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Abstract. We know that the polyhedra corresponding to the Platonic solids are equivelar.
In this article we have classified completely all the simplicial equivelar polyhedra on≤ 11
vertices. There are exactly 27 such polyhedra. For eachn ≥ −4, we have classified all the
(p,q)such that there exists an equivelar polyhedron of type{p,q}and of Euler characteristic
n. We have also constructed five types of equivelar polyhedra of Euler characteristic−2m,
for eachm≥ 2.

1. Introduction

A finite collectionK of cycles, edges and vertices of a complete graph is called acomplex
(of dimension 2) if (i) each edge of a cycle inK is in K , (ii) each vertex of each edge
in K is in K and (iii) any two cycles have at most one common edge. The cycles,
edges and vertices in a complex are called thefaces, edgesandverticesin that complex,
respectively. We denote a faceu1 · · ·umu1 by u1 · · ·um also.

For a complexK , theedge graphEG(K ) of K is the graph whose vertices and edges
are the vertices and edges ofK , respectively. EG(K ), is also called the 1-skeletonof K .
The graph theoretic complement of EG(K ) is called thenon-edge graphof K and is
denoted by NEG(K ). So,e is an edge in NEG(K ) if and only if e is not an edge inK .
See [2] for the graph-theoretic terms used in this paper.

If K is a complex, then we associate another graph3(K ) with K as follows. The
vertices of3(K ) are the faces inK and for facesF1, F2 ∈ K , F1F2 is an edge in3(K )
wheneverF1 andF2 have a common edge. For a vertexu in K letFu be the set of faces
containingu. A complexK is called anabstract polyhedron(or simply apolyhedron) (of
dimension 2) if (iv) for each vertexv there is a faceF containingv, (v) each edge is in
exactly two faces, (vi) the induced subgraphL(u) = 3(K )[Fu] is a cycle for each vertex
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u in K and (vii) the graph3(K ) is connected. Since all the polyhedra considered in this
paper are two-dimensional, we drop the qualification “two-dimensional”. Clearly, the
faces of a polyhedron determine the polyhedron. Because of this we identify a polyhedron
with the set of faces in it.

A complex may be thought of as a prescription for the construction of a topological
space by pasting together plane polygons. The topological space thus obtained from a
complexK is called thegeometric carrierof K and is denoted by|K |. It is easy to see
that the geometric carrier of a polyhedron is a connected two-dimensional manifold.

Two complexesK andL are calledisomorphic(denoted byK ∼= L) if there exists
a bijective mapϕ from the vertex-set ofK to the vertex-set ofL such thatv1 · · · vk is a
face inK if and only if ϕ(v1) · · ·ϕ(vk) is a face inL. We identify two complexes if they
are isomorphic.

If uv is an edge in a complexK , then we sayu andv are adjacent inK . For a vertex
v in a complexK , the number of edges throughv is called thedegreeof v in K . If
f0(K ), f1(K ) and f2(K ) are the number of vertices, edges and faces, respectively, of a
polyhedronK , then the numberχ(K ) := f0(K ) − f1(K ) + f2(K ) is called theEuler
characteristicof K .

A polyhedronK is calledequivelar of type{p,q} (or {p,q}-equivelar) if each face
is a p-gon (i.e.,3(K ) is a p-regular graph) and the degree of each vertex isq (see [4]).
A polyhedron is calledequivelarif it is equivelar of type{p,q} for somep andq.

A complex is calledsimplicial if each face consists of three vertices. Ifu is a vertex of
a simplicial complexK , then thelink of u in K (denoted by LkK (u)) is the graph whose
vertices are those vertices ofK which are adjacent tou and whose edges are those edges
vw in K such thatuvw is a face inK . A simplicial complex with properties (iv)–(vi) is
called acombinatorial2-manifold. Observe that in this case the link of any vertex is a
cycle. So, a connected combinatorial 2-manifold in which the degree of each vertex is the
same is a simplicial equivelar polyhedron and hence is called anequivelar combinatorial
2-manifold.

In [18]–[20] McMullen et al. considered equivelar polyhedra with geometric carriers
in R3 (and hence orientable). We consider both the orientable and non-orientable cases.

Example 1. Some equivelar polyhedra:

S2
4 = {abc,abd,acd,bcd},

O = {ai bj ck: 1≤ i, j, k ≤ 2},
C = {a1b2c1d2,a1b2d1c2,a1c2b1d2,a2b1c2d1,a2b1d2c1,a2c1b2d1},
I = {uui ui+1,ui ui+1vi+3, vi vi+1ui+3, vvi vi+1: 1≤ i ≤ 5},

D = {v1v2v3v4v5, vi vi+1ui+1vi,i+1ui , vi,i+1ui+1vi+1,i+2ui+1,i+2ui,i+1,

u12u23u34u45u51: 1≤ i ≤ 5},
RP2

6 = {uui ui+1,ui ui+1ui+3: 1≤ i ≤ 5},
R = {u1,2u2,3u3,4u4,5u5,1,ui,i+1ui,i+1,i+3ui+2,i+3,i ui+5,i,i+2ui+5,i : 1≤ i ≤ 5},

M1 = {u1+pu4+pu7+p,ui+3puj+3puk+3p: (i, j, k)

∈ {(1,2,5), (1,3,5), (1,3,4), (1,8,9), (1,6,8), (1,2,6), (2,3,6)},
0≤ p ≤ 2},
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N1 = {uui ui+1,ui ui+1ui+4,ui ui+2ui+4,ui ui+3ui+6: 1≤ i ≤ 9}.
(Additions in the subscripts are modulo 5 inI , D,RP2

6 , R and
are modulo 9 inM1, N1.)

HereS2
4 is equivelar of type{3,3}, O is equivelar of type{3,4}, C is equivelar of type

{4,3}, I andRP2
6 are equivelar of type{3,5}, D andR are equivelar of type{5,3}, M1

is equivelar of type{3,8} andN1 is equivelar of type{3,9}.

The geometric carrier of each ofS2
4, O,C, I andD is the 2-sphere and they correspond

to the Platonic solids [5], [6], [12], [8], [24], namely, tetrahedron, octahedron, cube,
icosahedron and dodecahedron, respectively. The polyhedronRP2

6 [1] is called the hemi-
icosahedron and the polyhedronR is called the hemi-dodecahedron. The geometric
carrier of each ofRP2

6 and R is the real projective plane. The geometric carrier ofM1

is the non-orientable surface of Euler characteristic−3. The geometric carrier ofN1 is
the non-orientable surface of Euler characteristic−5.

Let K be a polyhedron with facesF1, . . . , Fm. Consider a complex̃K with vertex-set
{w1, . . . , wm} as:wi1 · · ·wi k is a face inK̃ if and only if there exists a vertexu in K such
that Fi1 · · · Fik Fi1 is the cycleL(u) defined above. TheñK is a polyhedron.̃K is called
thedualof K . It is easy to show that the dual of̃K is isomorphic toK andχ(K̃ ) = χ(K ).
It is also not difficult to see that̃S2

4
∼= S2

4, C̃ ∼= O, Ĩ ∼= D andR̃P
2
6
∼= R. Observe that

the graph3(K ) is isomorphic to EG(K̃ ). Because of this, for a polyhedronK ,3(K ) is
called thedual1-skeletonof K .

A patternon a connected surfaceM is a non-empty, connected locally finite graph0
contained inM , such that each component ofM\0 is simply connected and has compact
closure. The closure of a component ofM\0 is called a face of0. A pattern decomposes
the surface into faces. Such a decomposition is called amap (see [7], [15] and [16]).
A pattern0 is callednon-singularif each edge of0 lies in two faces. A pattern0 is
calledequivelarof type {p,q} (or a {p,q}-pattern) if each face containsp (counted
with multiplicity) edges and each vertex has degreeq.

Let8(n) = {(p,q): there exists a{p,q}-equivelar polyhedron of Euler characteristic
n} and6(n) denote the set of all equivelar polyhedra of Euler characteristicsn. Clearly,
8(m) = ∅ for m≥ 3. It is known (e.g., see [17]) that if(p,q) ∈ 8(n) for somen < 0,
then(p,q) ∈ 8(n) for infinitely many negativen. Here we prove:

Theorem 1. If 8(n) and6(n) are as above, then

(i) 8(n) ∩8(−m) = ∅ for all n ≥ 0 and m≥ 1,
(ii) 8(2) = {(3,3), (3,4), (4,3), (3,5), (5,3)},

(iii) 8(1) = {(3,5), (5,3)},
(iv) 8(0) = {(3,6), (6,3), (4,4)},
(v) 8(−1) = ∅,

(vi) 8(−2) = {(3,7), (7,3), (4,5), (5,4)},
(vii) 8(−3) = {(3,7), (7,3), (3,8), (8,3), (4,5), (5,4), (5,5)},

(viii) 8(−4) = {(3,7), (7,3), (3,8), (8,3), (4,5), (5,4), (4,6), (6,4), (5,5)} ⊆
8(−2m), for all m ≥ 3,

(ix) (3,3k− 1) ∈ 8(−k(3k− 7)/2), (3,3k) ∈ 8(1− k(3k− 5)/2), for all k ≥ 3,
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(x) 8(n) is a finite set for each integer n and
(xi) for each n≥ 7, there exists an n-vertex{3,6}-equivelar polyhedron in6(0).

Corollary 2. For each n 6= 0, there exist only finitely many equivelar polyhedra of
Euler characteristic n.

In [11] (also see in [7]) Edmonds et al. proved the existence and uniqueness of a
{p,q}-pattern on surfaces. Clearly, a{p,q}-equivelar polyhedronK gives a non-singular
{p,q}-pattern on|K | with the property that any two faces have at most one common
edge. So, the existence of a{p,q}-equivelar polyhedron implies the existence of a{p,q}-
pattern but not conversely. For example, by Theorem 2.4(i) of [11], a{3,7}-pattern and
a {4,6}-pattern exist on a non-orientable surface of Euler characteristic−1 but, from
Theorem 1(v) above, an equivelar polyhedron of Euler characteristic−1 does not exist.
Also, by the same theorem in [11], a{5,6}-pattern exists on an orientable surface of Euler
characteristic−4 but, from Theorem 1(viii) above a{5,6}-equivelar polyhedron of Euler
characteristic−4 does not exist. There are five choices of(p,q) for {p,q}-equivelar
polyhedra of Euler characteristic 2, where as there are infinitely many choices of(p,q)
for {p,q}-patterns (e.g.,{p,2}-patterns exist for allp ≥ 3) on the 2-sphere (see [11] and
[7]). However, in each case unique pattern exists (see Classification in [11]). Similarly
for Euler characteristic 1. From these (Classification in [11]) and Theorem 1(iii) and (iv)
above we get:

Corollary 3. If the Euler characteristic of an equivelar polyhedron is positive, then
the polyhedron is S24, C, O, I , D, RP2

6 or R defined in Example1.

Corollary 2 says that6(n) is a finite set forn 6= 0 and Theorem 1(xi) shows that
6(0) is an infinite set. If the Euler characteristic is≤ 0, then (unlike when the Euler
characteristic is> 0) it is in general difficult to classify all the non-singular{p,q}-
patterns. In particular, it is very difficult to classify all the{p,q}-equivelar polyhedra of
a given non-positive Euler characteristic. Even for a negative Euler characteristic, there
can exist more than one{p,q}-equivelar polyhedra of the same Euler characteristic (e.g.,
N1, . . . , N14 in Examples 1 and 8). For simplicial polyhedra on few vertices we have:

Theorem 4. Let K be an n-vertex simplicial equivelar polyhedron of Euler character-
istic 0. If n ≤ 11, then K is isomorphic to T7, . . . , T11, A3,3, B3,3 or Q defined below.

Theorem 5. If M1 and M2 are as in Examples1and7, then M1 6∼= M2 and any9-vertex
neighbourly simplicial equivelar polyhedron is isomorphic to M1 or M2.

Theorem 6. Let N1, . . . , N14 be as in Examples1 and8. We have the following:

(i) Ni is not isomorphic to Nj for 1≤ i 6= j ≤ 14.
(ii) If M is a 10-vertex neighbourly simplicial equivelar polyhedron, then M is iso-

morphic to Ni for some i∈ {1, . . . ,14}.
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Theorem 7. There are exactly27 (up to isomorphism) simplicial equivelar polyhedra
on≤ 11 vertices, namely, S2

4, O, RP2
6 , A3,3, B3,3, T7, . . . , T11, M1, M2, N1, . . . , N14

and Q, defined in Examples1–8.

Remark 1. Observe thatM1 and M2 are non-isomorphic but they have the same 1-
skeleton. Similarly,N1, . . . , N14 have the same 1-skeleton but they are pairwise non-
isomorphic combinatorial 2-manifolds.

Remark 2. Corollary 3 is classically known. We have added it here as an immediate
consequence of Theorem 1. Corollary 2 is also known (e.g., see [25]). We have added it
for the sake of completeness.

Remark 3. In this article we consider polyhedra from a combinatorial point of view.
For some polyhedra (e.g.,L2, L3, Q, G, Dn’s, Hn’s, . . .) we have given their geometric
realizations in Section 2. A polyhedronK is also called apolyhedral2-manifold(see [4]).

Remark 4. Property (vii), in the definition of a polyhedron, implies that the geometric
carrier of a polyhedron is connected. A complex with properties (iv)–(vi) is said to be a
weak polyhedron. Similarly, we can define{p,q}-equivelar and equivelar weak polyhe-
dra. Clearly, an equivelar weak polyhedron is the disjoint union of equivelar polyhedra
whose Euler characteristic is the sum of the Euler characteristics of the components. So,
it is sufficient to consider only equivelar polyhedra.

2. Examples

In this section we construct infinitely many equivelar polyhedra. Some of them have
already been mentioned in the previous section. We use others in the next section. Recall
that we identify a polyhedron with the set of faces in it. At the end of this section we
give the geometric realizations of some of the polyhedra.

Example 2. Some equivelar polyhedra of Euler characteristic 0:

Am,n = {ui, j ui+1, j ui+1, j+1, ui, j ui, j+1ui+1, j+1: 1≤ i ≤ m,1≤ j ≤ n}, m,n ≥ 3.

Bm,n = {ui, j ui+1, j ui+1, j+1, ui, j ui, j+1ui+1, j+1: 1≤ i ≤ m− 1,1≤ j ≤ n}
∪ {um, j u1,n+2− j u1,n+1− j , um, j um, j+1u1,n+1− j : 1≤ j ≤ n}, m,n ≥ 3.

Cm,n = {ui, j ui+1, j ui+1, j+1ui, j+1: 1≤ i ≤ m,1≤ j ≤ n}, m,n ≥ 3.

(Additions in the first and second subscripts are modulom andn,
respectively.)

Tn = {ui ui+1ui+3,ui ui+2ui+3: 1≤ i ≤ n}, n ≥ 7.

(Additions in the subscripts are modulon.)

Q = {012,023,034,045,056,016,127,136,138,178,236,269,279,

348,457,479,489,569,578,589}.
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Am,n, Bm,n, Tn andQ are equivelar of type{3,6} andCm,n is equivelar of type{4,4}.
The geometric carriers ofAm,n, Cm,n andTn are the torus and the geometric carriers of
Bm,n andQ are the Klein bottle.

Example 3. Some equivelar polyhedra of type{4,5}:

Dn = [{ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: 1≤ j, k ≤ 4, 1≤ i ≤ n}\
{ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: ( j, k)

∈ {(1,1), (1,3), (3,1), (3,3)},1≤ i ≤ n}]
∪ {ai,3,kai,3,k+1ai+1,2,k+1ai+1,2,k, ai,3,k+1ai,4,k+1ai+1,1,k+1ai+1,2,k+1,

ai,4,k+1ai,4,kai+1,1,kai+1,1,k+1, ai,4,kai,3,kai+1,2,kai+1,1,k:

k ∈ {1,3},1≤ i ≤ n}, for n ≥ 2.

En = [{ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: 1≤ j, k ≤ 4, 1≤ i ≤ n}\
{ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: ( j, k)

∈ {(1,1), (1,3), (3,2), (3,4)},1≤ i ≤ n}]
∪ {ai,3,kai,3,k+1ai+1,2,kai+1,2,k+3, ai,3,k+1ai,4,k+1ai+1,1,kai+1,2,k,

ai,4,k+1ai,4,kai+1,1,k+3ai+1,1,k, ai,4,kai,3,kai+1,2,k+3ai+1,1,k+3:

k ∈ {2,4},1≤ i ≤ n}. for n ≥ 1.

(Additions in the first subscripts are modulon and in the second and third
subscripts are modulo 4.)

F1 = {ai ci di+1di ,ai+1ai di bi+1,ai bi bi+1ci+1,bi di ci+1ci ,a1c1a2c2,b1d1b2d2:

1≤ i ≤ 2}.
(Additions in the subscripts are modulo 2.)

Fn = [{ai, j ai, j+1ai+1, j+1ai+1, j : 1≤ j ≤ 4,1≤ i ≤ 2n}\
{a2k−1, j a2k−1, j+1a2k, j+1a2k, j : j ∈ {1,3},1≤ k ≤ n}]
∪ {a2k−1,1a2k−1,2a2k+2,4a2k+2,3, a2k−1,2a2k,2a2k+1,4a2k+2,4,

a2k,2a2k,1a2k+1,3a2k+1,4, a2k,1a2k−1,1a2k+2,3a2k+1,3:

1≤ k ≤ n}, for n ≥ 2.

Gn = [{ai, j ai, j+1ai+1, j+1ai+1, j : 1≤ j ≤ 4,1≤ i ≤ 2n}\
{a2k−1, j a2k−1, j+1a2k, j+1a2k, j : j ∈ {1,3},1≤ k ≤ n}]
∪ {a2k−1,1a2k−1,2a2k+1,4a2k+1,3, a2k−1,2a2k,2a2k+2,4a2k+1,4,

a2k,2a2k,1a2k+2,3a2k+2,4, a2k,1a2k−1,1a2k+1,3a2k+2,3:

1≤ k ≤ n}, for n ≥ 2.

(Additions in the first and second subscripts are modulo 2n and 4,
respectively.)

G = {abcd, adef, bagh, cbij, dckl, feij, hgkl, aljg, alhf, bkeh, bkgi, ciek, cigj, dfhe,

dfjl}.
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χ(Dn) = 16n− 40n+ 20n = −4n and the geometric carrier ofDn is the orientable
surface of genus 2n+ 1 for all n ≥ 2.χ(En) = −4n and the geometric carrier ofEn is
the orientable surface of genus 2n+ 1 for all n ≥ 1.χ(Fn) = 8n− 20n+ 10n = −2n
and the geometric carrier ofFn is the orientable surface of genusn + 1 for all n ≥ 1.
χ(Gn) = −2n and the geometric carrier ofGn is a non-orientable surface for alln ≥ 2.
The geometric carrier ofG is the non-orientable surface of Euler characteristic−3.

Example 4. Some equivelar polyhedra of type{3,7}:
Hn = {ui,1vi,1ui,2, ui,2vi,1vi,2, ui,2vi,2vi,3, ui,2vi,3ui,3, ui,4vi,4ui,1, ui,1vi,4vi,1,

vi,2wi,2wi,3, vi,2wi,3vi,3, vi,3wi,3vi,4, vi,4wi,3wi,4, vi,4wi,4vi,1, vi,1wi,4wi,1,

wi,1ui,1wi,2, wi,2ui,1ui,2, wi,2ui,2wi,3, wi,3ui,2ui,3, wi,3ui,3wi,4, wi,4ui,3ui,4,

wi,4ui,4ui,1, wi,4ui,1wi,1}
∪ {ui+1,3vi+1,3wi,2, ui+1,3wi,2vi,2, ui+1,3ui+1,4vi,2,ui+1,4vi,2vi,1,

ui+1,4vi+1,4wi,1, ui+1,4vi,1wi,1, vi+1,4vi+1,3wi,1, vi+1,3wi,1wi,2:

1≤ i ≤ n}, for n ≥ 1.

(Additions in the subscripts are modulon.)

H = {a1b4b1,a1b1b3,a1b3a2,a1a2c2,a1c2c1,a2b3b2,a2b2c5,a2c5c4,a2c4a3,a2a3c2,

a3c4b5,a3b5b6,a3b6a4,a3a4c3,a3c3c2,a4b6b4,a4b4b1,a4b1a5,a4a5c1,a4c1c3,

a5b1b2,a5b2c5,a5c5c6,a5c6a6,a5a6c1,a6c6c4,a6c4b5,a6b5b4,a6b4a1,a6a1c1,

b1b2b6,b1b3b6,b2b3b5,b2b5b6,b3b4b5,b3b4b6, c1c2c6, c1c3c6, c2c3c5, c2c5c6,

c3c4c5, c3c4c6}.
The geometric carrier ofH is the non-orientable surface of Euler characteristic−3. The
geometric carrier ofHn is an orientable surface andχ(Hn) = 12n− 42n+ 28n = −2n
for all n ≥ 1.

Example 5. Some sequences of equivelar polyhedra of type{3,8}:
Jn = {ui, j ui+1, j ui+1, j+1, ui, j ui, j+1ui+1, j+1: 1≤ i ≤ 2n,1≤ j ≤ 3}\

{u2k−1, j u2k−1, j+1u2k, j+1: 1≤ k ≤ n, j ∈ {1,3}}
∪ {u2k−1,1u2k+1,3u2k−1,2,u2k−1,2u2k+1,3u2k+2,3, u2k−1,2u2k+2,3u2k,2,

u2k,2u2k+2,3u2k+2,1,u2k,2u2k+2,1u2k−1,1, u2k−1,1u2k+2,1u2k+1,3:

1≤ k ≤ n}, for n ≥ 3.

(Additions in the first and second subscripts are modulo 2n and 3,
respectively.)

Kn = [{ui, j,kui, j+1,kui, j+1,k+1, ui, j,kui, j,k+1ui, j+1,k+1, ui,l ,kvi,l+1,kui,l ,k+1,

ui,l ,k+1ui,l+1,kui,l+1,k+1: 1≤ j ≤ 2,3≤ l ≤ 4,1≤ k ≤ 3,1≤ i ≤ n}\
{ui,1,1ui,2,2ui,1,2, ui,1,3ui,2,3ui,2,1, ui,3,2ui,4,1ui,4,2, ui,3,3ui,4,3ui,3,1}]
∪ {ui,1,1ui,4,3ui,3,3, ui,1,1ui,3,3ui,1,2, ui,1,2ui,3,3ui,3,1, ui,1,2ui,3,1ui,2,2,

ui,2,2ui,3,1ui,4,3, ui,2,2ui,4,3ui,1,1, ui,4,1ui+1,2,1ui+1,2,3,
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ui,4,1ui+1,2,3ui,3,2, ui,3,2ui+1,2,3ui+1,1,3, ui,3,2ui+1,1,3ui,4,2,

ui,4,2ui+1,1,3ui+1,2,1, ui,4,2ui+1,2,1ui,4,1: 1≤ i ≤ n}, for n ≥ 1.

(Additions in the first and second subscripts are modulon and 3,
respectively.)

χ(Jn) = 6n − 24n + 16n = −2n and the geometric carrier ofJn is the orientable
surface of genusn + 1 for all n ≥ 3. χ(Kn) = 12n − 48n + 32n = −4n and the
geometric carrier ofKn is a non-orientable surface for alln ≥ 1.

Example 6. Some sequences of equivelar polyhedra of type{4,6}:
L2 = {1263,1374,1425,1536,1647,1752,8273,8346,8657,8724,8435,8562}.
Ln = {ai,1ai+1,1ai+1,2ai,2, ai,2ai+1,2bi+1,3bi,3, bi,3bi+1,3bi+1,4bi,4, bi,4ai+1,4ai+1,1ai,1:

1≤ i ≤ 2n}\{a2k−1,1a2k,1a2k,2a2k−1,2, b2k−1,3b2k,3b2k,4b2k−1,4: 1≤ k ≤ n},
where a2k−1,1 = b2k+1,4, a2k−1,2 = b2k+2,4, a2k,2 = b2k+2,3,

a2k,1 = b2k+1,3,

for n ≥ 3.

(Additions in the subscripts are modulo 2n.)

Pn = {ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: 1≤ j, k ≤ 4,1≤ i ≤ n}\
{ai, j,kai, j+1,kai, j+1,k+1ai, j,k+1: ( j, k)

∈ {(1,1), (1,3), (3,1), (3,3)}, 1≤ i ≤ n},
where ai, j,k = ai+1, j+2,k,

for ( j, k) ∈ {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)}
and 1≤ i ≤ n for n ≥ 3.

(Additions in the first subscripts are modulon and in the second and third
subscripts are modulo 4.)

χ(Ln) = 4n − 12n + 6n = −2n for all n ≥ 2. The geometric carrier ofL2 is the
orientable surface of genus 3 and the geometric carrier ofLn is a non-orientable surface
for all n ≥ 3. χ(Pn) = 8n− 24n+ 12n = −4n and the geometric carrier ofPn is the
orientable surface of genus 2n+ 1 for all n ≥ 3. (Note thatLn, for n ≥ 3, is obtained
from an 8n-vertex ({ai, j ,bi,k: 1≤ i ≤ 2n,1≤ j ≤ 2,3≤ k ≤ 4}) complex (torus with
2n holes) by identifyingbl ,k’s with ai, j ’s. Pn is also obtained by some identifications.)

Example 7. Another 9-vertex neighbourly simplicial equivelar polyhedra:

M2 = {129,239, . . . ,789,189,124,136,138,147,156,157,

237,245,258,267,268,346,357,358,468,478},
where the vertex set ofM2 is {0,1, . . . ,8}. Clearly,χ(M2) = −3.

Example 8. Thirteen more 10-vertex neighbourly simplicial equivelar polyhedra:

N2 = A∪ {134,136,156,158,178,179,237,248,257,259,268,

269,358,359,368,379,457,467,469,489},
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N3 = A∪ {137,139,146,156,158,178,237,248,257,259,268,

269,346,358,359,368,457,479,489,679},
N4 = A∪ {136,137,145,158,168,179,238,249,256,257,269,

278,347,358,359,369,467,468,489,579},
N5 = A∪ {134,136,157,158,168,179,237,248,256,259,268,

279,358,359,369,378,457,467,469,489},
N6 = A∪ {134,136,157,158,168,179,238,247,256,259,268,

279,357,359,369,378,458,467,469,489},
N7 = A∪ {134,138,156,157,168,179,236,247,258,259,269,

278,357,359,367,389,458,468,469,479},
N8 = A∪ {134,138,156,157,168,179,236,247,257,258,269,

289,358,359,367,379,459,468,469,478},
N9 = A∪ {138,139,146,157,158,167,236,245,258,269,278,

279,347,357,359,368,468,479,489,569},
N10 = A∪ {136,138,145,158,167,179,238,249,256,257,268,

279,347,357,359,369,468,469,478,589},
N11 = A∪ {134,138,156,157,168,179,237,246,257,259,268,

289,358,359,367,369,458,469,478,479},
N12 = A∪ {134,138,156,157,168,179,236,247,258,259,268,

279,357,359,369,378,458,467,469,489},
N13 = A∪ {136,137,145,158,168,179,238,246,257,259,267,

289,349,357,358,369,468,478,479,569},
N14 = A∪ {134,138,156,157,168,179,237,246,257,258,269,

289,358,359,367,369,459,468,478,479},

where the vertex set ofNi (2 ≤ i ≤ 14) is {0,1, . . . ,9} and A = {012, . . . ,089,019,
124}. Clearly,χ(Ni ) = −5 for 1 ≤ i ≤ 14. Thus, all of them triangulate the same
non-orientable surface of Euler characteristic−5.

Ringel and Jungerman [13], [21]–[23], [14] have shown that there exist neighbourly
simplicial polyhedra on 3k and 3k+ 1 vertices, for eachk ≥ 3, i.e.,

Proposition 1. For k ≥ 2, if n = 3k or 3k+ 1, then there exists an n-vertex equivelar
polyhedron of type{3,n− 1}.

Thus, if m = −k(3k − 7)/2 or 1− k(3k − 5)/2, for k ≥ 3, then there exists an
equivelar polyhedron of type{3, f0 − 1} of Euler characteristicm. In particular, there
exist neighbourly equivelar polyhedra on nine and ten vertices (M1 andN1, respectively,
in Example 1).
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3. Proofs

Proof of Theorem1. First observe that ifK is an equivelar polyhedron of type{p,q},
thenK̃ is an equivelar polyhedron of type{q, p}. Thus,(p,q) ∈ 8(m) implies(q, p) ∈
8(m).

If K is a{p,q}-equivelar polyhedron withf0 vertices, f1 edges andf2 faces, then

q f0 = 2 f1 = p f2. (1)

This gives

1

p
+ 1

q
− 1

2
= χ(K )

2 f1
= χ(K )

q f0
. (2)

Thus,(p,q) ∈ 8(n), for n ≥ 0, implies 1/p+ 1/q − 1
2 ≥ 0 and(p,q) ∈ 8(−m),

for m> 0, implies 1/p+ 1/q − 1
2 < 0. This implies (i).

If there esists a{p,q}-equivelar polyhedronK with χ(K ) > 0, then 1/p+ 1/q > 1
2

or (p− 2)(q− 2) < 4. This implies(p,q) ∈ {(3,3), (3,4), (4,3), (3,5), (5,3)}. Thus

8(1),8(2) ⊆ {(3,3), (3,4), (4,3), (3,5), (5,3)}. (3)

From Example 1 we have(3,3), (3,4), (4,3), (3,5), (5,3) ∈ 8(2). This proves (ii).
Let K be an equivelar polyhedron of type{p,q} andχ(K ) = 1. If (p,q) = (3,3),

then, from (2), we getf1 = 3, which is not possible. If(p,q) = (3,4), then, from (2),
f0 = 3, which is again not possible. Similarly,(p,q) 6= (4,3). Therefore, from (3),
(p,q) = (3,5) or (5,3). This and Example 1 (RP2

6 andR) imply (iii).
If there exists a{p,q}-equivelar polyhedronK with χ(K ) = 0, then, by (2), 1/p+

1/q = 1
2. Sincep,q ≥ 3, (p,q) = (3,6), (6,3) or (4,4). This together with Example

2 proves (iv).
Let K be an equivelar polyhedron of type{p,q} andχ(K ) = −1. Since, the existence

of an equivelar polyhedron of type{p,q} implies the existence of an equivelar polyhedron
of type{q, p}, therefore we may assumeq ≥ p. Also p,q ≥ 3 and f0 ≥ p+ 1.

If p = 3, then from (1) we get−1= f0− f1/3= f0−q f0/6 or(q−6) f0 = 6. This
implies f0 = 6 andq = 7, a contradiction. Ifp = 4, then−1= f0− f1/2= f0−q f0/4 or
(q−4) f0 = 4, which is not possible. Ifp ≥ 5, thenf0 ≥ 6 and hencef1 ≥ (6×3)/2= 9.
Then, from (2), 1/q = 1

2 − 1/p− 1/(2 f1) >
1
2 − 1

5 − 1
18 >

1
5. This impliesq < 5, a

contradiction to the assumption thatp ≤ q. This proves (v).
Observe thatF1, H1, F̃1, H̃1 ∈ 6(−2) andF1 andH1 are equivelar of type{4,5} and

{3,7}, respectively. Therefore,8(−2) ⊇ {(5,4), (4,5), (7,3), (3,7)}.
Let K be an equivelar polyhedron of type{p,q} andχ(K ) = −2. In this case also

we may assume that 3≤ p ≤ q ≤ f0− 1.
If p ≥ 5, then f0 ≥ q + 1 ≥ 6. Then, from (2),12 = 1/p + 1/q + 2/(q f0) ≤

1
5 + 1

5 + 2
5×6 = 14

30, a contradiction.
If p = 4, then−2 = f0 − f1/2 = f0 − q f0/4 or (q − 4) f0 = 8, which implies

( f0,q) = (8,5).
If p = 3, then from (1) we get−2 = f0 − f1/3 = f0 − q f0/6 or (q − 6) f0 = 12.

This implies( f0,q) = (12,7). These imply8(−2) ⊆ {(5,4), (4,5), (7,3), (3,7)}.
This proves (vi).
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Observe thatH , M1, G ∈ 6(−3) andH , M1, G are equivelar of type(3,7), (3,8)
and(4,5), respectively. Thus,{(3,7), (7,3), (3,8), (8,3), (4,5), (5,4)} ⊆ 8(−3).

Let K be an equivelar polyhedron of type{p,q} andχ(K ) = −3. Assumep ≤ q ≤
f0− 1.

If p = 3, then, by (1),(q − 6) f0 = 18. This implies( f0,q) = (9,8) or (18,7).
If p = 4, then, by (1),(q − 4) f0 = 12, which implies( f0,q) = (12,5).
If p = q = 5, then f0 = 6. Now,S1 = {12345,15264,14536,16423,13652,24356}

is a{5,5}-equivelar polyhedron of Euler characteristic−3. So,(5,5) ∈ 8(−3).
Finally, assume thatp ≥ 5 andq ≥ 6. Then, by (2),12 ≤ 1

5 + 1
6 + 3

6×7 = 92
210, a

contradiction. This proves (vii).
Hm (in Example 4) is an equivelar polyhedron of type{3,7}and of Euler characteristic

−2m for all m≥ 1, therefore(3,7) (and hence(7,3)) ∈ 8(−2m) for all m≥ 1.
K1 (in Example 5) is an equivelar polyhedron of type{3,8} of Euler characteristic−4

andJm (in Example 5) is an equivelar polyhedron of type{3,8}and of Euler characteristic
−2m for all m≥ 3. Therefore(3,8) (and hence(8,3)) ∈ 8(−2m) for all m≥ 2.

Fm (in Example 3) is an equivelar polyhedron of type{4,5} of Euler characteristic
−2m for all m≥ 2. Therefore(4,5) (and hence(5,4)) ∈ 8(−2m) for all m≥ 2.

Lm (in Example 6) is an equivelar polyhedron of type{4,6} of Euler characteristic
−2m for all m≥ 2. Therefore(4,6) (and hence(6,4)) ∈ 8(−2m) for all m≥ 2. Thus,

{(3,7), (7,3), (3,8), (8,3), (4,5), (5,4), (4,6), (6,4)}
⊆ 8(−2m), for all m≥ 2. (4)

Let K be an f0-vertex equivelar polyhedron of type{p,q} andχ(K ) = −4. Assume
p ≤ q, i.e., 3≤ p ≤ q ≤ f0− 1.

If p ≥ 5 andq ≥ 6, then f0 ≥ q + 1 ≥ 7 and hence12 = 1/p+ 1/q + 4/(q f0) ≤
1
5 + 1

6 + 4
6×7 = 97

210, a contradiction.
If p = q = 5, then, by (2),( f0, f1) = (8,20) and hencef2 = 8. For eachm ≥ 2,

S2m = {ai ai+1bi+m+1bi+mbi+m−1,ai ai+1bi+1ai+m+1bi : 1 ≤ i ≤ 2m, additions in the
subscripts are modulo 2m} is {5,5}-equivelar and belongs to6(−2m). So, (5,5) ∈
8(−2m) for all m≥ 2.

If p = 3, then, from (1),−4 = f0 − f1/3 = f0 − q f0/6 or (q − 6) f0 = 24. This
implies( f0,q) = (12,8) or (24,7) and hence(p,q) = (3,8) or (3,7).

If p = 4, then, from (1),−4= f0−q f0/4 or(q−4) f0 = 16. This implies( f0,q) =
(16,5) or (8,6) and hence(p,q) = (4,5) or (4,6). Thus,(p,q) ∈ 8(−4) and p ≤ q
imply (p,q) = (3,8), (3,7), (4,5), (5,5) or (4,6). So,8(−4) ⊆ {(3,7), (7,3), (3,8),
(8,3), (4,5), (5,4), (4,6), (6,4), (5,5)}. This, the examplesS2m’s and (4) imply (viii).

(ix) follows from the proposition stated in the previous section.
Let K be an equivelar polyhedron of type{p,q} andχ(K ) = −m, wherem> 0. In

this case also, we may first assume thatp ≤ q, i.e., 3≤ p ≤ q ≤ f0 − 1. Then, by (2),
1
2 − 1/p = 1/q +m/(q f0) ≤ 1/q +m/(q(q + 1)). This gives

2p(q + 1+m) ≥ q(q + 1)(p− 2) ≥ p(q + 1)(p− 2) or (5)

2m ≥ (q + 1)(p− 4). (6)

Clearly, if p > 4, then there are only finitely manyq such that(p,q) satisfies (6). So,
there are only finitely many(p,q) ∈ 8(−m) such thatp,q > 4.
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If p = 3, then from (5) we get 6(q + 1+m) ≥ 3q(q + 1) or

6m≥ (q − 6)(q + 1). (7)

Clearly, givenm> 0, only finitely manyq (≥ 3) satisfy (7). This shows that there exists
only finitely manyq such that(3,q) ∈ 8(−m).

If q ≥ p = 4, then from (5) we get 4(q + 1+m) ≥ q(q + 1) or

4m≥ (q − 4)(q + 1). (8)

Clearly, givenm> 0, only finitely manyq (≥ 4) satisfy (8). This shows that there exists
only finitely manyq ≥ 4 such that(4,q) ∈ 8(−m). Therefore there are only finitely
many(p,q) ∈ 8(−m) such thatp or q is 4. So,8(−m) is finite for all m > 0. This
together with (ii), (iii) and (iv) imply (x).

For eachn ≥ 7, Tn is ann-vertex{3,6}-equivelar polyhedron. This proves (xi).

Proof of Corollary2. Let (p,q) ∈ 8(n). Let K be an equivelar polyhedron of type
{p,q} andχ(K ) = n. If n 6= 0, then, by (2) and (1),( f0(K ), f1(K ), f2(K )) is uniquely
determined by(p,q). Since, for eachf0, there exist finitely many polyhedra onf0

vertices, therefore for a given(p,q) ∈ 8(n) there are only finitely many equivelar
polyhedra of type{p,q}. The corollary now follows from Theorem 1(x).

Lemma 1. If K is a 9-vertex{3,6}-equivelar polyhedron, then K is isomorphic to T9,
A3,3 or B3,3 defined in Example2.

Proof. LetK be a 9-vertex{3,6}-equivelar polyhedron. Thenf2(K ) = 18 and NEG(K )
is a 2-regular graph and hence is either a cycle or disjoint union of cycles on nine vertices.
So, NEG(K ) is isomorphic toC9, C6 t C3, C5 t C4 or 3C3 := C3 t C3 t C3. (Here
Cn denotes the cycle withn vertices. A cycle with edgesv1v2, . . . , vn−1vn, vnv1 is also
denoted byCn(v1, . . . , vn).)

If NEG(K ) = C5tC4, then there exist four vertices,a,b, c,d say, such thatacandbd
are edges inK butab, bc, cdanddaare not edges inK . Consider the following six sets of
faces,Sac = {σ : a, c ∈ σ }, Sbd = {σ : b,d ∈ σ }, Sa = {σ : a ∈ σ, c 6∈ σ }, Sb = {σ : b ∈
σ,d 6∈ σ }, Sc = {σ : c ∈ σ,a 6∈ σ } andSd = {σ : d ∈ σ,b 6∈ σ }. Clearly, these six sets
are pairwise disjoint and #(Sac) = #(Sbd) = 2 and #(Sa) = #(Sb) = #(Sc) = #(Sd) = 4.
This implies thatf2(K ) ≥ 20, a contradiction. So, NEG(K ) is C9, C6 t C3 or 3C3.

First consider the case when the non-edge graph consists of three 3-cycles, i.e.,
NEG(K ) = C3(1,2,3) t C3(4,5,6) t C3(7,8,9) ∼= NEG(A3,3). Then, up to an iso-
morphism, LkK (1) = C6(4,7,5,9,6,8) and hence we may assume, without loss,
LkK (4) = C6(1,7,2,9,3,8). These imply LkK (7) = C6(1,4,2,6,3,5), LkK (8) =
C6(1,6,2,5,3,4). These imply LkK (2) = C6(4,9,5,8,6,7), LkK (3) = C6(4,8,5,7,
6,9), LkK (5) = C6(1,9,2,8,3,7), LkK (6) = C6(1, 8,2,7,3,9) and hence LkK (9) =
C6(1,5,2,4,3,6). Clearly, these imply thatK is unique, up to an isomorphism, in this
case and hence is isomorphic toA3,3.

Now assume NEG(K ) = C6(1, . . . ,6) t C3(7,8,9) ∼= NEG(B3,3). Then, we may
assume, LkK (1) = C6(3,8,4,9,5,7). This implies LkK (7) = C6(1,5,2,4,6,3). Then
LkK (3) = C6(1,8,5,9,6,7) and LkK (5) = C6(1,7,2,8,3,9). These imply LkK (8) =
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C6(1,3,5,2,6,4), LkK (9) = C6(1,4,2,6,3,5), LkK (2) = C6(4,7,5,8,6,9), LkK (6)
= C6(2,9,3,7,4,8). So, LkK (4) = C6(1,9,2,7,6,8). These determine the polyhe-
dron uniquely and thereforeK is isomorphic toB3,3.

Finally assume NEG(K ) = C9(1, . . . ,9). Then LkK (1) = C6(4,6,8,3,5,7), C6(4,
6,8,5, 3,7), C6(4,6,3,8,5,7), C6(4,7,5,3,6,8) or C6(4,6,3,7,5,8).

If Lk K (1) = C6(4,6,8,3,5,7), then LkK (3) = C6(1,5,7,9,6,8). These imply
LkK (5) = C3(1,3,7), a contradiction. If LkK (1) = C6(4,6,3,8,5,7), then LkK (3) =
C6(1,6,9,7,5,8). These give LkK (5) = C4(1,7,3,8), a contradiction. If LkK (1) =
C6(4,7,5,3,6,8), then 15,16 are edges and 67,78,89 are non-edges in LkK (3). It is
then not possible to construct LkK (3), which is a 6-cycle with vertex-set{1,5,6,7,8,9}.
Similarly, it is not possible to construct LkK (8) when LkK (1) = C6(4,6,8,5,3,7).
Thus, LkK (1) = C6(4,6,3,7,5,8).

Similarly, replacing 1 byi , LkK (i ) = C6(i + 3, i + 5, i + 2, i + 6, i + 4, i +
7), for 1 ≤ i ≤ 9 (additions in the subscripts are modulo 9). This shows that the
simplicial polyhedron is unique, up to an isomorphism, with the non-edge graph a 9-
cycle. Therefore,K is isomorphic toT9. This completes the proof.

Lemma 2. If K is a 10-vertex{3,6}-equivelar polyhedron, then K is isomorphic to
T10 or Q defined in Example2.

Proof. Let K be a 10-vertex{3,6}-equivelar polyhedron. Choose a vertex, sayu0. Let
the link of u0 beC6(u1, . . . ,u6). Since the link of each vertex is a 6-cycle,ui ui+1ui+2

is not a face inK for i = 1, . . . ,6 (additions in the subscripts are modulo 6). If either
ui ui+1ui+3 or ui ui+1ui+4 is a face for eachi , then we get 12 faces and hence the number
of faces through the remaining three vertices is≤ 8, a contradiction. So, assumeu1u2u7

is a face, whereu7 is one of the remaining three vertices. Thenu1u6u7 andu2u3u7 cannot
be faces.

Case1: u1u3u6 or u2u3u6 is a face. Assume, without loss, thatu1u3u6 is a face.
If u5 is in the link of u1, thenu1u3u5, u1u5u7 are faces and henceV(Lk(u3)) =

{u0,u1,u2, u4,u5,u6}. This gives 12 faces throughu0, u1 andu3. Hence, the number
of faces through the remaining two vertices is≤ 8, a contradiction. Ifu4 is in the link
of u1, thenu1u3u4 and u1u4u7 are faces. Here, five vertices of each of Lk(u3) and
Lk(u4) are known. This impliesV(Lk(u8)) = {u2,u3,u5,u6,u7,u9} andV(Lk(u9)) =
{u2,u4,u5,u6,u7,u8}, whereu8 and u9 are the remaining two vertices. Therefore,
Lk(u4) = C6(u7,u1,u3,u0,u5,u9) and Lk(u3) = C6(u2,u0,u4,u1,u6,u8). Then
Lk(u2) = C6(u7,u1,u0,u3,u8,u9). However, now Lk(u7) containsC4(u1,u4,u9,u2),
which is impossible. Therefore, the sixth vertex in the link ofu1 is one of the remaining
two vertices, sayu8.

Clearly, u1u3u8 andu1u7u8 are faces. Thus,V(Lk(u3)) = {u0,u1,u2,u4,u6,u8}.
Let u9 be the remaining vertex. ThenV(Lk(u9)) = {u2,u4,u5,u6,u7,u8}. The link
of u2 shows thatu2u7u9 is a face. Now, from the link ofu3, eitheru2u3u8 andu3u4u6

are faces oru2u3u6 andu3u4u8 are faces. In either case,u2u5 is not an edge and hence
V(Lk(u5)) = {u0,u4,u6,u7,u8,u9}.
Subcase1.1: u2u3u6 and u3u4u8 are faces. Then, by considering Lk(u2), Lk(u6) and
Lk(u5) successively,u2u6u9, u5u6u9 are faces andu4u5u9 is not a face. Finally, by
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completing Lk(u9) and Lk(u5) successively, the other faces areu4u7u9, u4u8u9, u5u8u9,
u4u5u7 andu5u7u8. In this caseK is isomorphic, via the mapf : ui 7→ i , to Q.

Subcase1.2:u2u3u8 and u3u4u6 are faces. Then, by considering Lk(u2), Lk(u8), Lk(u5)

and Lk(u4) successively, the other faces areu2u8u9, u5u7u8, u5u8u9, u4u5u7, u5u6u9,
u4u6u9,u4u7u9. So,K is isomorphic, via the composition off and(1,2,3)(4,8)(5,7)(6,
9), to T10.

Case2: u1u4u6 or u2u3u5 is a face. Assume, without loss, thatu1u4u6 is a face. Let the
remaining two vertices beu8 andu9.

If eitheru1u8 or u1u9 is an edge, sayu1u8 is an edge, then, by considering Lk(u1) and
Lk(u4), successively,u1u4u8,u1u7u8,u3u4u6 andu4u5u8 are faces. Clearly,V(Lk(u9)) =
{u2,u3,u5,u6,u7,u8}. By considering Lk(u6) and Lk(u5), u3u6u9 andu5u6u9 are faces
andu2u3u5 is not a face. Then, from Lk(u3), u2u3u8 andu3u8u9 are faces. This gives
deg(u8) > 6, a contradiction. So, the sixth vertex in the link ofu1 is eitheru3 or u5.

If neitheru8 nor u9 is in the link ofu4, then from the links ofu0, u1 andu4 we get
12 faces. Therefore, the number of faces containingu8 or u9 is≤ 8, a contradiction. So,
Lk(u4) contains one ofu8 or u9, sayu8. ThenV(Lk(u9)) = {u2,u3,u5,u6,u7,u8}.
Subcase2.1: u3 is in the link of u1. The links ofu1 andu4 show thatu1u3u4, u1u3u7,
u4u5u8 andu4u6u8 are faces. It is easy to see, by considering the link ofu3, thatu2u3u9

andu3u7u9 are faces. However, this impliesV(Lk(u8)) = {u2,u4,u5,u6,u7,u9}. Then,
by completing Lk(u2), Lk(u6) and Lk(u5) successively, the other faces areu2u7u8,
u2u8u9, u5u6u9, u6u8u9, u5u7u8 and u5u7u9. In this caseK is isomorphic, via the
composition off and(1,9,5,3,8,4)(2,7,6), to T10.

Subcase2.2: u5 is in the link of u1. Clearly,u1u4u5 andu1u5u7 are faces. In this case,
by considering Lk(u4), Lk(u5), Lk(u6), Lk(u7) and Lk(u2), u3u4u8, u4u6u8, u5u6u9,
u5u7u9, u6u8u9, u2u7u8, u3u7u8, u3u7u9, u2u3u9 and u2u8u9 are faces. ThenK is
isomorphic, via the map(u1,u6)(u2,u5)(u3,u4)(u7,u9), to Q.

Case3: None of u1u3u6, u1u4u6, u2u3u5 or u2u3u6 is a face. In this case we can assume
that u1u6u8 is a face, whereu8 is one of the remaining two vertices. Letu9 be the
remaining vertex.

If u3 ∈ Lk(u1), then, by considering the links ofu1 andu3, u1u3u7, u1u3u8, u2u3u8

andu3u4u7 are faces inK . Clearly,V(Lk(u9)) = {u2,u4,u5,u6,u7,u8}. The links of
u2 andu8 show that deg(u7) > 6, a contradiction. Similarly, we get a contradiction if
u5 ∈ Lk(u1).

If u4 ∈ Lk(u1), then u1u4u7 and u1u4u8 are faces inK . Here, V(Lk(u9)) =
{u2,u3,u5, u6,u7,u8}. To complete Lk(u4), eitheru3u4u7 or u3u4u8 has to be a face.
In both cases we see thatu6u8u9 ∈ K . In the first case, the links ofu4 andu5 show that
u4u5u8 andu5u8u9 are faces, which imply that deg(u8) < 6, a contradiction. In the sec-
ond case, Lk(u4), Lk(u5) and Lk(u7) show thatu4u5u7, u5u7u9, u2u7u8 andu7u8u9 are
faces. This implies deg(u8) > 6, a contradiction. Hence, the sixth vertex in Lk(u1) is u9.

Clearly, the edgeu2u3 belongs to eitheru2u3u8 or u2u3u9.
If u2u3u8 is a face, the sixth vertex,y, in Lk(u2), is one ofu4, u5 or u6. If y = u4

or u5, the links ofu2 and y show that deg(u8) > 6, a contradiction. Ify = u6, by
considering the links ofu2 andu6, we see thatu2u6u7, u2u6u8 andu5u6u7 are faces.
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Clearly,u3u4u9 ∈ K . The sixth vertex in Lk(u7) has to beu3. However, this implies that
deg(u3) > 6, a contradiction. Hence,u2u3u9 ∈ K .

The sixth vertex, sayx, in Lk(u2), is one ofu4, u5 or u8.
If x = u4 or u5, by considering the links ofx andu9, we observe that deg(u9) > 6, a

contradiction. Hence,x = u8.
The links ofu2, u8, u4, u7 andu3 show thatu2u7u8, u2u8u9, u4u6u8, u4u7u8, u3u4u6,

u4u5u7, u5u7u9, u3u5u6 and u3u5u9 are faces. Here,K is isomorphic, via the map
(1,4)(2,5) (3,6), to Q. This completes the proof.

Lemma 3. If K is an 11-vertex{3,6}-equivelar polyhedron, then K is isomorphic to
T11 defined in Example2.

Proof. Let K be an 11-vertex{3,6}-equivelar polyhedron. Choose a vertex, sayu0,
and let the link ofu0 beC6(u1, . . . ,u6). By an argument similar to that in the previous
lemma, we assume thatu1u2u7 is a face.

Claim. One of u1u3u6, u1u4u6, u2u3u5 or u2u3u6 has to be a face.

If not assumeu1u6u8 is a face, whereu8 is one of the remaining three vertices. Let
u9 andu10 be the remaining two vertices.

If u3 ∈ Lk(u1), then the links ofu1 andu3 show thatu1u3u7, u1u3u8, u2u3u8 and
u3u4u7 are faces inK . It is clear that Lk(u2) contains eitheru9 or u10, sayu9. Then
V(Lk(u10)) = {u4,u5,u6,u7,u8,u9}. The links ofu8 andu7 now show that deg(u9) < 6,
a contradiction.

If u4 ∈ Lk(u1), then it is clear that the edgeu5u6 belongs tou5u6u7 or u5u6u9 (or
u5u6u10). If u5u6u7 ∈ K , then deg(u9),deg(u10) < 6. If u5u6u9 (or u5u6u10) is a face,
then, by considering Lk(u4), eitheru3u4u7 or u3u4u8 ∈ K . In both cases we see that the
link of u5 has only five vertices, a contradiction.

Finally, assume (without loss) thatu9 ∈ Lk(u1). The edgeu2u3 can belong to one of
u2u3u8, u2u3u9 or u2u3u10.

If u2u3u8 ∈ K , then the sixth vertex, sayy, in Lk(u2) is u4, u5, u6 or u10. If y = u4 or
u5, thenV(Lk(u10)) = {u3,u4,u5,u6,u7,u9}\{y} and hence deg(u10) < 6. If y = u6,
we can easily see thatV(Lk(u10)) = {u3,u4,u5,u7,u8,u9}. Then, by completing the
links of u6, u7 andu8, we see that deg(u9) = 4, a contradiction. Ify = u10, then we see
that eitheru3u6u8 or u6u8u10 has to be a face to complete Lk(u8). In both the cases we
see that there exists no vertexx (6= u0) such thatu3u4x is a face inK , a contradiction.

If u2u3u9 is a face inK , then, by an argument similar to the one above, we see that
u4,u5 /∈ Lk(u2). Hence eitheru8 or u10 ∈ Lk(u2). If u8 ∈ Lk(u2), it is easy to see that
u10 ∈ Lk(u8). The last vertex in Lk(u9) has to beu5. Completing the link ofu7, we
observe that deg(u5) > 6, a contradiction. Ifu10 ∈ Lk(u2), thenu2u7u10 andu2u9u10

are simplices. To complete Lk(u9), u3u7u9 andu8u9u10 have to be faces. It is clear that
u4u6u8 ∈ K . The last vertex in Lk(u7) is one ofu4, u5 or u6, all of which are impossible.

If u2u3u10 ∈ K , then the sixth vertex,z, in Lk(u2) is u4, u5 or u8. If z= u4, the links
of u2 andu4 show thatu2u4u7, u2u4u10, u4u5u10 andu3u4u7 have to be faces. It is easy
to see that Lk(u3) has only five vertices, a contradiction. Ifz= u8, considering the links
of u2, u8, u9, u7, u3 andu6, we see thatu4u6u7 andu4u5u6 are faces, a contradiction. If
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z = u5, to complete Lk(u5), we see that eitheru4u5u7 or u4u5u10 is a face. In the first
case the links ofu7 andu4 show that deg(u10) > 6. In the second case we see that there
exists no vertexx (6= u1) such thatu7u9x is a face. This proves the claim.

By the claim we can assume without loss thatu1u3u6 or u1u4u6 is a face.

Case1: u1u3u6 is a face in K. Let u be the sixth vertex in Lk(u1).
If u = u5, we see from the links ofu1 andu3 that deg(u5) > 6, a contradiction.

If u = u4, the links ofu1 andu3 show thatu1u3u4, u1u4u7, u2u3u8 andu3u6u8 are
faces, whereu8 is one of the remaining three vertices. Letu9 andu10 be the other two
vertices. Now, one ofu9 or u10, sayu9, has to be in the link ofu2. Hence,V(Lk(u10)) =
{u4,u5,u6,u7,u8,u9}. Then it is easy to see thatV(Lk(u9)) = {u2,u5,u7,u8,u10}, a
contradiction. So,u is one of the remaining three vertices, sayu8.

Clearly,u1u3u8 andu1u7u8 are faces. Letu9 andu10 be the other two vertices. To
complete Lk(u3) eitheru2u3u6 or u2u3u8 ∈ K . If u2u3u6 ∈ K , we see that the sixth
vertex in both Lk(u2) and Lk(u6) is the same, sayu9. Then deg(u10) < 6, a contradiction.
So,u2u3u8 andu3u4u6 ∈ K .

Clearly,V(Lk(u9)) = {u2,u4,u5,u7,u8,u10} andV(Lk(u10)) = {u4,u5,u6,u7,u8,

u9}. Then, by considering the links ofu2, u6, u4, u8 andu5, u2u7u9, u2u8u9, u4u6u10,
u5u6u10, u4u5u9, u4u9u10, u7u8u10, u8u9u10, u5u7u9 andu5u7u10 are faces inK . Here,
K is isomorphic, via the map(1,2,3)(4,9,6,10,7,5,8), to T11.

Case2: u1u4u6 is a face in K. Let u be the sixth vertex in Lk(u1).
If u = u5, thenV(Lk(u4)) = {u0,u1,u3,u5,u6,u8} andV(Lk(u6)) = {u0,u1,u4,

u5,u8,u9} (otherwisef2 < 22), whereu8 andu9 are two of the remaining three vertices.
Then the vertex set of the link of the remaining vertex is a subset of{u2,u3,u7,u8,u9},
a contradiction. Ifu is one of the remaining three vertices, sayu8, then the links ofu1

andu4 show thatu1u4u8, u1u7u8, u3u4u6 andu4u5u8 are faces inK . The face other
that u0u5u6 having u5u6 as an edge has to beu5u6u9 (in all other casesf2 < 22),
whereu9 is one of the remaining two vertices. Ifu10 is the remaining vertex, then
V(Lk(u10)) = {u2,u3,u5,u7,u8,u9}. The links ofu3, u5 andu10 imply that deg(u2) =
5, a contradiction. So,u = u3.

Clearly,u1u3u4 andu1u3u7 are faces. The sixth vertex in Lk(u4) has to be one of the
three remaining vertices, sayu8. Thenu4u5u8 andu4u6u8 ∈ K . If u9 andu10 are the
remaining two vertices, thenV(Lk(u9)) = {u2,u3,u5,u7,u8,u10} andV(Lk(u10)) =
{u2,u5,u6,u7,u8,u9}. The links ofu3, u2, u6, u5 andu7 show thatu2u3u9, u3u7u9,
u2u7u10, u2u9u10, u5u6u10, u6u8u10, u5u8u9, u5u9u10, u7u8u9 andu7u8u10 are faces in
K . In this case,K is isomorphic, via the map(0,1)(2,9,7,8,5,4)(3,10,6), toT11. This
completes the proof of the lemma.

Proof of Theorem4. Let K be a{3,q}-equivelar simplicial polyhedron onn (≤ 11)
vertices.

Sinceχ(K ) = 0 we haveq = 6 and hencen ≥ 7.
It is not difficult to show (also see in [9]) thatT7 is the only (up to isomorphism)

7-vertex neighbourly combinatorial 2-manifold. Hence, ifn = 7, thenK is isomorphic
to T7.

The casen = 8 follows from the classification of combinatorial 2-manifolds on eight
vertices in [10]. (It is also not difficult, by a similar argument as in the proof of Lemma 1,
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to show that there exists a unique combinatorial 2-manifold with non-edge graph 4K2

(the disjoint union of four edges). This implies thatK is isomorphic toT8.)
If n = 9, then, by Lemma 1,K is isomorphic toA3,3, B3,3 or T9.
If n = 10, then, by Lemma 2,K is isomorphic to orT10 or Q.
If n = 11, then, by Lemma 3,K is isomorphic toT11. This completes the proof.

Lemma 4. If M1 and M2 are as in Examples1 and7, then M1 6∼= M2.

Proof. For 1≤ i ≤ 2, let A(3(Mi )) denote the adjacency matrix of the graph3(Mi ).
LetPi (x) denote the characteristic polynomial ofA(3(Mi )). Then

P1(x) = (x − 3)(x − 2)6(x − 1)3x4(x + 1)3(x + 2)6(x + 3),

P2(x) = (x − 3)(x − 2)4(x − 1)x4(x + 1)2(x + 2)2(x2− 3)(x2+ 2x − 1)

· (x3+ 2x2− 4x − 6)2.

If M1 andM2 are isomorphic, then3(M1) and3(M2) are isomorphic as graphs and
henceP1(x) = P2(x). Clearly,P1(x) 6= P2(x). Hence,M1 6∼= M2.

Lemma 5. If N1, . . . , N14 are as in Examples1 and8, then Ni 6∼= Nj for 1≤ i 6= j ≤
14.

Proof. For 1≤ i ≤ 14, letA(3(Ni )) denote the adjacency matrix of the graph3(Ni ).
LetPi (x) denote the characteristic polynomial ofA(3(Ni )). Then

P1(x) = (x − 3)(x − 2)(x − 1)(x + 1)2(x + 2)(x3+ x2− 5x − 3)2

· (x9− 12x7+ 2x6+ 45x5− 12x4− 52x3+ 9x2+ 15x + 1)2,

P2(x) = (x − 3)(x − 1)9(x + 2)4(x2+ 3x + 1)3(x2− x − 3)5,

P3(x) = (x − 3)(x − 1)3(x + 2)(x2− x − 3)2(x2+ x − 1)3

· (x5+ x4− 8x3− 5x2+ 13x + 6)3,

P4(x) = (x − 3)(x − 1)2x2(x13− 20x11+ 154x9+ 8x8− 576x7− 82x6+ 1073x5

+ 272x4− 893x3− 316x2+ 235x + 96)

· (x12+ 5x11− 7x10− 67x9− 25x8+ 315x7+ 315x6− 599x5− 850x4

+ 358x3+ 781x2+ 57x − 144),

P5(x) = (x − 3)(x − 1)x3(x12− 20x10+ 154x8+ 4x7− 570x6− 38x5+ 1015x4

+ 110x3− 723x2− 90x + 93)

· (x13+ 4x12− 12x11− 60x10+ 42x9+ 340x8

+ 2x7− 910x6− 269x5+ 1170x4+ 453x3− 650x2− 207x + 112),

P6(x) = (x − 3)(x − 1)x(x2− 5)(x2+ 3x + 1)(x2− x − 1)

· (x11+ 2x10− 14x9− 25x8+ 72x7+ 111x6− 162x5− 210x4+ 145x3

+ 156x2− 28x − 24)

· (x10− 14x8− x7+ 68x6+ 11x5− 132x4− 30x3+ 81x2+ 12x − 8),
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P7(x) = (x − 3)(x − 1)(x + 1)

· (x27+ 3x26− 35x25− 105x24+ 541x23+ 1621x22− 4851x21

− 14513x20+ 27857x19+ 83335x18− 106646x17− 320442x16

+ 274411x15+ 836409x14− 466133x13− 1470839x12+ 497081x11

+ 1695261x10− 297277x9− 1217051x8+ 70531x7+ 501773x6

+ 9836x5− 105408x4− 6268x3+ 9416x2+ 568x − 228),

P8(x) = (x − 3)x2(x + 1)5(x2− 5)3(x2− x − 1)2

· (x6− 10x4+ 5x3+ 25x2− 25x + 5)2,

P9(x) = (x − 3)x2(x3+ x2− 5x − 1)(x3+ x2− 5x − 4)2

· (x9− 12x7+ x6+ 48x5− 6x4− 74x3+ 12x2+ 36x − 10)2,

P10(x) = (x − 3)x2(x27+ 3x26− 36x25− 108x24+ 576x23+ 1728x22− 5384x21

− 16184x20+ 32482x19+ 98344x18−131768x17−406048x16

+ 362570x15+ 1159262x14− 664274x13− 2283392x12

+ 766277x11+ 3040125x10− 481011x9− 2623483x8

+ 78215x7+ 1363257x6+ 75039x5− 373481x4

− 37464x3+ 40010x2+ 4277x − 493),

P11(x) = (x − 3)x(x + 1)(x27+ 2x26− 38x25− 70x24+ 646x23+ 1080x22

− 6472x21− 9660x20+ 42370x19+ 55418x18

− 189975x17− 213030x16+ 594709x15+ 556564x14

− 1301093x13− 981238x12+1959990x11+1134608x10

− 1967022x9− 812454x8+ 1239001x7+ 322970x6

− 439776x5− 56142x4+ 71163x3+ 1616x2

− 3360x + 160),

P12(x) = (x − 3)x(x2− 5)(x2− x − 1)(x4+ 2x3− 4x2− 5x + 2)

· (x10− 14x8− x7+ 68x6+ 11x5− 132x4− 30x3+ 81x2+ 12x − 8)

· (x10+ 2x9− 12x8− 21x7+ 50x6+ 71x5− 86x4− 84x3+ 57x2

+ 22x − 8),

P13(x) = (x − 3)(x + 1)(x2− 3)(x3− x2− 3x + 1)(x3+ 3x2− x − 5)

· (x10− 14x8+ 2x7+ 65x6− 14x5− 114x4+ 25x3+ 66x2− 12x − 9)2,

P14(x) = (x − 3)(x29+ 3x28− 36x27− 108x26+ 576x25+ 1726x24− 5388x23

− 16128x22+ 32588x21+ 97682x20− 132955x19− 401795x18

+ 369861x17+ 1143465x16− 690891x15− 2250991x14

+ 824419x13+ 3013939x12− 552352x11− 2648342x10

+ 117160x9+ 1435760x8+ 77028x7− 433570x6− 45664x5

+ 61804x4+ 5564x3− 3748x2− 119x + 63).

Now, Ni
∼= Nj implies3(Ni ) and3(Nj ) are isomorphic as graphs and hencePi (x) =
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Pj (x). SincePi (x) andPj (x) have different prime factorizationsPi (x) 6= Pj (x), for
1≤ i 6= j ≤ 14. Hence, for 1≤ i 6= j ≤ 14, Ni 6∼= Nj .

Proof of Theorem5. Let K be a 9-vertex neighbourly simplicial equivelar polyhedron.
Choose a vertex, sayu9, and let the link ofu9 beC8(u1, . . . ,u8).

Claim. There exists a face of the form ui ui+1ui+3 or ui ui+1ui+6 for some i ∈ {1,
. . . ,8} (additions in the subscripts are modulo8).

If possible, assume that eitherui ui+1ui+4 or ui ui+1ui+5 is a face for eachi . Then
we can assume without loss thatu1u2u5 is a face inK . Then, by repeated use of the
assumption, it is clear thatu1u4u8, u4u5u8, u3u7u8 and u3u4u7 are faces inK . To
complete Lk(u4) and Lk(u7), u2u4u6, u2u4u7, u1u4u6 andu1u6u7 have to be faces, a
contradiction. This proves the claim.

By the claim, we can assume without loss thatu1u2u4 ∈ K . We observe that the edge
u1u8 belongs to one ofu1u3u8, u1u5u8 or u1u6u8.

Case1: u1u3u8 is a face. By considering Lk(u1), one ofu1u3u5, u1u3u6 or u1u3u7 is a
face.

If u1u3u7 ∈ K , then, by considering the links ofu1 and u5, u1u5u6, u1u4u6 and
u1u5u7 are faces and hence, by considering Lk(u7), u3u5u7 /∈ K . Then, by considering
the links ofu5, u8 andu6, u2u3u5, u3u5u8 ∈ K , u5u7u8 6∈ K and henceu2u5u7, u4u5u8,
u2u7u8, u2u6u8, u4u6u8, u2u3u6 andu3u6u7 are faces. Thenu2u3u5, u2u3u6 andu2u3u9

are the faces throughu2u3, a contradiction.
If u1u3u5 ∈ K , then, by considering Lk(u1) and Lk(u6), u1u6u7, u1u4u6, u1u5u7

are faces. The edgeu4u6, belongs to eitheru3u4u6 or u4u6u8. In the first case, Lk(u3)

and Lk(u6) show thatu2u3u6 /∈ K andu2u5u6, u2u6u8, u3u6u8, u2u3u7, u3u5u7 ∈ K .
However, this implies that Lk(u5) containsC3(u3,u1,u7), a contradiction. In the sec-
ond caseu2u3 ∈ Lk(u6). Considering Lk(u7) and Lk(u5), u2u4u7, u3u4u7, u2u5u7 and
u3u7u8 ∈ K . Then Lk(u8) containsC4(u7,u9,u1,u3), a contradiction. So,u1u3u6 ∈ K .

From Lk(u1), u1u5u7 is a face and eitheru1u4u5 or u1u4u7 is a face.
If u1u4u5 ∈ K , then so isu1u6u7. To complete Lk(u7), eitheru2u4u7 andu3u4u7 or

u2u4u7 andu2u3u7 have to be faces. This shows that deg(u4) < 8 in the first case and
deg(u2) < 8 in the second case, a contradiction. Thus,u1u4u7 ∈ K .

Clearly,u1u5u6 is a face. By considering the links ofu3 andu6, u3u6u8 /∈ K and
u4u6u8, u2u6u8 ∈ K . Then, by considering the links ofu6, u4 andu8, u2u4u6, u2u4u7

andu2u4u8 are not faces and henceu2u4u5 is a face. Now, by considering the links of
u2, u5 andu4, u2u5u7 is not a face andu2u5u8, u2u6u7, u2u3u7, u3u5u7, u3u5u8 u3u4u6,
u4u7u8 are faces. Here,K is M2.

Case2: u1u5u8 is a face. Clearly, one ofu1u3u5, u1u5u6 or u1u5u7 is a face.

Subcase2.1:u1u3u5 is a face. If u1u3u7 is a face, then the link ofu1 shows thatu1u4u6

andu1u6u7 are faces. By considering the links ofu3, u8, u7, u4 andu2, u2u5u7, u4u5u7,
u2u3u7, u4u7u8, u3u4u6, u2u4u8 andu2u5u6 ∈ K . Then Lk(u5) isC5(u7,u4,u9,u6,u2),
a contradiction. So, by considering Lk(u1), u1u3u6, u1u6u7 andu1u4u7 ∈ K .

Clearly, eitheru3u4 or u4u5 ∈ Lk(u7). If u4u5u7 ∈ K , thenu2u3u7, u2u7u8 and
u3u5u7 are faces (ifu3u7u8 ∈ K , then, to complete Lk(u3), u3u5u8 ∈ K , which implies
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deg(u5) < 8). Lk(u5) shows thatu2u5u6 and u2u5u8 are faces. The link ofu8 now
containsC5(u2,u7,u9,u1,u5), a contradiction. So,u3u4 ∈ Lk(u7).

From the links ofu7, u3, u8 and u2, u3u5u7, u2u5u7, u2u7u8, u2u3u8, u3u6u8,
u4u5u8, u4u6u8, u2u4u6 and u2u5u6 are faces. Here,K is isomorphic, via the map
(1,3,5,7)(2,4,6,8), to M2.

Subcase2.2:u1u5u6 is a face. To complete Lk(u1), u1u3u6, u1u3u7 andu1u4u7 have to
be faces. Lk(u5) shows that the edgeu4u5 belongs to eitheru2u4u5 or u4u5u7.

If u4u5u7 ∈ K , then, by considering Lk(u5) and Lk(u7), u2u3u5 ∈ K , u3u5u7 /∈ K
and henceu2u5u7 andu3u5u8 ∈ K . To complete Lk(u3), u3u7u8 andu3u4u6 have to be
faces (since Lk(u4) shows thatu3u4u7 /∈ K ). This implies that the link ofu8 contains
C5(u3,u7,u9,u1,u5), a contradiction. So,u2u4u5 ∈ K .

The links ofu5, u2, u8 andu4 show thatu3u5u7, u2u5u7, u3u5u8, u2u6u8 andu4u6u8

are faces. Then, from Lk(u2), eitheru2u3u6 ∈ K or u2u3u8 ∈ K .
In the first case the links ofu2, u6 andu8 show thatu2u7u8, u4u6u7 andu3u4u8 are

faces. Here,K is isomorphic, via the map(1,7,2,5,8,4,3,6,9), to M2.
In the second case the links ofu2, u6 andu8 show thatu2u6u7, u3u4u6 andu4u7u8

are faces. Here,K is isomorphic, via the map(1,2,7,5,3)(4,8), to M1.

Subcase2.3: u1u5u7 is a face. From Lk(u1), u1u3u6 and one ofu1u3u4 or u1u4u6 are
faces.

If u1u3u4 ∈ K , then so isu1u6u7. The links ofu3, u6 andu4 show thatu3u5u6,
u2u3u6 /∈ K , u2u4u6, u4u6u8, u3u6u8, u4u5u7 andu4u7u8 are faces. This shows that the
link of u7 containsC6(u4,u5,u1,u6,u9,u8), a contradiction. So,u1u4u6 is a face.

Clearly,u1u3u7 ∈ K . We now observe that eitheru3u4u7 or u3u4u8 is a face (since,
Lk(u6) shows thatu3u4u6 /∈ K ).

In the first case the links ofu3, u4, u5 andu6 show thatu3u5u8 ∈ K , u4u5u7 /∈ K and
henceu2u5u7, u2u4u5, u3u5u6, u2u3u8, u4u6u8, u4u7u8, u2u6u8 andu2u6u7 are faces.
Here,K is isomorphic, via the map(1,4,6,3,9,7,5,2,8), to M2.

In the second caseu4u5u7 has to be a face (ifu2u4u5 ∈ K , then, from Lk(u4)

and Lk(u7), deg(u7) < 8). Considering the links ofu5, u3, u7 andu6, u2u3u5 ∈ K ,
u3u5u8 /∈ K andu2u5u8, u3u5u6, u3u7u8, u2u4u7, u2u6u7, u2u6u8 andu4u6u8 are faces.
Here,K is isomorphic, via the map(1,3,6,4,9,7)(5,8), to M2.

Case3: u1u6u8 is a face. Clearly,u3u6, u5u6 or u6u7 ∈ Lk(u1).
If u1u6u7 ∈ K , thenu1u3u5 ∈ K . The links ofu6, u2 andu1 show thatu2u4u6,

u3u4u6, u1u3u7 andu1u4u5 are faces. Here, Lk(u4) containsC6(u6,u3,u9,u5,u1,u2),
a contradiction.

If u1u5u6 ∈ K , thenu1u3u7 ∈ K . It is clear from Lk(u6) that u2u4u6 andu3u4u6

are faces. Considering the links ofu1, u4, u8 andu5, u1u4u7, u1u3u5, u4u5u8, u4u7u8,
u3u5u7 ∈ K , a contradiction. So,u3u6 ∈ Lk(u1).

Clearly,u5u7 ∈ Lk(u1). Now, eitheru1u4u5 or u1u4u7 ∈ K .
If u1u4u5 ∈ K , thenu1u3u7 ∈ K . The links ofu4, u8, u6 andu3 show thatu4u6u8,

u4u6u7, u2u5u6, u2u3u6 andu3u5u7 which imply deg(u7) < 8. So,u1u4u7 is a face.
The link ofu1 shows thatu1u3u5 is a face. Now,u4u5u8 (6= u4u5u9) is the face having

u4u5 as an edge. (Ifu2u4u5 ∈ K , considering the links ofu4, u7 andu2, we observe that
u3u5 ∈ Lk(u7), a contradiction. Lk(u7) shows thatu4u5u7 /∈ K .) The links ofu3 andu5
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show thatu2u5u6 is a face. To complete Lk(u5), u2u5u7 andu3u5u8 have to be faces (if
u2u3u5 ∈ K , thenu2u3 ∈ Lk(u8), a contradiction). Now, the second face throughu6u8

is u2u6u8 or u4u6u8.
In the first case the links ofu6, u4 andu7 show thatu3u4u6, u4u6u7, u2u4u8, u2u3u7

andu3u7u8 are faces. Here,K is isomorphic, via the map(2,5)(3,9,6,8)(4,7), to M2.
In the second case the links ofu8, u7 andu6 show thatu2u3u8, u2u7u8, u3u4u7, u3u6u7

andu2u4u6 are faces. Here,K is isomorphic, via the map(2,7,3), to M1.
The theorem now follows from Lemma 4.

Proof of Theorem6. LetK be a 10-vertex neighbourly simplicial equivelar polyhedron.
Choose a vertex, sayu, and let the link ofu beC9(u1, . . . ,u9).

Case1: There exists no face of the form ui ui+1ui+3 or ui ui+1ui+7. If ui ui+1ui+5 is a face
for eachi ∈ {1, . . . ,9} (additions in the subscript are modulo 9), thenu1u2u6, u1u5u6

andu1u5u9 ∈ K . This implies thatC5(u2,u6,u5,u9,u) is in Lk(u1), a contradiction.
So assume, without loss, thatu1u2u5 ∈ K .

Claim 1. u1u4u9 is a face.

Sinceu1u8u9 is not a face, the second face throughu1u9 is u1u4u9, u1u6u9 or u1u7u9.
However, by the assumption,u1u7u9 is not a face.

If u1u6u9 ∈ K , thenu1u5 is in one ofu1u3u5, u1u4u5, u1u5u7 or u1u5u8.
If u1u3u5 ∈ K , thenu1u4u7 andu1u4u8 ∈ K (sinceu3u4 andu7u8 /∈ Lk(u1)). The

edgeu5u6 belongs to eitheru2u5u6 or u5u6u9. If u2u5u6 ∈ K , the links ofu5, u1, u3

andu6 show thatu4u5u8, u5u8u9, u3u5u7, u1u3u8, u1u6u7, u3u4u9, u4u6u9, u2u4u6 and
u2u4u7 ∈ K . The link of u6 containsC7(u2,u5,u,u7,u1,u9,u4), a contradiction. If
u5u6u9 ∈ K , then the links ofu6, u1 andu8 imply u1u7 /∈ Lk(u6), u1u3u7, u1u6u8 ∈ K ,
u3u4u6, u4u6u8 /∈ K and henceu4u6u7 ∈ K , a contradiction to the assumption.

If u1u4u5 ∈ K , then, by considering the links ofu5, u1, u6, u4 andu3, u1u3u7, u1u3u8,
u5u6u9, u1u4u7, u1u6u8, u4u6u8, u2u4u6, u2u3u6, u3u6u7 (sinceu3u4, u3u8 /∈ Lk(u6)),
u3u4u9, u4u7u9, u4u7u8, u3u5u8 andu5u7u8 are faces. This gives a contradiction to the
assumption.

If u1u5u7 ∈ K , thenu1u3u8 andu1u4u8 ∈ K . If u2u5u6 ∈ K , we see thatu8u9 ∈
Lk(u5) (if not, Lk(u5) shows thatu3u5u8 andu4u5u8 ∈ K which implies thatC4(u3,u1,

u4,u5) is in Lk(u8)). Hence, the links ofu5, u1, u6, u7 andu9 show thatu3u5u7, u1u4u7,
u1u3u6, u2u6u8, u4u6u8, u4u6u9, u4u7u9, u2u7u9, u2u7u8, u2u3u9, u3u5u9 andu4u5u8

are faces. Here,u4u8 is an edge inu1u4u8, u4u5u8 and u4u6u8, a contradiction. If
u5u6u9 ∈ K , thenu4u8 ∈ Lk(u5), u3u5 /∈ Lk(u8). The links ofu5, u1 andu9 show
thatu3u5u7, u3u5u9, u1u4u7, u1u3u6, u3u4u9 andu4u6u9 ∈ K . Hereu6u9 is an edge in
u1u6u9, u5u6u9 andu4u6u9, a contradiction.

Finally, let u1u5u8 ∈ K . Thenu1u3u7, u1u4u7 ∈ K . If u2u5u6 ∈ K , then the links
of u5, u1, u6, u9 andu2 show thatu4u5u9, u5u7u9, u3u5u7, u3u5u8, u1u4u8, u1u3u6,
u3u6u7, u4u6u9, u4u6u8, u2u6u8, u3u8u9, u2u3u9, u2u7u9 and u2u4u8 ∈ K . Hence
Lk(u8) containsC3(u2,u6,u4), a contradiction. Ifu5u6u9 ∈ K , then Lk(u5) shows that
u2u4u5, u3u5u7, u3u5u8 andu5u8u9 ∈ K . Hence Lk(u9) containsC5(u5,u8,u,u1,u6),
a contradiction. This proves Claim 1.
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Clearly, the second face throughu1u4 is u1u4u6, u1u4u7 or u1u4u8.

Claim 2. u1u4u7 is a face.

If u1u4u6 ∈ K , thenu1u3u7, u1u3u8 are faces. We see thatu4u5 is an edge in either
u4u5u8 or u4u5u9. If u4u5u9 ∈ K , then the links ofu5, u1 andu4 imply that u2u5u6,
u3u5u7, u3u5u8, u1u5u8, u5u7u9, u1u6u7, u3u4u7 andu2u4u7 ∈ K . This impliesu3u7 is
in u1u3u7, u3u5u7 andu3u4u7, a contradiction. Hence,u4u5u8 ∈ K and eitheru1u5u8

or u1u5u7 ∈ K . In the former case the links ofu1, u4 andu6 show thatu1u6u8 ∈ K ,
u4u6u8 andu4u6u9 /∈ K and henceu2u4u6 is a face. It is clear thatu1u6u8 is the only
face havingu6u8 as an edge, a contradiction. In the latter case the links ofu1, u5, u7 and
u4 show thatu1u6u7, u2u5u7, u3u5u7, u3u5u9, u2u7u9, u4u7u9, u4u8u9 andu3u4u5 ∈ K ,
a contradiction.

If u1u4u8 ∈ K , eitheru4u5u9 or u4u5u8 ∈ K . In either case Lk(u4) implies that
u3u4u7, u2u4u7 andu2u4u6 are faces. Henceu1u6u7 ∈ K . To complete Lk(u1), either
u1u3u8 or u1u6u8 ∈ K . If u1u3u8 ∈ K , then to complete Lk(u6), eitheru6u8u9 or
u5u6u8 ∈ K , a contradiction. Henceu1u6u8 and thereforeu1u3u5 andu1u3u7 ∈ K .
Clearly,u2u7u8 ∈ K . This implies deg(u7) < 9, a contradiction. This proves Claim 2.

Again, eitheru4u5u9 or u4u5u8 ∈ K . If u4u5u9 ∈ K , then it is clear from Lk(u4) that
u3u4u8, u4u6u8, u2u4u6 andu2u4u7 ∈ K . It is easy to see thatu3u6u7, u2u5u6, u2u7u8,
u2u3u9 andu5u8u9 ∈ K . Hence deg(u9) < 9, a contradiction. Thus,u4u5u8 ∈ K .

Clearly,u3u4u7 or u3u4u9 is a face throughu3u4. If u3u4u9 ∈ K , the links ofu4, u1

andu6 show thatu2u4u7, u4u6u8, u1u3u7, u1u6u8 andu3u6u7 ∈ K . To complete Lk(u7),
eitheru5u7u8 or u7u8u9 ∈ K , a contradiction. So,u3u4u7 ∈ K .

The links ofu4, u1 andu7 show thatu1u6u7, u1u3u8, u2u4u6, u2u7u8 andu5u7u9 are
faces.

Now, eitheru2u5u8 or u5u8u9 ∈ K . If u5u8u9 ∈ K , the links ofu5, u1, u4, u6 show
thatC3(u3,u1,u6) is in Lk(u8), a contradiction. So,u2u5u8 ∈ K .

Now, the links ofu1, u5, u6, u8 andu2 show thatu1u3u5, u1u6u8, u3u5u7, u5u6u9,
u4u6u8, u2u3u6, u3u6u9, u3u8u9, u2u7u9 andu2u4u9 are faces. Here,K is N1.

Case2:There exists a face of the form ui ui+1ui+3 or ui ui+1ui+7. We can assume without
loss thatu1u2u4 ∈ K . From Lk(u1)we see thatu1u9 is an edge in one ofu1u3u9, u1u5u9,
u1u6u9 or u1u7u9.

Subcase2.1:u1u7u9 ∈ K . The edgeu1u4 belongs to one ofu1u3u4, u1u4u5, u1u4u6 or
u1u4u8.

2.1.1:u1u3u4 ∈ K . From Lk(u1) we see that one ofu1u5u7, u1u6u7 or u1u7u8 ∈ K .
If u1u6u7 ∈ K , we see from Lk(u1) and Lk(u6) thatu1u6u8, u1u5u8 andu1u3u5 ∈ K .

The link ofu4 shows that one ofu4u5u7, u4u5u8 or u4u5u9 ∈ K .
If u4u5u7 is a face, the links ofu4 andu7 show that eitheru4u7u8 or u4u7u9 ∈ K .

In both cases, after completing Lk(u4), we see from Lk(u6) and Lk(u7) thatu2u3u6 and
u2u3u7 are faces, a contradiction (sinceuu2u3 is already a face).

If u4u5u8 is a face, then it is clear thatu4u6 /∈ Lk(u8) andu4u8u9 /∈ K (since, if
u4u8u9 ∈ K , then Lk(u4) implies thatu4u6u7 ∈ K , a contradiction). The links ofu4

andu7 show thatu4u7u8 andu4u7u9 ∈ K , which imply thatC6(u9,u1,u6,u,u8,u4) is
in Lk(u7). So,u4u5u9 ∈ K .
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Sinceu6u7 /∈ Lk(u4), we see on completing Lk(u4) that u4u6u8 andu4u7u8 ∈ K .
The links ofu7, u4, u8 andu6 show thatu4u6u9, u2u4u7, u2u3u8 andu2u3u6 ∈ K , a
contradiction. Therefore, eitheru1u5u7 or u1u7u8 ∈ K .

2.1.1.1:u1u5u7 ∈ K . The link ofu1 shows that eitheru1u5u6 or u1u5u8 is a face.
2.1.1.1.1:u1u5u6 is a face. From Lk(u1)we see thatu1u6u8,u1u3u8 ∈ K . Considering

the links ofu4 andu5, eitheru4u5u8 or u4u5u9 ∈ K .
SubcaseA: u4u5u8 is a face. The links ofu5 and u7 show that eitheru2u5u7 or

u3u5u7 ∈ K .
A.1: u2u5u7 is a face. If u2u3u5 ∈ K , Lk(u5), Lk(u3) and Lk(u8) show thatu3u5u9,

u3u6u7 andu3u6u8 are faces. This implies thatC3(u3,u1,u6) is in Lk(u8).
To complete Lk(u5), u2u5u9, u3u5u8 andu3u5u9 ∈ K . The links ofu3 andu6 show

that u3u6u7, u4u6u9 andu2u4u6 ∈ K (since,u4u6 /∈ L(u8) and Lk(u3)). The links of
u4, u8, u7 andu6 show thatu4u7u9, u4u7u8, u2u6u8, u2u8u9, u2u3u7 andu3u6u9 are
faces. In this caseK is N11 (more precisely,K is isomorphic toN11 by the mapϕ, where
ϕ(u) = 0 andϕ(ui ) = i , for 1≤ i ≤ 9).

A.2: u3u5u7 ∈ K . If u2u3u5 ∈ K , the links ofu5 and u3 show thatu5u8u9 and
u3u8u9 ∈ K (sinceu3u6 /∈ L(u8)), a contradiction. Hence,u2u5u9, u2u5u8 andu3u5u9

are the faces required to complete Lk(u5). If u2u3u7 ∈ K , Lk(u3)shows thatu3u5u6 ∈ K ,
a contradiction.

We now observe from the links ofu3, u5 andu9 that the edgeu2u3 belongs tou2u3u6.
The edgeu3u6 is in eitheru3u6u7 or u3u6u9.

In the first case the links ofu3, u7, u4 andu2 show thatu3u8u9, u2u4u7, u4u7u9,
u4u6u9, u4u6u8, u2u7u8 andu2u6u9 are faces. Here,K is N7.

In the second case the links ofu3, u7, u2 andu4 show thatu3u7u8, u2u4u7, u4u6u7,
u2u7u9, u2u6u8, u4u6u9 andu4u8u9 are faces. Now,K is N12.

SubcaseB: u4u5u9 ∈ K . If u2u4u8 ∈ K , the links ofu4 andu7 show thatu4u6u7,
u4u6u8 andu4u7u9 ∈ K . HereC6(u8,u4,u7,u,u5,u1) is in Lk(u6). We now observe
from Lk(u4) that eitheru2u4u6 or u2u4u7 ∈ K .

In the first case the links ofu4, u8, u7, u6 andu9 show thatu4u6u8, u4u7u8, u4u7u9,
u2u5u8, u2u3u7, u3u5u8 u2u8u9, u3u6u7, u3u6u9, u2u6u9, u2u5u7 andu3u5u9 are faces.
Now, K is N14.

In the second case the links ofu4, u6, u7, u2 andu3 show thatu4u6u8, u4u7u8, u4u6u9,
u2u3u6, u3u6u7, u2u6u9, u2u5u7, u3u7u9, u2u5u8, u2u8u9, u3u5u9 andu3u5u8 are faces.
Here,K is N8.

2.1.1.1.2:u1u5u8 ∈ K . The links ofu1 andu4 show thatu1u6u8, u1u3u6 ∈ K and
one ofu4u5u7, u4u5u8 or u4u5u9 ∈ K .

SubcaseA: u4u5u7 ∈ K . If u2u4u6 ∈ K , then Lk(u4) and Lk(u8) show thatu4u7u9

andu4u8u9 ∈ K , thereby showing that deg(u9) < 9. In the case whenu2u4u9 ∈ K ,
Lk(u4) and Lk(u7) show thatu4u6u8 andu2u3u7 are faces (since, from Lk(u4), either
u4u7u8 or u4u6u7 ∈ K ). Now, the links ofu5 andu2 show thatu2u5u9, u3u5u9 and
u2u6u8 are faces. This implies thatu6u8 is an edge inu1u6u8, u2u6u8 andu4u6u8, a
contradiction. Thus, from Lk(u4), u2u4u8 ∈ K .

The links of u4, u7, u8, u2 and u9 show thatu4u6u9, u4u6u7, u4u8u9, u2u3u7,
u2u7u9, u3u7u8, u2u5u6, u3u5u9, u2u5u9, u3u6u9, u2u6u8 andu3u5u8 are faces. Here,
K is N5.
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SubcaseB: u4u5u8 ∈ K . It is clear thatC4(u4,u5,u1,u6) is in Lk(u8) if u4u6u8 ∈ K .
If u4u7u8 ∈ K , considering the links ofu4, u7 andu8 we see thatu2u3u7 andu2u3u8 are
faces, a contradiction. Hence, from Lk(u4), u4u8u9 ∈ K . Now, on considering Lk(u9)

also,u4u6u9, u4u6u7 andu2u4u7 ∈ K . The links ofu8, u2 andu9 show thatu2u3u8,
u3u7u8, u2u6u8, u2u5u9 andu3u5u9 are faces. To complete Lk(u5), eitheru2u5u6 or
u3u5u6 is a face.

In the first case the links ofu2, u5 andu3 show thatu2u7u9, u3u5u7 andu3u6u9 are
faces. Clearly,K is N6.

In the second case the links ofu3, u9 andu5 show thatu3u7u9, u2u6u9 andu2u5u7

are faces and thereforeK is isomorphic, via the map(0,4,2,3,1)(5,7,6,9), to N7.
SubcaseC: u4u5u9 ∈ K . Considering the link ofu4, we see that one ofu4u6u9,

u4u7u9 or u4u8u9 is a face.
C.1: u4u6u9 ∈ K . The links ofu4 andu8 show thatu4u7u8, u2u4u7, u4u6u8 and

u2u3u8 ∈ K . If u6u7u9 ∈ K , Lk(u7) shows thatu2u3u7 ∈ K , a contradiction. Hence,
we can conclude from Lk(u7) thatu3u6u7 ∈ K . From Lk(u6) and Lk(u3), we see that
u2u6u9, u2u5u6 andu3u5u9 ∈ K . To complete Lk(u8), eitheru2u8u9 or u3u8u9 is a face.

In the first case the links ofu8, u2 andu7 show thatu3u5u8, u2u5u7 andu3u7u9 are
faces. Here,K is isomorphic, via the map(0,1,3,2,4)(5,9,8,6,7), to N14.

In the second case the links ofu8, u3 andu2 show thatu2u5u8, u3u5u7 andu2u7u9

are faces. Here,K is isomorphic, via the map,(0,1,3,2,4)(5,9,8,6,7), to N11.
C.2: u4u7u9 ∈ K . The link of u4 shows that eitheru4u6u7 or u4u7u8 ∈ K . In both

casesu2u3 ∈ Lk(u7). If u3u5u6 ∈ K , the link of u3 and u8 show thatu3u7u9 and
u3u8u9 ∈ K , a contradiction. Hence,u2u5u6 ∈ K (the links ofu8 andu5 show that
u5u6u8 and u5u6u9 /∈ K ). Considering the links ofu5 and u9, we see thatu3u5u9,
u2u6u9, u2u8u9 andu3u6u9 ∈ K . The links ofu6, u4, u2 andu8 show thatu4u6u8,
u4u6u7, u2u4u8, u2u5u7, u3u7u8 andu3u5u8 are faces. In this caseK is isomorphic, via
the map(0,2,1,4,3)(5,7,9,6), to N11.

C.3:u4u8u9 ∈ K . The links ofu4, u6, u3, u8, u2 andu5 imply thatu4u6u8, u4u6u7,
u2u4u7, u2u5u6, u2u6u9, u3u6u9, u2u3u8, u2u5u8, u2u7u9, u3u5u7, u3u7u8 andu3u5u9

are faces. Here,K is isomorphic, via the map(0,2,1,4,3)(5,7,8,9,6), to N14.

2.1.1.2:u1u7u8 ∈ K . The link ofu1 shows that eitheru1u5u8 or u1u6u8 is a face.

Claim 3. u1u5u8 is a face.

If u1u6u8 ∈ K , the links ofu1 andu4 show thatu1u5u6, u1u3u5 and one ofu4u5u7,
u4u5u8, u4u5u9 ∈ K . If u4u5u7 ∈ K , from Lk(u4), eitheru4u6u7 or u4u6u9 ∈ K
(sinceu4u7u8 /∈ K ). In both the cases the links ofu2, u4, u6 andu7 show thatuu2u3,
u2u3u6, u2u3u7 ∈ K , a contradiction. Ifu4u5u8 ∈ K , Lk(u4) and Lk(u8) show that
eitheru4u6u8 or u4u8u9 ∈ K . Again, in both cases, considering Lk(u4), Lk(u9) and
Lk(u8) we see thatu2u3u6, u2u3u8 ∈ K . So,u4u5u9 ∈ K . Sinceu7u8 already belongs
to two faces,u4u7u8 /∈ K . Hence,u4u6u7 and u4u6u8 ∈ K , thereby showing that
C6(u8,u4,u7,u,u5,u1) is in Lk(u6). This proves Claim 3.

The links ofu1, u4 andu5 show thatu1u3u6, u1u5u6 and eitheru4u5u7 oru4u5u9 ∈ K .
SubcaseA: u4u5u7 ∈ K . Considering Lk(u4), eitheru4u6u7 or u4u7u9 ∈ K . In both

casesu2u3 ∈ Lk(u7) and therefore, from Lk(u5), u2u5u9 andu3u5u9 ∈ K .
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If u4u6u7 ∈ K , the links ofu4, u6, u8, u3 andu5 show thatu4u8u9, u2u6u8, u3u6u8,
u2u6u9, u2u4u8, u3u5u8, u4u6u9, u3u7u9 andu2u5u7 are faces and, thus,K is N2.

If u4u7u9 ∈ K , the links ofu4, u9, u6, u7, u5 andu8 show thatu2u4u8, u4u6u8, u4u6u9,
u3u5u7, u2u6u7, u2u5u8, u3u6u8, u3u8u9 andu2u6u9 are faces. Here,K is isomorphic,
via the map(0,4,2,3,1)(5,8,7,6,9), to N5.

SubcaseB: u4u5u9 ∈ K . The links ofu4, u7, u6, u8, u5 andu9 show thatu4u6u8,
u4u6u7, u2u4u7, u4u8u9, u3u5u7, u3u6u9, u2u6u9, u2u6u8, u2u3u8, u3u5u8, u2u5u7,
u2u5u9 andu3u7u9 ∈ K . In this caseK is isomorphic, via the map(0,4,6,8,1)(2,5,9,3,
7), to N5.

2.1.2:u1u4u5 ∈ K .

Claim 4. For a vertex x6= u, u2, u3 and u4 cannot occur together in any order in the
link of any of the vertices.

Let x be any vertex inK . If u2u3x andu3u4x are faces, thenC4(u2, x,u4,u) is in
Lk(u3). If u2u4x andu3u4x are faces, thenC6(u3,u,u5,u1,u2, x) is in Lk(u4)and finally
if u2u3x andu2u4x are faces, thenC5(u4,u1,u,u3, x) is in Lk(u2). Hence, Claim 4 is
proved.

The links ofu1 andu5 show thatu1u3u5 or u1u5u8 ∈ K .

Claim 5. u1u5u8 is a face.

If u1u3u5 ∈ K , then Lk(u1) and Lk(u5) show thatu1u6u8 and one ofu2u5u6, u5u6u8

or u5u6u9 ∈ K .
If u2u5u6 ∈ K , Lk(u5) shows thatu5u7u8 andu5u7u9 ∈ K (if u5u8u9 andu5u7u9 are

faces, then deg(u9) < 9). Henceu7u8 /∈ Lk(u1) and thereforeu1u6u7 andu1u3u8 ∈ K .
This shows thatC6(u1,u9,u5,u8,u,u6) is in Lk(u7).

If u5u6u8 ∈ K , considering the links ofu6 andu1, we see thatu1u3u6 andu1u7u8 are
faces, which imply thatu2, u3 andu4 are together in Lk(u8), which is impossible from
Claim 4. Thus,u5u6u9 ∈ K .

It is clear thatu1u7u8 andu1u3u6 are faces (sinceu1u6u7 /∈ K , from Lk(u6) and
Claim 4). Sinceu7u8 /∈ Lk(u5), u2u5u7 and u2u5u8 are faces. To complete Lk(u5),
either u5u7u9 or u5u8u9 ∈ K , both of which are impossible by looking at Lk(u7),
Lk(u8) and Claim 4. This proves Claim 5.

From Claim 5 and Lk(u1), u1u5u8 and thereforeu1u3u6 ∈ K .
The link ofu5 shows thatu5u6 is an edge in one ofu2u5u6, u3u5u6 or u5u6u9.
If u3u5u6 ∈ K , considering the links ofu6 andu1, u1u6u8 andu1u3u7 are faces. The

links of u5, u7 and Claim 4 show thatu2u3u5 /∈ K . Hence, Lk(u5) and Lk(u3) show
thatu3u5u9 andu2u5u7 ∈ K . The links ofu8, u5 and Claim 4 show thatu5u8u9 /∈ K ,
u5u7u9 andu2u5u8 ∈ K . Sinceu6u9 /∈ Lk(u3), it is clear from Lk(u9) and Claim 4 that
u2u6u9 andu4u6u9 are faces. Since eitheru2u3u9 or u3u4u9 is a face, Lk(u3) implies
thatu3u7u8 ∈ K . The links ofu7, u6 andu4 show thatu2u4u7, u4u6u7, u2u6u8, u4u8u9

andu3u4u8 are faces, thereby showing thatC5(u3,u4,u9,u,u7) is in Lk(u8). Therefore,
eitheru2u5u6 or u5u6u9 is a face.

SubcaseA: u2u5u6 ∈ K . The links ofu5 andu7 and Claim 4 show thatu2u3u5 /∈ K .
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If u2u5u9 ∈ K , so isu3u5u7. If u5u7u8 ∈ K , Lk(u7), Lk(u8) and Claim 4 show that
neitheru1u6u7 nor u1u6u8 is a face, a contradiction. Hence, from Lk(u5), u3u5u8 and
u5u7u9 ∈ K . Considering the links ofu1 andu7 we see thatu1u6u7 andu1u3u8 are faces.
This is seen to be impossible by applying Claim 4 to Lk(u7). Hence, Lk(u5) shows that
u2u5u7 ∈ K .

We now observe, from Lk(u5), that eitheru3u5u7 or u5u7u9 is a face.
In the first case the links ofu5, u8 andu1 show thatu5u8u9, u3u5u9, u1u3u8 and

u1u6u7 are faces (ifu1u6u8 ∈ K , the remaining three vertices in Lk(u8) areu2, u3 and
u4). Sinceu6u8 /∈ Lk(u3), Lk(u8) shows thatu2u6u8 andu4u6u8 are faces. The links of
u6, u9, u7 andu8 show thatu3u6u9, u4u6u9, u2u4u9, u2u7u9, u3u4u7, u4u7u8 andu2u3u8

are faces and henceK is N10.
In the second case the links ofu5, u8 andu1 show thatu3u5u8, u3u5u9, u1u6u8 and

u1u3u7 are faces. It is easy to see from Lk(u3), Lk(u6)and Lk(u9) thatu4u6u7 andu3u6u9

are faces (if eitheru2u3u9 or u3u4u9 is a face, then from Claim 4 and on completing
Lk(u9), we get deg(u6) < 9). The links ofu9, u4, u6, u7 andu8 show thatu2u4u9,
u2u6u9, u4u8u9, u4u6u8, u3u4u7, u2u7u8, andu2u3u8 are faces. Here,K is N4.

SubcaseB: u5u6u9 be a face. The link ofu9 and Claim 4 show thatu5u7u9 /∈ K and
hence Lk(u5) shows that eitheru2u5u9 or u3u5u9 is a face.

B.1: u2u5u9 ∈ K . Here,u3u7 ∈ Lk(u5) and the links ofu5, u7, u8 and Claim 4 show
thatu5u7u8 /∈ K . Now, Lk(u5), Lk(u8) and Lk(u1) show thatu3u5u8, u2u5u7, u1u6u8

andu1u3u7 ∈ K . Now, the links ofu7 andu6 show that the edgeu7u9 belongs tou4u7u9

and thereforeu2u6u7 andu4u7u8 are faces (ifu4u6u7 ∈ K , then considering Lk(u4),
Lk(u9) and Lk(u6), u4u6u8 andu2u6u9 are faces which show thatC3(u2,u5,u6) is in
Lk(u9)). To complete Lk(u6), eitheru2u4u6 or u4u6u9 ∈ K .

In the first case the links ofu2, u3 andu8 show thatu2u3u8, u2u8u9, u3u6u9, u3u4u9

andu4u6u8 are faces. In this case,K is N13.
In the second case the links ofu9, u8 andu6 show thatu3u8u9, u2u3u9, u2u4u8, u2u6u8

andu3u4u6 ∈ K . Here,K is isomorphic, via the map(0,1,5,7)(2,8)(3,6,9,4), to N13.
B.2: u3u5u9 ∈ K . It is clear that ifu2u3u5 andu5u7u8 ∈ K , then the links ofu2, u7,

u1 andu3 show thatC7(u3,u6,u1,u5,u7,u,u9) is in Lk(u8). Therefore, from Lk(u5),
u2u5u8, u2u5u7 andu3u5u7 ∈ K . Now, if u3u7u8 ∈ K , the links ofu7, u1, u4 andu8

show thatC5(u4,u8,u,u1,u7) is in Lk(u9). Hence,u4u7u8 is a face.
In caseu4u7u9 ∈ K , the links of u7, u1, u6 and u2 show thatu1u3u7, u2u6u7,

u1u6u8 ∈ K andu2u6u8, u2u3u6 /∈ K (if u2u3u6 ∈ K , to complete Lk(u6), u4u6u8 and
u4u6u9 ∈ K which implies thatC4(u6,u9,u7,u8) is in Lk(u4)). Since,u3u6u9 /∈ K
(from Lk(u9)), to complete Lk(u6), u2u4u6 andu3u4u6 ∈ K , a contradiction. Further,
u2u4u7 /∈ K (if u2u4u7 ∈ K , completing Lk(u7), we getu2u4u9 ∈ K , a contradiction).
Hence, from Lk(u7), u3u4u7 ∈ K .

The links ofu7, u1, u4, u6 andu9 show thatu1u6u7, u2u7u9, u1u3u8, u4u6u8, u4u6u9,
u2u4u9, u2u3u6, u2u6u8 andu3u8u9 are faces. In this case,K is isomorphic, via the map
(2,9)(3,8)(4,7)(5,6), to N10.

2.1.3:u1u4u6 ∈ K . Using the same method as the one above, we find thatK is isomorphic
to one ofN2, N4, N5, N7, . . . , N12.

2.1.4:u1u4u8 ∈ K . In this case we find thatK is isomorphic to one ofN4, . . . , N7,
N9, . . . , N14.
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Subcase2.2:u1u3u9 ∈ K . The link ofu1 shows that one ofu1u4u6, u1u4u5, u1u4u7 or
u1u4u8 ∈ K .

2.2.1:u1u4u6 ∈ K . We observe that eitheru7u8 ∈ Lk(u1) or u7u8 /∈ Lk(u1)

2.2.1.1:u7u8 ∈ Lk(u1). The link ofu1 shows that eitheru1u5u7 or u1u5u8 ∈ K .
2.2.1.1.1:u1u5u7 ∈ K . In this case,K is isomorphic to one ofN1, N7, N11 or N14.
2.2.1.1.2:u1u5u8 ∈ K . The links ofu1 andu7 show thatu1u5u6 andu1u3u7 ∈ K .

Considering Lk(u6) and Lk(u7), we see that eitheru2u6u7 or u6u7u9 ∈ K .

Claim 6. u6u7u9 is a face.

If u2u6u7 ∈ K , then Lk(u7) and Lk(u3) shows that eitheru3u4u7 or u3u5u7 ∈ K .
If u3u4u7 ∈ K , the links ofu7, u4, u5 andu3 show thatu2u5u7, u5u7u9, u4u7u9,

u2u4u5, u4u6u8, u4u8u9, u3u5u8, u3u5u9, u2u3u6 andu3u6u8 ∈ K . Here, deg(u6) < 9.
Hence,u3u5u7 ∈ K .

To complete Lk(u7), u2u4u7, u4u7u9 andu5u7u9 have to be faces (ifu4u5u7 ∈ K ,
Lk(u5) implies that eitheru3u5u9 or u5u8u9 is a face, which is seen to be impossible
from the links ofu3 andu8). This shows that the face (6= uu4u5) havingu4u5 as an edge
is u2u4u5, a contradiction. This proves Claim 6.

From Lk(u7) and Claim 6, we see that one ofu2u3u7, u3u4u7 or u3u5u7 is a face.
If u3u4u7 is a face, the links ofu7, u4, u8 andu5 show thatu2u4u7, u2u5u7, u5u7u9,

u4u5u9 andu2u3u5 are faces which implies that deg(u2) < 9.
If u2u3u7 is a face, the links ofu7, u2, u5, u3 andu6 show thatu2u5u7, u4u5u7, u4u7u9,

u2u5u9, u3u5u9, u3u5u8, u3u4u6, u3u6u8, u2u6u8, u2u6u9, u2u4u8 andu4u8u9 are faces.
Here,K is N3.

In the last case the link ofu7 shows thatu2u4u7, u2u5u7 andu4u7u9 ∈ K (if u4u5u7 ∈
K , to complete Lk(u5), eitheru3u5u9 or u5u8u9 ∈ K , a contradiction). It is clear that
u4u5u9 ∈ K , from Lk(u4) and Lk(u5). The links ofu4, u6, u2 andu3 show thatu3u4u8,
u4u6u8, u2u3u6, u2u6u8, u3u6u9, u2u8u9, u2u5u9 and u3u5u8 are faces. Here,K is
isomorphic, via the map(0,9,7)(1,2,5,4,6,8), to N5.

2.2.1.2:u7u8 /∈ Lk(u1). Hence,u1u5u7 andu1u5u8 are faces. To complete Lk(u1),
eitheru1u6u7 andu1u3u8 or u1u6u8 andu1u3u7 are faces

2.2.1.2.1:u1u6u7 andu1u3u8 are faces. The edgeu7u8 belongs to one ofu2u7u8,
u3u7u8 or u4u7u8.

SubcaseA: u2u7u8 ∈ K . If u2u3u7 ∈ K , the links ofu7 andu3 show thatu3u7u9,
u4u7u9, u4u5u7 and u3u5u8 are faces. This implies thatC3(u5,u1,u3) is in Lk(u8).
Hence, eitheru2u4u7 or u2u7u9 ∈ K .

A.1: u2u7u9 ∈ K . To complete Lk(u7), u3u5u7, u3u4u7 andu4u7u9 have to be faces.
Considering Lk(u4), we see that eitheru4u6u9 or u4u8u9 ∈ K (since,u2u4 /∈ Lk(u9)).

In the first case the links ofu4, u8, u9 andu6 show thatu2u4u8, u4u5u8, u3u6u8,
u6u8u9, u2u5u9, u3u5u9, u2u3u6 andu2u5u6 are faces and, hence,K is isomorphic, via
the map(0,3,1,2,8,4,6,5,9), to N10.

In the second case the links ofu4, u6, u8, u2 andu9 show thatu4u6u8, u2u4u5, u2u5u8,
u3u6u8, u2u3u6, u2u6u9, u5u6u9 andu3u5u9 are faces. Here,K is N9.

A.2: u2u4u7 ∈ K . The link of (u7) shows thatu3u7u9 ∈ K . Considering the links
of u8 andu9, u2u8u9 andu2u3u9 /∈ K and hence the link ofu2 shows thatu2u5u9 and
u2u6u9 are faces. To complete Lk(u7), eitheru3u4u7 or u4u7u9 ∈ K .
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In the first case the links ofu7, u9, u4, u8 andu5 show thatu5u7u9, u4u6u9, u4u8u9,
u4u5u8, u2u6u8, u3u6u8, u2u3u5 andu3u5u6 are faces. Now,K is isomorphic, via the
map(0,2)(1,3)(5,9,8,6,7), to N10.

In the second case Lk(u4) shows thatu4u6u9 /∈ K . The links ofu7, u9, u4, u8 and
u6 now show thatu3u5u7, u4u5u9, u6u8u9, u2u5u8, u2u3u6, u3u4u8, u4u6u8 andu3u5u6

are faces. Here,K is isomorphic, via the map(0,4,5,1,7,9,8,6,2,3), to N10.
SubcaseB: u3u7u8 ∈ K . If u2u3u7 ∈ K , the links ofu7, u2 andu3 show thatu2u7u9,

u4u7u9,u4u5u7,u3u5u6,u3u5u9 andu3u4u6 are faces. This implies thatC6(u3,u4,u1,u7,

u,u5) is in Lk(u6). It is easy to see thatC4(u7,u8,u1,u9) is in Lk(u3) if u3u7u9 ∈ K .
Hence, from Lk(u7), u3u4u7 andu2u7u9 are faces.

The link ofu3 shows thatu3u5u6, u2u3u5 andu3u6u9 ∈ K . (If u2u3u6 andu3u5u9 ∈
K , the links ofu6, u8, u7 andu2 show thatu6u8u9, u2u4u8, u2u5u7, u4u7u9, u2u5u8

and u4u6u8 ∈ K . Here, C4(u8,u2,u1,u6) is in Lk(u4).) The links of u6, u9, u7,
u4 and u8 show thatu4u6u8, u2u6u8, u2u6u9, u4u5u9, u4u8u9, u5u7u9, u2u4u7 and
u2u5u8 are faces. Here,K is isomorphic, via the map(0,9,5,2)(1,8,3)(4,7,6), to
N10.

SubcaseC: u4u7u8 ∈ K . Lk(u7) shows that one ofu2u4u7, u3u4u7 or u4u7u9 is a
face.

C.1:u2u4u7 ∈ K . The links ofu2 andu7 show thatu2u7u9, u3u7u9 andu3u5u9 ∈ K .
Sinceu4u9 /∈ Lk(u2) and Lk(u9), the links ofu9, u4, u3, u6 andu5 show thatu4u5u9,
u4u6u9, u3u4u8, u2u3u6, u3u5u6, u2u6u8, u6u8u9, u2u5u8 andu2u5u9 are faces. In this
case,K is isomorphic, via the map(0,7,2,8,5,1,4,6,9,3), to N10.

C.2:u3u4u7 ∈ K . It is easy to see from Lk(u4) thatu4u5u9 ∈ K (sinceu4u5u8 /∈ K
from Lk(u8)). The links ofu7, u3, u8, u5 andu6 show thatu2u5u7, u2u7u9, u3u7u9,
u2u3u5, u3u5u6, u3u6u8, u5u8u9, u2u6u8, u2u4u8, u2u6u9 andu4u6u9 are faces. In this
case,K is isomorphic, via the map(0,5,3,1,2,8)(4,7,6,9), to N9.

C.3: u4u7u9 ∈ K . The link of (u7) shows thatu3u5u7, u2u3u7 andu2u7u9 ∈ K (if
u3u7u9 ∈ K , the links ofu7, u3 andu8 show thatu3u4u5 ∈ K ). Sinceu3u5 /∈ Lk(u8),
eitheru3u5u6 or u3u5u9 ∈ K . If u3u5u6 ∈ K , the links ofu5 andu2 show thatu2u4u6 ∈
K , which implies thatC3(u2,u1,u6) is in Lk(u4). Hence,u3u5u9 ∈ K .

The links ofu3, u2, u4, u5 andu6 show thatu3u4u6, u3u6u8, u2u4u8, u4u5u9, u2u5u6,
u2u5u8, u2u6u9 andu6u8u9 ∈ K . Now, K is isomorphic, via the map(0,8,7,4,3,1,9)
(2,5), to N10.

2.2.1.2.2:u1u6u8 andu1u3u7 are faces. In this case, using the above method,K is
isomorphic to one ofN5, N6, N7, N9, N10 or N12.

2.2.2:u1u4u5 ∈ K . In this case,K is isomorphic toN11.

2.2.3:u1u4u7 ∈ K . In this case,K is isomorphic toN4, N5, N7, N10, . . . , N12 or N14.

2.2.4:u1u4u8 ∈ K . In this case,K is isomorphic to one ofN4, N7, N10, N11 or N14.

Subcase2.3:u1u5u9 ∈ K . In this case,K is isomorphic to one ofN1, N4, . . . , N14.

Subcase2.4:u1u6u9 ∈ K . In this case,K is isomorphic to one ofN1, N3, . . . , N14.
The theorem now follows from Lemma 5.

Proof of Theorem7. Let K be ann-vertex (n ≤ 11) {3,q}-equivelar polyhedron. If
χ(K ) > 0, then, by Corollary 3,K is isomorphic toS2

4, O orRP2
6 .
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If χ(K ) ≤ 0, then, by (2),q ≥ 6 and hencen ≥ 7. From (1),nq is divisible by 6. So,
(n,q) = (7,6), (8,6), (9,6), (9,8), (10,6), (10,9) or (11,6).

If q = 6, thenχ(K ) = 0 and hence, by Theorem 4,K is isomorphic toT7, . . . , T11,
A3,3, B3,3 or Q. Since, the non-edge graphs ofT9, A3,3 and B3,3 are pairwise non-
isomorphic,T9, A3,3 and B3,3 are pairwise non-isomorphic. Observe that NEG(Q) is
a bipartite graph. As NEG(T10) contains an induced pentagon, it is therefore not iso-
morphic to NEG(Q). HenceQ 6∼= T10. Thus, all these eight polyhedra are distinct
(non-isomorphic).

If (n,q) = (9,8), then, by Theorem 5,K is isomorphic toM1 or M2. Moreover,
M1 6∼= M2.

If (n,q) = (10,9), then, by Theorem 6,K is isomorphic toN1, . . . , N14. Moreover,
Ni 6∼= Nj for 1≤ i 6= j ≤ 14. This completes the proof.
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