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Abstract. LetSbe asetofimoving points inthe plane. We give new efficientand compact
kinetic data structures for maintaining the diameter, width, and smallest area or perimeter
bounding rectangle d&. If the points inS move with algebraic motions, these structures
processO(n?t¢) events. We also give constructions showing tdn?) combinatorial
changes are possible for these extent functions even if each point is moving with constant
velocity. We give a similar construction and upper bound for the convex hull, improving
known results.

1. Introduction

Let S be a set oln moving points in the plane. In this paper we investigate how to
maintain various descriptors of tlegtentof S, such as diameter, width, smallest area or
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perimeter bounding rectangle. These extent measures indicate how spread out the point
setSis. They are useful in various virtual reality applications such as clipping, collision
checking, etc. As the points move continuously, the extent measure of interest (e.g.,
diameter) changes continuously as well, though its combinatorial realization (e.g., the
pair of points defining the diameter) changes only at certain discrete times. Our approach
is to focus on these discrete changes{@ntyand track through time the combinatorial
description of the extent measure of interest.

We do so within the framework dfinetic data structure¢kKDSs for short), as de-
veloped by Basch et al. [7] and further elaborated in Section 2. There are two notable
and novel aspects of that framework. Firstly, while extensive work has been done on
dynamic data structures in computational geometry [9], [10], this is all focused on han-
dling insertiongdeletions of objects and not on handling continuous changes. Kinetic
data structures by contrast gain their efficiency by exploiting the continuity or coher-
ence in the way the system state changes. Secondly, unlike Atallah’s dynamic com-
putational geometry framework [5], which was introduced to estimate the maximum
number of combinatorial changes in a geometric configuration under predetermined
motions in a certain class, the KDS framework is fudly-lineand allows each object to
change its motion at will, due to interactions with other moving objects, the environment,
etc.

Section 3 presents new kinetic algorithms for diameter, width, and smallest enclos-
ing rectangle in both the area and perimeter senses. If we assume that the points of
S follow algebraic motions (defined below), then the number of events processed by
each of our algorithms i©(n?**), for anye > 0; the constant of proportionality
hidden in the big-O notation depends enIn particular, these bounds prove that all
the extent measures mentioned can change combinatorially at®go$t?) times. A
guadratic bound is natural for diameter, as it is defined by two points of th®, et
it is somewhat surprising for the other measures, as width is defined by three points,
and the minimum bounding rectangles by four or five of the points. The data struc-
tures we give are efficient and compact in the KDS sense (see Section 2), though not
local.

Section 4 is devoted to giving lower-bound constructions for these extent measures
underlinear motions: we show that diameter, width, and the two flavors of smallest
bounding rectangle can all changan?) times as each point 5 moves continu-
ously with constant velocity (different points may move with different velocities). Such
lower bound constructions are much easier if we allow quadratic or other higher degree
motions—the fact that the same lower bounds hold with linear motions is quite inter-
esting. Our constructions employ a key component consisting of cocircular (or nearly
cocircular) points that move on straight lines while maintaining their (near-) cocircu-
larity. Finally, in Section 5 we give a similar construction showing that the convex
hull of n points moving linearly in the plane can also chage?) times. We also
prove a slightly improved upper bound for the number of combinatorial changes to
the convex hull. If any three points become collinear at nsoétnes, then we prove
an upper bound oO(nis(n)), whereis(n) is the maximum length of a Davenport—
Schinzel sequence of order with n symbols [15]; the previously known bound
was O(nis.2(N)). The bound improves t®(n?) for linearly moving points, which is
optimal.



Maintaining the Extent of a Moving Point Set 355
2. Kinetic Data Structure Preliminaries

LetS={ps,..., pn} be a set oh points in the plane, each of which is moving continu-
ously. Letp; (t) = (X (1), yi (t)) denote the poinp; at timet, and letS(t) denote the set
Sat timet. We say that the motion @ has degred if, forall 1 <i < n, % (t) andy; ()

are polynomials of degree at maktWe call a motion of degree linear; in this case
each point ofS moves along a straight line with fixed velocity. We say that the motion
of Sis algebraicif it is of degreed for some constard > 0.

A KDS maintains aconfiguration functiorof continuously moving data (e.g., the
diameter, width, etc., of moving points). It does so by maintaining a se¢wificates
that jointly imply the correctness of the computed configuration function. Each certificate
is a geometric predicate on a constant number of data elements, for example, Apoints
andB are farther apart than poin&andD.” The certificates are typically derived from
a static algorithm for computing the configuration function. For example, the certificates
for maintaining the diameter might include a set of distance comparisons establishing a
partial order on the relevant pairwise distances, with a single maximum element.

The certificates are stored in a priority queue, ordered by the next time at which a
certificate will be violated. Each data element hdbght planthat gives full or partial
information about the current motion of the element, and these flight plans are used to
compute the next violation time for each certificate. When the next violation time is
reached, the algorithm removes the violated certificate from the queue and computes
certificates for the new data configuration. Some number of certificates may have to be
removed from the queue, and some number of new certificates added; see [7] for details.
A KDS is calledresponsivef the time needed to update it after a certificate failure is
polylogarithmic in the total number of data elements.

When a data element changes its flight plan, all the certificates in the priority queue
that depend on it must have their times of next violation recomputed, and their positions
in the queue must be updated. A KDS is calledal if the number of certificates that
depend on a single data element is polylogarithmic in the total number of data elements.

The violation of a certificate is called ament External eventsause the configuration
function to changednternal eventslo not affect the configuration function, but must be
processed for the integrity of the data structure. We evaluate a KDS by counting events
under the assumption that the data motionsadgebraic A KDS is calledefficientif
the worst-case number of total events (internal plus external) is asymptotically the same
as, or only slightly larger than, the worst-case number of external events, under the
assumption of algebraic motidm\ KDS is calledcompacif the number of certificates
stored in the priority queue is roughly linear in the number of data elements.

Efficient, local, and compact KDSs are known for maintaining the convex hull and
closest pair of points moving in the plane, and for computing the maximum of points
moving along a line [7]. The data structure for computing the maximum is cakeetc
tournamentin the last few years much work has been done on KDSs for a wide range
of problems; see [1]-[3], [6], [11], [12], and references therein.

1 Some KDSs can be shown to be efficient for the larger clapsaidoalgebraimotions, which includes
all motions such that the total number of events for any constant-size subset of data ele@éhtsHewever,
the KDSs of this paper require algebraic motion for provable efficiency.
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3. Algorithms

In this section we present KDSs for maintaining three different versions of the extent
of a planar point set: diameter, width, and minimum enclosing box. The diameter and
width of a point seSin the plane can be computed by constructing ¢&wcomputing

the antipodal pairs of verticésand choosing an appropriate antipodal pair [16]. The
smallest rectangle enclosii®ran also be computed using a similar approach, though it
requires a little more work (see Section 3.4 below).

Each of these extent versions is therefore maintained using the KDS for maintaining
convex hulls of Basch et al. [7]. On top of that data structure we kinetize the rotating
calipers algorithm [14], [16] to maintain the antipodal pairs of vertices. We finally store
the antipodal pairs in a kinetic tournament, specialized to the desired extent attribute.

3.1. Antipodal Pairs

In this subsection we show how to maintain the set of antipodal pairs in the convex hull
of a set of moving points. The boundary of c@8y can be partitioned into two convex
chains, calledupper and lower hulls, by its leftmost and rightmost vertices. Before
we proceed, to simplify the presentation, we dualize the problem. In the dual, a point
p = (a,b) mapstoalinep* : y =ax+bandalinel : y = ax + g maps to a point
* = (—a, B). Let S* = {p* | p € S} be the set of lines dual t8. Thelower (resp.
uppen envelope ofS* is the boundary of the cell in the arrangemgiis*) lying below
(resp. above) all the lines & . The lower (resp. upper) hull maps to the lower (resp.
upper) envelope df*, with each vertex of the hull mapping to an edge of the envelope.
Since the slope of a line maps to thecoordinate of its dual point, the range of slopes
of lines supporting a vertep of the upper (resp. lower) hull maps to tkenterval of
the corresponding edge of the upper (resp. lower) envelope.

Let L (resp.U) denote the projection of the lower (resp. upper) envelogs* @mnto
the x-axis; the projection partitions theaxis into intervals (see Fig. 1). Each vertex
of the lower (resp. upper) hull & corresponds to an intervalv) of L (resp.U). Let
IT denote the partition of the-axis obtained by overlaying andU. For each interval
8 € I, we can store the pair of verticegé) = (a, b) such that C [ (a) N1 (b). Itis
easy to verify that if p, q) is an antipodal pair of vertices, thérip) and| (q) overlap,
and therefore they can be obtained frdim

To kinetize this static algorithm for computing antipodal pairs, besides the kinetic
convex hull data structure, we use the vertice§ldds the certificates to guarantee the
correctness of the current set of antipodal pairs, i.&; ik & < --- are the vertices
of IT, then we stordé;, & 1) as certificates. Certificates are stored in a priority queue
so that we can quickly determine the next certificate that will be violated. A certificate
is violated when two vertices dfl become coincident (i.e., an interval Bf shrinks to
a point) and their order exchanges. A constant number of certificates involving those
intervals need to be updated to restore the certificates to correctness.

2 A pair (p, q) of vertices of con¢S) is antipodalif there are two parallel lines supporting c@8y at p
andg.
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Fig. 1. Convex hull and its dual.

Theorem 3.1. The data structure for maintaining antipodal pairs is compatfficient
and responsiven particular, its size is @nlogn), it processes @?™) events in the
worst case under algebraic motipand it can be updated in @bg?n) time at each
event

Proof The underlying convex hull data structure is compact, responsive, and efficient
[7]—it requiresO(nlogn) space, it processe3(n%+¢) events in the worst case under
algebraic motion, and it can be updateddilog? n) time at each event. It is also easy

to see that the merged list structure is compact: its sigig.

To prove that the data structure is efficient, we must bound the number of events in the
merged list structure, under the assumption that the points move with algebraic motion.
The key quantity to bound is the number of pairs of points that become antipodal over
the life of the algorithm, since the list changes only when antipodal pairs change.

We extend the two-dimensional upper and lower envelop& ofto R by consid-
ering time as a static third dimensiéMore precisely, let; (t) : y = a (t) - x + b; (t) be
the dual of the poinp; (t). Definey; = (g ¢ (1); 3 is an algebraic surface of constant
degree. Lel’ = {5 | 1 <i < n}. The lower (resp. upper) envelope$fat timet =t
is the intersection (two-dimensional slice) of the lower (resp. upper) enveldpevih
the planet = ty. Each combinatorial change in the upper (resp. lower) hull of ¢gnv
corresponds to a vertex of the upper (resp. lower) envelojpe of

Let M (resp.M’) be the minimization (resp. maximization) diagramlbfonto the
xt-plane), and leM be the overlay of the planar subdivisiokkandM’. L(tp) (resp.

U (tp), I(tp)) is the cross section dfl (resp.M’, M) att = to. Each vertex offl
corresponds to an edge 6fl. The x-order of two adjacent vertices &’ of IT changes
atto if the corresponding edges @1 meet at a vertex oM att = to. The number
of changes in the-order of the vertices of1, and thus the number of changes in the
antipodal pairs, is bounded by the number of verticedih This quantity is bounded
by O(n?*) [4].

3 Thelower envelopef a set{fy, ..., fn} of d-variate functions is the functioR (x) = mini<j<p fi ().
We do not distinguish between a function and its graph. mization diagranof a set ofd-variate
functions is the projection of the graph of its lower envelope onto the plane= 0.
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Finally, in order to prove that the antipodal-pair data structure is responsive, we must
argue that onlyO (1) antipodal pairs change at each event. There are two types of events
in the antipodal-pair structure: events in the underlying convex hulls and the exchanges
of adjacent vertices iill. An exchange of adjacent vertices Of affects onlyO(1)
antipodal pairs. If a point ceases to be a vertex of ¢Byvan interval off1 shrinks to
a single point. On the other hand, if a new verteaxppears on cor®) betweenp and
g, the vertex¢ of I1, corresponding to the common endpointl@p) and | (q), splits
into two coincident vertice§™, £~ and a new singleton intervalv) = [7,&1] = &
is created. In each cas®,1) certificates and antipodal pairs change. O

Note that the data structure @t local: one point may belong t®(n) antipodal
pairs. It may be possible to achieve locality by making the pairing relationship more
sophisticated, but this would require some additional insight.

3.2. Diameter

The diameter of a point s&is the maximum pairwise separation of two pointsSirit

is realized by a pair of antipodal vertices of co8y. A standard way of computing the
diameter ofSis to compute the convex hull, find all pairs of antipodal vertices, and then
identify the pair with the maximum separation [14].

To kinetize this algorithm, we maintain the set of antipodal pairs using the algorithm
described in the previous subsection. We then construct a kinetic tournament on these
antipodal pairgp, q), with d(p, g) as the key. Whenever an antipodal pair changes, we
insert or delete an item from this tournament. Since we perfosm’+¢) insertions and
deletions in the tournament, the result by Basch et al. [8] shows that the diameter can
be maintained efficiently. Theorem 4.1 of Section 4.1 shows that the total number of
different diametral pairs i€ (n?), and hence our KDS is efficient. Finally, each event
in the antipodal-pair structure affed®(logn) nodes of the kinetic tournament, so our
data structure is responsive. We thus obtain the following.

Theorem 3.2. The data structure for maintaining the diameter is compatfftcient
and responsiven particular, its size is @nlogn), it processes @?*¢) events under
algebraic motionand it can be updated in @og? n) time at each event

3.3. Width

The width of a point seSin R? is the minimum separation of two parallel lines so that
Slies in the strip bounded by the lines. It is well known that one of the lines contains
an edgeab of the convex hull, that the other passes through a vartekthe convex
hull, and that(a, v) and(b, v) are antipodal pairs. We refer toandab as an antipodal
edge-—vertex pair, and say thats antipodal taab.

If (ab, v) is an antipodal edge—vertex pair, then the common endpoihtayfand
| (b) liesin the interval (v). We can therefore find all antipodal edge—vertex pairs using
I1, the overlay ofL andU, defined in Section 3.1. To kinetize the data structure, we
store all antipodal edge—vertex pajeh, v) in a tournament withl (ab, v) as the key.
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Theorem 3.3. The data structure for maintaining the width is compaticient and
responsiveln particular, its size is @nlogn), it processes M%) eventsand it can
be updated in @og? n) time at each event

Proof. Because the width data structure is virtually identical to the diameter structure,
the bounds are the same—the worst-case time spent processing ev@ts'is), for
anye > 0. Theorem 4.7 of Section 4.2 shows that the number of combinatorial changes
to the width is2(n?) in the worst case, so the KDS is efficient. O

Remarks. The similarity of the diameter and width data structures masks a rather
surprising difference. We expect the number of combinatorial changes to the diameter
to be O(n?*¢), because there are only(n?) pairs of points. Because the width is
determined byriples of points—two edge endpoints and an opposing vertex—thena”
bound on the number of combinatorial changes to the width(is*>"*). However, the
points of the triples are not independent, and our algorithm shows that the actual number
of changes is only (n%*%).

3.4. Extremal Boxes

A common way of reducing the complexity of spatial algorithms is to approximate
a complex geometric object by a rectilinear box enclosing the object. Queries (e.g.,
intersection tests) are first performed on the box, then on the actual object only if the
approximate test shows it to be necessary. In this way many queries on the complex
object may be avoided. The approximating box is often chosen to be axis-aligned, but
in situations in which a better approximation is desired, an arbitrarily oriented box may
be computed.

Several criteria are used to choose the approximating box, depending on the applica-
tion. For a seS of points in the plane, we may wish to compute a rectangle of minimum
area or perimeter that enclos&sve may wish to find the smallest square enclosing the
set; or we may even wish to compute a rectangle of the maximum area or perimeter, each
of whose sides touches at least one poir8.di/e can maintain an optimal enclosing box
for any of these criteria with a single technique. For concreteness, we focus on main-
taining the minimum-area rectangle enclosing a poinSdetthe plane. The following
well-known lemma gives a simple algorithm for computing the minimum-area enclosing
rectangle.

Lemma 3.4. There exists a minimum-area rectangle R enclosing S so that each edge
of R contains at least one point of &d at least one edge of R contains an edge of
convS).

In view of this lemma we maintain antipodal vertex—edge pairs of ¢®nvor each
such pairv, €), we also maintain the vertices, vg that support the lines perpendicular
to e. In the dual setting, we compute the lower and upper envelop& ahd their
projectionsL andU . We rotateSby /2 in the clockwise direction, and let, U’ be the
x-projections of the lower and upper envelopes of the lines dual to this rotated set. We
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mergelL, U, L', andU’; let IT" be the resulting partition of the-axis. An interval inlT’
corresponds to a slope range in which the four convex hull vertices supported by lines
parallel and perpendicular to the slope remain fixed. A rectangle satisfying the condition
of Lemma 3.4 corresponds to an endpoinfBf For a vertexa € IT, let R(a) be the
rectangle defined bg. We computeR(a) for each vertexa of I1" and choose the one
with the minimum area.

To kinetize this algorithm, we construct a tournament on the set

R = {R(a) | ais a vertex oflT’}

and update this set whenever any antipodal pair changes. The KDS is essentially similar
to those described above. The only difference is that instead of maintaining the overlay
of two lists, namelyL. andU, we now maintain the overlay of four lists.

Theorem 3.5. The data structure for maintaining the minimum-area bounding rectan-
gle is compactefficient and responsivén particular, its size is Gnlogn), it processes
O(n?+¢) eventsand it can be updated in @og? n) time at each event

Proof. Compactness follows as in Theorem 3.2. In order to prove the efficiency, we
need to argue thad (n®**) combinatorially distinct rectangles ever appear in théxset

Let I' be the same as defined in the proof of Theorem 3.1.9 &k the set obtained

by rotatingS by 7 /2 in the clockwise direction with respect to the origin. [&tbe the
corresponding set of surfaces f8r We can argue that every changeRncorresponds

to a vertex in the overlay\t of M(T"), M(I'), M'(I"), and M’ (I"")—the minimization

and maximization diagrams @fandI"’, respectively. Since every vertex in this overlay

is a vertex of the overlay of two of these four planar subdivisions, the total number of
vertices inM, and thus the number of changes in thefgis O(n**). O

Remarks. (i) A similar approach can maintain the minimum-perimeter bounding rect-
angle of moving points.

(ii) The extremal box is determined by four or five points of the set, sagersiund
on the number of combinatorially different boxes for points in algebraic motion would be
O(n%). However, the preceding theorem shows that the actual number i©Qgnk*).

4. Lower Bounds with Linear Motion

In this section we give a collection of lower bounds on the number of combinatorial
changes to the extent of a point set when each point moves linearly. Each of our con-
structions uses cocircular points whose linear motion maintains cocircularity. However,
the lower bounds hold even if we perturb the points slightly to place them in general
position.

Let C be the unit-radius circle centered at the origirLet ¢(9) = (cos0, sind) be
the point onC at angled from the x-axis. Suppose a poirg moves linearly along a
chord ofC whose endpoints ai®«) (att = 0) andC(« + ¢) (att = 1). Thatis,

pt) = (1 —1) () +tC(a + ¢).
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Fig. 2. Linear motion along equal-length chords preserves cocircularity.

Let
— tan-! _ ¢
6(t) =tan ((2t 1) tan 2) .

Fort € [0, 1],0(t) € [—¢/2, ¢/2]. The position ofp(t), fort € [0, 1], can be expressed
in polar coordinatesp(t) = (rp(t), 6p(1)), as follows:

cody/2)
cosa(t) ’

We say that the motion g is clockwisg(resp.counterclockwisgf the distance from
p(0) to p(1) alongC in the clockwise (respcounterclockwisedirection is at mostr.
Note that the initial positionp(0) does not appear in the expressionriglt). If multiple
points start orC and then move with the same speed along chordS of the same
length, then they remain cocircular throughout the whole motion. If all the motions are
clockwise (or all counterclockwise), then the angular separation of each pair of points is
constantgp(t) — 64(t) is just the difference of the initial angular positionspéndg.
See Fig. 2.

Fo(t) = Op(t) = o + % +o). 1)

4.1. Diameter

In this section we present @(n?) lower bound on the number of distinct diametral
pairs that can appear in a setrppoints under linear motion. We first discuss diametral
pairs for points lying on two concentric circles, then specify a particular set of linearly
moving points, and finally argue that our set 858&?) diametral pairs over time.

Suppose the points i8lie on two concentric circle€; andC, of radiir; andr, and
centered at the origin. Suppose that the points @ lie on an arc of length at most
nri /4, for eachi € {1, 2}. If a point p € SN Cy, another poing € SN C,, and the
origin o are collinear, anad lies betweerp andq, then diantS) = d(p,q) = ry + ro.
If there is only one such pair, then it is the unique diametral pair.

Suppose is even and sah = n/2. Sconsists ofn stationary points anch moving
points. The seP = {po, ..., pm_1} Of stationary points is defined by

pi=c':<%i) for 0<i<m.

The set of moving points i® = {0p, ..., Om-1}. Eachg; moves linearly along a chord
of C with an angular span of /4:

=@t T i) rte( e T for 0<j<m
4= 8" " am/ 8" " am’ =l<m
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Fig. 3. Lower bound construction for diameter.

Since all points inQ move with the same speed in the counterclockwise direction, they
remain cocircular for alt € [0, 1] (Fig. 3).

We will prove that for every G< i < m, there existatimg; < [0, 1] atwhich(p;, q;)
is the only diametral pair of.

Theorem 4.1. The diameter of the set of n linearly moving points described above is
defined by (n?) different pairs of points during the time intervakt[0, 1].

Proof. As noted above, the points @} lie on a common circle whose radius varies
with time. The angular position afj (t) is

. T T
bt =+ g +oM)  for 9(t)e[—§,§],

ThusQ lies in a constant-size angular range

-1
Om_1(t) — Bo(t) = % <%

The angular range d? is less thanr /8m. Pointsp;, g; (t), and the origin are collinear if

T
8m2

T

I+ i (1) 7r+8m

j+o,
that is, if
. .
Since 0< i < m, each(i, j) pair determines a unique value &ft) in the interval
[—m/8, w/8], which corresponds to a unique valuet af [0, 1]; call this valuet;j . Thus

there arem? = ©(n?) distinct valueg;j € [0, 1] such that(p;, g;(t;)) is the unique
diametral pair of the point set at tintg. O
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4.2. Width

In this section we present &a(n?) lower bound on the number of distinct vertex triples
that determine the width of a setfinearly moving points. As before, the construction
uses two sets of cocircular points, one stationary and one moving.

We define theslabof a line segment to be the set of all points that project perpen-
dicularly ontos. The basis of our construction is the following observation:

Observation 4.2. Suppose that the width of a point set is determined by a convex hull
edge e and a hull vertex Thenv lies in the slab of e

Without loss of generality assume tmat= 4k for some integek > 2. The stationary
points of our set are

- o(5).
_ T
b =¢(-3) |
pi =C(—n+jm6j74n$/2)>+<2005%,0) for 0<i<m.

LetP ={po,..., pm}. The setQ = {qo, . .., gm} Of moving points is defined by

_ 3r T _ b4 T, f .
q’(t)_(l_t)c<_§+8_mj)+tc<_3_2+8_m]) or 0<j=<m
See Fig. 4. The total number of pointsis= 2m+4. Q lies on the unit circl€ centered
at (0, 0), and P lies on the unit circleC’ centered at2 cogn/8), 0). The two circles
intersect in arcs of lengtin/4. The intersection points aseandb; P lies in a tight clump
at the center of the left ar€ lies in arr /8 sector of the right arc. Each point@@moves
along a chord o€ of angular sparr/16. All points in Q move with the same speed in
the counterclockwise direction, so they remain cocircular for all0, 1].

a=e(r/8)
! Qam(1)
Q)

]
'
[
¥
'

Po

‘?flm (0)
|

Q
(2cos 5,0) P dgol1)
g Q)
"\, 940(0)
v
b= ¢(—n/8)

Fig. 4. Lower bound construction for width.
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As in the previous subsectiog;(t) can be expressed in polar form as

Ft) = cos/32)
T costt)
T .
6; (t) —1—6+%J+0(t),

forall (t) € [-7/32 7/32].

We prove below that for all < i < mandm/4 < j < 3m/4, there is a timé; at
which pi, g;, gj+1 is the only triple determining the width &, which implies that the
triple defining the width ofS changes? (n?) times. We need a sequence of technical
lemmas to prove this claim.

Lemma4.3. Forallt € [0, 1], all points of S appear on the boundary of the convex
hull con\(S) in the same ordenamely a po, ..., Pm, b, do, - - . , dm form the vertices
of conuS) in a counterclockwise order

Proof. By constructiora, b, po, ..., pm appear on coris) in that order for allt e

[0, 1]. Since the points i are always cocircular and remain in the same order, it suffices
to show that the lines through the pails go(t)) and(a, gm(t)) are supporting lines of
conuS) forallt € [0, 1]. LetC(t) be the circle containin@ at timet. By construction,

the radiusr (t) of C(t) is at least cosr/32). Let £(t) be a point onC(t) such that

the segmenbz (t) is tangent taC(t). Then the angle’bo&(t) = cos(r (t)) < n/32.
(See Fig. 5(i).) Since’boy(t) > /32, the segment fromto go(t) passes through the
interior of C(t), which means that the line passing throtgmddy(t) supports cons).
Similarly, we can show that the line containing the segmeapti(t) is a supporting
line. O

For eachj, let

(i)

Fig. 5. (i) The tangent covers a sector of at megB82. (ii) Intersection segment of a slab with a vertical line.
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soj(t) = 6(t) — B;. Form/4 < | < 3m/4, the pointg; intersects the-axis when
6(t) = B;. Therefore the convex hull edde;, ;1) intersects the-axis in the interval
6(t) € [Bj+1. Bj]. Thatiis,

T T . b4 T .

6 gmnUtTD=00=0—2i 2
The restriction onj ensures that this is a valid interval &ft). We define the interval
lj = [Bj+1+ 7/32m, pj — 7/32m], i.e.,

A B T .y § 3
6 sm\U"2)=YV=1"gm\!"3)
A simple calculation implies the following.
Lemma4.4. Foranynmy4 < j <3m/4,1; € [—-n/32 7/32].

During the intervallj, the edgen;gj;1 intersects thex-axis, butd; (t) < —m/32m
andg;1(t) > 7/32m, i.e., neithem; nor ;1 lies “very close” to thex-axis. We will
show that for any(t) e Ij, only g;qj;1 and its antipodal vertex satisfy the condition
of Observation 4.2, and thagg;1 hasm + 1 different antipodal vertices during the
interval l;.

We need the following simple lemma (see Fig. 5(ii)) to prove the first claim, whose
proof is omitted.

Lemma 4.5. Let C be the unit circle centered at the origand let ¢ be a chord of C
subtending an angle &f < &, whose midpoint lies in directiom from the origin Then
the slab of ¢ intersects the vertical linexd in the y-interval

sin(6/2)
cosw } '

sin(6/2) dtana +

[d tana —

Lemma4.6. Foranyé(t) € I;, m/4 < j < 3m/4,and an edge e inonv S), if slab(e)
contains a vertex of S antipodal toteen e= q; dj ;1.

Proof. We first show thaWW = slablapy) does not contain any vertex of cai®)
antipodal to edgapy. By constructionW cannot contaib or any point ofP, so it suffices

to argue thatW does not contain any point @ antipodal tcapy. For convenience, we
definex = 2 cogw/8)—1. Let¢ and¢’ be the vertical lines = 1 andx = X, respectively.
Let yp be they-coordinate of the lower endpoint of the intersection segridént¢. Let

pp = C(r/128m) be the reflection ofy, and letC’ be the reflection o€ with respect to
the lineab. Thenyj is the same as thecoordinate of the lower endpoint of the segment
slab(ap). See Fig. 6(i). Hence, by applying Lemma 4.5 with

_ 7w/8+7/128m T g
*= 2 and 0= (g~ 1g7)
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(if)

Fig. 6. Different cases for the proof of Lemma 4.6.

we obtain that

Yo > Xtana — SIE(()ZXZ)
. b1 s 3 sin(r /16 — 7r/(256m))
= xtan( 15+ 5 ) cos/16+ 7/(256m))
> (X—=1 tan(%})
T b
= (2 cos§ — 2) tan(E)

—0.0303

v

A pointgx € Q is antipodal to the edgap, at timet only if

B (0) < — (T + o) < Bhaa(D),

s
16  256m
Sinceby1(t) — Ok_1(t) = 7 /4m, we havedy1(t) < —m/16+ 7 /4m, which implies
that sinbk;1(t)) < 0. They-coordinate ofy is smaller than that af.;, and

Nks1(7) SiN(Bk41(7))
coqn/32)

= c0sA() Sin(Ok+1(7))

< cos(slz) SiN@1(7))

< cos(s%) sin (—116 + %)
003(312) sin (—3%)
(becausen > 8)

= -1 sin(%}) — ~0.0980Q

Y(Qk+1(7))

IA
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This implies that whem is antipodal to the edgepy, it does not lie in the strip.
Hence, slatapy) does not contain the vertex of cqi® antipodal toapy during Ij. A
similar argument proves that slddp,,) does not contain the vertex antipodal to the edge
bpm.

Next, consider an edgg p; 11 forany 0< i < m. The projection of each edgepi 1
onto the line? is contained in theg-interval

[_)_( (ta” o * © (é)) 5 (ta” o * © <$)>} ;

see Fig. 6(ii).
More generally, the intersection of slgh pi;1) with the convex hull lies inside the
y-interval

[—tan%, tan%] .

Foranyd(t) € I and 1<k < j, 6k(t) < —mr/32m. Therefore the/-coordinate

. . b T
Y(Ok(t)) = re(t) sin(Bk(t)) < —S|n<%) cos<3—2) < —tan

T

128m’
Hence,qs, ..., g cannot lie in slabp; pi+1) for anyd(t) € I;. On the other hand, for
allk > j, 6k(t) > 7/32m duringé(t) € I;. A similar argument shows thai(gy(t)) >
tan(r/128m) during the interval;. Hence, none ofj1, ..., Om lies in slalfp; pi+1).

Next, consider the edga,. The minimum possiblg-coordinateyy,, of the segment
slaba, gm(t)) N¢ forallt € [0, 1]is att = 0. Att = 0, the direction of the midpoint of
agy, from the origin is & /64. Sinceag, subtends an angle ofr332, by Lemma 4.5,

57 sin(3r/64)

o 2RO 0.0611
64  cog57/64)

Ym = X tan

None of the points imQ U {a, b} can be antipodal tagy,. Since the slope of the line
supportingagy, is always negative, the vertgx of con\S) antipodal to the edgadgm,
has to lie below the&-axis. However, thep; ¢ slabagy,). Similarly, the vertex antipodal
to bgp does not lie in slatbq).

Finally consider an edgg0x+1 for somek # j. For allé(t) e Ij and for anyk > j,
the edgegkgk, 1 lies above thex-axis and they-coordinate of the lower endpoint of the
segment’ N slab(Qkgk+1) is

_ 3 sin(;r /16m) 0.0533 .o 0.0245
Yk > Xtan— — > > Sin-—— >
32m  cog37/32m) m 128m m

As in the previous case, any point 8fantipodal togkqgk. 1, for k > |, has to lie below

the x-axis and thus does not lie in sk@hgk.1). Likewise, none of slatgkdk.1), for

k < j, contains the point antipodal to the edgey.1. Henceg;g;+1 is the only edge

of conu(S) for which the vertex antipodal to the edge lies in its slab. This completes the
proof of the lemma. |
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Since the orientation of the normal to edgej;1 at timet is 0;,.1(t) — 7/16m, by
(3), it varies from—m/32m to 7 /32m during |;. Therefore eaclp; becomes antipodal
to g; g;+1 during the intervalj. Combining Lemmas 4.4 and 4.6, we can prove that there
arem/2 = n/4 — 1 convex hull edges, each of which in turn determines the width with
m+ 1 = n/2 — 1 different hull vertices during the time interval,[0]. Thus the triple

of hull vertices determining the width chang@gn?) times. We therefore conclude the
following.

Theorem 4.7. The width of the set of n linearly moving points described above is
defined by (n?) different triples of points during the time intervakt[0, 1].

4.3. Extremal Boxes

This section exhibits a configurationpoints in linear motion such that the minimum-
area (or minimum-perimeter) enclosing rectangle underg@és®) combinatorial
changes.

We assumen = 8i for some integei > 1. The construction involvesr = n/2
closely spaced pointpy, ..., pn/2 that always lie on a circular arc of large radius
(r ~ n?/2), rotating counterclockwise around the origin. There are an additigt2al
pointsqi, ..., On/2 Near the origin so that, fof = 1,...,n/8, the convex hull of
Osj—3, - .-, Oaj is always a squar®;. The side length of eacl; is between 2 and 3,
and eachQ; is slightly bigger tharQ;_1. The squares also have different orientations:
the base of); makes an angle gfo with respect to th&-axis (whered is a function of
n). See Fig. 7.

The ideais that duringe [j —1/8, j +1/8], eachp; will crossL;j, the line through
the origin with anglej6. We will show that the bounding bok has sides parallel to
Q; in this interval, and thus its combinatorial description depends on which g tise
farthest from the origin in the direction a&f;. Each of thep; will become the farthest
pointin turn, as the points cross, thereby producing/2 combinatorial changes to the
bounding box. This is repeated at tintes 1, ..., n/8, yielding® (n?) changes in total.

The following arguments make this construction more precise.

Lemma4.8. Let P = {pi,..., pm} be a set of points on a circle of radius* 2,
centered at the origin such that{g) > Oand \(p;) € [-1, 1] forall i, i.e, they lie on

'
)
. 1
.- - - ¥ op1
L L I,
I \
l?\ Q. ’

- -

o8 e

3

AY
‘\
o?®
"‘*-g.ib..—

Fig. 7. The lower bound for minimum boxes.
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Fig. 8. lllustration for Lemma 4.8.

a short arc near the positive x-axiset Q be the square whose verticgs q., g4 are
the pointg+1, £1). Then the minimum-arg@r minimum-perimetdrectangle that en-
closesthe P and Q is given by-B[—1, Xmax] x [—1, 1], where X\ax = MaX<i<n X(Pi)
See Fig8.

Proof. Letp;, € P be the point with the maximum-coordinate B containsp;, on its
right side and its area ig 2+ Xmax) - We will show that the smallest rectangle containing
Q andp;, is B. Suppose, on the contrary, the smallest-area rectangle cont&rémgl

pi, is B'. Let 0 < o < x/2 be the orientation of the long side Bf with respect to the
x-axis. By Lemma 3.4, each side Bf contains at least one point amopg, ¢, . . ., O,
and one of them contains two of these pointsBIt£ B’, no edge ofB’ contains two
g’'s. Hence, one of them, say, the bottom one, contaigsand p;,. Then it is easily
seen thap;, is one of the vertices dB’. A simple trigonometric calculation shows that
the area oB’ is

. Xmax — 1
2(sina + cosa) (% +2 COSO() = 2(1 + tana) (Xmax + COL2x)).

Sincexmax > 2, the above expression is minimum when= 0, which shows that
B’ = B, as claimed. A similar argument shows tlis also the minimum-perimeter
rectangle enclosin® and Q. O

The construction now proceeds as follows. &et 8/n°. For each = 1,...,n/8,
the vertices ofY; are obtained by taking the squa@ewhose vertices aret1, £1), and
rotating it by an angle oifd counterclockwise around the origin. The size@fvaries
with time, according to the scale factor

S{t) =1+492it —i%) =1+40(t°> — (i —1)?). (%)

In other words, each vertex €J; is on a linear trajectory through the origin, such that its
distance from the origin at timteis /25 (t). By our choice o, for every 1< i < n/8,

s () € [1/2,3/2] fort € [0, n/8]. Note that, by the second equality in (4); is the
largest square at time= i. The following lemma is a slightly stronger version of this
observation.

Lemma4.9. Foralll<i#j<n/8andforte[j—1/4,j+ 1/4], Qi € Q.
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—

B . cund

Fig. 9. Two nested squares.

Proof. Assumé < j.Leta = (j —i)0 < 1/n. The orientation ofQ; and Q; differ
by (j —1)0 = «. Fort > j —1/4, we have

st 14402t —j?)

s (1) 1+46(2it —i2?)

40[2t(j —i) — (j* —i?)]
1+46(2it —i?)

> 1+ 5(j —Do[2t — (j +)]

1+ 5e[2(i - ) - @i - 1]

l—l—%a

1+ sina

Sino + cosa.

= 1+

\%

vV 1V

SinceQ; andQ; are centered at the origin and their orientation differe bg simple
trigonometric calculation shows that§f(t) > s (t)(cosa +sina), thenQ; (t) < Qj(t);
see Fig. 9. Hence, fdr> j — 1/4, Q;(t) € Qj(t). A similar argument shows that for
i>j, Qi) € Q) fort < j+ 1/4. This completes the proof of the lemma. O

Finally, the seP = {ps, ..., pn2} is placed on a circl€ of radiusr = 4/6 = n%/2,
equally spaced along an arc of lengtf21At timet = 0, theiry-coordinates lie in the
range 1/4, 1/4]. All points in P move counterclockwise along chords that subtend
an angle ob* = (n/8)6 = 1/n, such that they interse€t at timest = 0 andt = n/8.
The length of the chord isrXin(9*/2), which lies in the ranga/2 + O(1/n%). For
simplicity, we ignore the tern®(1/n%). A closer look at the following argument shows
that this extra term does not affect the analysis. So we assume that the chord length is
n/2, which implies that the speed of eaphis 4, and they-coordinates of the points
lie in the range [# — 1/4, 4t + 1/4] (noting that the chords are all nearly vertical for
largen).

LetL; be the line that makes an anglejéfwith thex-axis. Consider the time interval
[j —1/8, j +1/8]. By Lemma 4.9, the smallest rectangle enclossig determined by
Q; and the point oP that is farthest from the origin alorlg . Now, attimet = j —1/8,
all points inP havey-coordinates in the range [4- 3/4, 4) — 1/4], and they lie below
the intersection ok ; with C (aty ~ 4j). As eachp; crossed.j, itis clearly the farthest
point in directionL;. By timet = j + 1/8, all the p; have crossed ;. We therefore
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have had/2 distinct minimum-area enclosing rectanglessan this interval. We have
established the following theorem.

Theorem 4.10. The combinatorial description of the minimum-arga minimum-
perimete} bounding box of n points moving linearly in the plane can chafiga?)
times

5. Kinetic Convex Hulls

In this section we give tight bounds on the number of combinatorial changes that may
occur in the convex hull of points moving linearly in the plane. The lower bound con-
struction is an easy application of the linear-motion-on-circles technique of Section 4.
The upper bound is an improvement on the known bounds for points in general algebraic
motion; when specialized to the case of linear motion, it shows that the convex hull may
undergo® (n?) combinatorial changes.

5.1. Lower Bound

We exhibit a configuration of r2 points in linear motion for which the convex hull
undergoes2 (n?) combinatorial changes. This improves the lower bound example given
by Sharir and Agarwal [15], which uses quadratic motions.

We define two convoys of oppositely moving points. The points always lie on a
common circle (which varies in size), so all are on the convex hull, but their order along
the circle changes.

Let

_ (T . T T .
p© = a-ve(5i)+te(G+500),
_ (T . _ T
gt = (1_I)C(Z+W1)+IC<W1)’
forl <i,j <n.Atanytimet € [0, 1], all the p; andg; lie on a common circle with

radiusr (t) = co/8)/ cosh(t), whered (t) = tarm((2t — 1) tan(r/8). The angular
position of p; (1) is
O(pLt) = i + = 4o
(pi, )—4nl+8+ t)
and the angular position of (t) is

T . w
0(q;,t) = WJ +§—9(t)-

(] .
60 =5 (5 1)

Thus eaclii, j) pair determines a uniqugt) € [—m/8, 0] at whichp; andg; exchange
on the convex hull. We have established the following theorem.

Point p; coincides withg; at
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Theorem 5.1. There is a set of n linearly moving points whose convex hull undergoes
Q(n?) combinatorial changes as the points move

5.2. Upper Bound

We bound the number of combinatorial changes to the convex hull in terms of the number
of times any three points become collinear. It is well known that if the point trajectories
are algebraic of degrele then three points become collinear at mest 2k times.

The theorem below shows that in this case thereQam®., (n)) changes to the convex

hull. This improves the bound dD(nix.2(n)) given in [15]. In particular, it implies

that for linear motion the number of change€ign?), matching the lower bound of the
preceding section.

Theorem 5.2. Given n points moving in the plane such that no three points become
collinear more than s timeshe combinatorial description of their convex hull changes
at most Qnig(n)) times

Proof. Let the points be identified by intege8, = {1, ..., n}, and define théeft-
neighborfunctionl; (t) as follows. Ifi does not belong to the convex hull at titehen
li (t) = &. Otherwise]; (t) is the pointj on the convex hull that is adjacentitén the
counterclockwise direction.

For eachi, letL; be the sequence of values assumed {y ast ranges from-oo to
oo. We remove all occurrences ofrom L, and replace any strings of identical symbols
by a single occurrence, to yield a reduced sequérjce

First, we show tha}_ |L| is an upper bound on the number of changes to the convex
hull (where| S| denotes the length of a sequerg)eWe do this by charging each change
to a unique symbol in somie".

The convex hull can change in only two ways: either a current vertex ceases to be a
vertex of the hull, or a new vertex appears on the hull. Suppose that a currentiyertex
is being deleted, and I& andi, be its counterclockwise and clockwise neighbors just
before the deletion. In this cask;, will contain the substringsio, and we charge the
deletion to the symbab. Similarly, if i; was just inserted, thelny, contains the substring
ioi1, and we charge the insertion to the symhollt is clear that no symbol is charged
twice in this way, and that all charged symbols are present in the reduced sequgnces
(since each one is preceded by a different n@ymbol).

Furthermore, each is an(n — 1, s) Davenport—Schinzel sequence. To see this,
observe that when symbglappears irL}, it means thatj is an edge of the convex
hull, and thus all trianglegk have a signed area that is positive. Similarlk dppears
in L}, then all triangleskj have positive area (and all triangligk have negative area).
Thus, if the alternation - - - k appears irL}", then the signed area of trianglé is zero
at some intermediate time, implying a collinearityi of , andk.

Giventhat any three points are collinear at ngighes, there are at mosalternations
between any two symbols andk. Thus, eactL is a(n — 1, s) Davenport—Schinzel
sequencel(; contains no repeated symbols by construction), and we hayke| <
nis(N). O
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6. Conclusions

In this paper we presented efficient and compact KDSs for maintaining the diameter,
width, and a smallest enclosing rectangle of a planar point set. We also gave constructions
showing that2 (n?) combinatorial changes for these extent functions are possible even
under linear motion. We believe that our construction of linear motion that maintains
cocircularity has other applications. For example, it was recently used for proving lower
bounds on the number of changes in a triangulation of a planar point set [1]. We conclude
by mentioning a few open problems:

(i) Design an efficient KDS for maintaining the smallest enclosing disk of a point
set in the plane.

(i) Design an efficient KDS for maintaining the convex hull of a point set in 3-space.
We believe that the randomized KDSs proposed in [3] might be useful for this
problem.

(iii) Can the data structures presented in this paper be made local without affecting
their efficiency or size?
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