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Abstract. Let Sbe a set ofnmoving points in the plane. We give new efficient and compact
kinetic data structures for maintaining the diameter, width, and smallest area or perimeter
bounding rectangle ofS. If the points inS move with algebraic motions, these structures
processO(n2+ε) events. We also give constructions showing thatÄ(n2) combinatorial
changes are possible for these extent functions even if each point is moving with constant
velocity. We give a similar construction and upper bound for the convex hull, improving
known results.

1. Introduction

Let S be a set ofn moving points in the plane. In this paper we investigate how to
maintain various descriptors of theextentof S, such as diameter, width, smallest area or
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perimeter bounding rectangle. These extent measures indicate how spread out the point
setS is. They are useful in various virtual reality applications such as clipping, collision
checking, etc. As the points move continuously, the extent measure of interest (e.g.,
diameter) changes continuously as well, though its combinatorial realization (e.g., the
pair of points defining the diameter) changes only at certain discrete times. Our approach
is to focus on these discrete changes (orevents) and track through time the combinatorial
description of the extent measure of interest.

We do so within the framework ofkinetic data structures(KDSs for short), as de-
veloped by Basch et al. [7] and further elaborated in Section 2. There are two notable
and novel aspects of that framework. Firstly, while extensive work has been done on
dynamic data structures in computational geometry [9], [10], this is all focused on han-
dling insertions/deletions of objects and not on handling continuous changes. Kinetic
data structures by contrast gain their efficiency by exploiting the continuity or coher-
ence in the way the system state changes. Secondly, unlike Atallah’s dynamic com-
putational geometry framework [5], which was introduced to estimate the maximum
number of combinatorial changes in a geometric configuration under predetermined
motions in a certain class, the KDS framework is fullyon-lineand allows each object to
change its motion at will, due to interactions with other moving objects, the environment,
etc.

Section 3 presents new kinetic algorithms for diameter, width, and smallest enclos-
ing rectangle in both the area and perimeter senses. If we assume that the points of
S follow algebraic motions (defined below), then the number of events processed by
each of our algorithms isO(n2+ε), for any ε > 0; the constant of proportionality
hidden in the big-O notation depends onε. In particular, these bounds prove that all
the extent measures mentioned can change combinatorially at mostO(n2+ε) times. A
quadratic bound is natural for diameter, as it is defined by two points of the setS, but
it is somewhat surprising for the other measures, as width is defined by three points,
and the minimum bounding rectangles by four or five of the points. The data struc-
tures we give are efficient and compact in the KDS sense (see Section 2), though not
local.

Section 4 is devoted to giving lower-bound constructions for these extent measures
under linear motions: we show that diameter, width, and the two flavors of smallest
bounding rectangle can all changeÄ(n2) times as each point inS moves continu-
ously with constant velocity (different points may move with different velocities). Such
lower bound constructions are much easier if we allow quadratic or other higher degree
motions—the fact that the same lower bounds hold with linear motions is quite inter-
esting. Our constructions employ a key component consisting of cocircular (or nearly
cocircular) points that move on straight lines while maintaining their (near-) cocircu-
larity. Finally, in Section 5 we give a similar construction showing that the convex
hull of n points moving linearly in the plane can also changeÄ(n2) times. We also
prove a slightly improved upper bound for the number of combinatorial changes to
the convex hull. If any three points become collinear at mosts times, then we prove
an upper bound ofO(nλs(n)), whereλs(n) is the maximum length of a Davenport–
Schinzel sequence of orders with n symbols [15]; the previously known bound
was O(nλs+2(n)). The bound improves toO(n2) for linearly moving points, which is
optimal.
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2. Kinetic Data Structure Preliminaries

Let S= {p1, . . . , pn} be a set ofn points in the plane, each of which is moving continu-
ously. Letpi (t) = (xi (t), yi (t)) denote the pointpi at timet , and letS(t) denote the set
Sat timet . We say that the motion ofShas degreed if, for all 1 ≤ i ≤ n, xi (t) andyi (t)
are polynomials of degree at mostd. We call a motion of degree 1linear; in this case
each point ofS moves along a straight line with fixed velocity. We say that the motion
of S is algebraicif it is of degreed for some constantd ≥ 0.

A KDS maintains aconfiguration functionof continuously moving data (e.g., the
diameter, width, etc., of moving points). It does so by maintaining a set ofcertificates
that jointly imply the correctness of the computed configuration function. Each certificate
is a geometric predicate on a constant number of data elements, for example, “pointsA
andB are farther apart than pointsC andD.” The certificates are typically derived from
a static algorithm for computing the configuration function. For example, the certificates
for maintaining the diameter might include a set of distance comparisons establishing a
partial order on the relevant pairwise distances, with a single maximum element.

The certificates are stored in a priority queue, ordered by the next time at which a
certificate will be violated. Each data element has aflight plan that gives full or partial
information about the current motion of the element, and these flight plans are used to
compute the next violation time for each certificate. When the next violation time is
reached, the algorithm removes the violated certificate from the queue and computes
certificates for the new data configuration. Some number of certificates may have to be
removed from the queue, and some number of new certificates added; see [7] for details.
A KDS is calledresponsiveif the time needed to update it after a certificate failure is
polylogarithmic in the total number of data elements.

When a data element changes its flight plan, all the certificates in the priority queue
that depend on it must have their times of next violation recomputed, and their positions
in the queue must be updated. A KDS is calledlocal if the number of certificates that
depend on a single data element is polylogarithmic in the total number of data elements.

The violation of a certificate is called anevent. External eventscause the configuration
function to change.Internal eventsdo not affect the configuration function, but must be
processed for the integrity of the data structure. We evaluate a KDS by counting events
under the assumption that the data motions arealgebraic. A KDS is calledefficientif
the worst-case number of total events (internal plus external) is asymptotically the same
as, or only slightly larger than, the worst-case number of external events, under the
assumption of algebraic motion.1 A KDS is calledcompactif the number of certificates
stored in the priority queue is roughly linear in the number of data elements.

Efficient, local, and compact KDSs are known for maintaining the convex hull and
closest pair of points moving in the plane, and for computing the maximum of points
moving along a line [7]. The data structure for computing the maximum is called akinetic
tournament. In the last few years much work has been done on KDSs for a wide range
of problems; see [1]–[3], [6], [11], [12], and references therein.

1 Some KDSs can be shown to be efficient for the larger class ofpseudoalgebraicmotions, which includes
all motions such that the total number of events for any constant-size subset of data elements isO(1). However,
the KDSs of this paper require algebraic motion for provable efficiency.
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3. Algorithms

In this section we present KDSs for maintaining three different versions of the extent
of a planar point set: diameter, width, and minimum enclosing box. The diameter and
width of a point setS in the plane can be computed by constructing conv(S), computing
the antipodal pairs of vertices,2 and choosing an appropriate antipodal pair [16]. The
smallest rectangle enclosingScan also be computed using a similar approach, though it
requires a little more work (see Section 3.4 below).

Each of these extent versions is therefore maintained using the KDS for maintaining
convex hulls of Basch et al. [7]. On top of that data structure we kinetize the rotating
calipers algorithm [14], [16] to maintain the antipodal pairs of vertices. We finally store
the antipodal pairs in a kinetic tournament, specialized to the desired extent attribute.

3.1. Antipodal Pairs

In this subsection we show how to maintain the set of antipodal pairs in the convex hull
of a set of moving points. The boundary of conv(S) can be partitioned into two convex
chains, calledupper and lower hulls, by its leftmost and rightmost vertices. Before
we proceed, to simplify the presentation, we dualize the problem. In the dual, a point
p = (a,b) maps to a linep∗ : y = ax+ b and a linè : y = αx + β maps to a point
`∗ = (−α, β). Let S∗ = {p∗ | p ∈ S} be the set of lines dual toS. The lower (resp.
upper) envelope ofS∗ is the boundary of the cell in the arrangementA(S∗) lying below
(resp. above) all the lines ofS∗. The lower (resp. upper) hull ofSmaps to the lower (resp.
upper) envelope ofS∗, with each vertex of the hull mapping to an edge of the envelope.
Since the slope of a line maps to thex-coordinate of its dual point, the range of slopes
of lines supporting a vertexp of the upper (resp. lower) hull maps to thex-interval of
the corresponding edge of the upper (resp. lower) envelope.

Let L (resp.U ) denote the projection of the lower (resp. upper) envelope ofS∗ onto
thex-axis; the projection partitions thex-axis into intervals (see Fig. 1). Each vertexv
of the lower (resp. upper) hull ofS corresponds to an intervalI (v) of L (resp.U ). Let
5 denote the partition of thex-axis obtained by overlayingL andU . For each interval
δ ∈ 5, we can store the pair of verticesµ(δ) = (a,b) such thatδ ⊆ I (a) ∩ I (b). It is
easy to verify that if(p,q) is an antipodal pair of vertices, thenI (p) and I (q) overlap,
and therefore they can be obtained from5.

To kinetize this static algorithm for computing antipodal pairs, besides the kinetic
convex hull data structure, we use the vertices of5 as the certificates to guarantee the
correctness of the current set of antipodal pairs, i.e., ifξ1 < ξ2 < · · · are the vertices
of 5, then we store(ξi , ξi+1) as certificates. Certificates are stored in a priority queue
so that we can quickly determine the next certificate that will be violated. A certificate
is violated when two vertices of5 become coincident (i.e., an interval of5 shrinks to
a point) and their order exchanges. A constant number of certificates involving those
intervals need to be updated to restore the certificates to correctness.

2 A pair (p,q) of vertices of conv(S) is antipodalif there are two parallel lines supporting conv(S) at p
andq.
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Fig. 1. Convex hull and its dual.

Theorem 3.1. The data structure for maintaining antipodal pairs is compact, efficient,
and responsive. In particular, its size is O(n logn), it processes O(n2+ε) events in the
worst case under algebraic motion, and it can be updated in O(log2 n) time at each
event.

Proof. The underlying convex hull data structure is compact, responsive, and efficient
[7]—it requiresO(n logn) space, it processesO(n2+ε) events in the worst case under
algebraic motion, and it can be updated inO(log2 n) time at each event. It is also easy
to see that the merged list structure is compact: its size isO(n).

To prove that the data structure is efficient, we must bound the number of events in the
merged list structure, under the assumption that the points move with algebraic motion.
The key quantity to bound is the number of pairs of points that become antipodal over
the life of the algorithm, since the list changes only when antipodal pairs change.

We extend the two-dimensional upper and lower envelopes ofS∗ intoR3 by consid-
ering time as a static third dimension.3 More precisely, let̀ i (t) : y = ai (t) · x+bi (t) be
the dual of the pointpi (t). Defineγi =

⋃
t∈R `i (t); γi is an algebraic surface of constant

degree. Let0 = {γi | 1≤ i ≤ n}. The lower (resp. upper) envelope ofS∗ at timet = t0
is the intersection (two-dimensional slice) of the lower (resp. upper) envelope of0 with
the planet = t0. Each combinatorial change in the upper (resp. lower) hull of conv(S)
corresponds to a vertex of the upper (resp. lower) envelope of0.

Let M (resp.M ′) be the minimization (resp. maximization) diagram of0 (onto the
xt-plane), and letM be the overlay of the planar subdivisionsM andM ′. L(t0) (resp.
U (t0), 5(t0)) is the cross section ofM (resp.M ′, M) at t = t0. Each vertex of5
corresponds to an edge ofM. Thex-order of two adjacent verticesξ, ξ ′ of 5 changes
at t0 if the corresponding edges ofM meet at a vertex ofM at t = t0. The number
of changes in thex-order of the vertices of5, and thus the number of changes in the
antipodal pairs, is bounded by the number of vertices inM′. This quantity is bounded
by O(n2+ε) [4].

3 The lower envelopeof a set{ f1, . . . , fn} of d-variate functions is the functionF(x) = min1≤i≤n fi (x).
We do not distinguish between a function and its graph. Theminimization diagramof a set ofd-variate
functions is the projection of the graph of its lower envelope onto the planexd+1 = 0.
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Finally, in order to prove that the antipodal-pair data structure is responsive, we must
argue that onlyO(1) antipodal pairs change at each event. There are two types of events
in the antipodal-pair structure: events in the underlying convex hulls and the exchanges
of adjacent vertices in5. An exchange of adjacent vertices of5 affects onlyO(1)
antipodal pairs. If a point ceases to be a vertex of conv(S), an interval of5 shrinks to
a single point. On the other hand, if a new vertexv appears on conv(S) betweenp and
q, the vertexξ of 5, corresponding to the common endpoint ofI (p) and I (q), splits
into two coincident verticesξ+, ξ− and a new singleton intervalI (v) = [ξ−, ξ+] = ξ
is created. In each case,O(1) certificates and antipodal pairs change.

Note that the data structure isnot local: one point may belong toO(n) antipodal
pairs. It may be possible to achieve locality by making the pairing relationship more
sophisticated, but this would require some additional insight.

3.2. Diameter

The diameter of a point setS is the maximum pairwise separation of two points inS. It
is realized by a pair of antipodal vertices of conv(S). A standard way of computing the
diameter ofS is to compute the convex hull, find all pairs of antipodal vertices, and then
identify the pair with the maximum separation [14].

To kinetize this algorithm, we maintain the set of antipodal pairs using the algorithm
described in the previous subsection. We then construct a kinetic tournament on these
antipodal pairs(p,q), with d(p,q) as the key. Whenever an antipodal pair changes, we
insert or delete an item from this tournament. Since we performO(n2+ε) insertions and
deletions in the tournament, the result by Basch et al. [8] shows that the diameter can
be maintained efficiently. Theorem 4.1 of Section 4.1 shows that the total number of
different diametral pairs isÄ(n2), and hence our KDS is efficient. Finally, each event
in the antipodal-pair structure affectsO(logn) nodes of the kinetic tournament, so our
data structure is responsive. We thus obtain the following.

Theorem 3.2. The data structure for maintaining the diameter is compact, efficient,
and responsive. In particular, its size is O(n logn), it processes O(n2+ε) events under
algebraic motion, and it can be updated in O(log2 n) time at each event.

3.3. Width

The width of a point setS in R2 is the minimum separation of two parallel lines so that
S lies in the strip bounded by the lines. It is well known that one of the lines contains
an edgeab of the convex hull, that the other passes through a vertexv of the convex
hull, and that(a, v) and(b, v) are antipodal pairs. We refer tov andab as an antipodal
edge–vertex pair, and say thatv is antipodal toab.

If (ab, v) is an antipodal edge–vertex pair, then the common endpoint ofI (a) and
I (b) lies in the intervalI (v). We can therefore find all antipodal edge–vertex pairs using
5, the overlay ofL andU , defined in Section 3.1. To kinetize the data structure, we
store all antipodal edge–vertex pairs(ab, v) in a tournament withd(ab, v) as the key.
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Theorem 3.3. The data structure for maintaining the width is compact, efficient, and
responsive. In particular, its size is O(n logn), it processes O(n2+ε) events, and it can
be updated in O(log2 n) time at each event.

Proof. Because the width data structure is virtually identical to the diameter structure,
the bounds are the same—the worst-case time spent processing events isO(n2+ε), for
anyε > 0. Theorem 4.7 of Section 4.2 shows that the number of combinatorial changes
to the width isÄ(n2) in the worst case, so the KDS is efficient.

Remarks. The similarity of the diameter and width data structures masks a rather
surprising difference. We expect the number of combinatorial changes to the diameter
to be O(n2+ε), because there are onlyO(n2) pairs of points. Because the width is
determined bytriplesof points—two edge endpoints and an opposing vertex—the na¨ıve
bound on the number of combinatorial changes to the width isO(n3+ε). However, the
points of the triples are not independent, and our algorithm shows that the actual number
of changes is onlyO(n2+ε).

3.4. Extremal Boxes

A common way of reducing the complexity of spatial algorithms is to approximate
a complex geometric object by a rectilinear box enclosing the object. Queries (e.g.,
intersection tests) are first performed on the box, then on the actual object only if the
approximate test shows it to be necessary. In this way many queries on the complex
object may be avoided. The approximating box is often chosen to be axis-aligned, but
in situations in which a better approximation is desired, an arbitrarily oriented box may
be computed.

Several criteria are used to choose the approximating box, depending on the applica-
tion. For a setSof points in the plane, we may wish to compute a rectangle of minimum
area or perimeter that enclosesS; we may wish to find the smallest square enclosing the
set; or we may even wish to compute a rectangle of the maximum area or perimeter, each
of whose sides touches at least one point ofS. We can maintain an optimal enclosing box
for any of these criteria with a single technique. For concreteness, we focus on main-
taining the minimum-area rectangle enclosing a point setS in the plane. The following
well-known lemma gives a simple algorithm for computing the minimum-area enclosing
rectangle.

Lemma 3.4. There exists a minimum-area rectangle R enclosing S so that each edge
of R contains at least one point of S, and at least one edge of R contains an edge of
conv(S).

In view of this lemma we maintain antipodal vertex–edge pairs of conv(S). For each
such pair(v,e), we also maintain the verticesvL , vR that support the lines perpendicular
to e. In the dual setting, we compute the lower and upper envelopes ofS∗ and their
projectionsL andU . We rotateSbyπ/2 in the clockwise direction, and letL ′,U ′ be the
x-projections of the lower and upper envelopes of the lines dual to this rotated set. We
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mergeL ,U, L ′, andU ′; let5′ be the resulting partition of thex-axis. An interval in5′

corresponds to a slope range in which the four convex hull vertices supported by lines
parallel and perpendicular to the slope remain fixed. A rectangle satisfying the condition
of Lemma 3.4 corresponds to an endpoint of5′. For a vertexa ∈ 5′, let R(a) be the
rectangle defined bya. We computeR(a) for each vertexa of 5′ and choose the one
with the minimum area.

To kinetize this algorithm, we construct a tournament on the set

R = {R(a) | a is a vertex of5′}
and update this set whenever any antipodal pair changes. The KDS is essentially similar
to those described above. The only difference is that instead of maintaining the overlay
of two lists, namely,L andU , we now maintain the overlay of four lists.

Theorem 3.5. The data structure for maintaining the minimum-area bounding rectan-
gle is compact, efficient, and responsive. In particular, its size is O(n logn), it processes
O(n2+ε) events, and it can be updated in O(log2 n) time at each event.

Proof. Compactness follows as in Theorem 3.2. In order to prove the efficiency, we
need to argue thatO(n2+ε) combinatorially distinct rectangles ever appear in the setR.
Let 0 be the same as defined in the proof of Theorem 3.1. LetS′ be the set obtained
by rotatingSby π/2 in the clockwise direction with respect to the origin. Let0′ be the
corresponding set of surfaces forS′. We can argue that every change inR corresponds
to a vertex in the overlayM of M(0),M(0′),M ′(0), andM ′(0′)—the minimization
and maximization diagrams of0 and0′, respectively. Since every vertex in this overlay
is a vertex of the overlay of two of these four planar subdivisions, the total number of
vertices inM, and thus the number of changes in the setR, is O(n2+ε).

Remarks. (i) A similar approach can maintain the minimum-perimeter bounding rect-
angle of moving points.

(ii) The extremal box is determined by four or five points of the set, so a na¨ıve bound
on the number of combinatorially different boxes for points in algebraic motion would be
O(n5). However, the preceding theorem shows that the actual number is onlyO(n2+ε).

4. Lower Bounds with Linear Motion

In this section we give a collection of lower bounds on the number of combinatorial
changes to the extent of a point set when each point moves linearly. Each of our con-
structions uses cocircular points whose linear motion maintains cocircularity. However,
the lower bounds hold even if we perturb the points slightly to place them in general
position.

Let C be the unit-radius circle centered at the origino. Let c̄(θ) = (cosθ, sinθ) be
the point onC at angleθ from thex-axis. Suppose a pointp moves linearly along a
chord ofC whose endpoints arēc(α) (at t = 0) andc̄(α + ϕ) (at t = 1). That is,

p(t) = (1− t) c̄(α)+ t c̄(α + ϕ).
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Fig. 2. Linear motion along equal-length chords preserves cocircularity.

Let

θ(t) = tan−1
(
(2t − 1) tan

ϕ

2

)
.

For t ∈ [0,1], θ(t) ∈ [−ϕ/2, ϕ/2]. The position ofp(t), for t ∈ [0,1], can be expressed
in polar coordinates,p(t) = (r p(t), θp(t)), as follows:

r p(t) = cos(ϕ/2)

cosθ(t)
, θp(t) = α + ϕ

2
+ θ(t). (1)

We say that the motion ofp is clockwise(resp.counterclockwise) if the distance from
p(0) to p(1) alongC in the clockwise (resp.counterclockwise) direction is at mostπ .
Note that the initial positionp(0) does not appear in the expression forr p(t). If multiple
points start onC and then move with the same speed along chords ofC of the same
length, then they remain cocircular throughout the whole motion. If all the motions are
clockwise (or all counterclockwise), then the angular separation of each pair of points is
constant:θp(t) − θq(t) is just the difference of the initial angular positions ofp andq.
See Fig. 2.

4.1. Diameter

In this section we present anÄ(n2) lower bound on the number of distinct diametral
pairs that can appear in a set ofn points under linear motion. We first discuss diametral
pairs for points lying on two concentric circles, then specify a particular set of linearly
moving points, and finally argue that our set hasÄ(n2) diametral pairs over time.

Suppose the points inS lie on two concentric circlesC1 andC2 of radii r1 andr2 and
centered at the origino. Suppose that the points onCi lie on an arc of length at most
πri /4, for eachi ∈ {1,2}. If a point p ∈ S∩ C1, another pointq ∈ S∩ C2, and the
origin o are collinear, ando lies betweenp andq, then diam(S) = d(p,q) = r1 + r2.
If there is only one such pair, then it is the unique diametral pair.

Supposen is even and setm= n/2. Sconsists ofm stationary points andm moving
points. The setP = {p0, . . . , pm−1} of stationary points is defined by

pi = c̄
( π

8m2
i
)

for 0≤ i < m.

The set of moving points isQ = {q0, . . . ,qm−1}. Eachqj moves linearly along a chord
of C with an angular span ofπ/4:

qj (t) = (1− t) c̄

(
7

8
π + π

8m
j

)
+ t c̄

(
9

8
π + π

8m
j

)
for 0≤ j < m.
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Fig. 3. Lower bound construction for diameter.

Since all points inQ move with the same speed in the counterclockwise direction, they
remain cocircular for allt ∈ [0,1] (Fig. 3).

We will prove that for every 0≤ i < m, there exist a timeti j ∈ [0,1] at which(pi ,qj )

is the only diametral pair ofS.

Theorem 4.1. The diameter of the set of n linearly moving points described above is
defined byÄ(n2) different pairs of points during the time interval t∈ [0,1].

Proof. As noted above, the points ofQ lie on a common circle whose radius varies
with time. The angular position ofqj (t) is

θj (t) = π + π

8m
j + θ(t) for θ(t) ∈

[
−π

8
,
π

8

]
.

ThusQ lies in a constant-size angular range

θm−1(t)− θ0(t) = π(m− 1)

8m
<
π

8
.

The angular range ofP is less thanπ/8m. Pointspi , qj (t), and the origin are collinear if

π

8m2
i + π = θj (t) = π + π

8m
j + θ(t),

that is, if

θ(t) = π

8m2
(i − jm).

Since 0≤ i < m, each(i, j ) pair determines a unique value ofθ(t) in the interval
[−π/8, π/8], which corresponds to a unique value oft ∈ [0,1]; call this valueti j . Thus
there arem2 = 2(n2) distinct valuesti j ∈ [0,1] such that(pi ,qj (ti j )) is the unique
diametral pair of the point set at timeti j .
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4.2. Width

In this section we present anÄ(n2) lower bound on the number of distinct vertex triples
that determine the width of a set ofn linearly moving points. As before, the construction
uses two sets of cocircular points, one stationary and one moving.

We define theslabof a line segments to be the set of all points that project perpen-
dicularly ontos. The basis of our construction is the following observation:

Observation 4.2. Suppose that the width of a point set is determined by a convex hull
edge e and a hull vertexv. Thenv lies in the slab of e.

Without loss of generality assume thatm= 4k for some integerk ≥ 2. The stationary
points of our set are

a = c̄
(π

8

)
,

b = c̄
(
−π

8

)
,

pi = c̄

(
−π + π(i −m/2)

64m2

)
+
(
2 cos

π

8
,0
)

for 0≤ i ≤ m.

Let P = {p0, . . . , pm}. The setQ = {q0, . . . ,qm} of moving points is defined by

qj (t) = (1− t) c̄

(
−3π

32
+ π

8m
j

)
+ t c̄

(
− π

32
+ π

8m
j
)

for 0≤ j ≤ m.

See Fig. 4. The total number of points isn = 2m+4. Q lies on the unit circleC centered
at (0,0), and P lies on the unit circleC′ centered at(2 cos(π/8),0). The two circles
intersect in arcs of lengthπ/4. The intersection points area andb; P lies in a tight clump
at the center of the left arc;Q lies in aπ/8 sector of the right arc. Each point inQ moves
along a chord ofC of angular spanπ/16. All points inQ move with the same speed in
the counterclockwise direction, so they remain cocircular for allt ∈ [0,1].

Fig. 4. Lower bound construction for width.
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As in the previous subsection,qj (t) can be expressed in polar form as

r j (t) = cos(π/32)

cosθ(t)
,

θj (t) = − π
16
+ π

8m
j + θ(t),

for all θ(t) ∈ [−π/32, π/32].
We prove below that for all 0≤ i ≤ m andm/4 ≤ j ≤ 3m/4, there is a timeti j at

which pi ,qj ,qj+1 is the only triple determining the width ofS, which implies that the
triple defining the width ofS changesÄ(n2) times. We need a sequence of technical
lemmas to prove this claim.

Lemma 4.3. For all t ∈ [0,1], all points of S appear on the boundary of the convex
hull conv(S) in the same order, namely a, p0, . . . , pm,b,q0, . . . ,qm form the vertices
of conv(S) in a counterclockwise order.

Proof. By constructiona,b, p0, . . . , pm appear on conv(S) in that order for allt ∈
[0,1]. Since the points inQ are always cocircular and remain in the same order, it suffices
to show that the lines through the pairs(b,q0(t)) and(a,qm(t)) are supporting lines of
conv(S) for all t ∈ [0,1]. LetC(t) be the circle containingQ at timet . By construction,
the radiusr (t) of C(t) is at least cos(π/32). Let ξ(t) be a point onC(t) such that
the segmentbξ(t) is tangent toC(t). Then the angle∠boξ(t) = cos−1(r (t)) ≤ π/32.
(See Fig. 5(i).) Since∠boq0(t) ≥ π/32, the segment fromb to q0(t) passes through the
interior ofC(t), which means that the line passing throughb andq0(t) supports conv(S).
Similarly, we can show that the line containing the segmentaqm(t) is a supporting
line.

For eachj , let

βj = π

16
− π

8m
j,

Fig. 5. (i) The tangent covers a sector of at mostπ/32. (ii) Intersection segment of a slab with a vertical line.
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so θj (t) = θ(t) − βj . For m/4 ≤ j ≤ 3m/4, the pointqj intersects thex-axis when
θ(t) = βj . Therefore the convex hull edge(qj ,qj+1) intersects thex-axis in the interval
θ(t) ∈ [βj+1, βj ]. That is,

π

16
− π

8m
( j + 1) ≤ θ(t) ≤ π

16
− π

8m
j . (2)

The restriction onj ensures that this is a valid interval ofθ(t). We define the interval
I j = [βj+1+ π/32m, βj − π/32m], i.e.,

π

16
− π

8m

(
j + 3

4

)
≤ θ(t) ≤ π

16
− π

8m

(
j + 1

4

)
. (3)

A simple calculation implies the following.

Lemma 4.4. For any m/4≤ j < 3m/4, I j ⊆ [−π/32, π/32].

During the intervalI j , the edgeqj qj+1 intersects thex-axis, butθj (t) ≤ −π/32m
andθj+1(t) ≥ π/32m, i.e., neitherqj nor qj+1 lies “very close” to thex-axis. We will
show that for anyθ(t) ∈ I j , only qj qj+1 and its antipodal vertex satisfy the condition
of Observation 4.2, and thatqj qj+1 hasm+ 1 different antipodal vertices during the
interval I j .

We need the following simple lemma (see Fig. 5(ii)) to prove the first claim, whose
proof is omitted.

Lemma 4.5. Let C be the unit circle centered at the origin, and let c be a chord of C
subtending an angle ofθ < π , whose midpoint lies in directionα from the origin. Then
the slab of c intersects the vertical line x= d in the y-interval[

d tanα − sin(θ/2)

cosα
, d tanα + sin(θ/2)

cosα

]
.

Lemma 4.6. For anyθ(t) ∈ I j , m/4≤ j < 3m/4,and an edge e inconv(S), if slab(e)
contains a vertex of S antipodal to e, then e= qj qj+1.

Proof. We first show thatW = slab(ap0) does not contain any vertex of conv(S)
antipodal to edgeap0. By construction,W cannot containbor any point ofP, so it suffices
to argue thatW does not contain any point ofQ antipodal toap0. For convenience, we
definex̄ = 2 cos(π/8)−1. Let`and`′ be the vertical linesx = 1 andx = x̄, respectively.
Let y0 be they-coordinate of the lower endpoint of the intersection segmentW ∩ `. Let
p′0 = c̄(π/128m) be the reflection ofp0, and letC′ be the reflection ofC with respect to
the lineab. Theny0 is the same as they-coordinate of the lower endpoint of the segment
slab(ap′0). See Fig. 6(i). Hence, by applying Lemma 4.5 with

α = π/8+ π/128m

2
and θ =

(π
8
− π

128m

)
,
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Fig. 6. Different cases for the proof of Lemma 4.6.

we obtain that

y0 ≥ x̄ tanα − sin(θ/2)

cosα

= x̄ tan
( π

16
+ π

256m

)
− sin(π/16− π/(256m))

cos(π/16+ π/(256m))

≥ (x̄ − 1) tan
( π

16

)
=
(
2 cos

π

8
− 2

)
tan

( π
16

)
≥ −0.0303.

A point qk ∈ Q is antipodal to the edgeap0 at timeτ only if

θk−1(τ ) < −
( π

16
+ π

256m

)
< θk+1(τ ).

Sinceθk+1(τ )− θk−1(τ ) = π/4m, we haveθk+1(τ ) < −π/16+ π/4m, which implies
that sin(θk+1(τ )) < 0. They-coordinate ofqk is smaller than that ofqk+1, and

y(qk+1(τ )) = rk+1(τ ) sin(θk+1(τ ))

= cos(π/32)

cosθ(τ )
sin(θk+1(τ ))

< cos
( π

32

)
sin(θk+1(τ ))

< cos
( π

32

)
sin
(
− π

16
+ π

4m

)
≤ cos

( π
32

)
sin
(
− π

32

)
(becausem≥ 8)

= − 1
2 sin

( π
16

)
= −0.0980.
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This implies that whenqk is antipodal to the edgeap0, it does not lie in the stripW.
Hence, slab(ap0) does not contain the vertex of conv(S) antipodal toap0 during I j . A
similar argument proves that slab(bpm) does not contain the vertex antipodal to the edge
bpm.

Next, consider an edgepi pi+1 for any 0≤ i < m. The projection of each edgepi pi+1

onto the linè is contained in they-interval[
−x̄

(
tan

π

128m
+ O

(
1

m2

))
, x̄

(
tan

π

128m
+ O

(
1

m2

))]
;

see Fig. 6(ii).
More generally, the intersection of slab(pi pi+1) with the convex hull lies inside the

y-interval [
− tan

π

128m
, tan

π

128m

]
.

For anyθ(t) ∈ I j and 1≤ k ≤ j , θk(t) < −π/32m. Therefore they-coordinate

y(qk(t)) = rk(t) sin(θk(t)) ≤ − sin
( π

32m

)
cos

( π
32

)
< − tan

π

128m
.

Hence,q1, . . . ,qj cannot lie in slab(pi pi+1) for anyθ(t) ∈ I j . On the other hand, for
all k > j , θk(t) ≥ π/32m duringθ(t) ∈ I j . A similar argument shows thaty(qk(t)) >
tan(π/128m) during the intervalI j . Hence, none ofqj+1, . . . ,qm lies in slab(pi pi+1).

Next, consider the edgeaqm. The minimum possibley-coordinate,ym, of the segment
slab(a,qm(t))∩ `′ for all t ∈ [0,1] is att = 0. At t = 0, the direction of the midpoint of
aqm from the origin is 5π/64. Sinceaqm subtends an angle of 3π/32, by Lemma 4.5,

ym = x̄ tan
5π

64
− sin(3π/64)

cos(5π/64)
> 0.0611.

None of the points inQ ∪ {a,b} can be antipodal toaqm. Since the slope of the line
supportingaqm is always negative, the vertexpi of conv(S) antipodal to the edgeaqm

has to lie below thex-axis. However, thenpi 6∈ slab(aqm). Similarly, the vertex antipodal
to bq0 does not lie in slab(bq0).

Finally consider an edgeqkqk+1 for somek 6= j . For allθ(t) ∈ I j and for anyk > j ,
the edgeqkqk+1 lies above thex-axis and they-coordinate of the lower endpoint of the
segment̀ ′ ∩ slab(qkqk+1) is

yk > x̄ tan
3π

32m
− sin(π/16m)

cos(3π/32m)
≥ 0.0533

m
> sin

π

128m
>

0.0245

m
.

As in the previous case, any point ofS antipodal toqkqk+1, for k > j , has to lie below
the x-axis and thus does not lie in slab(qkqk+1). Likewise, none of slab(qkqk+1), for
k < j , contains the point antipodal to the edgeqkqk+1. Hence,qj qj+1 is the only edge
of conv(S) for which the vertex antipodal to the edge lies in its slab. This completes the
proof of the lemma.
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Since the orientation of the normal to edgeqj qj+1 at timet is θj+1(t) − π/16m, by
(3), it varies from−π/32m to π/32m during I j . Therefore eachpi becomes antipodal
to qj qj+1 during the intervalI j . Combining Lemmas 4.4 and 4.6, we can prove that there
arem/2= n/4− 1 convex hull edges, each of which in turn determines the width with
m+ 1 = n/2− 1 different hull vertices during the time interval [0,1]. Thus the triple
of hull vertices determining the width changesÄ(n2) times. We therefore conclude the
following.

Theorem 4.7. The width of the set of n linearly moving points described above is
defined byÄ(n2) different triples of points during the time interval t∈ [0,1].

4.3. Extremal Boxes

This section exhibits a configuration ofn points in linear motion such that the minimum-
area (or minimum-perimeter) enclosing rectangle undergoesÄ(n2) combinatorial
changes.

We assumen = 8i for some integeri ≥ 1. The construction involvesm = n/2
closely spaced pointsp1, . . . , pn/2 that always lie on a circular arc of large radiusr
(r ≈ n2/2), rotating counterclockwise around the origin. There are an additionaln/2
points q1, . . . ,qn/2 near the origin so that, forj = 1, . . . ,n/8, the convex hull of
q4 j−3, . . . ,q4 j is always a squareQj . The side length of eachQj is between 2 and 3,
and eachQj is slightly bigger thanQj−1. The squares also have different orientations:
the base ofQj makes an angle ofj θ with respect to thex-axis (whereθ is a function of
n). See Fig. 7.

The idea is that duringt ∈ [ j − 1/8, j + 1/8], eachpi will crossL j , the line through
the origin with anglej θ . We will show that the bounding boxB has sides parallel to
Qj in this interval, and thus its combinatorial description depends on which of thepi is
farthest from the origin in the direction ofL j . Each of thepi will become the farthest
point in turn, as the points crossL j , thereby producingn/2 combinatorial changes to the
bounding box. This is repeated at timest = 1, . . . ,n/8, yielding2(n2) changes in total.

The following arguments make this construction more precise.

Lemma 4.8. Let P = {p1, . . . , pm} be a set of points on a circle of radius r≥ 2,
centered at the origin such that x(pi ) > 0 and y(pi ) ∈ [−1,1] for all i , i.e., they lie on

Fig. 7. The lower bound for minimum boxes.
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Fig. 8. Illustration for Lemma 4.8.

a short arc near the positive x-axis. Let Q be the square whose vertices q1, . . . ,q4 are
the points(±1,±1). Then the minimum-area(or minimum-perimeter) rectangle that en-
closes the P and Q is given by B= [−1, xmax]× [−1,1], where xmax= max1≤i≤n x(pi )

See Fig. 8.

Proof. Let pi0 ∈ P be the point with the maximumx-coordinate.B containspi0 on its
right side and its area is 2(1+ xmax). We will show that the smallest rectangle containing
Q and pi0 is B. Suppose, on the contrary, the smallest-area rectangle containingQ and
pi0 is B′. Let 0≤ α ≤ π/2 be the orientation of the long side ofB′ with respect to the
x-axis. By Lemma 3.4, each side ofB′ contains at least one point amongpi0,q1, . . . ,q4,
and one of them contains two of these points. IfB 6= B′, no edge ofB′ contains two
qi ’s. Hence, one of them, say, the bottom one, contains aqi and pi0. Then it is easily
seen thatpi0 is one of the vertices ofB′. A simple trigonometric calculation shows that
the area ofB′ is

2(sinα + cosα)

(
xmax− 1

cosα
+ 2 cosα

)
= 2(1+ tanα)(xmax+ cos(2α)).

Sincexmax ≥ 2, the above expression is minimum whenα = 0, which shows that
B′ = B, as claimed. A similar argument shows thatB is also the minimum-perimeter
rectangle enclosingP andQ.

The construction now proceeds as follows. Setθ = 8/n2. For eachi = 1, . . . ,n/8,
the vertices ofQi are obtained by taking the squareQ whose vertices are(±1,±1), and
rotating it by an angle ofi θ counterclockwise around the origin. The size ofQi varies
with time, according to the scale factor

si (t) = 1+ 4θ(2i t − i 2) = 1+ 4θ(t2− (i − t)2). (4)

In other words, each vertex ofQi is on a linear trajectory through the origin, such that its
distance from the origin at timet is

√
2si (t). By our choice ofθ , for every 1≤ i ≤ n/8,

si (t) ∈ [1/2,3/2] for t ∈ [0,n/8]. Note that, by the second equality in (4),Qi is the
largest square at timet = i . The following lemma is a slightly stronger version of this
observation.

Lemma 4.9. For all 1≤ i 6= j ≤ n/8 and for t ∈ [ j − 1/4, j + 1/4], Qi ⊆ Qj .
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Fig. 9. Two nested squares.

Proof. Assumei < j . Let α = ( j − i )θ ≤ 1/n. The orientation ofQi andQj differ
by ( j − i )θ = α. For t ≥ j − 1/4, we have

sj (t)

si (t)
= 1+ 4θ(2 j t − j 2)

1+ 4θ(2i t − i 2)

= 1+ 4θ [2t ( j − i )− ( j 2− i 2)]

1+ 4θ(2i t − i 2)

≥ 1+ 8
3( j − i )θ [2t − ( j + i )]

> 1+ 8
3α
[
2
(

j − 1
4

)− (2 j − 1)
]

= 1+ 4
3α

≥ 1+ sinα

≥ sinα + cosα.

SinceQi andQj are centered at the origin and their orientation differs byα, a simple
trigonometric calculation shows that ifsj (t) ≥ si (t)(cosα+sinα), thenQi (t) ⊆ Qj (t);
see Fig. 9. Hence, fort ≥ j − 1/4, Qi (t) ⊆ Qj (t). A similar argument shows that for
i > j , Qi (t) ⊆ Qj (t) for t ≤ j + 1/4. This completes the proof of the lemma.

Finally, the setP = {p1, . . . , pn/2} is placed on a circleC of radiusr = 4/θ = n2/2,
equally spaced along an arc of length 1/2. At time t = 0, theiry-coordinates lie in the
range [−1/4,1/4]. All points in P move counterclockwise along chords that subtend
an angle ofθ∗ = (n/8)θ = 1/n, such that they intersectC at timest = 0 andt = n/8.
The length of the chord is 2r sin(θ∗/2), which lies in the rangen/2+ O(1/n3). For
simplicity, we ignore the termO(1/n3). A closer look at the following argument shows
that this extra term does not affect the analysis. So we assume that the chord length is
n/2, which implies that the speed of eachpi is 4, and they-coordinates of the points
lie in the range [4t − 1/4,4t + 1/4] (noting that the chords are all nearly vertical for
largen).

Let L j be the line that makes an angle ofj θ with thex-axis. Consider the time interval
[ j − 1/8, j + 1/8]. By Lemma 4.9, the smallest rectangle enclosingS is determined by
Qj and the point ofP that is farthest from the origin alongL j . Now, at timet = j −1/8,
all points inP havey-coordinates in the range [4j − 3/4,4 j − 1/4], and they lie below
the intersection ofL j with C (at y ≈ 4 j ). As eachpi crossesL j , it is clearly the farthest
point in directionL j . By time t = j + 1/8, all the pi have crossedL j . We therefore
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have hadn/2 distinct minimum-area enclosing rectangles ofS in this interval. We have
established the following theorem.

Theorem 4.10. The combinatorial description of the minimum-area(or minimum-
perimeter) bounding box of n points moving linearly in the plane can changeÄ(n2)

times.

5. Kinetic Convex Hulls

In this section we give tight bounds on the number of combinatorial changes that may
occur in the convex hull of points moving linearly in the plane. The lower bound con-
struction is an easy application of the linear-motion-on-circles technique of Section 4.
The upper bound is an improvement on the known bounds for points in general algebraic
motion; when specialized to the case of linear motion, it shows that the convex hull may
undergo2(n2) combinatorial changes.

5.1. Lower Bound

We exhibit a configuration of 2n points in linear motion for which the convex hull
undergoesÄ(n2) combinatorial changes. This improves the lower bound example given
by Sharir and Agarwal [15], which uses quadratic motions.

We define two convoys of oppositely moving points. The points always lie on a
common circle (which varies in size), so all are on the convex hull, but their order along
the circle changes.

Let

pi (t) = (1− t) c̄
( π

4n
i
)
+ t c̄

(π
4
+ π

4n
i
)
,

qj (t) = (1− t) c̄
(π

4
+ π

8n2
j
)
+ t c̄

( π
8n2

j
)
,

for 1 ≤ i, j ≤ n. At any timet ∈ [0,1], all the pi andqj lie on a common circle with
radiusr (t) = cos(π/8)/ cosθ(t), whereθ(t) = tan−1((2t − 1) tan(π/8). The angular
position of pi (t) is

θ(pi , t) = π

4n
i + π

8
+ θ(t)

and the angular position ofqj (t) is

θ(qj , t) = π

8n2
j + π

8
− θ(t).

Point pi coincides withqj at

θ(t) = π

8n

(
j

2n
− i

)
.

Thus each(i, j ) pair determines a uniqueθ(t) ∈ [−π/8,0] at whichpi andqj exchange
on the convex hull. We have established the following theorem.
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Theorem 5.1. There is a set of n linearly moving points whose convex hull undergoes
Ä(n2) combinatorial changes as the points move.

5.2. Upper Bound

We bound the number of combinatorial changes to the convex hull in terms of the number
of times any three points become collinear. It is well known that if the point trajectories
are algebraic of degreek, then three points become collinear at mosts = 2k times.
The theorem below shows that in this case there areO(nλ2k(n)) changes to the convex
hull. This improves the bound ofO(nλ2k+2(n)) given in [15]. In particular, it implies
that for linear motion the number of changes isO(n2), matching the lower bound of the
preceding section.

Theorem 5.2. Given n points moving in the plane such that no three points become
collinear more than s times, the combinatorial description of their convex hull changes
at most O(nλs(n)) times.

Proof. Let the points be identified by integers,P = {1, . . . ,n}, and define theleft-
neighborfunctionl i (t) as follows. Ifi does not belong to the convex hull at timet , then
l i (t) = ε. Otherwise,l i (t) is the point j on the convex hull that is adjacent toi in the
counterclockwise direction.

For eachi , let Li be the sequence of values assumed byl i (t) ast ranges from−∞ to
∞. We remove all occurrences ofε from Li , and replace any strings of identical symbols
by a single occurrence, to yield a reduced sequenceL∗i .

First, we show that
∑ |L∗i | is an upper bound on the number of changes to the convex

hull (where|S| denotes the length of a sequenceS). We do this by charging each change
to a unique symbol in someL∗i .

The convex hull can change in only two ways: either a current vertex ceases to be a
vertex of the hull, or a new vertex appears on the hull. Suppose that a current vertexi1

is being deleted, and leti0 andi2 be its counterclockwise and clockwise neighbors just
before the deletion. In this case,Li2 will contain the substringi1i0, and we charge the
deletion to the symboli0. Similarly, if i1 was just inserted, thenLi2 contains the substring
i0i1, and we charge the insertion to the symboli1. It is clear that no symbol is charged
twice in this way, and that all charged symbols are present in the reduced sequencesL∗i
(since each one is preceded by a different non-ε symbol).

Furthermore, eachL∗i is an (n − 1, s) Davenport–Schinzel sequence. To see this,
observe that when symbolj appears inL∗i , it means thati j is an edge of the convex
hull, and thus all trianglesi jk have a signed area that is positive. Similarly, ifk appears
in L∗i , then all trianglesik j have positive area (and all trianglesi jk have negative area).
Thus, if the alternationj · · · k appears inL∗i , then the signed area of trianglei jk is zero
at some intermediate time, implying a collinearity ofi , j , andk.

Given that any three points are collinear at mosts times, there are at mostsalternations
between any two symbolsj andk. Thus, eachL∗i is a (n − 1, s) Davenport–Schinzel
sequence (L∗i contains no repeated symbols by construction), and we have

∑ |L∗i | ≤
nλs(n).
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6. Conclusions

In this paper we presented efficient and compact KDSs for maintaining the diameter,
width, and a smallest enclosing rectangle of a planar point set. We also gave constructions
showing thatÄ(n2) combinatorial changes for these extent functions are possible even
under linear motion. We believe that our construction of linear motion that maintains
cocircularity has other applications. For example, it was recently used for proving lower
bounds on the number of changes in a triangulation of a planar point set [1]. We conclude
by mentioning a few open problems:

(i) Design an efficient KDS for maintaining the smallest enclosing disk of a point
set in the plane.

(ii) Design an efficient KDS for maintaining the convex hull of a point set in 3-space.
We believe that the randomized KDSs proposed in [3] might be useful for this
problem.

(iii) Can the data structures presented in this paper be made local without affecting
their efficiency or size?
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