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Abstract. We prove that the red–blue discrepancy of the set system formed byn points
andn axis-parallel boxes inRd can be as high asnÄ(1) in any dimensiond = Ä(logn).
This contrasts with the fixed-dimensional cased = O(1), where the discrepancy is always
polylogarithmic. More generally we show that in any dimension 1< d = O(logn) the
maximum discrepancy is 2Ä(d). Our result also leads to a new lower bound on the complexity
of off-line orthogonal range searching. This is the problem of summing up weights in boxes,
givennweighted points andnboxes inRd. We prove that the number of arithmetic operations
is at leastÄ(nd+ n log logn) in any dimensiond = O(logn).

1. Introduction

A set system formed byn points andn axis-parallel boxes inRd is characterized by its
incidence matrixA, whereAi, j = 1 if the i th box contains thej th point andAi, j = 0
otherwise. The red–blue discrepancy of the set system is the minimum value of‖Ax‖∞
over allx ∈ {−1,1}n. We prove that in any dimensiond = Ä(logn) some set systems
have discrepancy innÄ(1). Interestingly, our lower bound also holds for the Hamming
cube{0,1}d. More generally we show that in any dimensiond = O(logn) the maximum
discrepancy is 2Ä(d).

It was already known [4] that in dimensionO(logn/ log logn) the discrepancy could
be as high asnÄ(1/log logn), but the dimension at which the discrepancy became polynomial
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was left unresolved. We show that it is precisely2(logn). Quite different from the
number-theoretic construction of [4], our proof is purely probabilistic. It is interesting
to contrast our result with the discrepancy of boxes in fixed dimension. Throughout
this paper we assume thatd > 1. The discrepancy of boxes inRd is bounded by
O(logn)d+1/2√log logn [6].

Using a complexity result from [4], a simple consequence of our bounds is that the
complexity of off-line orthogonal range searching is at leastÄ(nd+ n log logn) in any
dimensiond = O(logn). Givenn weighted points andn boxes inRd, off-line orthogonal
range searching is the task of computing the added weight of all the points in each box.

2. The Discrepancy of Boxes

Throughout this paper we assume thatd > 1; the cased = 1 is trivial and can be ignored.
Also, the term box always refers to an axis-parallel box. We state our main result and an
immediate corollary.

Theorem 2.1. For any n large enough and any dimension d= O(logn), there exists
a set system of n points and n boxes inRd, whose red–blue discrepancy is2Ä(d).

Corollary 2.2. For any n large enough and any dimension d= Ä(logn), there exists
a set system of n points and n boxes inRd, whose red–blue discrepancy is nÄ(1).

Recall [7] that the red–blue discrepancy is always inO(
√

n ), and so the remaining
open problem is to determine the precise constant behind theÄ() notation. As we shall
see, the theorem is in fact stronger than stated, since it holds for points and boxes in the
Hamming cube{0,1}d. Theorem 2.1 follows easily from the lemma below.

Lemma 2.3. For any n large enough, there exists a set system of n points and n boxes
in Rd, where d= 2(logn), whose red–blue discrepancy isÄ(n0.0477).

The theorem is trivially implied by the lemma ford ≥ c logn, for some constantc > 0.
Suppose now thatd < c logn. Setn0 = 2d/c so that we can apply the lemma with respect
to n0 andd. We can pad the set system to ben-by-n by addingn−n0 artificial points and
boxes with no enclosure relationships. The lower bound ofÄ(n0.0477

0 ) is alsoÄ(2Ä(d)).
We can assume thatd is large enough since a logarithmic lower bound is already known
[3] for d = 2. Thus the lower bound can be expressed more simply as 2Ä(d).

Proof of Lemma2.3. The hereditary discrepancy [5] of the set system defined byA,
which is denoted by herdisc(A), is defined as the maximum discrepancy of any submatrix
of A. By a simple padding argument it is clear that a lower bound on the hereditary
discrepancy implies a similar bound on the red–blue discrepancy. We proved in [4] that
if M = AAT , then

herdisc(A) ≥ 1
4 cn tr M2/tr2 M

0

√
tr M

n
, (1)
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for some constant 0< c0 < 1. So, to achieve a red–blue discrepancy lower bound of
nÄ(1), it suffices to exhibit a probabilistic construction ofmpoints andn boxes inRO(logn)

with the following characteristics: for some constantc ≈ 1.0955,

(i) m= 2(n) and trM = 2(nc) with probability at least 1/2;
(ii) E tr M2 = O(n2c−1).

Indeed, after appropriate padding and rescaling, we immediately derive from these
conditions the existence of a suitablen-by-n set system that, in view of (1), implies
Lemma 2.3.

As we said earlier, both the point set and the boxes live in the Hamming cube{0,1}d.
For the proof, we define a few parameters whose meaning we explain below (all loga-
rithms are to base two):

w = 1− 2p+ p9

1− 2p− (1+ 2p)p2 loge
, where p = 0.153,

c = 2− (1− p)w,
G = nc−1.

We assume that bothd
def= w logn and pd are integral: this is of no consequence as

rounding off to the nearest integer produces lower-order errors of no significance to our
results. Them points are chosen by picking each element of the Hamming cube{0,1}d
independently with probabilityn1−w. (Note thatw ≈ 1.067867, son1−w < 1.) The
expected number of points isn. In fact, by Chebyshev’s inequality, we have

Lemma 2.4. With probability> 1/2, the number m of points is2(n).

A box is specified by a word of lengthd, over the alphabet{0,1, ∗}, containing exactly
pd stars. For example, in dimension 5, the word 0∗ 1∗ ∗ denotes the three-dimensional
box x1 = 0, x3 = 1. We construct then boxes by specifyingG groups of parallel
boxes. Each group is defined by selecting the location of the stars first (thestar pattern),
and then taking all the corresponding boxes. To specify the star pattern, we choosepd
coordinates uniformly at random (without replacement) and make them stars. In our
previous example, the group of parallel boxes consists of 0∗ 0 ∗ ∗, 0∗ 1 ∗ ∗, 1∗ 0 ∗ ∗,
and 1∗ 1 ∗ ∗. The number of boxes is precisely 2(1−p)dG = n.

Each point in the set system belongs to exactly one box in each of theG groups,
so that trM = mG. By Lemma 2.4, we have the following result, which implies that
condition (i) is satisfied with probability> 1/2.

Lemma 2.5. With probability> 1/2, the trace of M is2(nc).

We now turn to the trace ofM2 and bound it from above as a function ofn. By
definition,

tr M2 = O(σ1,1+ σ1,2+ σ2,1+ σ2,2),

whereσi, j counts the number of pairs(I , J) such thatI ⊇ J, whereI is the intersection
of i distinct boxes andJ is a set ofj distinct points. Next, we derive upper bounds on
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all these numbers, beginning with

Eσ1,1 = E tr M = nc. (2)

The next derivations are straightforward:

Eσ1,2 = O(n2c−1) and Eσ2,1 = O(n2c−1). (3)

Why? Any one of the 2pd Hamming cube vertices lying in a given box belongs to the
set system with probabilityn1−w. There aren boxes, so

Eσ1,2 = O
(
n(2pdn1−w)2

) = O(n3−2(1−p)w),

which takes care ofσ1,2. Regardingσ2,1, note that boxes within the same group are
disjoint, so only pairs in distinct groups can contribute toσ2,1. Fix two such groups. Any
one of the 2d points of the Hamming cube belongs to exactly one pair of boxes. Since such
a point is picked with probabilityn1−w, we haveEσ2,1 = O(G22dn1−w) = O(n2c−1)

and, hence, (3).
Finally, we turn to the expectation ofσ2,2:

Eσ2,2 = O(n2c−w+((1+2p)/(1−2p))p2w loge logn). (4)

Again, fix two groups of parallel boxes, and letx be the number of stars common to both
star patterns. As we just saw, any point of the Hamming cube belongs to exactly one pair
of boxes, and this point can be paired with exactly 2x − 1 other points. Each point being
picked with probabilityn1−w, it follows that

σ2,2 = O(G22d+xn2−2w)

and, hence,

Eσ2,2 = O(n2c−w)E2x.

To bound the expectation of 2x is easy. Using the notation

Nk
def= N(N − 1) · · · (N − k+ 1)

and the inequalityk! > (k/e)k, we find that

E 2x =
pd∑

k=0

2k

(
pd

k

)(
d − pd

pd− k

)/(
d

pd

)
=

pd∑
k=0

2k(pd)k(d − pd)pd−k

k!(pd− k)!

/(
d

pd

)

≤
pd∑

k=0

(2pd)k(d − pd)pd(pd)k
k!(d − 2pd)k(pd)!

/(
d

pd

)
≤

pd∑
k=0

(2ep2d2)k(d − pd)pd

(kd)k(1− 2p)k(pd)!

/(
d

pd

)

≤
pd∑

k=0

(1− p)pd

(
2ep2d

(1− 2p)k

)k

.

The function(A/x)x is maximized atx = A/e, therefore

E2x = O(n(loge)p2w(1+2p)/(1−2p) logn),
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hence (4). In view of (2)–(4),

E tr M2 = O
(
nc + n2c−1+ n2c−w+((1+2p)/(1−2p))p2w loge logn

)
= O

(
n2c−1+ n2c−1−p9/(1−2p) logn

)
= O(n2c−1),

which establishes condition (ii), and hence Lemma 2.3 and Theorem 2.1.

3. The Complexity of Orthogonal Range Searching

The construction of points and boxes can be used to prove a lower bound on the com-
plexity of off-line orthogonal range searching. This is the problem of adding up weights
in n boxes, givenn weighted points. Specifically, we are givenn axis-parallel boxes and
n points inRd, fixed once and for all. The input to the problem is an assignment of reals
(the weights) to the points, and the output is the sum of the weights of the points within
each box. Equivalently, the problem is to computeAx givenx. From [4] we know that
the size of any linear circuit with bounded coefficients for computingx 7→ Ax is

Äε

(
n log

(
tr M/n− ε

√
tr M2/n

))
,

for any positive constantε. Settingε small enough gives a lower bound ofÄ(n logn)
for orthogonal range searching in dimensionÄ(logn). This is to be contrasted with the
currentO(n log logn) lower bound for orthogonal range searching in fixed dimension [2].

The case of dimensiond = O(logn) is handled as we did before. We create a problem
of sizen0 = 22(d) in dimensiond, with n0 sufficiently small with respect tod that we
can apply the previous result. The problem requires a circuit of sizeÄ(n0 logn0). We
make aboutn/n0 copies of it (with different weight assignments, of course) to boost the
complexity toÄ(n logn0), which isÄ(nd). Since, ford = 2, the complexity is at least
Ä(n log logn), we can safely conclude that the circuit complexity of orthogonal range
searching in dimensiond = O(logn) isÄ(nd+ n log logn), as claimed.

Theorem 3.1. Off-line orthogonal range searching inRd has complexityÄ(nd +
n log logn) for any dimension d= O(logn).
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