This establishes equality (20).
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Proof of Theorem5. We need to show that ifB is a fixed point, then
∏
(A; Qi ; B,C)

is not a constant, that is, it does not take the same value for alln-gonsP. Choose a value
of n ≥ 3. Let Q be a circle of diameterd, and suppose that all the fixed points and the
vertices of then-gon P lie on Q. ThenQi = Q for all i = 0, . . . ,n− 1. Let B X be a
diameter ofQ, and suppose that all the points (exceptB) lie near toX. WhetherA and
C are fixed points or not, by Lemma 2 of [6], we see

(A; Q; B,C) = −|AB|2/|AC|2

and
∏
(A; Qi ; B,C) is a product of such terms. By selectingP so that its vertices, and

all the fixed points other thanB, lie close toX, the term|AC|2 may be made as small as
we wish, whereas|AB|2 is close tod2. Hence we can make

∏
(A; Qi ; B,C) as large as

we wish, and therefore it cannot take a constant value.

3. Other Relations

So far we have restricted attention to the consideration of cyclic products which take a
constant value for alln-gonsP. In addition there are numerous relations between the
values of two, three, . . . , cyclic products. So many, in fact, that it is impractical to give
an exhaustive treatment, and we restrict ourselves to some suggestions as to how they
may be constructed, and a few examples.

Each of the relations (7)–(11) of Section 1 gives rise to many relations. Consider the
following. Take five points, each of which may be either a fixed point or any vertex of
a givenn-gon P. For example, suppose there arem = 2 fixed pointsF1 and F2, and
the chosen vertices ofP areVi−r ,Vi ,Vi+s, wherer ands are positive integers such that
r + s < n. Let Qi be the unique conic through these five points. Notice that, unlike
Theorem 3, initially we do not requirer = s. Then, by (2) and (7),

(Vi−r ; Qi ;Vi ,Vi+s)(Vi ; Qi ;Vi+s,Vi−r )(Vi+s; Qi ;Vi−r ,Vi )) = −1.

Taking the product fromi = 0 to i = n− 1, we obtain the relation∏
(Vi−r ; Qi ;Vi ,Vi+s)

∏
(Vi ; Qi ;Vi+s,Vi−r )

∏
(Vi+s; Qi ;Vi−r ,Vi ) = (−1)n

connecting three cyclic products forP. Further, ifr = s, we know from Theorem 3 that∏
(Vi ; Qi ;Vi+r ,Vi−r ) = (−1)n, and hence we obtain the identity∏

(Vi−r ; Qi ;Vi ,Vi+r )
∏
(Vi+r ; Qi ;Vi−r ,Vi ) = 1,

which is true for alln-gons, and is easily verified numerically.
Another situation in which the product of two cyclic products takes a fixed value

arises from a process analogous to “asymmetrisation” described in [6]. For example, we
know that, under the conditions of Theorem 3 (equation (20)),∏

(Vi ; Qi ;Vi−r ,Vi+r ) = (−1)n,

whereQi is the conic through the fixed pointsF1, F2 and the three verticesVi ,Vi−r ,Vi+r

of P. Consider ∏
(Vi ; Qi ;Vi−r ,Vi+s)

∏
(Vi ; Q′i ;Vi−s,Vi+r ), (25)
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wherer ands are positive integers such thatr + s< n, Qi is the conic through the fixed
pointsF1, F2 and the verticesVi ,Vi−r ,Vi+s of P, andQ′i is the conic through the same
fixed points and the verticesVi ,Vi+r ,Vi−s of P.

Then the product (25) takes the fixed value 1 for alln ≥ 5, as we can see as follows.
Applying the lemma in the appropriate fashion,

(Vi ; Qi ;Vi−r ,Vi+s) = −‖Vi F2Vi−r ‖
‖Vi F2Vi+s‖ ·

‖F1F2Vi+s‖
‖F1F2Vi−r ‖ ·

‖Vi F1Vi−r ‖
‖Vi F1Vi+s‖

and

(Vi ; Q′i ;Vi−s,Vi+r ) = −‖Vi F2Vi−s‖
‖Vi F2Vi+r ‖ ·

‖F1F2Vi+r ‖
‖F1F2Vi−s‖ ·

‖Vi F1Vi−s‖
‖Vi F1Vi+r ‖ .

Now take the products of each of these expressions fromi = 0 to i = n− 1. Clearly all
the terms on the right sides cancel to yield the value 1.

Throughout we have only been concerned with cyclic products that arise in one
particular way, which may be regarded as the analogue of Wu’s theorem for circles [6].
Nevertheless many more constructions are possible, and each leads to cyclic products
whose properties have yet to be investigated. As the constructions and the relations
between the cyclic products become more and more complicated, so their intuitive appeal
diminishes.

However, one such construction seems worthy of mention. If a conic is inscribed in
a pentagonP = [V0, . . . ,V4] and touches each sideVi Vi+1 in the pointWi (see Fig. 5),
then it is easy to show that∏

(‖Vi+1Wi ‖/‖Wi Vi ‖) = 1.

This, and a number of similar results follow from the procedure described in Section 1:
Any statement about cyclic products which involves only auniqueconic, can, by a
projective transformation, be transformed into one in which the conic is replaced by a
circle. This usually simplifies the geometry considerably.

Fig. 5. If the conicQ touches the sides of the pentagon [V0,V1,V2,V3,V4] at the pointsWi as shown, then∏
(‖Vi Wi ‖/‖Wi Vi+1‖) = 1, see Section 3.
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Based on numerical evidence, a few of the results of this paper were conjectured by
Branko Grünbaum and appear in his unpublished lecture notes [2]. The ease with which
our theorems can be deduced from the lemma illustrates the fact that classical synthetic
methods can, under certain circumstances, be much more powerful than, say, an analytic
approach.
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