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Abstract. Given a set ofn black andn white points in general position in the plane, a line
l determined by them is said to bebalancedif each open half-plane bounded byl contains
precisely the same number of black points as white points. It is proved that the number of
balanced lines is at leastn. This settles a conjecture of George Baloglou.

1. Introduction

Throughout this paper letV be a set of 2n points in general position in the plane, i.e.,
assume that no three of them are on a line. Suppose that half of the points have weight
+1 and the other half weight−1. We say that a line passing through two elements ofV
is determinedby V .

Definition 1.1. A line l determined byV is calledbalancedif in each open half-plane
bounded byl the total weight of the points is 0.

The following observation is an immediate consequence of the definition.

Claim 1.2. If two points determine a balanced line l, then they have opposite weights.

Indeed, since the total weight of the points as well as the total weight of all pointsnot
on l is 0, it follows that the sum of the weights of the two pointson l must be 0, too.

∗ The first author was supported by NSF Grant CR-97-32101, PSC-CUNY Research Award 667339, and
OTKA-T-020914. This research was conducted while the second author was a guest of New York University.
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In view of the claim, the number of balanced lines determined byV cannot exceedn2.
This bound is attained by many configurations, including every convex 2n-gon whose
vertices are of weight+1 and−1, alternately.

The aim of this paper is to prove the following conjecture of George Baloglou [B].

Theorem 1.3. Every set V consisting of n points of weight+1 and n points of weight
−1 in general position in the plane determines at least n balanced lines. This bound
cannot be improved.

The tightness of the above theorem is shown, e.g., by a convex 2n-gon, whose vertices
of weight+1 are separated from the vertices of weight−1 by a straight line. In fact, we
have

Theorem 1.4. Let V be a set of2n points in general position in the plane, consisting
of n points of weight+1 and n points of weight−1 separated by a straight line. Then V
determines precisely n balanced lines.

It is sufficient to prove Theorem 1.3 in the special case when no two lines determined
by V are parallel, and in what follows we assume thatV satisfies this condition.

It is easy to verify

Claim 1.5. For any vertexv of the convex hull of V, there is a balanced line passing
throughv.

Proof. Let u1, . . . ,u2n−1 denote the elements ofV\{v} listed in clockwise order of
visibility from v. Suppose without loss of generality that the weight ofv is positive. Ifu1

or u2n−1 has negative weight, then we are done, because in this casevu1 (resp.vu2n−1)
is a balanced line. Take the linevu1, start rotating it clockwise aroundv, and keep track
of the total weightL of the elements ofV in the open half-plane to the left of this line.
At the moment when the line passes throughu2, we haveL = 1. Finally, the line passes
throughu2n−1 andL = −2. Every time the line passes through a new point the value
of L changes by 1, so there is a maximum indexi > 2 such that the total weight of the
points on the left-hand side ofvui is 0. By the maximality ofi , the weight ofui must be
negative. Therefore, the total weight of the points on the right-hand side ofvui is also 0,
i.e.,vui is a balanced line.

It may be tempting to believe that Claim 1.5 is also true for all points ofV lying
in the interior of the convex hull ofV , which would immediately imply Theorem 1.3.
However, as is illustrated by Fig. 1, this is not necessarily the case.

For the proof of Theorem 1.3, we need the notion of aflip array associated with
V . (In the literature it is often called acircular sequenceor anallowable sequenceof
permutations [GP].)

Fix an orthogonal coordinate system(x, y) in the plane so that no two elements ofV
have the samex-coordinate. Letv1, . . . , v2n denote the elements ofV in increasing order
of their x-coordinates. For notational convenience, in what follows we identifyvi with
i , and we writew(i ) for the weight ofvi . The flip array associated withV is a sequence
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Fig. 1. v2 is not incident to any balanced line.

of
(2n

2

)+ 1 permutations of the elements 1, . . . ,2n, denoted byPt
(
0 ≤ t ≤ (2n

2

))
. Start

rotating a directed linel parallel to thex-axis in the clockwise direction, and consider the
permutations determined by the order, in which the elements ofV fall on l . Originally,
this order isP0 = (1, . . . ,2n). Suppose that we have already defined the permutations
P0, . . . , Pt−1 for somet ≤ (2n

2

)
, and continue rotatingl . A new permutation arises when-

everl passes through a direction orthogonal to a linel t determined by two pointsvi , vj ∈
V . Theni and j are consecutive elements inPt−1, andPt can be obtained fromPt−1 by
reversing their order. Such a move is called aflip or aswap. After rotatingl through a half
turnπ , we obtainP(2n

2)
= (2n,2n−1, . . . ,1), and then we stop. For any 0≤ t ≤ (2n

2

)
and

1≤ i ≤ 2n, let pt,i denote thei th element ofPt . That is, we havePt = (pt,1, . . . , pt,2n).
We have to introduce some further notation.

Definition 1.6. For any 0≤ t ≤ (2n
2

)
and 1≤ i ≤ 2n, let Lt (i ) denote the sum of the

weights of the firsti − 1 elements ofPt . In other words, let

Lt (i ) :=
∑

1≤ j<i

w(pt, j ).

Similarly, let

Rt (i ) :=
∑

i< j≤2n

w(pt, j ).

Definition 1.7. For everyS⊆ {1,2, . . . ,2n} and 0≤ t ≤ (2n
2

)
, let SL

t,1 < SL
t,2 < · · · <

SL
t,|S| denote the positions inPt occupied by the elements ofS, listed from left to right.

In other words,SL
t,i denotes the position of thei th leftmost element ofS in Pt . Similarly,

let SR
t,i denote the position of thei th rightmost element ofS in Pt . Clearly, we have

SR
t,i = SL

t,|S|−i+1.

In our notations, the lettersL andR stand for Left and Right, respectively.

2. A Standard Way to Obtain Balanced Lines

Let A = {a1, . . . ,an} ⊂ {1, . . . ,2n} denote the set of all elements of weight+1, listed
in increasing order.
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Call a setF ⊂ A prefix if F = {a1,a2, . . . ,a|F |}. Similarly, H ⊂ A is said to be a
suffixset if H = {an−|H |+1,an−|H |+2, . . . ,an}.

We present a “standard” method for finding a balanced line passing through an element
of a prefix (suffix) set.

Lemma 2.1. Let F be a prefix set, let1≤ t ≤ (2n
2

)
, and let lt denote the line induced by

the two points flipped as we pass from Pt−1 to Pt . Whenever we have Lt−1(F L
t−1,k) ≥ 0

and Lt (F L
t,k) < 0, then lt is a balanced line which passes through a point of F, and there

are exactly k− 1 points of F in the open half-plane to the left of lt .

Proof. Let x denote the element at positionF L
t−1,k in Pt−1. Observe thatx must swap

places with some other element,y, when going fromPt−1 to Pt , for otherwise we would
haveLt−1(F L

t−1,k) = Lt (F L
t,k).

Supposey ∈ F . Then the elements ofF occupy the same positions inPt as they do
in Pt−1, except that their internal order is different. Moreover, every element, not inF ,
remains at the same place inPt where it was inPt−1. Thus, we would haveF L

t,k = F L
t−1,k

andLt−1(F L
t−1,k) = Lt (F L

t,k), a contradiction. Therefore, we may assume thaty /∈ F .
Assume first thatw(y) = +1. Sincey /∈ F andF is prefix,y > x. Therefore, inPt−1,

y is at the positionF L
t−1,k+1. In Pt , x is still thekth leftmost element ofF , and we have

Lt (F L
t,k) = Lt−1(F L

t−1,k) + w(y) = Lt−1(F L
t−1,k) + 1, contradicting the assumptions in

the lemma.
We are, therefore, left with the case whenw(y) = −1. If y is at the positionF L

t−1,k−1
in Pt−1, thenLt (F L

t,k) = Lt−1(F L
t−1,k)− w(y) = Lt−1(F L

t−1,k)+ 1, and again we reach
a contradiction.

We conclude thaty is at positionF L
t−1,k+1 in Pt−1. Therefore,Lt (F L

t,k) = Lt−1(F L
t−1,k)

+w(y) = Lt−1(F L
t−1,k)−1. It follows from the assumptionLt (F L

t,k) < 0 andLt−1(F L
t−1,k)

≥ 0, thatLt−1(F L
t−1,k) = 0. In other words, the sum of the weights of the points lying in

the open half-plane to the left ofl t is 0. Sincel t is determined by two points of opposite
weights, it follows thatl t is a balanced line. By the definition ofF L

t−1,k, the linel t (which
passes throughx) has exactlyk− 1 points ofF in the open half-plane to its left.

Similarly, we have

Lemma 2.2. Let H be a suffix set, let1≤ t ≤ (2n
2

)
, and let lt denote the line induced by

the two points flipped as we pass from Pt−1 to Pt . Whenever we have Rt−1(H R
t−1,k) ≥ 0

and Rt (H R
t,k) < 0, then lt is a balanced line which passes through a point of H, and

there are exactly k− 1 points of H in the open half-plane to the right of lt .

Before turning to the proof of Theorem 1.3, we establish Theorem 1.4.

Proof of Theorem1.4. Since the points of weight+1 and−1 are separated by a line,
by a proper choice of thex-axis, we can attain that in the flip array ofV the set of
points of positive weight isF = {1,2, . . . ,n}. Clearly,F is a prefix set. Using the fact
that P0 is the identity permutation, i.e.,P0 = (1,2, . . . ,2n), we obtain that for every
1≤ i ≤ |F | = n, F L

0,i = i andL0(F L
0,i ) = i − 1≥ 0.
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On the other hand,P(2n
2)
= (2n,2n− 1, . . . ,2,1). Thus, for every 1≤ i ≤ |F | = n,

F L
(2n

2),i
= n+ i andL(2n

2)
(F L
(2n

2),i
) = −n− 1+ i < 0.

Fix 1 ≤ k ≤ n. F L
t,k is a continuous function oft , i.e., for every 0< t ≤ (2n

2

)
, we

have|F L
t,k − F L

t−1,k| ≤ 1. We claim that 0≤ Lt−1(F L
t−1,k) − Lt (F L

t,k) ≤ 1, whenever
1≤ t ≤ n. That is,Lt (F L

t,k) is a monotone nonincreasing, continuous function oft .
Let x ∈ F denote the element at positionF L

t−1,k in Pt−1, that is,x is thekth leftmost
element ofF in Pt−1. If l t does not pass throughx, thenx remains thekth leftmost
element ofF in Pt , and every element to the left (right) ofx in Pt−1 is to the left (right)
of x in Pt . Therefore, we haveLt (F L

t,k) = Lt−1(F L
t−1,k).

Assume thatl t passes throughx. In other words,x changes places with another
elementy, when going fromPt−1 to Pt . There are two possibilities:

Case1: y ∈ F . In this case the elements ofF occupy the same positions inPt as in
Pt−1, except that their internal order is different. Hence,F L

t,k = F L
t−1,k andLt (F L

t,k) =
Lt−1(F L

t−1,k).

Case2: y /∈ F . Now y has weight−1. Sincex and y are flipped when we pass from
Pt−1 to Pt , the pointy is either at positionF L

t−1,k − 1 or at positionF L
t−1,k + 1 in Pt−1.

The former possibility cannot occur, for ify were at positionF L
t−1,k − 1 in Pt−1, thenx

andy would have been flipped earlier, which is impossible. Thus, we can assume thaty
is at positionF L

t−1,k + 1 in Pt−1. Sincey /∈ F andx is thekth leftmost element ofF in
Pt−1, we obtain thatx remains thekth leftmost element ofF in Pt andF L

t,k = F L
t−1,k+1.

Furthermore, we haveLt (F L
t,k) = Lt−1(F L

t−1,k)+ w(y) = Lt−1(F L
t−1,k)− 1.

This proves the claim thatLt (F L
t,k) is a monotone nonincreasing, continuous function

of t . SinceL0(F L
0,k) ≥ 0 andL(2n

2)
(F L
(2n

2),k
) < 0, it follows that there is a unique 0< tk ≤(2n

2

)
such thatLtk−1(F L

tk−1,k) ≥ 0 andLtk(F
L
tk,k
) < 0. By Lemma 2.1,l tk is a balanced

line through an element ofF, which has exactlyk − 1 elements ofF in the open half-
plane to its left. Obviously,l t1, . . . , l tn are distinct balanced lines. Next we show that
if l t is a balanced line, thent is one oft1, . . . , tn. By Claim 1.2,l t passes through an
elementx with weight+1 and an elementy with weight−1. Suppose thatx is thekth
leftmost element ofF in Pt−1 (1 ≤ k ≤ n). Thenx is at positionF L

t−1,k in Pt−1. Since
w(y) = −1, we havex < y. Therefore,y is at positionF L

t−1,k + 1 in Pt−1. Sincel t is a
balanced line, it follows thatLt−1(F L

t−1,k) = 0. In Pt , x is still thekth leftmost element
of F , and we haveLt (F L

t,k) = Lt−1(F L
t−1,k)+w(y) = −1. SinceLs(F L

s,k) is a monotone
nonincreasing function ofs, we conclude thatt = tk.

The rest of the paper is structured as follows. In Section 3 we define a prefix setF
and a suffix setH with some special properties, and setG := A\(F ∪ H). In Sections 4
and 5 we show that for every 1≤ k ≤ |F |, Lt (F L

t,k) changes (as a function oft) from
0 to −1 at least once, and, for every 1≤ k ≤ |H |, Rt (H R

t,k) changes from 0 to−1
at least once. Applying Lemmata 2.1 and 2.2, we obtain that there exist|F | balanced
lines through the elements ofF and|H | balanced lines through the elements ofH . In
Section 6 we prove that every element ofG = A\(F ∪H) gives rise either to a balanced
line through an element ofG or to a balanced line through an element ofF ∪ H . We
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show that all of these lines are distinct, so that the number of balanced lines is at least
|F | + |G| + |H | = n. In Section 7 we wrap up the proof of Theorem 1.3, while the last
section contains some concluding remarks and generalizations.

3. The Definition of F, G, and H

In this section we continue developing the machinery needed for the proof of
Theorem 1.3.

Definition 3.1. Let S ⊆ {1,2, . . . ,2n} and 1≤ j ≤ d|S|/2e. We say thatS has a
barrier of order j if one of the following two conditions is satisfied:

1. Every element inShas weight+1, and either
(a) Lt (SL

t, j ) ≥ 0 andRt (SR
t, j ) ≥ 0, for every 0≤ t ≤ (2n

2

)
, or

(b) Lt (SL
t, j ) < 0 andRt (SR

t, j ) < 0, for every 0≤ t ≤ (2n
2

)
.

2. Every element inShas weight−1 and either
(a) Lt (SL

t, j ) ≤ 0 andRt (SR
t, j ) ≤ 0, for every 0≤ t ≤ (2n

2

)
, or

(b) Lt (SL
t, j ) > 0 andRt (SR

t, j ) > 0, for every 0≤ t ≤ (2n
2

)
.

We say thatShas abarrier if it has a barrier of orderj for some indexj .

Consider all (nonempty) sets of the form

{1≤ i ≤ 2n|u ≤ i ≤ v,w(i ) = ε},
where 1≤ u < v ≤ 2n andε ∈ {+1,−1}. If at least one of these sets has a barrier, pick
one for whichv − u is minimum and denote it byA0. If there is no such set, then let
A0 = A, the set of all elements of weight+1.

If A0 has a barrier, we may assume without loss of generality that condition 1(a) or
2(b) holds in Definition 3.1 (for otherwise we multiply the weight of every element by
−1). In other words, there exists 1≤ j0 ≤ d|A0|/2e such that:

Case1. Every element inA0 has weight+1, andLt ((A0)
L
t, j0
) ≥ 0 andRt ((A0)

R
t, j0
) ≥ 0,

for every 0≤ t ≤ (2n
2

)
.

Case2. Every element inA0 has weight−1, andLt ((A0)
L
t, j0
) > 0 andRt ((A0)

R
t, j0
) > 0,

for every 0≤ t ≤ (2n
2

)
.

In either case we inductively define a decreasing sequenceA1 ⊃ A2 ⊃ · · · of subsets of
A as follows.

For every 0≤ t ≤ (2n
2

)
, let ct,0 := (A0)

L
t, j0

anddt,0 := (A0)
R
t, j0

(see Definition 1.7).
If Aµ, c0,µ,d0,µ have already been defined for all 0≤ µ < m, let

Am = {a ∈ A|c0,m−1 < a < d0,m−1}.
Assume that one of the following conditions is satisfied for some 1≤ j ≤ d|Am|/2e.

Case(i). For every 0≤ t ≤ (2n
2

)
such that max0≤i<m ct,i ≤ (Am)

L
t, j ≤ min0≤i<m dt,i , we

haveLt ((Am)
L
t, j ) ≥ 0, and for every 0≤ t ≤ (2n

2

)
such that max0≤i<m ct,i ≤ (Am)

R
t, j ≤

min0≤i<m dt,i , we haveRt ((Am)
R
t, j ) ≥ 0.
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Case(ii). For every 0≤ t ≤ (2n
2

)
such that max0≤i<m ct,i ≤ (Am)

L
t, j ≤ min0≤i<m dt,i , we

haveLt ((Am)
L
t, j ) < 0, and for every 0≤ t ≤ (2n

2

)
such that max0≤i<m ct,i ≤ (Am)

R
t, j ≤

min0≤i<m dt,i , we haveRt ((Am)
R
t, j ) < 0.

Fix such a numberj , set jm := j , and for every 0≤ t ≤ (2n
2

)
, let ct,m := (Am)

L
t, jm

anddt,m := (Am)
R
t, jm

.
If no such j exists or ifAm = ∅, stop. Letq be the index at which we stopped. That

is, the last set we define isAq. (If A0 does not have a barrier, thenq = 0). Note that all
elements ofA1, A2, . . . , Aq have weight+1, while the elements ofA0 are all of weight
+1 or all of weight−1.

If q > 0, let

F := {a ∈ A|a ≤ c0,q−1},
G := Aq, (1)

H := A\(F ∪ G) = {a ∈ A|a ≥ d0,q−1}.
If q = 0, let F = H = ∅ andG = A0 = {a1, . . . ,an}.

Clearly,F andH are prefix and suffix sets, respectively.

4. Useful Facts About the SetsAm

The following simple observation is crucial for our purposes.

Claim 4.1 (Continuity). Let S ⊆ {1,2, . . . ,2n} and 1 ≤ i ≤ |S|. Then for every
1≤ t ≤ (2n

2

)
, we have

1. |SL
t,i − SL

t−1,i | ≤ 1;
2. |SR

t,i − SR
t−1,i | ≤ 1.

Corollary 4.2. Let0≤ m< q. For every1≤ t ≤ (2n
2

)
, we have

1. |max0≤i≤m ct,i −max0≤i≤m ct−1,i | ≤ 1;
2. |min0≤i≤m dt,i −min0≤i≤m dt−1,i | ≤ 1.

The aim of this section is to prove the following claim, whose parts 1 and 2 roughly
express that in the definition ofjm and Am at the end of the last section, only Case (i)
can occur. The proof is somewhat tedious but straightforward.

Claim 4.3. Let0≤ m< q and0≤ t ≤ (2n
2

)
.

1. If max0≤i<m ct,i ≤ ct,m ≤ min0≤i<m dt,i , then Lt (ct,m) ≥ 0.
2. If max0≤i<m ct,i ≤ dt,m ≤ min0≤i<m dt,i , then Rt (dt,m) ≥ 0.
3. max0≤i≤m ct,i < min0≤i≤m dt,i .

Proof. We prove the claim by induction onm. Assumem = 0. Parts 1 and 2 follow
from the fact thatA0 has a barrier and either 1(a) or 2(b) holds in Definition 3.1. Part 3
of the claim, stating thatct,0 < dt,0, follows from the definitions of those numbers.
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Assume that all three parts of the claim have already been verified for all 0≤ i < m,
and we want to prove it form.

First we prove parts 1 and 2. If either 1 or 2 is not true, then in the definition ofAm

Case (ii) occurs. That is, for every 0≤ t ≤ (2n
2

)
,

max
0≤i<m

ct,i ≤ ct,m ≤ min
0≤i<m

dt,i H⇒ Lt (ct,m) < 0, (2)

max
0≤i<m

ct,i ≤ dt,m ≤ min
0≤i<m

dt,i H⇒ Rt (dt,m) < 0. (3)

By definition,ct,m < dt,m. Note that it cannot happen that

max
0≤i<m

ct,i ≤ ct,m < dt,m ≤ min
0≤i<m

dt,i

for every 0≤ t ≤ (2n
2

)
. Indeed, this would imply thatLt ((Am)

L
t, jm
) = Lt (ct,m) < 0 and

Rt ((Am)
R
t, jm
) = Lt (ct,m) < 0, for every 0≤ t ≤ (2n

2

)
. In other words,Am would have

a barrier of orderjm. This would contradict the minimality ofv − u in the definition of
A0, becauseu ≤ c0,0 < a < d0,0 ≤ v holds for every elementa ∈ Am

Therefore, we may assume that there is a minimalt , 0≤ t ≤ (2n
2

)
, such thatct+1,m <

max0≤i<m ct+1,i . (The other case whendt+1,m > min0≤i<m dt+1,i for somet can be treated
similarly.)

By Claim 4.1 and Corollary 4.2, it follows from the minimality oft that one of the
following two cases has to occur:

Case(a):ct,m = max0≤i<m ct,i .

Case(b): ct,m = max0≤i<m ct,i + 1.

Let 0≤ m′ < m be an index such that max0≤i<m ct,i = ct,m′ . Clearly, we have

max
0≤i<m′

ct,i ≤ max
0≤i<m

ct,i = ct,m′ , (4)

and, by the induction hypothesis,

ct,m′ = max
0≤i<m

ct,i < min
0≤i<m

dt,i ≤ min
0≤i<m′

dt,i . (5)

Combining (4) and (5), we obtain

max
0≤i<m′

ct,i ≤ ct,m′ ≤ min
0≤i<m′

dt,i . (6)

By the minimality oft ,

max
0≤i<m

ct,i ≤ ct,m ≤ min
0≤i<m

dt,i . (7)

We discuss Cases (a) and (b) separately. In Case (a), we havect,m = ct,m′ . Using (6)
and part 1 of the induction hypothesis form′, we getLt (ct,m) = Lt (ct,m′) ≥ 0. In view
of (7), this contradicts (2).

In Case (b), we havect,m = ct,m′ + 1. As before, we getLt (ct,m′) ≥ 0. Let x ∈ Am′

be the element ofPt at the positionct,m′ = ct,m − 1. If all elements ofAm′ have weight
+1, thenw(x) = +1. Therefore,

Lt (ct,m) = Lt (ct,m′)+ w(x) = Lt (ct,m′)+ 1≥ 1.
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If m′ = 0 and all elements ofA0 have weight−1, then, using the fact thatA0 has a
barrier, we find thatLt (ct,m′) = Lt (ct,0) > 0. Thus,

Lt (ct,m) = Lt (ct,m′)+ w(x) = Lt (ct,m′)− 1≥ 0.

Hence, in either caseLt (ct,m) ≥ 0, contradicting (2). This completes the proof of parts
1 and 2.

Next we prove part 3. Assume for a contradiction that there is a minimalt , 0 ≤
t <

(2n
2

)
, such that max1≤i≤m ct+1,i ≥ min1≤i≤m dt+1,i . By the induction hypothesis,

max0≤i<m ct+1,i < min0≤i<m dt+1,i . Therefore, without loss of generality we may assume
that max0≤i<m ct+1,i < ct+1,m. (The other case whendt+1,m < min0≤i<m dt+1,i for some
t can be treated similarly.)

By the minimality oft and by Corollary 4.2, again there are only two possibilities:

Case(a): max0≤i≤m ct+1,i = min1≤i≤m dt+1,i .

Case(b): max0≤i≤m ct+1,i = min1≤i≤m dt+1,i + 1.

In Case (a),

max
0≤i<m

ct+1,i < ct+1,m = min
0≤i≤m

dt+1,i = min
0≤i<m

dt+1,i , (8)

where the last equality follows from the fact thatct+1,m < dt+1,m.
Let m′ < m be such that min0≤i<m dt+1,i = dt+1,m′ . Then we have

dt+1,m′ = min
0≤i<m

dt+1,i ≤ min
0≤i<m′

dt+1,i ,

and, by induction hypothesis,

max
0≤i<m′

ct+1,i ≤ max
0≤i<m

ct+1,i < min
0≤i<m

dt+1,i = dt+1,m′ .

Combining the last two inequalities, we obtain

max
0≤i<m′

ct+1,i ≤ dt+1,m′ ≤ min
0≤i<m′

dt+1,i .

This, together with part 2 of the claim form′, implies thatRt+1(dt+1,m′) ≥ 0. Letx be the
element inPt+1 at the positiondt+1,m′ = ct+1,m. By the definition ofct+1,m, x belongs
to Am, and thereforew(x) = +1. Then

Lt+1(ct+1,m) = Lt+1(dt+1,m′) = −(w(x)+Rt+1(dt+1,m′)) = −1−Rt+1(dt+1,m′) ≤ −1,

where the second equality follows from the fact that the sum of all weights is 0. This,
together with (8), contradicts part 1 of the claim.

In Case (b), it follows from the minimality oft and Corollary 4.2 that

max
0≤i≤m

ct,i = min
0≤i≤m

dt,i − 1. (9)

Sincect+1,m < dt+1,m, we have

ct+1,m = max
0≤i≤m

ct+1,i = min
1≤i≤m

dt+1,i + 1= min
1≤i<m

dt+1,i + 1,
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and, by the induction hypothesis,

max
0≤i<m

ct+1,i + 1< min
0≤i<m

dt+1,i + 1= ct+1,m.

Therefore, max0≤i<m ct+1,i + 2 ≤ ct+1,m and, by Claim 4.1, we obtain max0≤i<m ct,i ≤
ct,m. This, together with (9), implies that

ct,m = max
0≤i≤m

ct,i = min
0≤i≤m

dt,i − 1= dt,m′ − 1, (10)

wherem′ ≤ m is such that min0≤i≤m dt,i = dt,m′ . Then we have

max
0≤i<m′

ct,i ≤ max
0≤i≤m

ct,i < dt,m′ = min
0≤i≤m

dt,i ≤ min
0≤i<m′

dt,i .

Here the second inequality follows from (10). So, by part 1 of the claim form′,

Rt (dt,m′) ≥ 0.

Let x ∈ Am′ be the element inPt at the positiondt,m′ . In view of (10),

Rt (ct,m) = Rt (dt,m′)+ w(x).

If all elements ofAm′ have weight+1, thenw(x) = +1, and thus

Rt (ct,m) = Rt (dt,m′)+ 1≥ 1.

If m′ = 0 and all elements ofA0 have weight−1, then

Rt (ct,m) = Rt (dt,0)− 1≥ 0,

becauseRt (dt,0) = Rt ((A0)
R
t, j0
) > 0, by the definition ofA0. In either case,Rt (ct,m) ≥ 0.

Let y ∈ Am be the element inPt at the positionct,m. Thenw(y) = +1, therefore

Lt (ct,m) = −(w(y)+ Rt (ct,m)) = −(1+ Rt (ct,m)) < 0.

This, combined with (10), contradicts part 1 of the claim, completing the proof.

Notation 4.4. For every 0≤ t ≤ (2n
2

)
, let Ct = max0≤i<q ct,i andDt = min0≤i<q dt,i .

Corollary 4.5. For every0≤ t ≤ (2n
2

)
, we have

1. Lt (Ct ) ≥ 0 and Rt (Dt ) ≥ 0,
2. Lt (Ct + 1) ≥ 0 and Rt (Dt − 1) ≥ 0.

Proof. Fix 0 ≤ t ≤ (2n
2

)
. We prove only the first assertion of part 1; the proof of the

second assertion is very similar. Choose 0≤ m< q so thatCt = ct,m. Then we have

max
0≤i<m

ct,i ≤ max
0≤i<q

ct,i = ct,m = max
0≤i<q

ct,i < min
0≤i<q

dt,i ≤ min
0≤i<m

dt,i ,
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where the second inequality follows from part 3 of Claim 4.3. Thus, part 1 of Claim 4.3
immediately implies that

Lt (Ct ) = Lt (ct,m) ≥ 0.

Next we prove the first assertion of part 2. Again, choose 0≤ m< q so thatCt = ct,m.
By part 1,Lt (ct,m) ≥ 0. Let x ∈ Am be the element inPt at the positionct,m. If m 6= 0
or m= 0 and all elements ofA0 have weight+1, thenw(x) = +1. Therefore,

Lt (Ct + 1) = Lt (ct,m + 1) = Lt (ct,m)+ w(x) = Lt (ct,m)+ 1≥ 1.

If m= 0 and all elements ofA0 have weight−1, thenw(x) = −1. Recall that, according
to the definition ofA0 andct,0, we haveLt (ct,0) > 0. Thus,

Lt (Ct + 1) = Lt (ct,0+ 1) = Lt (ct,0)+ w(x) = Lt (ct,0)− 1≥ 0,

as required. The second assertion of part 2 can be verified analogously.

5. Balanced Lines Through the Points ofF and H

Using Notation 4.4, we can rewrite the definition ofF ,G, andH (at the end of Section 3)
as follows:

F = {i ∈ A|i ≤ C0},
G = Aq = A\(F ∪ H), (11)

H = {i ∈ A|i ≥ D0}.

In this section we show that for every 1≤ k ≤ |F |, ast goes from 0 to
(2n

2

)
, Lt (F L

t,k)

changes from 0 to−1 at least once. Similarly, for every 1≤ k ≤ |H |, Rt (H R
t,k) changes

from 0 to−1 at least once. Thus, Lemmata 2.1 and 2.2 imply that the number of balanced
lines passing through some element ofF (andH ) is at least|F | (at least|H |, respectively).

Definition 5.1. For any 1≤ k ≤ |F |, let t (F, k) denote the minimalt such that
F L

t,k ≥ Ct , and letT(F, k) denote the maximalt such thatF L
t,k ≤ Dt .

Similarly, for any 1≤ k ≤ |H |, let t (H, k) (andT(H, k)) denote the minimalt such
that H R

t,k ≤ Dt (the maximalt such thatH R
t,k ≥ Ct , respectively).

First we show that the above definition is correct.

Claim 5.2. The numbers t(F, k), T(F, k), t (H, k), and T(H, k) exist.

Proof. We prove only the existence oft (F, k)andT(F, k). By (11), we haveF L
0,k ≤ C0,

for every 1≤ k ≤ |F |. It follows from part 3 of Claim 4.3, thatCt < Dt , for every
0≤ t ≤ (2n

2

)
. Therefore, it suffices to show thatF L

(2n
2),k
≥ D(2n

2)
.

Assume 0≤ m < q, whereq is the same as in (1). Denote byx the element at the
positionc0,m = (Am)

L
0, jm

in P0. Thenx is the jmth leftmost element ofAm in P0. P(2n
2)

is a
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reversed copy ofP0, i.e.,P(2n
2)
= (2n,2n−1, . . . ,2,1). Therefore, inP(2n

2)
, x is the jmth

rightmost element ofAm. In other words,x is at positiond(2n
2),m
= (Am)

R
(2n

2), jm
in P(2n

2)
.

For every 0≤ m < q, let xm denote the element at positionc0,m in P0. By the
definition of the setsA0, A1, . . . , Aq−1, we havex0 < x1 < · · · < xq−1. Thus, for every
0 ≤ m < q, xm is at positiond(2n

2),m
in P(2n

2)
. Since inP(2n

2)
the numbersx0, . . . , xq−1

are in reversed order, we may conclude thatd(2n
2),q−1 < d(2n

2),q−2 < · · · < d(2n
2),0

.
Let y ∈ F . By the definition ofF , we havey ≤ C0 = c0,q−1. Therefore,y ≤ xq−1

and hencey is at a position greater than or equal to the position ofxq−1 in P(2n
2)

, which

is d(2n
2),q−1 = D(2n

2)
. In particular, it follows thatF L

(2n
2),k
≥ D(2n

2)
for every 1 ≤ k

≤ |F |.

Definition 5.3. For any 1≤ k ≤ |F |, letτ(F, k) denote the number of different values
of t for which t (F, k) < t ≤ T(F, k), and which satisfyLt−1(F L

t−1,k) = −1 and
Lt (F L

t,k) = 0.
Similarly, for any 1≤ k ≤ |H |, let τ(H, k) denote the number of different values

of t for which t (F, k) < t ≤ T(F, k), and which satisfyRt−1(H R
t−1,k) = −1 and

Rt (H R
t,k) = 0.

Lemma 5.4. For any 1 ≤ k ≤ |F |, there are at least1+ τ(F, k) balanced lines l
meeting the following two requirements:

1. l passes through a point of F,
2. there are exactly k− 1 points of F in the open half-plane which is to the left of l.

Proof. According to Lemma 2.1 (and using the continuity ofLt (F L
t,k), as a function of

t), it is enough to show thatLt (F,k)(F L
t (F,k),k) ≥ 0 andLT(F,k)(F L

T(F,k),k) < 0.
Let t0 = t (F, k). By the definition oft (F, k) we haveF L

t0,k
≥ Ct0. If t0 = 0, then

F L
t0,k
= Ct0 (for F L

0,k ≤ C0). If t0 > 0, then, by the minimality oft (F, k), F L
t0−1,k < Ct0−1.

Therefore, by Corollary 4.2, eitherF L
t0,k
= Ct0 or F L

t0,k
= Ct0 + 1.

We conclude that in both cases eitherF L
t0,k
= Ct0 or F L

t0,k
= Ct0 + 1. In either case,

we use Corollary 4.5 to argue thatLt0(F
L
t0,k
) ≥ 0.

Similarly, lett1 = T(F, k). Then, by the maximality ofT(F, k), eitherF L
t1,k
= Dt1 or

F L
t1,k
= Dt1−1. In either case, Corollary 4.5 impliesRt1(F

L
t1,k
) ≥ 0. Letx be the element

in Pt1 at the positionF L
t1,k

. Thenx ∈ F and hencew(x) = 1. Therefore,

Lt1(F
L
t1,k) = −(w(x)+ Rt1(F

L
t1,k)) = −1− Rt1(F

L
t1,k) < 0.

Similarly, we have

Lemma 5.5. For any 1 ≤ k ≤ |H |, there are at least1+ τ(H, k) balanced lines l
meeting the following two requirements:

1. l passes through a point of H,
2. there are exactly k−1 points of H in the open half-plane which is to the right of l.
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6. The Contribution of G

In this section we estimate from below the contribution ofG to the number of balanced
lines. We prove (Lemma 6.2) that there are at least|G| different values oft , for which
eitherLt (GL

t,k) or Rt (GR
t,k) changes from−1 to 0 or vice versa (for somek, as we go

from t − 1 to t). Then we show (Claim 6.4) that for each sucht , eitherl t is a balanced
line through an element ofG or

∑
1≤k≤|F | τ(F, k)+

∑
1≤k≤|H | τ(H, k) increased by 1.

However, in the latter case we find a new balanced line through an element ofF ∪ H .
We need an auxiliary lemma.

Lemma 6.1. Let 1 ≤ k ≤ d|G|/2e and t0 < t1. Suppose that Ct0 ≤ GL
t0,k
≤ Dt0 and

Ct1 ≤ GL
t1,k
≤ Dt1.

(a) If L t0(G
L
t0,k
) ≥ 0 and Lt1(G

L
t1,k
) < 0, then there is an integer t satisfying

t0 < t ≤ t1, Ct−1 ≤ GL
t−1,k ≤ Dt−1, and Ct ≤ GL

t,k ≤ Dt (12)

such that Lt−1(GL
t−1,k) = 0 and Lt (GL

t,k) = −1.
(b) If L t0(G

L
t0,k
) < 0 and Lt1(G

L
t1,k
) ≥ 0, then there is an integer t satisfying(12)

such that Lt−1(GL
t−1,k) = −1 and Lt (GL

t,k) = 0.
(c) If Rt0(G

R
t0,k
) ≥ 0 and Rt1(G

R
t1,k
) < 0, then there is an integer t satisfying(12)

such that Rt−1(GR
t−1,k) = 0 and Rt (GR

t,k) = −1.
(d) If Rt0(G

R
t0,k
) < 0 and Rt1(G

R
t1,k
) ≥ 0, then there is an integer t satisfying(12)

such that Rt−1(GR
t−1,k) = −1 and Rt (GR

t,k) = 0.

Proof. By symmetry, it is enough to discuss the caseLt0(G
L
t0,k
) ≥ 0 andLt1(G

L
t1,k
) < 0.

(The other cases can be treated similarly.)
Let t be the minimum integer in(t0, t1], for which Lt (GL

t,i ) < 0 andCt ≤ GL
t,k ≤ Dt .

We show thatt meets the requirements of the lemma.
If Ct−1 ≤ GL

t−1,k ≤ Dt−1, thenLt−1(GL
t−1,k) = 0, by the minimality oft , and we are

done.
Otherwise, we distinguish two cases.

Case1: GL
t−1,k < Ct−1.

Case2: GL
t−1,k > Dt−1.

SinceCt ≤ GL
t,k ≤ Dt , it follows from Corollary 4.2 that in Case 1 eitherGL

t,k = Ct or
GL

t,k = Ct + 1; and in Case 2 eitherGL
t,k = Dt or GL

t,k = Dt − 1.
Case 1 is impossible, becauseLt (GL

t,k) < 0, while, by Corollary 4.5,Lt (Ct ) ≥ 0 and
Lt (Ct + 1) ≥ 0. Contradiction.

In Case 2 lett ′ be the maximum integer in [t0, t − 1) such thatGL
t ′,k ≤ Dt ′ . By

the maximality oft ′ and by Corollary 4.2,GL
t ′,k is eitherDt ′ or Dt ′ − 1. In either case,

Corollary 4.5 implies thatRt ′(GL
t ′,i ) ≥ 0. Therefore, denoting byx the element inPt ′ at

positionGL
t ′,k, we have

Lt ′(G
L
t ′,k) = −(w(x)+ Rt ′(G

L
t ′,k)) = −(1+ Rt ′(G

L
t ′,k)) < 0.
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Moreover, we haveCt ′ ≤ GL
t ′,k ≤ Dt ′ . Thus,t ′ contradicts the minimality oft . (Observe

thatt ′ 6= t0, becauseLt ′(GL
t ′,k) < 0, while Lt0(G

L
t0,k
) ≥ 0.)

Lemma 6.2. Let 1 ≤ k ≤ b|G|/2c. Then there exist0 < t1
k , t

2
k ≤

(2n
2

)
, t1

k 6= t2
k , such

that for t ∈ {t1
k , t

2
k }, precisely one of the following two conditions is satisfied:

1. {Lt−1(GL
t−1,k), Lt (GL

t,k)} = {0,−1}, Ct−1 ≤ GL
t−1,k ≤ Dt−1, and Ct ≤ GL

t,k ≤
Dt .

2. {Rt−1(GR
t−1,k), Rt (GR

t,k)} = {0,−1}, Ct−1 ≤ GR
t−1,k ≤ Dt−1, and Ct ≤ GR

t,k ≤
Dt .

Furthermore, if |G| is odd and k= (|G| + 1)/2, then there exists at least one t= tk,
0≤ t ≤ (2n

2

)
, satisfying conditions1 or 2.

All numbers t1k , t
2
k , tk having the above properties are different for different values

of k.

Proof. Suppose first thatL0(GL
0,k) ≥ 0 andR0(GR

0,k) < 0. SinceP(2n
2)

is a reversed

copy of P0, we have thatL(2n
2)
(GL
(2n

2),k
) = R0(GR

0,k) < 0. By the definition ofG, for

every 1≤ j ≤ |G|, C0 ≤ GL
0, j ≤ D0 so thatC(2n

2)
≤ GL

(2n
2), j
≤ D(2n

2)
. Therefore,

Lemma 6.1 implies that there existst1
k for which condition 1 of Lemma 6.2 holds.

To prove the existence oft2
k , note thatR(2n

2)
(GR
(2n

2),k
) = L0(GL

0,k) ≥ 0. Now Lemma 6.1

implies that there existst2
k satisfying condition 2 of Lemma 6.2.

Next, suppose thatL0(GL
0,k) ≥ 0 andR0(GR

0,k) ≥ 0. ThenL(2n
2)
(GL
(2n

2),k
) = R0(GR

0,k) ≥
0 andR(2n

2)
(GR
(2n

2),k
) = L0(GL

0,k) ≥ 0. By the construction ofG, at least one of the fol-

lowing two conditions is satisfied:

(i) There existt0, t1 such thatLt0(G
L
t0,k
) ≥ 0, Lt1(G

L
t1,k
) < 0,Ct0 ≤ GL

t0,k
≤ Dt0, and

Ct1 ≤ GL
t1,k
≤ Dt1.

(ii) There existt0, t1 such thatRt0(G
R
t0,k
) ≥ 0, Rt1(G

R
t1,k
) < 0,Ct0 ≤ GR

t0,k
≤ Dt0, and

Ct1 ≤ GR
t1,k
≤ Dt1.

If (i) holds, then parts (a) and (b) of Lemma 6.1 imply that there existt1
k and t2

k , 0 <
t1
k ≤ t1 < t2

k ≤
(2n

2

)
, for which condition 1 of Lemma 6.2 is satisfied.

If (ii) holds, then, similarly, condition 2 of Lemma 6.2 can be derived from parts (c)
and (d) of Lemma 6.1.

The remaining cases can be settled in the same way. Note that the above argument
also applies whenk = (|G| + 1)/2, but in this caset1

k andt2
k may coincide.

We prove the last statement of Lemma 6.2 by contradiction. Suppose, e.g., that there
are two integers 1≤ k 6= k′ ≤ d|G|/2e such thattk ∈ {t1

k , t
2
k }, tk′ ∈ {t1

k′ , t
2
k′ }, and

tk = tk′ = t . If t satisfies condition 1 of the lemma, thenLt−1(GL
t−1,k) 6= Lt (GL

t,k).
In this case,l t passes through a unique element ofG. Indeed, ifl t passed through two
elements ofG or no element ofG, we would haveGL

t−1,k = GL
t,k and hence also

Lt−1(GL
t−1,k) = Lt (GL

t,k). Moreover, this unique element ofG is at positionGL
t−1,k

in Pt−1.
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Similarly, if condition 2 is satisfied, thenl t passes through a unique element ofG,
which is at positionGR

t−1,k in Pt−1. Therefore, ift = tk = tk′ , we have{GL
t−1,k,G

R
t−1,k}∩

{GL
t−1,k′ ,G

R
t−1,k′ } 6= ∅, which is a contradiction, as 1≤ k 6= k′ ≤ d|G|/2e.

Notation 6.3. For anyS⊆ {1,2, . . . ,2n}, let bal(S) denote the number of balanced
lines passing through at least one point ofS.

Claim 6.4. |G| ≤∑1≤k≤|F | τ(F, k)+
∑

1≤k≤|H | τ(H, k)+ bal(G).

Proof. Let 1 ≤ k ≤ d|G|/2e, and let t be one of the valuest1
k , t

2
k , whose exist-

ence is guaranteed by Lemma 6.2. (Note that in casek = (|G| + 1)/2 there is only
one such value.) ThenCt−1 ≤ GL

t−1,k ≤ Dt−1 andCt ≤ GL
t,k ≤ Dt . There are four

possibilities:

1. (a) Lt−1(GL
t−1,k) = 0 andLt (GL

t,k) = −1,
(b) Lt−1(GL

t−1,k) = −1 andLt (GL
t,k) = 0,

2. (a) Rt−1(GR
t−1,k) = 0 andRt (GR

t,k) = −1,
(b) Rt−1(GR

t−1,k) = −1 andRt (GR
t,k) = 0.

For simplicity, we consider only case 1(a). Letx denote the element at positionGL
t−1,k

in Pt−1. Sincex ∈ G, we havew(x) = +1. Pt−1 andPt differ in two consecutive places;
one of them is occupied byx. Let y denote the element at the other place. Obviously,l t
passes throughx andy. We distinguish two cases.

Case1: w(y) = −1. Clearly,y /∈ G, sox is at positionGL
t,k in Pt . SinceLt (GL

t,k) <

Lt−1(GL
t−1,k), it follows that y > x. That is,Lt (GL

t,k) = Lt−1(GL
t−1,k) + w(y). Conse-

quently, the sum of the weights of the points ofV in the open half-plane to the left ofl t
is 0. Sincew(x)+ w(y) = 0, l t must be a balanced line.

Case2:w(y) = +1. Now y /∈ G, for otherwiseLt (GL
t,k) = Lt−1(GL

t−1,k).
Using the fact thatLt (GL

t,k) < Lt−1(GL
t−1,k), we obtain thaty < x. That isLt (GL

t,k) =
Lt−1(GL

t−1,k)−w(y). Sincey /∈ G andy < x, we havey ∈ F . Let 1≤ s ≤ |F | denote
the integer for whichy is thesth leftmost element ofF in Pt−1 and hence also inPt . Now it
follows thatLt−1(F L

t−1,s) = −1 andLt (F L
t,s) = 0. We show thatt (F, s) < t ≤ T(F, s),

which implies that whenx andy are swapped,τ(F, s) increases by 1.
To see thatt (F, s) < t , it is enough to prove thatCt−1 ≤ F L

t−1,s. SinceLt (GL
t,k) =

−1, using Corollary 4.5 and the fact thatCt ≤ GL
t,k we haveCt + 2 ≤ GL

t,k. Now
GL

t,k = F L
t,s− 1, so thatCt + 3≤ F L

t,s. It follows from Claim 4.1 and Corollary 4.2 that
Ct−1 < F L

t−1,s.
To see thatt ≤ T(F, s), it is enough to prove thatF L

t,s ≤ Dt . Now Rt−1(GL
t−1,k) =

−(Lt−1(GL
t−1,k)+ w(x)) < 0. SinceGL

t−1,k ≤ Dt−1, it follows from Corollary 4.5 that
GL

t−1,k ≤ Dt−1− 2. We haveF L
t−1,s = GL

t−1,k − 1, so thatF L
t−1,s ≤ Dt−1− 3. It follows

from Claim 4.1 and Corollary 4.2 thatF L
t,s ≤ Dt − 1.

Summarizing, we have shown that for every value oft , whose existence is guaranteed
by Lemma 6.2, eitherl t is a distinct balanced line through an element ofG, ort contributes
1 to the sum

∑
1≤k≤|F | τ(F, k)+

∑
1≤k≤|H | τ(H, k).
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7. Proof of Theorem 1.3

Now we are in a position to complete the proof of Theorem 1.3. SinceF ∪ G ∪ H
is the set of all elements of weight+1, by Claim 1.2 we have that the number of
balanced lines is equal to bal(F) + bal(H) + bal(G). By Lemmata 5.4 and 5.5, we
have

bal(F) ≥
∑

1≤k≤|F |
(1+ τ(F, k)), bal(H) ≥

∑
1≤k≤|H |

(1+ τ(H, k)).

Therefore, in view of Claim 6.4, the number of balanced lines is

bal(F)+ bal(H)+ bal(G)

≥
∑

1≤k≤|F |
(1+ τ(F, k))+

∑
1≤k≤|H |

(1+ τ(H, k))+ bal(G)

= |F | + |H | +
( ∑

1≤k≤|F |
τ(F, k)+

∑
1≤k≤|H |

τ(H, k)+ bal(G)

)
≥ |F | + |H | + |G| = n.

8. Concluding Remarks

Theorem 1.3 does not remain true without assuming that the points are in general position.
It is not hard to construct sets ofn points of weight+1 andn points of weight−1 which
determinenobalanced line.

Theorem 1.3 can be rephrased in the followingdual form. Considern lines of weight
+1 andn lines of weight−1 in general position in the plane, i.e., no three of them pass
through the same point, no two are parallel, and none of them is vertical (parallel to
the y-axis). Then they determine at leastn intersection pointsp with the property that
the sum of the weights of all lines abovep, as well as the sum of the weights of all
lines belowp, is equal to zero. This statement can also be formulated forx-monotone
pseudo-linesinstead of lines (a pseudo-line is calledx-monotone if every vertical line
intersects it in precisely one point). This version remains valid, because as we sweep the
plane by a vertical line from left to right, the order in which it meets the pseudo-lines
determines a flip array, and our proof applies.

Let V be a set of points in general position in the plane, having an even number of
elements. A linel connecting two points ofV is called ahalving line if it cuts V into
two equal halves, i.e., if both open half-planes bounded byl contain precisely|V |/2−1
elements ofV .

The following simple fact is an easy consequence of the Ham-Sandwich Theorem
(for a similar argument, see [AA]).

Claim 8.1. Let V consist of n points of weight+1and n points of weight−1 in general
position in the plane. If n is odd, then V permits a balanced halving line l.

Proof. Replace each pointv ∈ V by a disk of area 1/N centered atv, whereN is a
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Fig. 2. A 2-colored point set with a unique balanced halving line.

sufficiently large integer. LetD+ andD− denote the union of all disks which correspond
to the elements ofV with positive and negative weights, respectively. By the Ham-
Sandwich Theorem, there is a straight linel (N) such that the area of the intersection
of D+ with any half-plane bounded byl (N) is n/(2N), and the same is true forD−.
Choose an infinite sequenceN(1) < N(2) < · · · such that the corresponding linesl (Ni )

converge to a straight linel , as i tends to infinity. Clearly,l must connect a point of
positive weight with a point of negative weight, and it meets the requirements in the
claim.

It is not hard to come up with a point setV satisfying the conditions in Claim 8.1,
which permits only one balanced halving line. (See Fig. 2.)

The above argument easily generalizes to anyd-dimensional setV in general position,
whose elements are colored withd colors. However, the analogue of Theorem 1.3 does
not hold in three and higher dimensions.

Definition 8.2. A set of points ind-space is said to be ingeneral positionif no d + 1
of them lie on a hyperplane.

Let U = U1 ∪ · · · ∪ Ud be a set ofdn points in general position ind-space, where
eachUi consists ofn points and is called acolor class.

A hyperplaneh determined by (d elements of)V is calledbalancedif each open
half-space bounded byh contains the same number of elements from each color class.

Obviously, all points of a balanced hyperplane are of different colors. By straight-
forward generalization of the proof of Claim 8.1, we also obtain that ifn is odd, then
U = U1 ∪ · · · ∪Ud always permits at least one balanced halving hyperplane.

Claim 8.3. For every d≥ 3, there exists a set U of dn points in general position in
d-space, which consists of d color classes of size n and satisfies the following conditions:

(i) if n is even, then U does not permit a balanced hyperplane;
(ii) if n is odd, then U permits precisely one balanced hyperplane.

Proof. We present the construction only ford = 3; the other constructions are very
similar.

Suppose first thatn is even. Let{a,b, c,d} be the vertex set of a regular tetrahedron
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centered ato. Replacea,b, c,d, andoby five point sets,A, B,C, D,andO, respectively.
Suppose that each of these sets is equally spaced along a line parallel tood, with a
sufficiently small distanceε > 0, and let|A| = |B| = |C| = |D| = n/2, and|O| = n.
Finally, slightly perturb the points so thatA∪ B∪C∪D∪O will be in general position.

Let U1 := A ∪ B, U2 := C ∪ D, andU3 := O. Suppose, in order to obtain a
contradiction, thatU := U1∪U2∪U3 permits a balanced hyperplaneh. Clearly,h must
pass through three points of different colors, say,u ∈ A, v ∈ C, andw ∈ O. Now B
andD are on different sides ofh, which implies that both open half-spaces bounded byh
must contain at leastn/2 points of each color. Counting the pointsu, v, andw belonging
to h, each color class has at leastn+ 1 elements, a contradiction.

If n is odd, then the construction is the same, except that|A| = |C| = (n+ 1)/2 and
|B| = |D| = (n− 1)/2. Now a balanced hyperplaneh must pass through one element
in each of the setsA,C, andO, say,u, v, andw, resp. Moreover, since there are at least
(n− 1)/2 elements ofU2 in the open half-space opposite toD, v must be the last point
of C in the directionod. Similarly, u is the last point ofA in the same direction, andw
is also uniquely determined.
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