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Abstract. We describe a kinetic data structure (KDS) that maintains the connected com-
ponents of the union of a set of unit-radius disks moving in the plane. We assume that the
motion of each disk can be specified by a low-degree algebraic trajectory; this trajectory,
however, can be modified in an on-line fashion. While the disks move continuously, their
connectivity changes at discrete times. Our main result S @r) space data structure that
takesO(logn/loglogn) time per connectivity query of the form “are disksandB in the

same connected component?” A straightforward approach based on dynamically maintain-
ing the overlap graph requirgs(n?) space. Our data structure requires only linear space
and must deal witlD(n?*¢) updates in the worst case, each requi®gog?® n) amortized

time, for anye > 0. This number of updates is close to optimal, since a satrabving

unit disks can underg (n?) connectivity changes.

1. Introduction

Motivated by applications in mobile communication and ad hoc networks, we study a
basic geometric problem in the plane: kinetic connectivity of unit disks. Specifically,
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given a set of unit radius disks moving independently in the plane, we weorhpact

data structure that can support efficient queries of the following form: “Are disksd

B in the same connected component?” (Two digkand B are connected if eitheA

andB overlap, or if there is a sequence of digks= Dg, Dy, ..., Dx = B such thatD;
overlapsD; i, foralli =0,1,...,k — 1.) The problem of determining the connected
components of the union atationarydisks, or other geometric shapes, has been well
studied in computational geometry, and several efficient algorithms are known [2], [7],
[9]. In this paper, however, we are interested in maintaining the connected components
of the disks as they move around in the plane.

One obvious approach to dealing with motion is to use discrete sampling: we can take
snapshots of the disks at regular intervals, and recompute the connected components at
each instant. This simple approach tends to be very inefficient because sampling must
be fine enough so as not to miss any critical changes in connectivity. Recomputing the
connectivity from scratch at each instant also seems wasteful. Instead, we use the kinetic
data structure (KDS) framework [1], which is an event-driven data structure. Rather
than updating the connectivity at regular, fixed time intervals, a KDS responds to certain
“critical” geometric conditions or events and is guaranteed to discover all connectivity
changes. We show that our KDS for connectivity has many desirable properties: it has
linear size, supports fast connectivity queries, and requires roughly quadratically many
updates, each of which takes poly-logarithmic time.

We assume that each disk in the set has a publififgdd plan—a specification of
its future motion, at least in the short term. We make no assumption about the motion
except that it is described by some low-degree algebraic curve so that, for any two disks,
we can determine in constant time when they meet or separate for the first time. The
flight plan of a disk can also change at any time, as long as the KDS is natified of this
change.

Maintaining the connectivity of moving disks has potential applications in ad hoc
mobile networks [8], [12]. Briefly, an ad hoc network consists of a set of mobile hosts
(or devices) in which peer-to-peer communication occurs without the use of base sta-
tions. Each host has its own unique IP address, and it transmits its position through a
beacon. Two hosts within each other’s transmission radius can communicate. The hosts
themselves act like “mobile routers,” and cooperatively forward messages not addressed
to them. In order for such ad hoc networks to work correctly, at the very least, each host
needs to know the names of all other reachable hosts. If we treat the communication
range of each host as a unit-radius disk, the reachability problem is precisely our disk
connectivity problem. Due to the “light-weight” nature of mobile hosts, it is important to
keep the computation load and memory requirement to a minimum. Our KDS achieves
both of these goals.

Another application of disk (or ball) connectivity arises in maintaining group com-
munication in military operations. During reconnaissance missions, a set of military
personnel or airplanes must remain in radio contact throughout the mission, even as
the individual members of the group move independently. A break in the group com-
munication is considered a fatal error, requiring a termination of the mission. Again,
the connectivity of disks can be used to model this problem. Connectivity of moving
shapes is also relevant to the study of biological processes in which coalitions of mov-
ing entities are determined by contact, and we want to track the evolution of coalitions
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over time. Examples include computer animation of bird flocks where proximity de-
termines subgroups and flight behavior, and cellular automata viewed at a macroscopic
scale.

The number of connected components is a zero-order topological invariant of the
shape defined by the union of the unit disks—it corresponds to the the zero Betti number
of the shape. Higher order Betti numbers, such as the number of holes, may also be
of interest. Edelsbrunner [3], [4] defines therveof a union of disks to be a natural
simplicial complex associated with the disks. The nerve is a topological retract of the
union of disks and thus has the same topological invariants. It can be readily extracted
from the Delaunay triangulation of the disk centers. A Delaunay triangulation of a set
of disks can easily be kinetized, but unfortunately no subcubic bound is known for the
number of changes the Delaunay triangulation undergoes under motion.

The connectivity problem can be readily cast as a dynamic graph problem: model each
disk by a node, and put an edge between two nodes if their disks overlap. As disks move,
some edges are added or deleted. Using the flight paths of the disks, we can maintain
a priority queue of times when the overlap between disks changes (either two disjoint
disks meet, or two overlapping disks separate). We can use the dynamic graph data
structure of Holm et al. [6] to maintain thasserlap graph This data structure supports
edge insertions or deletions @(log? n) amortized time, and connectivity queries in
O(logn/loglogn) time.

The chief drawback of using the overlap graph is that it can lfage®) edges in
the worst case, and therefore it is not compact. The main contribution of this paper is
a linear-size spanning subgraph of the overlap graph that can be maintained efficiently
as the disks move. We use the dynamic structure of [6] to maintain the connectivity of
our graph. Our structure sfficientin the KDS sense: if the disks move algebraically,
the worst-case number of connectivity change® {g?), and the worst-case number of
changes to our graph is on@(n?*¢), for anye > 0.

Maintaining the connectivity of disks appears to be quite different from maintaining
the connectivity of moving rectangles [5]. In the case of rectangén) cycles on the
boundary of the union of rectangles contain a rectangle vertex. Rectangle adjacencies
along these cycles give a linear-size spanning graph, which is maintained kinetically
as the rectangles move. Finding a similar spanning graph for disks is quite a bit more
complicated. In the case of rectangles, all the geometric primitives can be implemented
using standard data structures such as interval and segment trees. In the case of disks,
we need new structures, called shadows and shadow diagrams.

2. Preliminaries

Let Sbe a collection ofi points moving in the plane. Each point is the center of a unit
disk. We are interested in maintaining the connected components of these disks as the
points move.

Two unit disks areonnectedf they overlap (that is, the separation of their centers is
less than 2), or if they belong to the same connected component of the transitive closure
of the “overlap” relation. We say that two points $fare connected if and only if their
unit disks are connected.
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We denote byJUDisk(p) the unit disk centered on a poipt and useJDisk(S) to
denote the union of the unit disks centered on point 8fecause most of the discussion
below uses disks of radius 2, we use the simpler notdiliop) and D (S) to denote the
corresponding concepts for radius-2 disks. In general, we use the following function-
style notation for the Minkowski sum: X is a shape with a reference point, théap)
is a translate oK with the reference point g1, andX(P) = Upep X(p) for any point
setP. In other words X(p) = X + p and X(P) = X + P, where “+” denotes the
Minkowski sum.

As part of our data structure we use sorted lists that support searching, insertion,
deletion, splitting, and concatenation (logn) time per operation. Such lists are
typically implemented as balanced binary trees [2] or skip lists [10]. In the remainder of
this paper (particularly Section 5.1) we simply use the teomed listto refer to such a
data structure.

3. A Spanning Graph for Static Points

In this section we define a linear-size multigrapbn the points oE5whose connectivity
is the same as that induced b\Disk(S). For each pointp, G has up to eight edges
connectingp to other pointsg € S that lie to its right and such thaiDisk(p) N
UDisk(q) # @.

It is convenient for us to convert the symmetrical “overlap” relation between unit
disks into an asymmetrical containment relation between radius-2 disks and points. For
any two pointsp andq, UDisk(p) N UDisk(q) # ¢ if and only if p is contained in the
radius-2 diskD(q).

To help define the graph, we select eight subsets of the pointsSdying to the right
of p= (Xp, Yp). See Fig. 1. For eadhe {0, 1} andj € {0, 1, 2, 3}, define abox set

Oij(p) = SN{X,Y) | Xp+1 <X <Xp+ 141,
Yo—2+j<y<yp—1+j}.

Lemma3.1. For any set A= [J; ;(p), the disks of UDiskA) form at most one
connected component

0’3&3
0,2 1,2\

0,1 l,]/
0'0/,0

Fig. 1. Cover the right half of the disk with eight squares.
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0 — —1

Fig. 2. The slab defining_1 2(p) is shown shaded.

Proof. The claim follows from the fact that the intersection of any two unit disks with
centers inA is nonempty. The seA is determined by the intersection of a unit square
with S, and hence the maximum separation between any two poirRs{/2. O

If g € Slies to the right ofp and D(q) containsp, thenq € [0; j(p), for some
i €{0,1},j €{0,1,2, 3}. (The right half ofD(p) is contained in the union of the eight
unit squares that define thg; ;(p) sets.) The preceding lemma implies that we can
connectp to all connected components lying to its right by adding at most eight edges
to the graph: one to the connected component of €daisk(0J; ; (p)).

For convenience of computation (see Section 4), we do not actually separate the points
right of p into unit squares. Instead, we assign them to nondisjoint, semi-infinite slabs

SN{X.Y) [ Xp+i <X, Yp—24+]j<y<y—1+]j},

fori € {0,1} andj € {0, 1, 2, 3}. We identify theseslab setdy their indices(, j),
using the notatior; j (p). See Fig. 2. The edges Gffrom p to points ofSto its right
are defined as follows:

For each set of points; j (p), if p € D(C;,;(p)), putintoG an edge fronp to the
pointq € T j(p) such thatD(q) has the leftmost intersection with the horizontal
line y = yp. DefineTarge{(p, i, j) = q. Targe{(p, i, j) does not exist it; j(p)

is empty orp ¢ D(Ci j (p)).

Note thatTarget p, O, j) may be equal tGargetp, 1, j), which is whyG is a multi-
graph instead of a graph. This is becamsg (p) containsC_1 j (p). In fact, Co j(p) =
Oo,j(P) U C1,j(p), and even ifdJq ; (p) is nonempty,Target p, 0, j) may belong to
C1.j(p). See Fig. 3.

Lemma 3.2. For each pi € {0,1}, and j € {0, 1, 2, 3}, the point Targetp, i, j)
belongs to the connected component®f (p).

Proof. We prove the lemma fdr= 1 andi = O separately. The case= 1 is easier,
so we handle it first.
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Fig. 3. Target(p, 0, 1) = b belongs ta—1,1(p), even thougip 1(p) is nonempty.

If g = Target(p, 1, j) exists, ther must belong taJ, (p), the set contained in the
unit square at the left end afy, j (p), since points to the right af1, ; (p) are outside
D(p). There is only one component containing pointsf; (p), by Lemma 3.1, and
so the lemma is true far= 1.

Because—1 ;(p) S Co,j(p), we need to be sure thaargeip, 0, j) is either in
Oo,j(p) or connected to it. We consider the cages {0,3} andj € {1, 2} sepa-
rately.

First, consider the case= 0 (j = 3 is symmetric). The portion dD (p) inside the
slab{(x, y) | Xp < X, Yp — 2 <y < Y¥p — 1} has diameter exactly 2. See Fig. 4(a). (The
diameter is determined by the lower left and upper right points of the region. However, the
upper right pointis the intersection Bf( p) with the radius-2 disk centered@&i,, y,—2),
which shows that the diameter is 2.) All the pointgofy o(p) U 1,0(p)) N D(p) belong

(@) (b)

Fig. 4. (a) The diameter ofdo,o(p) U O1,0(p)) N D(p) is at most 2. (b) Pointa andb belong to different
connected components; the horizontal line thropghtersectsD (a) left of its intersection withD (b).
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to the same connected component, and hence eVargéi p, 0, 0) belongs tad; o(p).
itis still connected taJg o(p).t

Second, consider the cape= 1 (j = 2 is symmetric). The diameter of the portion of
D(p) inside the slalf(x, y) | X, < X, Yp — 1 <y < y,} is larger than 2. Hence there
may be two connected components of points inside that region. If there is only one
component, then the lemma is true; therefore, suppose that there are two components.
Leta € (g 1(p) andb € (5 1(p) belong to different components. See Fig. 4(b). Because
they-coordinates o& andb differ by at most 1, theik-coordinates differ by at least3.
The leftmost point oD (b) is at most 2- v/3 to the left ofa. Likewise the left intersection
of y = yp, with D(a) is at least/3 to the left ofa. Hencey = yp intersectdd (a) at least
24/3 — 2 to the left of its intersection wittD (b). That is, Targetp, 0, 1) € Oo.1(P),
which proves the lemma. O

Theorem 3.3. The multigraphG has the same connected components as the connec-
tivity graph of UDiskS).

Proof. By induction, it is sufficient to show that each poipte Sis connected in

G to all the connected components determined by points to the rightasfd inside
D(p). The points right ofp that are directly connected fo(i.e., that lie insideD (p))
are contained inJ; j(p) fori € {0,1}, j € {0, 1,2, 3}. By Lemma 3.1, the points of
each such set belong to a single connected component. The@cayitains edges from

p to eachTargei(p, i, j); by Lemma 3.2,p is therefore connected to all components
determined by points lying right g and insideD (p). O

4. Geometric Structures

In this section we describe geometric structures from which we can extract the spanning
graphg. We describe these structures for a static pointSs&ection 5 shows how to
maintain the structures as the points move.

We slice each dislo(p) horizontally into four unit-height fragments, identified as
Fj(p), for j € {0,1,2,3}. Let p = (Xp, Yp). Then

FFp=DMPN{X.Iyp—j+l<sy<yp—j+2.

Note that the disk fragments are numbered top to bottom, while the unit squares are
numbered bottom to top. (This is intentional, as Lemma 4.1 will reveal.) See Fig. 5.
As above, ifP is a set of points, we use the notatib(P) to denote the union of disk
fragments defined by the disks centered at poink.ie introduce these disk fragments
because containment by a fragment corresponds to intersection with a disk whose center
lies in a particular slab. This is made precise in the lemma below.

1 BecauseéTarge(p, 1, j) always belongs to the same connected componefa@eip, 0, j), for j <
{0, 3}, we could reduce the size gfby eliminating the edges ftarget p, 1, 0) andTarget p, 1, 3) from each
p € S. However, this optimization makes no asymptotic difference, and so for uniformity of description we
retain those edges in the rest of the paper.
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RN
[ )
)

oS

Fig. 5. Divide the disk into four horizontal slices.

As an extension of the notations; ; (p) andC; ; (p) used in Section 3, we introduce
the notatiorg, (p) to denote the half-plane s8N {(x, y) | Xp +i < x}, fori € {0, 1}.
That is,E, (p) is the subset o8 lying more than distanceto the right ofp. See Fig. 6.

Lemma 4.1. Point p is contained in 0_; j(p)) (thatis Targe(p, i, j) is non-nul) if
and only if p is contained in jKE, (p)).

Proof. See Fig. 7. Consider a poiate C; j(p) such thatp € D(q). Letq = (X, Yq),

and recall thatp = (Xp, Yp). Thenyp, + j —2 < yq < yp + j — 1, by definition of
Ci,j(p). Equivalently,yq — j +1 <y, < yg— j + 2. Thatis,p € F;(q). Because

E (P) 2 Ci.j(p), we have established the forward direction of the lemma. The argument
to prove the reverse direction is similar. O

Because we are interested in the containment of a golyt disks whose centers lie
to the right of p, we do not have to worry about the right boundaries of those disks. We
can replace each disk by ishadow which is the set of all points lying in the disk or
directly to its right. In general, thehadowof a planar regiorQ is the Minkowski sum
of Q with the non-negativa-axis,

ShadowQ) = {(x,y) | 3(X", y) € Q, x" < x}.

Lemma4.2. Point p is contained in KE (p)) if and only if p is contained in
ShadowF; (§ (p))).

Fig. 6. The sets,(p), C1.2(p), anddy 2(p).
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Fig. 7. The slab of—1 2(p) is shown darkly shaded, and the copyfefcorresponding tdargei(p, 1, 2) is
lightly shaded. The only copies &% that containp and have centers in the half-plane Bgtp) are those with
centers in the slab set; 2(p).

Proof. See Fig. 8. Becaudg (E (p)) C ShadowF; (g (p))), the lemma can fail to be
true only if p lies strictly to the right ofF; (, (p)). However, for anyg < E, (p) such that
p lies to the right ofF; (q), p also lies to the right oD (q), which implies thatp is right
of g, a contradiction. O

It follows that we can determin@arget p, i, j) by intersecting the boundary of
ShadowF; (E; (p))) with the horizontal liney = y,. If the intersection occurs to the
left of p, thenTarge{(p, i, j) is the pointg whose fragmeni; (q) contributes the bound-
ary arc on which the intersection lies. Otherwigeget(p, i, j) is null.

To compute and maintain the gragtefficiently, we need a geometric structure that
representShadowF; (E (p))) forall p € S;i € {0, 1}, andj € {0, 1, 2, 3}. We use a
variant of themaxima diagranused by Basch et al. in their KDS for maintaining the
closest pair of points in the plane [1].

Let C be any convex shape with constant complexity in the plane, such that the
intersection ofC with a horizontal line, or the intersection of two translated copies of
C, can be computed in constant time. Furthermore, if the copi€3 afe translating
algebraically as a function df it must be possible to compute in constant time the
value oft at which a triple intersection occurs for three copie€pbr two copies and a
horizontal line. We assume th@thas a reference position (the origin in its own frame
of reference), and tha& (p) denotes a copy df placed with its reference position at
p. We useC e {Fy, F1, F2, F3} for our KDS, but we describe the geometric structure in
terms of a general convex sha@e

Fig. 8. F2(q) is darkly shaded; its shadow is the entire shaded area. BeEa(geis left-right symmetric
aboutq, a point to the right of2(q) is also to the right ofy.
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Fig. 9. Max(C, xp) is shown dark. The feet @hadowC(p)) are circled. The shadow diagram records all
the feet ofShadowC(p)) forall p € S.

For a giverx-coordinatex, letMax(C, X) represent the left envelope of all placements
of C at points ofS to the right ofX. That is, if S.x denotes all the points db with
x-coordinates greater than thenMax(C, X) is dShadowC(S. %)), the boundary of
ShadowC(S.%)). This boundaryMax(C, X) consists of horizontal edges and edges of
translated copies dE. We cannot afford to computdax(C, X) explicitly for eachx,
as the total size of the shadows can®@?) for n points. Instead, we represent the
different Max(C, X)'s in a diagram with linear size, as is done for unions of wedges
in [1].

We can comput®ax(C, x) for all values ofx by a right-to-left sweep over the points
of S. Our linear-size data structure records the history of that sweep. During the sweep,
Max(C, x) changes only whex = x, for some pointp = (Xp, ¥p), p € S. If we
maintain the edges dflax(C, x) for the current value of in a balanced binary tree, we
can update the tree in logarithmic time when we sweep over each pdsitAaf edge
of ShadowC (p)) replaces a sequence of edgedliax(C, Xp).

For a given poinip = (Xp, Yp) € S, we define thdeetof the shadovshadowC (p))
to be the edges dflax(C, x,) intersected by ShadowC (p)). We represent the structure
of Max(C, x) for all x in a shadow diagrarBhadowDiagrartC), which records the feet
of ShadowC (p)) for eachp € S. The shadow diagram also includes a vertical line at
X = 00, SO that the vertical order gfdisjoint shadows is recorded by their intersections
with the vertical line. The shadow diagram, along with therder of S, completely
characterizes the combinatorial structureM#Ex(C, x) for all x, as can be easily seen
by right-to-left induction or. See Fig. 9.

During the sweep construction of the shadow diagram, we can answer horizontal ray
shooting queries on the current versiorMdx(C, x) by binary search on the sorted list
that representMax(C, x). These ray shooting queries are what we need to determine
Target(p, i, j) whenC is chosen to be one of g .

5. Kinetic Data Structures

We are interested in maintaini®hadowDiagrarC) as the points o6 move about. We
compute the structure initially by plane sweep.

In this section we fi>XC to be one of thd, and largely omit it from the notation. We
replaceShadowC (p)) by Shadowp), andMax(C, x) by Max(x).
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Fig. 10. Elements oParentg p) are shown dark.

5.1. Support Data Structures

For each pointp = (Xp, ¥p) € S, we record the portion d¥lax(xp) that is hidden by
Shadowp), storing the sequence of edges of differ€iit]) in a sorted list that supports
logarithmic-time operations [2], [10]. The edge sequence is represented as a sequence
of points of S., with the edges to be computed on demand. We refer to this list as
Cover(p), thecover list of p because the edge sequence is covereG8Hadowp). In
Fig. 9, the portion oMax(x,) between the circled feet &adowp) is Cover(p).

Consider what happens to a particular sha&nadowp) during the sweep construc-
tion of the shadow diagram. When the sweep passesxp, an edge oShadowp) is
added toMax(xp), covering some other edges. As the sweep progresses, newly added
shadows cover more and more $hadowp). (Note that at most a single edge of
Shadowp) appears omMax(x) for any value ofx.) Whenever the remaining edge of
Shadowp) is partially covered during the process, the newly added shadow has one foot
on Shadowp).

We store a sorted list of all the shadows that haliadowp) as one foot—these are
Shadowq) for certain pointg] € Sleft of p. We denote this list biParentg p). As with
the listCover p), we represent the membersRdrentg p) implicitly as a sequence of
points of S_4 , stored in the order their shadow edges interg8tiadowp). See Fig. 10.

5.2. Certificates

Two kinds of certificates are needed to maintain the shadow diagramdercertificates
andarc order certificates.

Thex-order certificates maintain thesorted order of the points i8. For two points
P = (Xp, Yp) @andq = (Xq, Yq), the certificatex-order(p, q) holds if and only ifx, < Xg.

We createx-order certificates based on the initial sorted order of the poing tfen
maintain them as the pointg-order changes.

The arc order certificates maintain the intersection order of triples of shadow edges.
For every pair of consecutive elemeatandb of Parentgp), we maintain a certificate
arc-orden(a, b, p) that holds if and only i Shadowa) intersect® Shadowp) clockwise
of aShadowb). (Note thato Shadowp) anddShadowq) intersect in at most one point,
for any p andg.) We also maintain arc order certificates for the ends of each shadow edge:
if the upper end of Shadowp) terminates ot Shadowa) (so p € Parentga)), andbis
the uppermost element Barentg p), then we maintain a certificaggc-order(a, b, p).
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C(a) C(p)
C(a)
C(b) C(p) C(b)
Typel Type2

Fig. 11. Two types of arc order certificates, denoted-order(a, b, p) in both cases.

We maintain a similar certificate for the bottom end of each shadow edge. Generally
speaking, we define and maintain an arc order certificate for every pair of feet that
appear consecutively along some shadow in the shadow diagram. See Fig. 11. As a
special case, we treat the vertical linexat oo as a shadow boundary: we maintain arc
order certificates for the shadow edges with feet on that vertical line (i.e., shadow edges
that do not terminate on any other shadow).

Lemma5.1. Let(X, A) be the x-order and arc order certificates determined by some
shadow diagram ShadowDiagra®). If the points of S move continuoudhyt all the
certificatesinX, A) remain trugthenthe combinatorial structure of ShadowDiagi@&mn
does not change

Proof. Two shadow diagrams have the same combinatorial structure if and only if, for
eachp = (Xp, Yp) € S, the two versions oMax(x,) have the same edge sequence, and
the feet ofaShadowp) lie on the same edges Max(xp). Given two shadow diagrams
SD and SD with the same certificate séX, A), we prove that they have the same
combinatorial structures by induction, using a right-to-left sweep over the poi&s of
First, because the-order certificates are the same 8DandSD, the sweep encoun-
ters the points in the same order. For a given ppirt S, we assume inductively that
Max(xp) is the same foBDandSD. This is trivially true for the base case, in whiphs
the rightmost point 0. The curvedShadowp) intersectdMax(xp) in two points. The
arc order certificates between neighbordfax(x,) and betweerdShadowp) and the
edges oMax(x,) it contacts are the same in bdDandSD, and imply that the feet of
Shadowp) are the same in the two shadow diagrams. Hence the sequence of edges of
Max(xp) covered byShadowp) is the same in both cases, implying the equivalence of
the two instances d¥lax(x, — ¢) for an infinitesimalk, which establishes the inductive
hypothesis for the next point &to the left of p. O

5.3. Maintaining the Shadow Diagram

We now describe how to update the shadow diagram when a certificate fails. There are
two parts to the update: modifyingover p) andParentgp) for any affected pointg,

and updating the set of certificates. Each of these has to be dox®fder and for arc

order certificates.
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C(p)

Fig. 12. When x-order(p, q) fails, the portion ofCoverq) that lies insideShadowp) is transferred to
Cover(p).

5.3.1. Failures of x-Order Certificates When anx-order certificatex-order(p, q)
fails, it is easy to update the set gforder certificates. Suppose that the other two
x-order certificates involvingp andq are x-order(a, p) and x-order(q, b). Then we
remove all three certificates from the setxebrder certificates and add new certificates
x-order(a, q), x-order(q, p), andx-order(p, b). The new certificates certify the new
x-order of the points oS.

Whenx-order(p, q) fails, we may also have to update the cover lists and parent lists
of some points ir5, as well as some arc order certificatesy Hoes not appear at either
end of Cover(p) (equivalently,p ¢ Parentgq)), then the shadow diagram does not
change, and no lists or arc order certificates need to be updated.

If x-order(p, q) fails andq appears at one end Gbver p), we must update lists and
arc order certificates. (Note thattannot appear at both ends@dvenr p) except in the
degenerate case in whighandq have equay-coordinates.) See Fig. 12. The only cover
lists that change whexrorder(p, q) fails are those op andg. We search o€overq)
to find the sublist. that lies insideShadowp). We removey from one end oCover p)
and replace it by.. Symmetrically, we remové from Covenq) and replace it byp.
(Duplicate points may need to be addezimoved at the ends of the transferred sublist
L.) Four parent lists are affected by theswap ofp andq. Pointq stops being a parent
of a point at one end df, and becomes a parent pf Symmetrically,p stops being a
parent ofg and becomes a parent of a point at the other erld &ach addedtemoved
parent causes the additimemoval of three arc order certificates.

5.3.2. Failures of Arc Order Certificates When an arc order certificatec-orden(a, b,
p) fails, we must update the shadow diagram in the vicinity of the triple intersection of
dShadowa), 0 Shadowb), anddShadowp). There are two kinds of arc order certificates,
depending on whether andb both belong tdParentg p) (Type 1), or whether one is
a foot of the edge frondShadowp) (Type 2). See Fig. 11. Note that there are also
certificatesarc-order(a, b, p) in which botha andb are feet, but such certificates never
fail, becauséShadowp) always has a nontrivial edge in the shadow diagram.

When an arc order certificate of Type 1 fails, itis replaced by an arc order certificate of
Type 2, and vice versa. For example, in Fig. 13, the Type 1 certifecaterden(a, b, p)
is replaced by the Type 2 certificadec-order(b, p, a). To update the shadow diagram,
we make a constant number of local modificatidPatents-) andCover-) change for
O(1) points in the vicinity of the triple intersection, and arc order certificates for the
neighbors of the triple intersection must be updated.
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C(a)
C(a)
)

C(b)
C(b) C(p) C(p)

Fig. 13. When the Type 1 certificatarc-orden(a, b, p) fails, it is replaced by the Type 2 certificate
arc-order(b, p, a), and vice versa.

It is possible for multiple arc order certificate failures to happen simultaneously.
In particular, there may be multiple arc order certificates associated with the parents
of a horizontal shadow edge belonging to soi&hadowp). See Fig. 14. If another
horizontal shadow edge belonging to sof&hadowq) passes through the first edge,
all of the arc order certificatesrc-ordern(a, b, p) associated with the horizontal edge
must be replaced by the equivalent-order(a, b, q) certificates. Becausgandq have
different equations of motion, all these certificate updates are necessary, but they happen
in the same instant of simulation time. (We can remove this degeneracy symbolically by
giving each horizontal edge its own unique slope that is within some infinitestmaf
zero—as a result, two horizontal edges will intersect in at most one point, and the arc
order certificates fail in sequence, rather than simultaneously. However, we do not gain
any computational advantage: although the certificates do not fail simultaneously, they
fail within an infinitesimal time interval.)

5.4. MaintaininggG

We have seen that the two data structuCeser p) andParentg p) are sufficient to let

us maintain the shadow diagram as the point§$ afiove, when coupled with a linear
number of KDS certificates. However, we also need to maintain the answers to a linear
number ofshadow-shootingueries of the form

Foragiven poinp = (Xp, Yp) € Sand some constanfwhat edge oMax(xp + )
is intersected by the horizontal line= y,?

C(a)

C(p)

Fig. 14. When g moves belowp, all of the shadow feet ordShadowp) transfer simultaneously to
dShadowq).
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The results of these queries, witke {0, 1} and the implicit shap€ e {Fy, F1, F2, F3},
determine the possible values ®rgei(p,i, j) forall p € S, i € {0,1}, andj €
{0, 1, 2, 3}. If g is the query result ang € D(q), i.e., the distance betwegnandq is
less than two, theg = Targetp, i, j) and there is an edge gffrom ptoq.

We can answer these queries initially by performing binary seardiaxix, + c)
during the sweep line construction of the shadow diagram. One more distance comparison
per query determines the edgegjof

To certify the correctness of the results, we need four more certificates per query.
We sort the querk-coordinates into the-order of the points of5, and usex-order
certificates to maintain the totatsorted order of queries and points. Abusing notation
slightly, we extend thex-order(., -) certificate so that an argumenptrefers to thex-
position of a pointp, and p + c refers to the shifteat-position of a query point. Thus
x-order(a, p + c) certifies thaix, < xp + C.

We use two more certificates, either arc order certificateg-order certificates,
to certify the edge oMax(x, + ¢) that is intersected by the horizontal life= y,.
If y = yp intersects an edge that belongsa®hadowq), let a andb be the points
of Parentgq) whose shadow edges bound the intervab8hadowq) intersected by
y = Y. If multiple queries map to the same interval b) of Parentgq), then they
are maintained in vertical order witjrorder certificatesy-order(p, p’) holds if and
only if yp < yp. We also maintain thg-ordered list of queries for a given interval
(a, b) in a sorted list. The lowest and highest queries in the list are compared against
andb using arc order certificates. By abuse of notation we refer to these certificates as
arc-order(a, yp, q) andarc-order(yp, b, g).

Finally, we use alistancecertificateneanp, q) or not-neaxp, q) to certify whether
the distance fronptoq is less than or greater than two. (Heris the answer to a shooting
query(xp + C, yp).) We put an edge ig if and only if the distance is less than two.

To summarize, the certificates needed to maintain the shadow diagram (Section 5.2)
are

x-order(p,q) Says thak, < Xg.

arc-orden(a, b, p) Leta be the intersection dfShadowa) with dShadowp), and
let 8 be the intersection afShadowb) with dShadowp). The certificate says that
a andg occur in counterclockwise order aloa&hadowp).

These certificates are augmented to maintain query results by the following:

x-order(p+c,q+c¢) Says thak, + ¢ < X +C'.

arc-order(yg, b, p)

arc-order(a, yq, p) Replace the appropriate one®br g in the description above
by the intersection of = y, with dShadowp). Then the certificate says that
andg occur in counterclockwise order aloaghadowp).

y-order(p,q) Says thaly, < yq.

near(p,q) Saysthatp € D(q).

not-nealp,q) Saysthatp ¢ D(q).

Lemma5.2. Suppose that a shadow diagramset of shadow-shooting querjesd
the graphg are correctly computedand certified as described aboviéhen as long as
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no certificate failsthe shadow diagranshadow-shooting query resul@nd graphg
remain correct

Proof. The shadow diagram remains correct, by Lemma 5.1. Hence we just need to
prove thatthe query results and grapdwre correct. Consider a quepy,+c, yp). Because

the x-order certificates maintain thesorted order of queries and points, the sequence
Max(xp + ©) that is the target of the shooting query does not change. Suppose that the
answer to the shooting quefy, + ¢, yp) is initially an edge obShadowq), for some

g. The liney =y, intersects a particular interved, b) of Parentgq). All the shooting
gueries whose results lie in the same inteaalb) of Parentgq) are sorted vertically,

and their vertical order is maintained gyorder certificates. Thg-order of the lowest

and highest queries relative to the intersectiong $fiadowa) and dShadowb) with
dShadowq) is maintained by arc order certificates, and hence as long as no certificates
fail, the answer to the quelx, +c, yp) remains unchanged. Finally, for a quganswer

pair p andg, the graphj contains an edgep, q) if and only if p € D(q); this condition

or its negation is certified by a distance certificategstioes not change as long as no
certificate fails. O

To maintain these queries as the points move, we must describe how to update the
certificates and query results when a certificate fails. There are four kinds of certificates,
and each has its own update strategy. Furthermore, these certificates interact with the
certificates for the shadow diagram, and we need to update the query certificates when
the shadow diagram certificates fail.

Distance certificate failures are the easiest to repair. We simply replace the certificate
by its negation, and addemove the corresponding edgedf

Itis also easy to repair the failure of a certificgterder(p, p’). Two queries change
y-order, but both continue to project onto the same inte¢aab) of Parentgq). We
simply exchangegy and p’ in the y-sorted list of queries whose solution(is, b). We
delete the certificatg-order(p, p’) and create a new certificageorder(p’, p). We delete
the other twoy-order or arc order certificates in which query poiptand p’ participate,
and replace them by new certificates in whizks replaced byp’, or vice versa.

When anx-order certificate involving a query fails, the answer to the query may
change. However, if the certificate involves two queries, neither answer changes, and we
simply update the-order certificates to reflect the new order.

If x-order(p + ¢, q) fails, we check whetheq’s edge is the answer to the+ ¢
query. If not, we simply update the-order certificates. If yes, then the answer to the
guery changes. We use binary searchCover(q) to find the new answer to the query;
suppose the old query answer was inteizalb) in Parentgq), and the new answer is
interval (&, b’) in Parentgq’). Then we remove the query from tlyeordered list for
(a, b) and insert it into the list fofa’, b’). We update thg-order certificates and the arc
order certificates involving the queryg and its old and new neighbors. We also update
the query’s distance certificate and the grgph

If x-order(q, p + c) fails, we reverse the update of the preceding paragraph. If the
y-interval ofdShadowq) includesyy, theng is the new answer to the query. We remove
the query from its previoug-ordered list and insert it into the one for the appropriate
interval of Parentgq), updatingy-order, arc order, and distance certificates as needed,
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as well as updating. If the answer to the query does not change, then we simply update
the x-order certificates.

When an arc order certificate involving a query fails, we remove the query from the
y-ordered list of its current intervah, b) of Parentgq), whereq is the current answer
to the query. The arc order certificate compaygsvith the position of a vertex of the
shadow diagram. There are one or two edges of the shadow diagram on the opposite
side of the vertex from the intervéh, b). One of them is the new answer to the query,
and comparison of, + ¢ with the positions of the points & that generate the edges
tells which it is (call itq’; ' may beq). We insert the query into theg-ordered list for
the appropriate interval dfarentgq’) and update all the affectgdorder, arc order, and
distance certificates, as well gs

Lemma 5.3. Suppose that a shadow diagramset of shadow-shooting querjesd
the graphg are correctly computedind certified as described abov&uppose that the
points of S move continuousbBnd we respond to each certificate failure by updating
the structures and certificates as described abden the shadow diagrgrehadow-
shooting queriesgraph G, and their certificates are always correct for the current
configuration of S

5.5. Efficiency

In this section we argue that the total number of certificate failur€(ig+¢) for any

¢ > 0. More concretely, we argue that the number of certificate failur€yis.s(n)),
whereis(n) is the worst-case length of a Davenport—Schinzel sequence whose parameter
sdepends on the algebraic degree of the motion of poir§§id]. Since the total number

of connectivity changes & (n?) in the worst case, our KDS is efficient.

We bound the number of certificate failures for the different kinds of certificates
independently. The kinds of certificates we consideramder certificatesy-order
certificates, arc order certificates involving only shadow edges, arc order certificates
involving queries and shadow edges, and distance certificates.

First, we observe that the total numbenebrder andy-order certificate failures is
O(n?). Each such certificate is determined by the relative positions of two poir8s of
perhaps with an offsek, + ¢ < Xq, for c € {—1, 0, 1}. Any such predicate can change
its truth value at most a constant number of times for points in algebraic motion.

Second, consider arc order certificates involving only shadow edges. Note that when-
ever an arc order certificate involving only shadow edges fails, one foot of some shadow
changes. However, the total number of times that the feet of any one shadow can change
is O(As(n)). To see this, consider the edgeaBhadowp) that extends upwards from
the leftmost point ofC(p) and then off tox = oco. Call this semi-infinite edge. The
foot of e (the upper foot ofShadowp)) is given by the first intersection @& with a
candidateshadow; the candidates are shadows whose reference points are right of
and whosey-intervals include the horizontal part ef The total number of candidates
is O(n), and the total number of changes to the candidate set isxlsp This follows
because each change to the candidate set is associated either witinder change of
p and someg, or with ay-order change of, + ¢ andy, for someq, wherec is a fixed
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constant determined by the vertical distance betwggeand the horizontal part c.
Because the points move algebraically, each ppican enter or leave the candidate set
of p O(1) times. Since the motion of the points $fs algebraic, any pair of candidates
can alternaté (1) times as the first shadow intersectedeébyence the identity of the
upper (or lower) foot forms a Davenport—Schinzel sequence over time, which implies
that it change® (A1s(n)) times, for some constast

Third, consider arc order certificates involving queries and shadow edges. The result
of a query at any instant is the intersection of a horizontal line with a particular edge of
the shadow diagram. Define thevering edgef a query to be the edge of the shadow
diagram that intersects the query line immediately to the left of the query result. Note that
the number of times the result of a query (the identity of the intersected edge) can change
is O(As(n)), by an argument similar to the one bounding the number of foot changes.
Similarly, the covering edge of a query can cha@e.s(n)) times. (The covering edge
of a query(xp + C, yp) is simply given by the rightmosi € Ssuch thatxg < xp + ¢
andShadowq) intersectsy = y,.) Now observe that every certificate failure involving
a query line and a vertex of the shadow diagram corresponds either to a change in the
guery result or to a change in the covering edge of the query. Hence the total number of
such certificate failures i©(1s(n)) per query.

Finally, the total number of distance certificate failure®i®?), because the distance
between any pair of pointg, ) can change from greater than two to less than two or
vice versa onlyO(1) times.

5.6. Assembling the Pieces

We now have all the pieces needed to put together a KDS to maintain the connectivity
of unit disks moving in the plane.

For each of the four disk fragmeni, for j € {0, 1, 2, 3}, we construct the shadow
diagramShadowDiagrar(F;) in O(nlogn) time by a right-to-left sweep over the points
of S. For each poinp € S, we perform shadow-shooting querieshtax(F;, X, +1)
fori € {0, 1}. This gives two queries per point &in each of the four different shadow
diagrams. The results of these queries define the possible valUesgef(p, i, j) for
each pointp € S,i € {0, 1}, andj € {0, 1, 2, 3}. If g is the query result angd € D(q),
theng = Target(p, i, j);if p ¢ D(q), thenTarge{(p, i, j) is null.

The graphG contains up to eight edges from eaphe S to points to its right,
specifically to each non-nularget p, i, j). By Theorem 3.37 has the same connectivity
as the disks. We use the structure of Holm et al. [6] to maintain the connectivily of
dynamically, as edges are added and removed. Connectivity queries on this structure
takeO(logn/loglogn) time apiece.

To maintaing as the points o5 move, we create th®(n) certificates described in
Sections 5.2 and 5.4, which certify the correctness of the shadow diagram, the shadow-
shooting queries, ar@l Following the standard KDS framework, we putthese certificates
into a priority queue ordered by failure time, then process certificate failures as they occur.

Each certificate failure can be processe@itog n) time, exclusive of the time needed
to maintain the connectivity structure: we perform a constant number of logarithmic-time
operations orCover(-) andParentg-) lists, then delete and create a constant number of
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certificates, as described in Sections 5.3 and 5.4. Ins¢dateting these certificates
from the priority queue take® (logn) time apiece.

When a certificate fails, the results 6f(1) queries may change, which means that
O(1) edges of; change. Updating the connectivity structure taRetg? n) amortized
time per edge insertion or deletion [6].

Taking the event bounds of Section 5.5 into account, we have the following theorem.

Theorem 5.4. Given a collection of n unit disks moving in the plamwe can maintain

the connected components of the disks in a KDS that supports connectivity queries in
O(logn/log logn) time apieceeach KDS certificate failure takes(®®g? n) amortized

time to processThe KDS is compact and efficient

Unfortunately, our disk connectivity KDS is neither local nor responsive. The KDS is
not local because a single point®fnay participate ir® (n) certificates. It is responsive
only in an amortized sense because the connectivity graph update bound is only amortized
[6]; it is also true that a linear number of events may occur simultaneously, as noted in
Section 5.3.2, but this is not technically a responsiveness problem, because each event
(certificate failure) is processed quickly.

The problem of simultaneous events could probably be avoided by grouping together
the parents whose shadow boundaries intersect a single horizontal shadow edge, then
using a vertically ordered tournament to pick out the arc order certificate for the horizontal
edge due to fail first. These arc order certificates would no longer refer directly to the
horizontal edge, and so would not have to be replaced when one horizontal edge sweeps
over another. The (nontrivial) details are left to the reader.

Note that although the KDS is efficient, it is still possible for it to undergo many
events while the connectivity of the unit disks changes very little. For exampte, if
disjoint disks with centers ok = 0 move pash disjoint disks with centers or = 3,
our data structure undergo€gn?) events while the disk connectivity does not change
at all. Similar problems affect most KDSs: because they maintain internal state that is
not externally visible, they may process many more internal events than external ones,
for some input data.

6. Conclusion

Although our result is stated for the connectivity of unit disks, it also applies to trans-
lated copies of any convex shapethat satisfies certain mild conditions. Lt be the
Minkowski sum ofD with its reflection through the origitl = D 4+ D~1. Given two
pointsp andg, D(p) N D(q) # ¥ifand only if p € M(q). Our result applies t® if we
can compute intersections of translatesvbfjuickly and can partition the right half of
M into O(1) slabs and rectangles such that the analogues of Lemmas 3.1 and 3.2 hold.
Note that in addition to answering connectivity queries, we can use our graplist
the elements of the connected component containing a query disk in time proportional
to the component’s size.
Our result can be improved slightly in two ways. First, we note that we need only six
gueries £ graph edges) per point, not eight. We do not need to comiautei( p, 1, 0)
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or Target(p, 1, 3), becaus@argei p, 0, 0) andTarget p, 1, 0) are in the same connected
component, as afiarget p, 0, 3) andTarget p, 1, 3). Second, we can reduce the number
of x-order events, perhaps substantially, at the expense of a somewhat more complex
certificate structure. We do not need to maintain the completader of all points and
gueries. Instead, we neadorder certificates only for pairs of shadows such that one is
a foot of the other, and for quefghadow pairs for which ax-order change will change
the query result.

A challenging open problem is to extend our result to disks of different radii, or to
unit balls in three dimensions. Both extensions seem to be quite difficult.
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