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Abstract. We know that the polyhedra corresponding to the Platonic solids are equivelar.
In this article we have classified completely all the simplicial equivelar polyhedra bh
vertices. There are exactly 27 such polyhedra. For eaeh-4, we have classified all the

(p, q) suchthatthere exists an equivelar polyhedron of fyp €} and of Euler characteristic

n. We have also constructed five types of equivelar polyhedra of Euler characteg@stic

for eachm > 2.

1. Introduction

Afinite collectionK of cycles, edges and vertices of a complete graph is cattechplex

(of dimension 2) if (i) each edge of a cycle K is in K, (ii) each vertex of each edge

in K is in K and (iii) any two cycles have at most one common edge. The cycles,
edges and vertices in a complex are calleddves edgesandverticesin that complex,
respectively. We denote a fagg- - - umuy by u; - - - upy, also.

For a compleXX, theedge graptEG(K) of K is the graph whose vertices and edges
are the vertices and edgeskf respectively. EGK), is also called the $keletorof K.
The graph theoretic complement of BG) is called thenon-edge graptof K and is
denoted by NE@K). So,eis an edge in NEE) if and only if eis not an edge K.
See [2] for the graph-theoretic terms used in this paper.

If K is a complex, then we associate another gragK ) with K as follows. The
vertices ofA (K) are the faces ilK and for faced=, F, € K, F1F; is an edge im\ (K)
whenever; andF, have a common edge. For a vertein K let 7, be the set of faces
containingu. A complexK is called arabstract polyhedrofor simply apolyhedron (of
dimension 2) if (iv) for each vertex there is a facd containingv, (v) each edge is in
exactly two faces, (vi) the induced subgrdptu) = A (K)[F] is a cycle for each vertex
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uin K and (vii) the grapm (K) is connected. Since all the polyhedra considered in this
paper are two-dimensional, we drop the qualification “two-dimensional”. Clearly, the
faces of a polyhedron determine the polyhedron. Because of this we identify a polyhedron
with the set of faces in it.

A complex may be thought of as a prescription for the construction of a topological
space by pasting together plane polygons. The topological space thus obtained from a
complexK is called thegeometric carrierof K and is denoted bjK |. It is easy to see
that the geometric carrier of a polyhedron is a connected two-dimensional manifold.

Two complexeK andL are calledsomorphic(denoted byK = L) if there exists
a bijective mapp from the vertex-set oK to the vertex-set ok such that; - - - vk is a
face inK if and only if ¢ (v1) - - - @ (vy) is a face inL. We identify two complexes if they
are isomorphic.

If uv is an edge in a compleX , then we say andv are adjacent ifK. For a vertex
v in a complexK, the number of edges throughis called thedegreeof v in K. If
fo(K), f1(K) and f,(K) are the number of vertices, edges and faces, respectively, of a
polyhedronK, then the numbey (K) := fo(K) — f1(K) + f2(K) is called theEuler
characteristicof K.

A polyhedronK is calledequivelar of typd p, q} (or {p, q}-equivela) if each face
is ap-gon (i.e.,A(K) is a p-regular graph) and the degree of each vertax(see [4]).

A polyhedron is callecquivelarif it is equivelar of type{ p, q} for somep andq.

A complex is callegimplicialif each face consists of three verticeau i§ a vertex of
a simplicial complexX, then thdink of u in K (denoted by Lk (u)) is the graph whose
vertices are those verticesléfwhich are adjacent to and whose edges are those edges
vw in K such thatvw is a face inK. A simplicial complex with properties (iv)—(vi) is
called acombinatorial2-manifold Observe that in this case the link of any vertex is a
cycle. So, a connected combinatorial 2-manifold in which the degree of each vertex is the
same is a simplicial equivelar polyhedron and hence is calledjaivelar combinatorial
2-manifold

In [18]-[20] McMullen et al. considered equivelar polyhedra with geometric carriers
in R® (and hence orientable). We consider both the orientable and non-orientable cases.

Example 1. Some equivelar polyhedra:

S = {abg abd, acd, bcd},

O = {abjo: 1<i,j,k=<2},

C = {ah2c10, a1bodiCy, 81620102, @b1Cods, @xbidocy, @xCibpd},

I = {UUiUii1, UiUi410i43, Vivipaligs, vuivigrl 1 <0 < 5},

D = {v1v2v3v4Vs, Vi Vi 11Ui+10i i+1Ui, Vi i+1Ui+20i+1i+2Ui+1i+2Ui i +1,

U1oUp3UsaUssUss: 1 <i < 5},
2 . .
RP{ = {UUiUiy1, UibiqUis3: 1 <i <5},
R
M;

{U1,2U2 3U3 4U4 5U5, 1, Ui i 11U j+1,i+3Ui+2,i+3,i Ui+5,i i +2Ui+5i: 1 <i <5},

{U14 pUsatpU74p, Uit3pUj43pUks3p: (i, ], K)
€{(1,2,5),(,3,5),(1,3,4,(1,8,9), (1,6,8), (1, 2,6), (2, 3,6)},
0<p=2},
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N1 = {UUiUi1, UiUi41Uit4, Uili12Ui g, Uili1sUipel 1 <1 <9}
(Additions in the subscripts are modulo 5linD, RPZ, R and
are modulo 9 inV1, Ny.)

Here S is equivelar of typd3, 3}, O is equivelar of typg3, 4}, C is equivelar of type
{4, 3}, | andR PG2 are equivelar of typ€3, 5}, D andR are equivelar of typ¢5, 3}, M,
is equivelar of typd3, 8} andN; is equivelar of typg3, 9}.

The geometric carrier of each§f, O, C, I andD is the 2-sphere and they correspond
to the Platonic solids [5], [6], [12], [8], [24], namely, tetrahedron, octahedron, cube,
icosahedron and dodecahedron, respectively. The polyh&fgid] is called the hemi-
icosahedron and the polyhedrdtis called the hemi-dodecahedron. The geometric
carrier of each oRPZ andR is the real projective plane. The geometric carrieMaf
is the non-orientable surface of Euler characterist&c The geometric carrier dfl; is
the non-orientable surface of Euler characteristic _

LetK bea polyhedron with facds,, . .., Fn. Consider a compleK with vertex-set
{wi, ..., wm}as:w, - - w; isaface ink |f and only if there exists a vertaxin K such
that F.l -F Fi, is the cycleL (u) defined above. TheK is a polyhedronK is called
thedualof K. Itis easy to showthatthe dual Kfis |somorph|ctd< andX(K) = x(K).

It is also not difficult to see the$§ =g, C=0,1=D andRP6 = R. Observe that
the graphA (K) is isomorphic to EEK). Because of this, for a polyhedrét, A (K) is
called thedual 1-skeletorof K.

A patternon a connected surfadé is a non-empty, connected locally finite graph
contained iV, such that each componentMf\I" is simply connected and has compact
closure. The closure of a componentf I" is called a face of . A pattern decomposes
the surface into faces. Such a decomposition is callethp(see [7], [15] and [16]).
A patternT is callednon-singularif each edge of” lies in two faces. A patteriv is
calledequivelarof type {p, q} (or a{p, q}-pattern if each face containg (counted
with multiplicity) edges and each vertex has deggee

Letd(n) = {(p, g): there exists &p, q}-equivelar polyhedron of Euler characteristic
n} andX (n) denote the set of all equivelar polyhedra of Euler characteristiCéearly,
®(m) = ¢ for m > 3. Itis known (e.g., see [17]) that {fp, q) € ®(n) for somen < O,
then(p, q) € ®(n) for infinitely many negativa. Here we prove:

Theorem 1. If ®(n) and X (n) are as abovgthen

i) @) Nd(—m)=Fforalln >0and m> 1,
(i) (2 ={3.3).3.4,(423.@3,5,(5,3)},
(i) (1) ={@3,9), (5,3},
(iv) ©(0) =({(3,6),(6,3), (4,4},
(V) ®(-1) =4,
(Vi) (=2 ={@3,7),(7,3),(4,5), (5 b},
(Vi) @(=3) ={(3,7),(7,3),(3,8),(8,3),(4,5), (54, (55},
(viii) ®(=4) = {(3,7),(7,3),(3,8),(8,3),(4,5),(5,4), (4,6),(6,4), (505} <
®(—2m), forallm > 3,
(ix) (3,3k—1) € P(—k(Bk—7)/2), (3,3k) € ©(1—k(3k —5)/2), forallk > 3,
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(x) @(n) is afinite set for each integer n and
(xi) for each n> 7,there exists an n-vertg8, 6}-equivelar polyhedron irE (0).

Corollary 2. For each n# 0, there exist only finitely many equivelar polyhedra of
Euler characteristic n

In [11] (also see in [7]) Edmonds et al. proved the existence and uniqueness of a
{p. q}-pattern on surfaces. Clearly{ p, q}-equivelar polyhedroK gives a non-singular
{p, q}-pattern on|K| with the property that any two faces have at most one common
edge. So, the existence ofa q}-equivelar polyhedronimplies the existence ¢paq}-
pattern but not conversely. For example, by Theorem 2.4(i) of [1{3, @}-pattern and
a {4, 6}-pattern exist on a non-orientable surface of Euler characteristibut, from
Theorem 1(v) above, an equivelar polyhedron of Euler characteridtidoes not exist.
Also, by the same theorem in [11]{% 6}-pattern exists on an orientable surface of Euler
characteristie-4 but, from Theorem 1(viii) above{®, 6}-equivelar polyhedron of Euler
characteristic—4 does not exist. There are five choices(pfq) for {p, q}-equivelar
polyhedra of Euler characteristic 2, where as there are infinitely many choi¢psaf
for {p, q}-patterns (e.g{p, 2}-patterns exist for alp > 3) on the 2-sphere (see [11] and
[7]). However, in each case unique pattern exists (see Classification in [11]). Similarly
for Euler characteristic 1. From these (Classification in [11]) and Theorem 1(iii) and (iv)
above we get:

Corollary 3. If the Euler characteristic of an equivelar polyhedron is positithen
the polyhedronis 5C, O, I, D, RP? or R defined in Examplg.

Corollary 2 says thak(n) is a finite set fom £ 0 and Theorem 1(xi) shows that
2 (0) is an infinite set. If the Euler characteristicss0, then (unlike when the Euler
characteristic is> 0) it is in general difficult to classify all the non-singulép, q}-
patterns. In particular, it is very difficult to classify all thp, q}-equivelar polyhedra of
a given non-positive Euler characteristic. Even for a negative Euler characteristic, there
can exist more than ori@, q}-equivelar polyhedra of the same Euler characteristic (e.g.,
Ni, ..., N4 in Examples 1 and 8). For simplicial polyhedra on few vertices we have:

Theorem 4. Let K be an n-vertex simplicial equivelar polyhedron of Euler character-
istic0.1f n < 11,then K is isomorphic to ..., T11, As3, B33 or Q defined below

Theorem 5. If M; and M, are as in Examplesand7,then M, 2 M, and any9-vertex
neighbourly simplicial equivelar polyhedron is isomorphic tQ & M.

Theorem 6. Let Ni, ..., Ni4 be asin Example$ and8. We have the following

(i) Ni is notisomorphic to Nfor 1 <i # j < 14.
(iiy If M is a 10-vertex neighbourly simplicial equivelar polyhedrdhen M is iso-
morphic to N for some ie {1, ..., 14}.
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Theorem 7. There are exactl7 (up to isomorphisinsimplicial equivelar polyhedra
on < 11 vertices namely Sz, 0O, RPGZ, A3,3, Bg’g, T7, ..., T11, Mg, My, Ny, ..., Nig
and Q, defined in Examples-8.

Remark 1. Observe thaM; and M, are non-isomorphic but they have the same 1-
skeleton. SimilarlyNs, ..., Ni4 have the same 1-skeleton but they are pairwise non-
isomorphic combinatorial 2-manifolds.

Remark 2. Corollary 3 is classically known. We have added it here as an immediate
consequence of Theorem 1. Corollary 2 is also known (e.g., see [25]). We have added it
for the sake of completeness.

Remark 3. In this article we consider polyhedra from a combinatorial point of view.
For some polyhedra (e.d-p, L3, Q, G, Dy’s, Hy's, ...) we have given their geometric
realizations in Section 2. A polyhedréhis also called @olyhedral2-manifold(see [4]).

Remark 4. Property (vii), in the definition of a polyhedron, implies that the geometric
carrier of a polyhedron is connected. A complex with properties (iv)—(vi) is said to be a
weak polyhedronSimilarly, we can defingp, q}-equivelar and equivelar weak polyhe-

dra. Clearly, an equivelar weak polyhedron is the disjoint union of equivelar polyhedra
whose Euler characteristic is the sum of the Euler characteristics of the components. So,
it is sufficient to consider only equivelar polyhedra.

2. Examples

In this section we construct infinitely many equivelar polyhedra. Some of them have
already been mentioned in the previous section. We use others in the next section. Recall
that we identify a polyhedron with the set of faces in it. At the end of this section we
give the geometric realizations of some of the polyhedra.

Example 2. Some equivelar polyhedra of Euler characteristic O:

Amn = {UijUitsjUitsj+1, Ui jUijaalipsja 1<i<ml<j<n}, mn=>3
Bnn = {Ui,jUitejUitsj+1, UijUijalivr i+ 1<i<m-211<j <n}
U {Um jUrni2-jUsnta-j, UmjUmjtaUinia-j: 1< j <n}, m,n> 3.
Cmn = {UijUit1 Uiy jalij+al 1 <i <m 1< j <n}, m,n > 3.
(Additions in the first and second subscripts are modukndn,
respectively)

Tn = {UjUj11Ui43, UiUi42UiL3: 1 <i < n}, n>7.
(Additions in the subscripts are moduig
Q = {012 023 034 045 056,016 127,136 138 178 236 269, 279,
348 457,479 489 569 578 589.
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Am.n: Bm.n, Tn @andQ are equivelar of typ€3, 6} andC, , is equivelar of typd4, 4}.
The geometric carriers mn, Cmn andT, are the torus and the geometric carriers of
Bm.n andQ are the Klein bottle.

Example 3. Some equivelar polyhedra of ty[é, 5}:

Dn = [{aj k@, j+1kd, j+1k+180 ki1l L= k<4, 1<i <n}\
{&,j k8 j 41k j+1k+180 k1 (], K)
€{1,1,13,3 1,3 3}1<i=<nj
U {& 3k 3 k+18 +1,2k+18 +1,2k> & 3k+18 4k+1&+1,1k+18+1,2,k+15
Q4. k+180 4 kA +1,1, kA +1,1,k+1> A 4k, 3ki+1,2ki+1,1,k-
ke{l,3,1<i <n}, for n>2
En = [{&,jka j+1k@ jrikr1dijke1s 1< j, k<4, 1<i<n}\
(@i k& 1k j+1k+18i ket (1, K)
€{1,1,13,32,34},1<i=<nj]
U {8 3.k 3k+13i+1.2k& +1.2k+3s & 3k+18 4k+13i+1.1.k&+1.2.k
Q4. k+180 4k +1,1,k+38 +1,1,ks & 4k, 3 ki +1,2,k+38i+1,1,k+3-
ke{2,4},1<i=<n}. for n>1
(Additions in the first subscripts are modui@nd in the second and third
subscripts are modulo¥.
Fi = {@cdija0, @@ dibiyg, abibi1Gia, 0idiCi1Ci, a1C182C2, 1d1020;:
1<i=<2.
(Additions in the subscripts are modulo 2.)

Fn = [{&,jaj+18 11418410 1 <] <4,1<i <2n}\
{@ok—1,j@ok—1,j+182k j+182kj: ] € {13}, 1<k <nj]
U {@ok—1,180k—1,282k+2,482k+2,3, Q2k—1,282k, 282k +1,482k+2,4
Aok 282k, 182k+1,3A2k+1,4, A2k, 182Kk—1,182k+2,3A2k+1,3-
1<k <n}, for n> 2.
Gn = [{aja j+18+1 1141 1<) <4, 1<i <2n}\
{Bk—1,jAk—1,j+182 j+182k,j: | € {1, 3},1 <k <n}]
U {@gk—1,180k—1,280k+1,482k+1,3, 2k—1,282k 282k +2,482k + 1,4
Aok, 282k, 18k+2,3A2k+-2,4, A2k, 182k—1,182k+1,3A2k+-2,3-
1<k<n}, for n>2.
(Additions in the first and second subscripts are modualard 4,
respectively.
G = {abcd adef bagh chij, dck|, feij, hgkl, aljg, alhf, bkeh bkgi, ciek cigj, dfhe
dfjl}.
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x(Dp) = 16n — 40n 4+ 20n = —4n and the geometric carrier &, is the orientable
surface of genusr2+ 1 for alln > 2. x (E,) = —4n and the geometric carrier &, is
the orientable surface of genus 2 1 foralln > 1. x(F,) = 8n —20n 4+ 10n = —2n
and the geometric carrier &, is the orientable surface of gennst 1 for alln > 1.
x(Gp) = —2n and the geometric carrier &, is a non-orientable surface for all> 2.
The geometric carrier d& is the non-orientable surface of Euler characteristic

Example 4. Some equivelar polyhedra of tyfa, 7}:

Hn = {Ui1vi1Ui2, Ui2viavi2, Ui2vi2vi3, Ui2vi3Ui3, Uiavializ, Ui1vi4vi1,

Vi 2Wi 2Wi 3, Vi 2Wi 3Vi,3, Vi,3Wi3Vi4, Vi4aWi3Wi4, ViaWi4Vi1, Vi 1Wi4Wi 1,

wi 1Ui 1wi 2, wj2Uj 1Uj 2, wj2Ui2wj 3, wi3Ui2Ui3, wi3Ui3wias4, wjaUi3Uias,

Wi 4Uj aUi 1, wi alj 1wi 1}

U {Uj41,3Vi41,3Wi 2, Ui+1,3Wj 2Vi 2, Uit13Ui+1,40i2, Uiyl 4 20i 1,
Ui+1,4Vi41,4Wi 1, Ui41,4Vi1Wi 1, Vi41,4Vi41,3Wi 1, Vi41,3Wi 1Wi 2.
1<i=<n}, for n>1.

(Additions in the subscripts are moduiog
H = {aubaby, arbibs, a1bsaz, @182z, @1C2C1, @2b3hy, 2baCs, 82CsCa, @xC483, ApasCy,
a3C4bs, asbsbg, azbsays, 83a4C3, 83C3C2, asbeha, a4laby, asbias, asascy, a4cyCa,
ash1 by, ash>Cs, asCsCs, a5C6a6, A586C1, A6CC4, B6Cals, Aghshy, ashsay, asasiCy,
b1b,bs, b1 b3bg, b2b3bs, brbsbs, b3bsbs, bsbabs, €1C2Cs, €1C3Cs, C2C3Cs, C2C5Cs,

C3C4Cs, C3C4Cs).

The geometric carrier dfl is the non-orientable surface of Euler characteristic The

geometric carrier of, is an orientable surface andHn) = 12n — 42n + 28n = —2n
foralln > 1.

Example 5. Some sequences of equivelar polyhedra of ) é&}:

Jn = {UijUit1jUite 1, UijUijpalivgjers 1<i <2n,1 <] <3}\
{Uok—1,jUsk—1,j+1U2 j+1- 1<k =<n, ] e {1, 3}}
U {U2k—1,1U2k+1,3U2k—1,2, Uzk—1,2U2k+1,3U2k+2,3, U2k—1,2U2k+2,3U2k 2,

Uok,2U2k+2,3U2k+2,1, Uok,2U2k+2,1U2k—1,1, U2k—1,1U2k+2,1U2k+1,3"

1<k <n}, for n> 3.
(Additions in the first and second subscripts are modualarzd 3,
respectively)

Kn = [{Uij kUi j+1kUi j+1ke1s Ui j kUi jketUi j+1ke1s Uil kUi 141kl ks
Ui k+aUil4ikUilike1s 1<) <2,3<1<4,1<k=<31<i=<n}\
{Uj,1,1U 2.2U; 1.2, Ui 1,3Ui23Ui 21, Ui32Ui41Ui42, Ui33Ui43Ui31}]
U {Ui,1,1Ui,4.3Ui 33, Ui,1,1Ui33Ui 12, Ui 12Ui33Ui31, Ui12Ui31Ui22,

Ui 2,2Ui,31Uj 4,3, Ui 22U 43Uj 11, Ujg1Ui+1,21Ui4+123,
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Ui 4,1Ui+1,2,3Ui 32, Uj32Ui+123Ui+1,1,3, Ui32Ui+1,1,3Ui42,

Ui42Ui11,13Ui+121, Uig2Uip121Ui410 1 <i <n}, for n>1
(Additions in the first and second subscripts are modumd 3,
respectively)

x(Jn) = 6n — 24n 4+ 16n = —2n and the geometric carrier ok, is the orientable
surface of genus + 1 for alln > 3. x(Kp) = 12n — 48n 4+ 32n = —4n and the
geometric carrier oK, is a non-orientable surface for all> 1.

Example 6. Some sequences of equivelar polyhedra of tyhé&}:
L, = {1263 1374 1425 1536 1647, 1752 8273 8346 8657, 8724 8435 8562.
Ln = {@&.1811.18 1128 2, & 2811205113013, 0530511301 11,405 4, 0 48 y148 1118 1
1<i < 2n)\{ax—1 18 182 282k—1,2, Dox—13D2k 3D2k 40k—14: 1 <k < n},
where  ax 11 =Dbxi14, Qx-12=Dbxi24, Qx2=Dxi23,
a1 = boky1.3,
for n> 3.
(Additions in the subscripts are modulo.2
Po = {&j k& j+1k j+1kr1d jke1l 1< [, K< 4,1 <0 <n}\
{&i,j k&, j 1k, j+1k+18,j ke1: (], K)
€{(1,1),(13,3B 1,33}, 1<i=<n}
where & jk = &+1j+2k
for (j,k) €{(1,1),(1,2),(21),(2,2),3,3),3.4, 43,44}
and 1<i<n for n>3

(Additions in the first subscripts are modui@nd in the second and third
subscripts are modulo®.

x(Ln) = 4n — 12n 4+ 6n = —2n for all n > 2. The geometric carrier df, is the
orientable surface of genus 3 and the geometric carrief @ a non-orientable surface
foralln > 3. x(P,) = 8n — 24n + 12n = —4n and the geometric carrier ¢, is the
orientable surface of genus 2- 1 for alln > 3. (Note thatlL,, for n > 3, is obtained
from an &-vertex (& j, b 1 <i <2n,1<j < 2,3 <k < 4}) complex (torus with
2n holes) by identifyindy 's with & ;'s. Py is also obtained by some identifications.)

Example 7. Another 9-vertex neighbourly simplicial equivelar polyhedra:
M, = {129 239 ...,789 189 124, 136, 138 147, 156, 157,
237,245,258 267, 268 346 357, 358 468 478},
where the vertex set dfl, is {0, 1, ..., 8}. Clearly, x (M) = —3.

Example 8. Thirteen more 10-vertex neighbourly simplicial equivelar polyhedra:

N2 = AU {134 136, 156, 158 178 179 237, 248 257, 259, 268,
269, 358 359 368 379 457, 467, 469, 489},
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N3 = AU {137 139 146, 156, 158 178 237, 248 257, 259, 268
269, 346, 358 359, 368 457, 479,489,679},

Ns = AU {136 137, 145 158 168 179, 238 249, 256, 257, 269,
278 347, 358 359 369,467, 468, 489, 579},

Ns = AU {134 136 157,158 168 179 237, 248 256, 259, 268
279,358 359 369, 378 457, 467, 469, 489},

Ne = AU {134 136,157,158 168 179 238 247, 256, 259, 268
279, 357, 359 369 378 458 467, 469, 489},

N; = AU {134 138 156 157,168 179,236 247, 258, 259, 269,
278 357, 359 367, 389 458 468, 469,479},

Ng = AU {134 138 156, 157,168 179 236, 247, 257, 258, 269,
289, 358 359 367, 379,459, 468, 469, 478},

Ng = AU {138 139 146 157,158 167, 236 245, 258 269, 278
279,347,357, 359, 368 468 479, 489, 569},

Nio = AU {136 138 145 158 167, 179, 238 249 256, 257, 268,
279, 347, 357, 359 369, 468, 469, 478 589},

Ni11 = AU {134 138 156, 157, 168 179 237, 246, 257, 259, 268,
289,358 359 367, 369 458 469,478 479},

N2 = AU {134 138 156 157, 168 179, 236, 247, 258 259, 268,
279, 357, 359 369 378 458 467, 469, 489},

N1z = AU {136 137 145 158 168 179 238 246, 257, 259, 267,
289, 349 357, 358 369,468 478 479 569},

Ni4 = AU {134 138 156 157, 168 179, 237, 246 257, 258 269,
289, 358 359 367, 369 459 468 478 479},

where the vertex setdfl, (2 <i < 14)is{0,1,...,9andA = {012 ...,089 019,
124. Clearly, x(N;) = =5 for 1 < i < 14. Thus, all of them triangulate the same
non-orientable surface of Euler characteristis.

Ringel and Jungerman [13], [21]-[23], [14] have shown that there exist neighbourly
simplicial polyhedra oni8and X + 1 vertices, for eack > 3, i.e.,

Proposition 1. Fork > 2,if n = 3k or 3k + 1, then there exists an n-vertex equivelar
polyhedron of typg3, n — 1}.

Thus, ifm = —k@k — 7)/2 or 1 — k(3k — 5)/2, for k > 3, then there exists an
equivelar polyhedron of typ€3, fo — 1} of Euler characteristion. In particular, there

exist neighbourly equivelar polyhedra on nine and ten vertishsshd N3, respectively,

in Example 1).
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3. Proofs

Proof of Theoreni. First observe that iK is an equivelar polyhedron of tyde, q},
thenK is an equivelar polyhedron of tydg, p}. Thus,(p, q) € ®(m) implies(q, p) €
d(m).
If K is a{p, g}-equivelar polyhedron witt, vertices, f; edges and;, faces, then
gfo=2f; = ph. @
This gives
1.1 1 x _x®)
p ag 2 2f afo -
Thus,(p, ) € ®(n), forn > 0, implies ¥p+ 1/q — 3 > 0 and(p, q) € ®(—m),
form > 0, implies Yp+1/q — % < 0. This implies (i).
If there esists &p, q}-equivelar polyhedroi with x(K) > 0,then Yp+ 1/q > %
or(p—2)(q—2) < 4. Thisimplies(p, q) € {(3, 3), (3,4), (4, 3), (3,5), (5, 3)}. Thus

2

P(1), 22 <{(33.3.4,(43),(35. (5,3} 3

From Example 1 we have, 3), (3, 4), (4, 3), (3,5), (5, 3) € ®(2). This proves (ii).

Let K be an equivelar polyhedron of tyge, q} andx (K) = 1. If (p, q) = (3, 3),
then, from (2), we gef; = 3, which is not possible. Ifp, q) = (3, 4), then, from (2),
fo = 3, which is again not possible. Similarlgp, q) # (4, 3). Therefore, from (3),
(p, @) = (3,5) or (5, 3). This and Example IRPZ and R) imply (jii).

If there exists d p, q}-equivelar polyhedroiK with x (K) = 0, then, by (2), 1p +
1/q = % Sincep,q > 3,(p,q) = (3, 6), (6, 3) or (4, 4). This together with Example
2 proves (iv).

LetK be an equivelar polyhedron of typp, q} andy (K) = —1. Since, the existence
of an equivelar polyhedron of tyg@, g} implies the existence of an equivelar polyhedron
of type{q, p}, therefore we may assumge> p. Also p,q > 3andfy > p+ 1.

If p=3,thenfrom(1)wegetl= fo— f1/3= fo—qfo/60r(q—=6)fo==6.This
implies fo = 6andq = 7, acontradiction. Ip = 4,then-1 = fo— f1/2 = fp—qfo/40r
(q—4) fop = 4, whichisnotpossible. Ip > 5, thenf, > 6 and hencd; > (6x3)/2 = 9.
Then, from (2), g = 3 —1/p—1/2fy) > 3 — 1 — & > 1. Thisimpliesq < 5, a
contradiction to the assumption that< g. This proves (v).

Observe thaFi, H;, F1, H; € ¥(—2) andF; andH; are equivelar of typ4, 5} and
{3, 7}, respectively. Therefora&h (—2) 2 {(5, 4), (4,5), (7, 3), (3, 7)}.

Let K be an equivelar polyhedron of tyge, q} andx (K) = —2. In this case also
we may assume that8 p<q < fo— 1.

If p> 5,thenfy > q+ 1 > 6. Then, from (2).3 = 1/p + 1/q + 2/(qfy) <
T4+ 1+ % =2 acontradiction.

If p=4,then-2= fo— f;/2 = fy —qfy/4 or (q — 4) fp = 8, which implies
(fo,q) = (8,5).

If p=3,then from (1) we get2 = fo— f1/3 = fo —qfy/6 Or(q — 6) fop = 12.
This implies(fo, q) = (12, 7). These imply®d(—2) C {(5,4), (4,5), (7, 3), (3, 7)}.
This proves (vi).
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Observe thaH, M1, G € X(—3) andH, M;, G are equivelar of typé3, 7), (3, 8)
and(4, 5), respectively. Thud(3, 7), (7, 3), (3, 8), (8, 3), (4,5), (5, 4)} C ®(-3).

Let K be an equivelar polyhedron of type, q} andx (K) = —3. Assumep < q <
fo — 1.

If p=3,then, by (1)({q — 6) fo = 18. This implie( fp, q) = (9, 8) or (18, 7).

If p=4,then, by (1)(q— 4) fo = 12, which implies( fy, ) = (12, 5).

If p=q =5,thenfq =6.Now,S = {12345 15264 14536 16423 13652 24356
is a{5, b}-equivelar polyhedron of Euler characteristi8. So,(5, 5) € ®(—3).

Finally, assume thap > 5 andq > 6. Then, by (2),% < % + (—15 + 6%7 =
contradiction. This proves (vii).

Hm (in Example 4) is an equivelar polyhedron of tyj8e 7} and of Euler characteristic
—2m for all m > 1, thereforg3, 7) (and hencé?7, 3)) € ®(—2m) for allm > 1.

K1 (in Example 5) is an equivelar polyhedron of ty{3 8} of Euler characteristie-4
andJy, (in Example 5) is an equivelar polyhedron of ty3e8} and of Euler characteristic
—2m for all m > 3. Thereforg3, 8) (and hence&8, 3)) € ®(—2m) for allm > 2.

Fm (in Example 3) is an equivelar polyhedron of tyfge 5} of Euler characteristic
—2m for all m > 2. Thereforg4, 5) (and hencéb, 4)) € ®(—2m) for allm > 2.

L (in Example 6) is an equivelar polyhedron of tyf#ke 6} of Euler characteristic
—2mfor allm > 2. Thereforg4, 6) (and hencé6, 4)) € ®(—2m) for all m > 2. Thus,

{B3,7),(7,3),(3,8),(8,3),(4,5),(54), (4,6), (6,4}
C & (—2m), forall m=> 2. 4)

92

210 &

Let K be anfp-vertex equivelar polyhedron of tyd@, q} andy (K) = —4. Assume
p<q,ie,3<p=<q=<fo—1

If p>5andq > 6,thenf, >q+ 1> 7and hencézL =1/p+1/9+4/(qfy) <
I+ 1+ 5= = 2L, acontradiction.

If p =g =5, then, by (2)(fo, f1) = (8, 20) and hencef, = 8. For eachm > 2,
Sm = (@& 110 ymiabitmbiym-1, & @ 11bi 1@ mali 11 <1 < 2m, additions in the
subscripts are modulong is {5, 5}-equivelar and belongs t&(—2m). So, (5,5) €
@ (—2m) for allm > 2.

If p= 3, then, from (1)—-4 = f, — f;/3 = fo —qfy/6 or (q — 6) fop = 24. This
implies (fp, q) = (12, 8) or (24, 7) and hencép, q) = (3,8) or (3, 7).

If p=4,then,from(1)—-4= fo—qfy/40r(q—4) fo = 16. This implieq fo, Q) =
(16,5) or (8, 6) and hencép, q) = (4,5) or (4, 6). Thus,(p,q) € ®(—4) andp < q
imply (p,q) = (3,8), (3,7), (4,5), (5,5 or(4,6). So,®(-4) € {(3,7),(7,3), (3, 8),
(8,3),(4,5), (5,9, (4,6), (6,4, (5 5)}. This, the exampleS;,'s and (4) imply (viii).

(ix) follows from the proposition stated in the previous section.

Let K be an equivelar polyhedron of tyge, q} andx (K) = —m, wherem > 0. In
this case also, we may first assume that q, i.e., 3< p<q < fo— 1. Then, by (2),
5 —1/p=1/9+m/(qfo) < 1/q+m/(q(q + 1)). This gives

2p@+1+m > q@+D(p—2 > p(@+DH(p—2) or %)
2m > (q+D(p—4). (6)

Clearly, if p > 4, then there are only finitely mamysuch that(p, q) satisfies (6). So,
there are only finitely manyp, q) € ®(—m) such thatp, q > 4.
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If p= 3, then from (5)we get@ + 1+ m) > 3q(q + 1) or
6m > (q —6)(q+1). @

Clearly, giverm > 0, only finitely manyq (> 3) satisfy (7). This shows that there exists
only finitely manyq such thai3, q) € ®(—m).
If g > p = 4, then from (5) we getdj + 1+ m) > q(q + 1) or

am= (@ -4@Q+D. 8

Clearly, giverm > 0, only finitely manyq (> 4) satisfy (8). This shows that there exists
only finitely manyq > 4 such that4, q) € ®(—m). Therefore there are only finitely
many(p, q) € ®(—m) such thatp or q is 4. So,®(—m) is finite for allm > 0. This
together with (ii), (iii) and (iv) imply (x).

For eacm > 7, T, is ann-vertex{3, 6}-equivelar polyhedron. This proves (xi).

Proof of Corollary2. Let(p,q) € ®(n). Let K be an equivelar polyhedron of type
{p,q}tandy (K) = n.If n £ 0, then, by (2) and (1),fo(K), f1(K), fo(K)) is uniquely
determined by(p, ). Since, for eachfq, there exist finitely many polyhedra ofy
vertices, therefore for a give(p, q) € ®(n) there are only finitely many equivelar
polyhedra of typd p, q}. The corollary now follows from Theorem 1(x). O

Lemma 1. If K is a9-vertex{3, 6}-equivelar polyhedrosthen K is isomorphic togl
As 3 or Bs 3 defined in Examplg.

Proof. LetK bea9-vertex3, 6}-equivelar polyhedron. Thef3(K) = 18and NEGK)

is a 2-regular graph and hence is either a cycle or disjoint union of cycles on nine vertices.
So, NEGK) is isomorphic toCgy, Cg LI C3, C5 LI C4 or 3C3 := Cz u C3 u C3. (Here

C, denotes the cycle with vertices. A cycle with edgegivy, . . ., vh_1vn, vavy iS @lSO
denoted byCp (v, ..., vpn).)

IFNEG(K) = CsuCy, thenthere exist four vertices, b, ¢, d say, such thaacandbd
are edgesi butab, bc, cdanddaare not edges iK . Consider the following six sets of
facesSic={0:a,ce€0},S9={0:b,deo},SS={0:aco,cgo},S={0:be
o,dgo},S={o:ceo,adolands = {o: d € g,b & o}. Clearly, these six sets
are pairwise disjointand@,c) = #(Sq) = 2and#S) = #HS) = #(S) = #(&) = 4.
This implies thatf,(K) > 20, a contradiction. So, NE&) is Cg, Cg LI C3 Or 3C3.

First consider the case when the non-edge graph consists of three 3-cycles, i.e.,
NEG(K) = C3(1, 2,3) 1 C3(4,5,6) L C3(7,8,9) = NEG(Az3). Then, up to an iso-
morphism, Lk (1) = Cs(4,7,5,9,6,8) and hence we may assume, without loss,
Lkk (4) = Ce(1,7,2,9,3,8). These imply Lk (7) = Cg(1,4,2,6,3,5), Lkx(8) =
Cs(1,6,2,5,3,4). These imply Lk (2) = C5(4, 9,5, 8,6, 7), Lkx (3) = C¢(4, 8,5, 7,
6,9), Lkx (5) =Cg(1,9,2,8,3,7), Lkx (6) = Cg(1, 8, 2,7, 3,9) and hence Lk (9) =
Cs(1, 5,2, 4, 3, 6). Clearly, these imply tha is unique, up to an isomorphism, in this
case and hence is isomorphicAg .

Now assume NE@) = Cg(1, ..., 6) U Cs(7,8,9) = NEG(B33). Then, we may
assume, Lk (1) = C4(3, 8,4, 9,5, 7). Thisimplies Lk (7) = Cs(1, 5, 2, 4, 6, 3). Then
Lkk (3) = Ce(1,8,5,9,6,7) and Lk (5) = Cs(1, 7, 2, 8, 3,9). These imply Ll (8) =
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Cs(1,3,5,2,6,4),Lkg (9) = Cg(1, 4, 2,6,3,5), Lk (2) = C4(4, 7,5, 8, 6, 9), Lk (6)
= C4(2,9,3,7,4,8). So, Lk (4) = C(1, 9, 2,7, 6, 8). These determine the polyhe-
dron uniquely and thereforé is isomorphic toBs s.

Finally assume NEQK) = Co(1, ..., 9). Then Lk (1) = C4(4, 6, 8, 3,5, 7), Cs(4,
6,8,5,37),Cs(4,6,3,8,5,7),Cs(4,7,5,3,6,8) orCs(4,6,3,7,5, 8).

If Lkx (1) = Cs(4,6,8,3,5,7), then Lk (3) = C(1,5,7,9, 6,8). These imply
Lkk (5) = Cs(1, 3, 7), a contradiction. If Lik (1) = C5(4, 6, 3,8, 5, 7), then Lk¢ (3) =
Ces(1,6,9,7,5,8). These give Lk (5) = C4(1, 7, 3, 8), a contradiction. If Lk (1) =
Cs(4,7,5, 3,6, 8), then 1516 are edges and 678, 89 are non-edges in LK?3). It is
then not possible to construct kk3), which is a 6-cycle with vertex-sét, 5, 6, 7, 8, 9}.
Similarly, it is not possible to construct kk8) when Lk¢ (1) = Cgs(4,6, 8,5, 3, 7).
Thus, Lk (1) = C4(4, 6, 3,7, 5, 8).

Similarly, replacing 1 byi, Lkx (i) = Cg(i + 3,1 +5,i + 2,i +6,i +4,i +
7), for 1 < i < 9 (additions in the subscripts are modulo 9). This shows that the
simplicial polyhedron is unigue, up to an isomorphism, with the non-edge graph a 9-
cycle. ThereforeK is isomorphic toTy. This completes the proof. O

Lemma 2. If K is a 10-vertex{3, 6}-equivelar polyhedronthen K is isomorphic to
Ty or Q defined in Exampl2.

Proof. LetK be a 10-vertex3, 6}-equivelar polyhedron. Choose a vertex, sgylL et

the link of ug be Cg(ug, .. ., Ug). Since the link of each vertex is a 6-cyclgy;  1U;. 2

is not a face irk fori = 1,..., 6 (additions in the subscripts are modulo 6). If either
UjU;+1U; 13 Or Uy Ui 1 Ui 44 is a face for each then we get 12 faces and hence the number
of faces through the remaining three vertices i8, a contradiction. So, assurmgeu,u;

is aface, wherey is one of the remaining three vertices. Thengu; andu,uzu; cannot

be faces.

Casel: ujuzug Or UoUszUg is a face Assume, without loss, that usug is a face.

If us is in the link of uy, thenujusus, ujusu; are faces and hencé(Lk(uz)) =
{ug, U1, Uy, U4, Us, Ug}. This gives 12 faces throughy, u; andus. Hence, the number
of faces through the remaining two verticesds8, a contradiction. Ifi4 is in the link
of uy, thenuyusus anduqiugu; are faces. Here, five vertices of each of(l¥ and
Lk(ug) are known. This implie¥ (Lk(ug)) = {uz, Uz, Us, Ug, U7, Ug} andV (LK (ug)) =
{uz, Uy, Us, Ug, U7, Ug}, Whereug and ug are the remaining two vertices. Therefore,
Lk(U4) = Cg(u7, Uy, Uz, Ug, Us, Ug) and Lk(U3) = Cg(Uyp, Ug, Ug, Uq, Ug, Ug). Then
Lk (uz) = Ce(u7, Uy, Ug, Uz, Ug, Ug). However, now LKu;) containsCy4(u1, Ug, Ug, Us),
which is impossible. Therefore, the sixth vertex in the linkipfs one of the remaining
two vertices, sayls.

Clearly, uiusug andusu;ug are faces. Thusy (Lk(uz)) = {ug, Uz, Uz, Ug, Ug, Ug}.
Let ug be the remaining vertex. Thevi(Lk (ug)) = {uy, us, Us, Ug, U7, Ug}. The link
of u, shows that,u;ug is a face. Now, from the link ofiz, eitherususzug andususug
are faces ot,uzug andususug are faces. In either case,us is not an edge and hence
V (LK(Us)) = {Uo, Ug, Us, U7, Ug, Ug}.

Subcasd.1: u,uzug and wusug are faces Then, by considering Lki,), Lk(ug) and
Lk(us) successivelyu,ugug, UsUglg are faces andizusug is not a face. Finally, by
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completing Lug) and Lk(us) successively, the other faces ag@i7ug, UsUgUg, UsUgUg,
usUsu7 andususug. In this caseK is isomorphic, via the map: u; — i, to Q.

Subcasé.2:u,usug and u4Ug are facesThen, by considering Lkiy), Lk(ug), Lk(us)
and Lk(us) successively, the other faces argigug, Usu;Ug, UsUgUg, UsUsU7, UsUgUo,
U4UgUg, UgU7Ug. SO,K isisomorphic, viathe composition éfand(1, 2, 3)(4, 8)(5, 7)(6,
9), to Tj_o.

Case2: ujusUg Or UpusUs is a face Assume, without loss, that usug is a face. Let the
remaining two vertices bag andug.

If eitherujug oru;ug is an edge, say;ug is an edge, then, by considering(uk) and
Lk (us), successively;usug, UU7Ug, UgUsUg andugusug are faces. Clearly/ (Lk (ug)) =
{uy, Uz, Us, Ug, U7, Ug}. By considering LKug) and Lk(us), ugugug andusugug are faces
andu,usus is not a face. Then, from Lks), uuzug andusugug are faces. This gives
degug) > 6, a contradiction. So, the sixth vertex in the linkugfis eitherus or us.

If neitherug nor ug is in the link ofug, then from the links ofip, u; andu, we get
12 faces. Therefore, the number of faces contaioigr ug is < 8, a contradiction. So,
Lk (us) contains one ofig or ug, sayug. ThenV (Lk(ug)) = {u,, us, Us, Ug, U7, Ug}.

Subcase.1:u3 is in the link of y. The links ofu; andus show thatu;,usugs, ujusuz,
UsUsUg andugugug are faces. It is easy to see, by considering the linkspthatu,usug
andusu;ug are faces. However, this impli®&Lk (ug)) = {uy, U4, Us, Ug, U7, Ug}. Then,
by completing LKu,), Lk(ug) and Lk(us) successively, the other faces argi;ug,
UoUglg, UsUgUg, UgUgUg, UsU7Ug and UsUzUg. In this caseK is isomorphic, via the
composition off and(1, 9,5, 3, 8, 4)(2, 7, 6), to Typ.

Subcase.2: us is in the link of y. Clearly,u;usus andu;usu; are faces. In this case,
by considering Lkug), Lk(us), Lk(ug), Lk(u7) and Lk(uz), ususug, UsUgUg, UsUgUg,
UsU7Ug, UgUgUg, UoU7Ug, UsU7Ug, UsU7Ug, UsUsUg and uougug are faces. TherK is
isomorphic, via the mafui, ug)(uz, Us)(Us, Ug) (U7, Ug), to Q.

Case3: None of yusug, U1UaUg, UoUsUs OF UsUsUg iS a face In this case we can assume
that u;ugug is a face, wheralg is one of the remaining two vertices. La§ be the
remaining vertex.

If uz € Lk(uy), then, by considering the links off andus, u;uzuz, UjusUg, UaU3Ug
andugusuy; are faces irkK. Clearly,V (Lk(ug)) = {uy, us, Us, Ug, U7, Ug}. The links of
u, andug show that de@u;) > 6, a contradiction. Similarly, we get a contradiction if
Us € Lk(uy).

If us € Lk(up), thenujusu; and ujugsug are faces inK. Here, V(Lk(ug)) =
{uy, us, Us, Ug, U7, Ug}. To complete Lkuy), eitherususuz or ugusug has to be a face.
In both cases we see thaugug € K. In the first case, the links af; andus show that
U4UsUg andusugug are faces, which imply that dégg) < 6, a contradiction. In the sec-
ond case, Lkus), Lk(us) and Lk(u7) show thatususuz, usu;Ug, UsU7Ug anduyUgug are
faces. This implies de€gg) > 6, a contradiction. Hence, the sixth vertex in(l) is ug.

Clearly, the edgeus belongs to eitheu,uzug or uyusug.

If uougug is a face, the sixth vertex;, in Lk(uy), is one ofuy, Us or Us. If y = Uy
or us, the links ofu, andy show that de@ug) > 6, a contradiction. Ify = ug, by
considering the links ofi, andug, we see thati,ugu7, UsUgUg andusugu; are faces.
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Clearly,ususug € K. The sixth vertex in Lkuy) has to bai;. However, this implies that
degus) > 6, a contradiction. Henceipusug € K.

The sixth vertex, say, in Lk(uy), is one ofuy, us or ug.

If X = uy4 or us, by considering the links of andug, we observe that dégy) > 6, a
contradiction. Hencex = ug.

The links ofu,, ug, us, u7 anduz show that,u;Ug, UsUgUg, UgUgUg, UsU7Ug, UsUsUg,
U4UsU7, UsU7Ug, UgUsUg and ususug are faces. HereK is isomorphic, via the map
(1,4)(2,5) (3, 6), to Q. This completes the proof. O

Lemma 3. If K is an11-vertex{3, 6}-equivelar polyhedrorthen K is isomorphic to
Ty; defined in Examplg.

Proof. Let K be an 11-verteX3, 6}-equivelar polyhedron. Choose a vertex, sgy
and let the link ofug be Cg(uy, . . ., Ug). By an argument similar to that in the previous
lemma, we assume thatu,u- is a face.

Claim. One of yuszug, U1UsUg, U2U3Us OF UoUsUg has to be a face

If not assumal,ugug is a face, wherelg is one of the remaining three vertices. Let
Ug andu;o be the remaining two vertices.

If us € Lk(uy), then the links ofu; anduz show thatu,usu7, ujusug, Ususug and
UsugUy are faces irK. It is clear that LKu,) contains eithetg or u;g, sayug. Then
V (Lk(uzg)) = {ug, Us, Ug, U7, Ug, Ug}. The links ofug andu; now show that de@lg) < 6,

a contradiction.

If us € Lk(uy), then it is clear that the edggug belongs tousuguz oOr usugUg (Or
UsUgU10). If usugu; € K, then deg@uyg), deguig) < 6. If usugug (Or UsUgU1g) is a face,
then, by considering Lki,), eitherususu; or ugusug € K. In both cases we see that the
link of us has only five vertices, a contradiction.

Finally, assume (without loss) thag € Lk(u;). The edgei,us can belong to one of
UoU3Ug, UoU3Ug OF UoU3U1p.

If uougug € K, then the sixth vertex, say; in Lk(uy) is ug, Us, Ug OF Ugq. If y = u4 Or
us, thenV (Lk(uyg)) = {us, Uy, Us, Ug, U7, Ug}\{y} and hence d€gig) < 6. If y = ug,
we can easily see that(Lk(ui0)) = {us, ug, Us, U7, Ug, Ug}. Then, by completing the
links of ug, u; andug, we see that d€gg) = 4, a contradiction. Ify = ujo, then we see
that eithersugug or ugugusp has to be a face to complete (ug). In both the cases we
see that there exists no verteXs£ ug) such thaususx is a face inK, a contradiction.

If ususug is a face inK, then, by an argument similar to the one above, we see that
Ug, Us ¢ Lk(up). Hence eithetg or uig € Lk(uy). If ug € Lk(uy), it is easy to see that
uig € Lk(ug). The last vertex in Lkug) has to beus. Completing the link ofuz, we
observe that degs) > 6, a contradiction. If13 € Lk(uy), thenu,uzusg andusugusg
are simplices. To complete lilg), uzu;Ug anduguguig have to be faces. Itis clear that
UsUsUg € K. The last vertex in Lku;) is one ofug, Us or ug, all of which are impossible.

If upusuig € K, then the sixth vertexz, in LK(uy) is Uy, Us Or ug. If Z = uy, the links
of uz andu, show thatu,usu7, UsusUs, UsUsUse @ndugusu; have to be faces. It is easy
to see that Lkus) has only five vertices, a contradictionzlf= ug, considering the links
of u,, ug, Ug, U7, Uz andug, we see thatl,ugu; andususug are faces, a contradiction. If
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Z = us, to complete Lkus), we see that eitharyusu; or ususuyg is a face. In the first
case the links ofi; andu, show that de@u,¢) > 6. In the second case we see that there
exists no vertex (# u;) such thau;ugx is a face. This proves the claim.

By the claim we can assume without loss thalisug or u;u4Ug is a face.

Casel: ujuzug is a face in K Letu be the sixth vertex in Liuy).

If u = us, we see from the links ofi; andus that degus) > 6, a contradiction.
If u = uy, the links ofu; andusz show thatuj;usug, ujusu7, Ususzug and uzugug are
faces, wherelg is one of the remaining three vertices. lLgtandu,g be the other two
vertices. Now, one dfig Or U, Sayug, has to be in the link ofi,. Hence V (Lk (uyg)) =
{ug, Us, Ug, U7, Ug, Ug}. Then it is easy to see th&t(Lk(ug)) = {uy, Us, U7, Ug, U1g}, @
contradiction. Soy is one of the remaining three vertices, say

Clearly, ujusug andu;usug are faces. Letig anduyg be the other two vertices. To
complete LKu3) eitherususug or ususug € K. If uusug € K, we see that the sixth
vertex in both LKu,) and Lk(ug) is the same, says. Then deguip) < 6, a contradiction.
S0, Usuzug anduzusUe € K.

Clearly,V (Lk(ug)) = {uz, ua, Us, U7, Ug, U1o} andV (LK(u1g)) = {ua, Us, Us, U7, Ug,
Ug}. Then, by considering the links ok, ug, Us, Ug andus, UsU7Ug, UoUgUg, UgUgU1o,
UsUgU1g, UaUsUg, UsUgU1g, U7UgU1g, UgUgU1g, UsU7Ug andusU;Usg are faces irk. Here,
K is isomorphic, via the mafl, 2, 3)(4, 9, 6, 10, 7, 5, 8), to Ty3.

Case2: ujusug is a face in K Letu be the sixth vertex in Liuy).

If u = us, thenV (Lk(us)) = {up, Uz, U3, Us, Ug, Ug} andV (LK (ug)) = {Ug, U1, Ug,
Us, Ug, Ug} (otherwisef, < 22), whereug andug are two of the remaining three vertices.
Then the vertex set of the link of the remaining vertex is a subsgt,0fi3, u7, ug, Ug},

a contradiction. Iiu is one of the remaining three vertices, sy then the links ofu;
andus show thatujusug, Uju7Ug, UsUsUg andusUsug are faces inK. The face other
that ugusug having usug as an edge has to hgugug (in all other casesf, < 22),
whereug is one of the remaining two vertices. U, is the remaining vertex, then
V(Lk(ulo)) = {uy, Uz, Us, U7, Ug, Ug}. The links ofus, us anduyg lmply that deguz) =
5, a contradiction. SaJ = us.

Clearly,uiuzus andu;uzuy are faces. The sixth vertex in uky) has to be one of the
three remaining vertices, sayg. Thenususug andusugug € K. If ug anduyg are the
remaining two vertices, the¥f (Lk (ug)) = {uy, us, Us, U7, Ug, Uip} andV (Lk(uig)) =
{uy, Us, Ug, U7, Ug, Ug}. The links ofus, Uy, ug, us anduz show thatu,usug, usu7Ug,
UoU7U10, U2UgU10, UsUgU10, UgUgU10, UsUgUg, UsUgU10, U7UgUg andu7u8u10 are faces in
K. Inthis caseK isisomorphic, viathe maf®, 1)(2, 9, 7, 8, 5, 4)(3, 10, 6), to Ty3. This
completes the proof of the lemma. O

Proof of Theorend. Let K be a{3, q}-equivelar simplicial polyhedron on (< 11)
vertices.

Sincex (K) = 0 we haveq = 6 and hence > 7.

It is not difficult to show (also see in [9]) thak is the only (up to isomorphism)
7-vertex neighbourly combinatorial 2-manifold. Hencen i 7, thenK is isomorphic
to Ts.

The casen = 8 follows from the classification of combinatorial 2-manifolds on eight
vertices in [10]. (It is also not difficult, by a similar argument as in the proof of Lemma 1,



448 B. Datta and N. Nilakantan

to show that there exists a unique combinatorial 2-manifold with non-edge gigph 4
(the disjoint union of four edges). This implies thatis isomorphic toTg.)

If n =9, then, by Lemma I is isomorphic toAsz 3, B3 3 or To.

If n =10, then, by Lemma X is isomorphic to oiTyg or Q.

If n =11, then, by Lemma X is isomorphic tol13. This completes the proof.O

Lemma4. If M;and M, are as in Example& and7,then My % M,.

Proof Forl<i <2, letA(A(M;)) denote the adjacency matrix of the graphVi;).
Let P; (x) denote the characteristic polynomial AfA (M;)). Then

Pi(x) = (X —3)(X — 2°(x — > (x + D3(x + 2)°(x + 3),
Pax) = (X —3)(x — 2*(x — Dx*(x 4+ D?(x + 22(x*> = (X2 + 2x — 1)
(x4 2x% — 4x — 6)2.

If M; andM,, are isomorphic, then (M) and A (M,) are isomorphic as graphs and
henceP1(x) = Pa(x). Clearly,P1(X) # P(X). Hence M1 Z M. O

Lemma5. If Ny, ..., Nisare asin Examplesand8,then N 2 N; forl <i # j <
14,

Proof Forl<i < 14, letA(A(N;)) denote the adjacency matrix of the grapfN;).
Let P; (x) denote the characteristic polynomial A&A (N;)). Then

Pi(x) = (X —3)(X —2(X — (X + D?(x 4+ 2)(x® + x> — 5x — 3)2
S(x® — 12x7 + 2x8 + 45x° — 12x* — 52x3 + 9x? + 15x + 1)2,
Pa(x) = (X —3)(X — DX +2*(x? + 3x + D3(x? — x — 3)%,
Pa(x) = X—3)X—D3x+2(x* —x —3?(x* +x - 1)3
(X% 4 x* — 8x% — 5x? + 13x + 6)°,
Pax) = (x —3)(x — 1)°x*(x*® — 20x* + 154x° + 8x® — 576x" — 82x® + 1073°
+ 272 — 893¢% — 316x% + 235« + 96)
- (x12 4 5x1 — 7x10 — 67x® — 25x8 + 315¢” + 315¢5 — 599K° — 850x*
+ 3583 + 781x?% + 57x — 144),
Ps(X) = (x — 3)(x — Dx3(x*? — 20x1° 4 154x® + 4x” — 570x® — 38x° + 1015¢*
+110x3 — 723x2 — 90x + 93)
C(XB 4 4x12 — 12xM — 60x10 4 42x° + 340x8
+2x" — 910x® — 26%° + 117* + 453> — 650k? — 207x + 112),
Pe(X) = (X —3)(X — DX(X®> = 5)(X?> +3X + 1)(x*> —x — 1)
c (x4 2x30 — 14x% — 25x8 4+ 72x7 + 111x5 — 1625 — 210x* + 145¢3
+ 156x2 — 28x — 24)
- (x10— 14x8 — x7 4+ 68x® 4+ 11x°® — 132* — 30x° + 81x? + 12x — 8),
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Prx) = xX=3hxX—DH(x+1)
(%7 4 3x?0 — 35x%° — 105x%4 + 541x%° + 1621x?% — 4851x*!
—14513%%° + 2785%*% + 83335 — 10664617 — 3204416
+ 27441% + 83640%* — 46613%*® — 147083%? 4 49708 %!
+169526k° — 29727%° — 121705%® + 7053’ + 50177X°®
+9836¢° — 10540&* — 6268« + 9416¢% 4 568 — 228),
Pe(x) = (X — 3)X3(Xx + 1)°(x% = 5)3(x? — x — 1)?
- (x8 — 10x* + 5x® + 25x% — 25x + 5)2,
Po(X) = (X —3)x2(x3 4+ x? —5x — 1)(x> + x® — 5x — 4)?

c(x% = 12¢x7 + x5 + 48x°® — 6x* — 74x3 4+ 12¢° + 36x — 10)?,
Pro(X) = (X — 3)X3(X%" + 3x%® — 36x%° — 108x%* + 576x%3 + 17282 — 53842t
— 16184%° + 3248X° 4 98344 — 13176&17 — 40604&'°
+ 36257 + 115926 — 6642742 — 228339%1?
+ 76627% + 3040125%° — 48101 %° — 26234838
+ 78215 + 136325%5 + 7503%° — 37348%*
— 374648 + 40010¢% + 4277 — 493),
P1a(x) = (X — 3)x(X + 1)(x?" + 2x?6 — 38x?° — 70x%* + 646x%° + 1080??
— 6472%%! — 966(%° + 4237*° + 554188
— 1899751 — 21303(%!® + 59470%*° + 5565644
— 130109%*% — 98123&2+ 1959991+ 113460&°
—196702%° — 8124548 + 123900k’ + 32297(°
— 4397765 — 5614X* + 71163 + 1616¢?
— 3360 + 160),
P1o(x) = (X —3)x(X® = 5)(x?> —x — H(x* + 2x3 — 4x? — 5x + 2)
- (X1 — 14x® — x” + 68x5 + 11x5 — 132* — 30x% + 81x% + 12x — 8)
(x4 2x% — 12¢8 — 21x” + 50x® 4 71x° — 86x* — 84x3 4 57x?
+22x — 8),
X=3)X+DX* =3 =x2 =3+ x3+3x2—x—5)
- (x20 — 14x8 + 2x7 + 65x8 — 14x5 — 114x* + 25x3 + 66x% — 12X — 9)?,
PraX) = (X — 3)(x% + 3x?8 — 36x%7 — 108x%® + 576x%° + 17262 — 538
— 1612&% + 325882 + 9768X%%° — 132955 — 4017958
+ 3698617 + 114346%° — 69089K1° — 225099k
+ 82441%* + 301393%'2 — 55235x!! — 264834 x1°
+117160° 4 143576(8 + 77028 — 43357(° — 45664°
+ 61804* + 5564¢°> — 3748 — 119 + 63).

P13(X)

Now, N; = N; impliesA (N;) andA (N;) are isomorphic as graphs and he®ex) =
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Pj (x). SinceP; (x) andP; (x) have different prime factorizatiors; (x) # P;(x), for
1<i#j <14 Hence forlki #j <14,N Z N;. O

Proof of Theorend. Let K be a 9-vertex neighbourly simplicial equivelar polyhedron.
Choose a vertex, say, and let the link ofug be Cg(ug, ..., Ug).

Claim. There exists a face of the formuy, 1Uj,3 Or Ujuj,1Uj s fOr some ie {1,
..., 8} (additions in the subscripts are mod8.

If possible, assume that eitheyu; . 1Ui 4 Or UjUi1U; 45 IS a face for eacl. Then
we can assume without loss thafu,us is a face inK. Then, by repeated use of the
assumption, it is clear that;usug, UsUsug, UguzUg and ugugsu; are faces inK. To
complete LKus) and Lk(u7), ususUs, UoUgU7, UsUsUg anduiUsUz have to be faces, a
contradiction. This proves the claim.

By the claim, we can assume without loss that,u, € K. We observe that the edge
uiug belongs to one aofi;usug, U;UsUg OF U;UgUg.

Casel: ujusug is a face By considering LKu;), one ofu;usus, UiUsUg OF UjUsUy iS a
face.

If ugusu; € K, then, by considering the links af; andus, ujusug, U;usug and
UiUsu; are faces and hence, by consideringu, ususu; ¢ K. Then, by considering
the links ofus, ug andug, U,U3Us, UsUsug € K, Usuzug & K and hencel,usuz, UsUsug,
UoU7Ug, UsUgUsg, UsUgUsg, U2UsUg andusugu; are faces. Thenousus, Uouzug andusUsug
are the faces througlpus, a contradiction.

If ujuzus € K, then, by considering Lki;) and Lk(ug), UzUgU7, UiUgUg, UzUsUy
are faces. The edgeus, belongs to eitheuzusUg Or usUgUg. In the first case, Lius)
and Lk(ug) show thatuusug ¢ K anduyusug, UaUgUsg, UgUgUg, UaUgU7, UsUsuz € K.
However, this implies that Lis) containsCs(us, Us, U7), a contradiction. In the sec-
ond casal,usz € Lk(ug). Considering Lku;) and Lk(us), uausUz, UsUgUz, UzUsuy and
ususug € K. Then Lkug) containsC4(u7, Ug, Uy, U3), a contradiction. Saj;uzug € K.

From Lk(u,), ujusuy is a face and eithar,usus or uiusu7 is a face.

If uiusus € K, then so isuyuguz. To complete LKuy), eitheru,usu; andugusu; or
UoUgU7 anduyusu; have to be faces. This shows that deg < 8 in the first case and
deguy) < 8inthe second case, a contradiction. Thusiu; € K.

Clearly, uiusug is a face. By considering the links of andug, usugug ¢ K and
UsUgUsg, UoUgUg € K. Then, by considering the links of, us andug, uausUg, UaUguy
andu,ugsug are not faces and hencgu,us is a face. Now, by considering the links of
U», Us andug, UsUsU7 is not a face andousug, UoUgU7, UoUsU7, UsUsU7, UsUsUg UsUgUg,
usU;Ug are faces. HereK is M.

Case2: uiusug is a face Clearly, one ofi;usus, U;UsUg OF U1UsUy IS a face.

Subcase.1:uqusus is a face If ujusuy is a face, then the link af; shows thatijusug
andu;ugu7 are faces. By considering the linkswf, ug, u7, us andusy, UaUsU7, UgUsU7,
UoU3U7, UgU7Ug, U3UaUs, UsUgUg andususug € K. Then Lkus) is Cs(u7, Ug, Ug, Us, Uy),
a contradiction. So, by considering (), uiusUg, Usugu7 andu;usu; € K.

Clearly, eitheruguys or ugus € Lk(u7). If ugusu; € K, thenuyusuz, uuzug and
UsUusUy are faces (ifisu;ug € K, then, to complete Lfus), ususug € K, which implies
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deqgus) < 8). Lk(us) shows thatu,usug and uusug are faces. The link ofig now
containsCs(uy, U7, Ug, Uy, Us), a contradiction. Sajsus € Lk(u7).

From the links ofu;, usz, ug and u,, ususU7, UoUsU7, UsU7Ug, UpUgUg, UsUgUs,
UgUsUg, UgUgUg, UxUsUg and ususug are faces. HereK is isomorphic, via the map
(1,3,5,7)(2,4,6,8), to M.

Subcase.2:u;usug is a face To complete LKuy), ujusug, Ujusuz anduiusuy have to
be faces. Lkus) shows that the edge,us belongs to eitheu,usus or ususus.

If ugusuy € K, then, by considering Lkis) and Lk(u7), ususus € K, ususuy ¢ K
and hencel,usu; anduzusug € K. To complete LKug), usu7ug andususUg have to be
faces (since Lkus) shows thauzusuz ¢ K). This implies that the link ofig contains
Cs(us, U7, Ug, Ug, Us), a contradiction. Sajousus € K.

The links ofus, u,, ug andus show thatuzusuz, UaUsU7, UsUsUg, UaUgUg andugUgUs
are faces. Then, from I(k,), eitherususug € K or ususug € K.

In the first case the links af,, ug andug show thatusu;ug, usugu; anduzusug are
faces. HereK is isomorphic, viathe mafl, 7, 2,5, 8, 4, 3, 6, 9), to M,.

In the second case the links 0f, ug andug show thatu,ugu7, ususug andusuzUg
are faces. HereK is isomorphic, via the mafl, 2, 7, 5, 3)(4, 8), to M.

Subcase.3: ujusuy is a face From Lk(uq), ujuszug and one ofujuzuy Or UjUsUg are
faces.

If uusus € K, then so isuiugus. The links ofus, ug andus show thatusususg,
UoUgUg ¢ K, UoUgUg, UgUgUsg, UgUgUg, UsUsU7 andugusug are faces. This shows that the
link of u; containsCg(ug4, Us, Uy, Ug, Ug, Ug), a contradiction. Saj;usug is a face.

Clearly,u;usuz; € K. We now observe that eitheigusu; or ugusug is a face (since,
Lk (ug) shows thatigusug ¢ K).

In the first case the links af;, us, Us andug show thaususug € K, ususuz ¢ K and
henceususu7, UoUsUs, UsUsUg, UoUsUg, UgUgUg, UsU7Ug, UoUgUg andusugu; are faces.
Here,K is isomorphic, via the mafl, 4, 6, 3,9, 7, 5, 2, 8), to M,.

In the second caseyusu; has to be a face (ifi;usus € K, then, from LKug)
and Lk(u;), dequ7) < 8). Considering the links ofis, uz, u7 andug, ususus € K,
UsUsUg ¢ K andu,usug, UsUsUg, UsU7Ug, UoUgU7, U2UgU7, UoUgUg andugUsUg are faces.
Here,K is isomorphic, via the mafl, 3, 6, 4, 9, 7)(5, 8), to M.

Case3: uiUgug is a face Clearly,usug, UsUg OF Ugl7 € Lk(Uy).

If uiugu; € K, thenuiusus € K. The links ofug, u, andu; show thatu,usug,
UsU4Ug, UiUsU7 anduyugsus are faces. Here, Lkiy) containsCg(Us, Uz, Ug, Us, Ug, Up),
a contradiction.

If ujusug € K, thenuyuzu; € K. Itis clear from LKug) thatu,usus andusugUs
are faces. Considering the links of, us, ug andus, u;usU7, U;UsUs, UgUsUg, UgU7Usg,
Ususuz € K, a contradiction. Sajsug € Lk(uy).

Clearly,usu7 € Lk(uy). Now, eitheruyusus or ujuguz € K.

If uugus € K, thenujuzu; € K. The links ofus, ug, ug anduz show thatusugusg,
UaUgU7, UaUsUg, UoUsUg andususuz which imply dequy) < 8. So,ujusuy is a face.

The link ofu; shows thati;usus is a face. Nowu,usug (# UgUsUg) is the face having
UsUs as an edge. (Ifi,usus € K, considering the links afis, u7 andu,, we observe that
usUs € Lk(u7), a contradiction. Lku7) shows thatisusu; ¢ K.) The links ofuz andus
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show thatu,usug is a face. To complete l(kis), u,usuz andususug have to be faces (if
Uousus € K, thenuyus € Lk(ug), a contradiction). Now, the second face throughg
iS UoUgUg OF UgUgUs.

In the first case the links afs, us andu; show thatuzusug, UsUgU7, UsUgUg, UoU3U7
andugu-ug are faces. HereK is isomorphic, via the ma®, 5)(3, 9, 6, 8)(4, 7), to M..

Inthe second case the linkswf, u; andug show thati,uzug, usu7Ug, UsUsU7, UsUgUz
andu,uyUg are faces. Here is isomorphic, via the mag®, 7, 3), to M;.

The theorem now follows from Lemma 4. O

Proof of Theorené. LetK be a 10-vertex neighbourly simplicial equivelar polyhedron.
Choose a vertex, say, and let the link ofu beCq(uy, .. ., Ug).

Casel: There exists no face of the formul, 1U; 3 Or Uj Uj 1 1Ui 7. If UjUi 1 1U; 5 IS a face
for eachi € {1, ..., 9} (additions in the subscript are modulo 9), thmi,ug, UUsUg
andujusug € K. This implies thatCs(uz, Ug, Us, Ug, U) is in Lk(uy), a contradiction.
So assume, without loss, thatu,us € K.

Claim 1. ujusug is a face

Sinceu;ugUg is not a face, the second face throughg is u;usug, U;UgUg OF U3 U7Ug.
However, by the assumption; u;ug is not a face.

If ugugug € K, thenuqus is in one ofujusus, UUaUs, U1UsU7 OF UqUsUg.

If usugus € K, thenujusu; anduiugug € K (sinceusus andusug ¢ Lk(ug)). The
edgeusug belongs to eithen,usug or usugUg. If Ususug € K, the links ofus, ug, us
andug show thatususug, UsUgUg, UsUsU7, U1U3zUg, UjUgU7, U3UaUg, UsUgUg, UoU4Ug and
uouzu; € K. The link of ug containsC-(u,, us, U, Uz, Uy, Ug, Ug), a contradiction. If
UsUgUg € K, then the links ofig, u; andug imply u;u7 ¢ LKk(ug), uusu7, UjUgUg € K,
U3UgUs, UgUgUg ¢ K and hencelzugu; € K, a contradiction to the assumption.

If ususus € K, then, by considering the links a§, uy, us, ug andus, u;usuz, UsUsUg,
UsUgUg, UjUgU7, UUgUg, UgUgUg, UoUgUg, U2U3Ug, UgUgUy (SINCEU3Uy, UsUg ¢ LK(Ug)),
U3U4Ug, UgU7Ug, UgU7Ug, UsUsUg andususug are faces. This gives a contradiction to the
assumption.

If uiusu; € K, thenuqusug andujuasug € K. If upusug € K, we see thatigug €
Lk (us) (if not, Lk(us) shows thatizusug andususug € K which implies thaC4(us, uy,
Ug, Us) isin Lk(ug)). Hence, the links afis, us, ug, U7 andug show thatuzusu;, ujuguy,
UjU3Ug, UoUgUg, UgUgUg, UgUgUg, UgU7Ug, UoU7Ug, UoU7Ug, UoU3Ug, U3UsUg andu4u5u8
are faces. Hereyjsug is an edge inujusug, Ususug and usugug, a contradiction. If
UsUgUg € K, thenuyug € Lk(us), usus ¢ Lk(ug). The links ofus, u; andug show
thatugusuz, UsUsUg, U;U4U7, U1UsUg, UgUsUg andusUglg € K. Hereugug is an edge in
U1UgUg, UsUgUg andusUglg, a contradiction.

Finally, letuiusug € K. Thenujusu7, uiugu; € K. If ususug € K, then the links
of us, ug, Ug, Ug andu, show thatususUg, UsU7Ug, U3UsU7, UsUsUg, UUaUg, UiU3Ug,
UsUgU7, UgUgUg, UgUgUg, UoUgUg, UzUgUg, UxU3Ug, UoU7Ug and ususug € K. Hence
Lk (ug) containsCs(u,, Ug, Us), a contradiction. lfisugug € K, then Lkus) shows that
UoUg4Us, UsUsU7, UsUsug andusugug € K. Hence LKug) containsCs(us, Ug, U, U1, Ug),
a contradiction. This proves Claim 1.
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Clearly, the second face throughuy is u;usUg, UyUsu7 OF UU4Us.
Claim 2. ujugsuy is aface

If ugusug € K, thenuyusuy, ujugug are faces. We see thaius is an edge in either
UgUsUg Or UgUsUg. If ugusug € K, then the links ofus, u; andug imply that u,usug,
U3UsU7, UgUsUg, UjUsUg, UsU7Ug, U3 UgU7, UsUgU7 andususUz € K. This impliesuguy is
in uyUsU7, Ususu; andususuy, a contradiction. Henceyusug € K and eithemu;usug
or uiusuz € K. In the former case the links af;, us andug show thatu,ugug € K,
UsUgUg andusUgUgy ¢ K and hencel,usUg is a face. It is clear that;ugug is the only
face havingigug as an edge, a contradiction. In the latter case the links,afs, u; and
us show thatu;uguz, UoUsU7, UsUsU7, UsUsUg, UaU7Ug, UsU7Ug, UsUgUg andusugsus € K,
a contradiction.

If ujusug € K, eitherugusug or ugusug € K. In either case Liuy) implies that
U3UaU7, UsUgU7 anduyugUg are faces. Henceiugu; € K. To complete LKu,), either
UiUsUg Or Uiugug € K. If ujuszug € K, then to complete Liug), eitherugugug or
usugug € K, a contradiction. Henca,ugug and thereforai,usus andu,usu; € K.
Clearly,us,usug € K. This implies de@u;) < 9, a contradiction. This proves Claim 2.

Again, eithem usug or ugusug € K. If ugusug € K, then itis clear from Lkuy) that
U3U4Ug, UgUgUg, UoUgUg anduyuguz € K. Itis easy to see thatzuguz, UUsUg, UoU7Us,
UoU3Ug andusugug € K. Hence deg@ug) < 9, a contradiction. Thusisusug € K.

Clearly,usu4U7 Or ususUg is a face throughisu,. If ugusug € K, the links ofuy, u;
andug show that,u,u7, usUgUsg, UsUsU7, UgUgUg andusugUs € K. To complete Lkuy),
eitherususug or uyugug € K, a contradiction. Sajsusu; € K.

The links ofug, u; andu; show thatu;uguz, ujuzug, UsUsUg, UsU7Ug andususug are
faces.

Now, eitheru,usug or usugug € K. If usugug € K, the links ofus, Ui, U4, Ug Show
thatCs(us, Uy, Ug) is in Lk(ug), a contradiction. Sajousug € K.

Now, the links ofuq, us, ug, ug andu, show thatu;usus, U;UgUg, UsUsU7, UsUgUg,
U4UgUg, UpU3Ug, UsUgUg, UsligUg, UoU7Ug andusUsUg are faces. HereK is Nj.

Case2: There exists a face of the formu, 1 U; ;3 Or U; Ui 41 Uj 7. We can assume without
loss that;uyuy € K. From Lk(up) we see thati; ug is an edge in one afiusug, U;UsUg,
U1UgUg OI U1U7Ug.

Subcase.1:uju7ug € K. The edgeai;uy belongs to one ofi;usuy, UjUgUs, UjUgUg OF
UjUgUsg.

2.1.1:uqu3us € K. From Lk(u;) we see that one af,usuz, UUgU7 Or Uu7uUg € K.

If urugu; € K, we see from Lku;) and Lk(ug) thatu;ueug, ujusug anduiuzus € K.
The link of us shows that one afisusu7, UsUsUg OF UgUsUg € K.

If ususu; is a face, the links ofi, andu; show that eitheususug or ugu7ug € K.
In both cases, after completing ), we see from Lkug) and Lk(u7) thatu,usug and
UoU3U7 are faces, a contradiction (sinaey,us is already a face).

If ususug is a face, then it is clear thaus ¢ Lk(ug) andusugug ¢ K (since, if
Uguglg € K, then Lkuyg) implies thatusugu; € K, a contradiction). The links afis
anduz show thatususug andusuzug € K, which imply thatCg(ug, U1, Ug, U, Ug, Uy) iS
in Lk(U7) So0,u4UsUg € K.
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Sinceuguy ¢ Lk(ug), we see on completing Il,) that usugug andugusug € K.
The links ofuz, ug4, ug andug show thatusugUug, UsUsU7, UoUsUg andusUsug € K, a
contradiction. Therefore, eitherusu; or uiuzug € K.

2.1.1.1:uqusu; € K. The link ofu; shows that eithem,usug or ujusug is a face.

2.1.1.1.1u usugisaface From Lk(u;) we see thatiugug, u;usug € K. Considering
the links ofus andus, eitherususug or ugUsug € K.

SubcaseA: ususug is a face The links ofus and u; show that eitheususu; or
Ususuy € K.

A.1l: uxusuz is a face If uousus € K, Lk(us), Lk(uz) and Lk(ug) show thatususug,
UsUsU7 andusUgug are faces. This implies th&tz(us, Uy, Ug) is in Lk(ug).

To complete LKus), uUsUg, Ususug andususug € K. The links ofuz andug show
thatusugu7, UsUgUg andu,usus € K (since,usus ¢ L(ug) and Lk(us)). The links of
U4, Ug, U7 andug show thatusu7ug, UsU7Ug, UoUgUg, UoUgUg, UsUsUy andusUgUg are
faces. In this casK is N1 (more preciselyK is isomorphic tadN;; by the mapp, where
@) =0andp(u) =i,forl<i <9).

A.2: uzusu; € K. If uusus € K, the links ofus andus show thatusugug and
UsUgUg € K (sinceusug ¢ L(ug)), a contradiction. Hencel,usug, UaUsug anduzUsug
are the faces required to completgu¥). If u,usu; € K, Lk(u3) showsthatisusus € K,
a contradiction.

We now observe from the links of, us andug that the edge,us belongs tai,usue.
The edgeausus is in eitherugugu; Or UzUgUg.

In the first case the links afi;, u7, us andu, show thatusugug, ususU7, UsU7Ug,
U4UgUg, UsUgUsg, UoU7Ug andusugUg are faces. HereK is Ny.

In the second case the links f, u7, u, andus show thatususug, UsUsUz, UsUgU7,
UoU7Ug, UoUgUg, UsUgUg andugUgug are faces. NowK is Nyo.

SubcaseB: ususug € K. If uousug € K, the links ofus andu; show thatusugus,
UsUgUg andusuzug € K. HereCeg(ug, Ug, U7, U, Us, Uy) IS in Lk(ug). We now observe
from Lk(u,) that eithemsugug or uousu; € K.

In the first case the links afy, ug, u7, ug andug show thatusugug, usu7Ug, UsU7Ug,
UoUsUg, U2U3U7, U3zUsUg UoUgUg, UsUgU7, UgUgUg, U2UgUg, UoUsU7 andu3u5u9 are faces.
Now, K is Nyg4.

In the second case the linkswf, ug, u7, u, anduz show thatisugug, usU7Ug, UsUgUg,
UoU3Ug, U3zUgU7, U2UgUg, UoUsU7, U3U7Ug, UoUsUg, UoUgUg, U3zUsUg andu3u5ug are faces.
Here,K is Ng.

2.1.1.1.2:uyusug € K. The links ofu; andus show thatu;ugug, Ujusug € K and
one 0fU4U5U7, UsUsUg Or UgUsUg € K.

Subcasé\: ugusu; € K. If ususug € K, then Lku,s) and Lk(ug) show thatusuzug
andugugug € K, thereby showing that dégy) < 9. In the case when,usug € K,
Lk(us) and Lk(u;) show thatusugug andu,usu; are faces (since, from I(k,), either
UgU7Ug Or ugugu; € K). Now, the links ofus andu, show thatu,usug, uzusug and
UoUgUg are faces. This implies thaizug is an edge iru;ugug, UsUgUg andugugusg, a
contradiction. Thus, from L&), ususug € K.

The links of us, u7, ug, U and ug show thatusugug, UsUgU7, UgUgUg, UsUsU7,
UpU7Ug, U3U7Ug, UoUsUg, UsUsUg, UoUsUg, UsUglUg, UsUgUg andususug are faces. Here,
K is Ns.
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Subcas®: ususug € K. Itis clear thatC4(us, Us, U1, Ug) is in LK(ug) if usugug € K.
If ususug € K, considering the links afi4, u7 andug we see thaiti,usu; andu,uzug are
faces, a contradiction. Hence, from(ug), usugug € K. Now, on considering Liug)
also, usUgUg, UsUgu; anduyusu; € K. The links ofug, u, andug show thatusususg,
U3U7Ug, UUgUg, UoUsUg and usUsUg are faces. To complete Lls), eitherususug or
UsUsUg IS a face.

In the first case the links af,, us andus show thatusu;ug, ususu; anduzugug are
faces. ClearlyK is Ng.

In the second case the links 0f, ug andus show thatususug, U>UgUg andu,UsU7
are faces and therefoke is isomorphic, via the mafD, 4, 2, 3, 1)(5, 7, 6, 9), to N.

SubcaseC: ususug € K. Considering the link ofi4, we see that one afsugug,
U4U7Ug OF UgUgUg is a face.

C.1: ugugug € K. The links ofus andug show thatusuzug, u,usu7, usugug and
Uougug € K. If ugurug € K, Lk(uy) shows that,usu; € K, a contradiction. Hence,
we can conclude from Lki;) thatusugu; € K. From Lk(ug) and Lk(us), we see that
UoUgUg, UoUsUg andusUsug € K. To complete LKug), eitheruaugug or ugugug is a face.

In the first case the links afg, u, andu; show thatususug, u,usuz andususug are
faces. HereK is isomorphic, via the mafD, 1, 3, 2,4)(5, 9, 8, 6, 7), t0 Ny4.

In the second case the links ©f, uz andu, show thatu,usug, uzusu; andu,uzUg
are faces. HereK is isomorphic, via the mag0, 1, 3, 2, 4)(5, 9, 8, 6, 7), to Ny;.

C.2:usu7ug € K. The link ofus shows that eitheusugu; or usu;ug € K. In both
casesuouz € Lk(uy). If ususug € K, the link of uz and ug show thatusu;ug and
Usuglg € K, a contradiction. Hencej,usug € K (the links ofug andus show that
UsUgUg and usugug ¢ K). Considering the links ofis; and ug, we see thatizusug,
UoUgUg, UoUgUg andusugug € K. The links ofug, us, U andug show thatusugusg,
U4UgU7, UaUgUg, UoUsU7, UsU7Ug andususug are faces. In this cad€ is isomorphic, via
the map(0, 2,1, 4, 3)(5,7,9, 6), to N13.

C.3:ugugug € K. The links ofuy, ug, Uz, Ug, U andus imply thatusugusg, Usuguz,
UoUgU7, UoUsUg, U2UgUg, U3zUgUg, UoU3Ug, UsUsUg, UoU7Ug, U3UsU7, UsU7Ug andu3u5u9
are faces. HereK is isomorphic, via the maf0, 2, 1, 4, 3)(5, 7, 8, 9, 6), to N14.

2.1.1.2:uiu7ug € K. The link ofu; shows that eithem,usug or ujugug is a face.
Claim 3. ujusugis a face

If ujugug € K, the links ofu; andu, show thatu,usug, u;usus and one ofususuy,
UgUsUg, UgUsug € K. If ugusu; € K, from Lk(U4), eitheruguguy Or uguglg € K
(sinceugusug ¢ K). In both the cases the links af, us, ug andu; show thatuu,us,
UoUsUg, UoUsu7 € K, a contradiction. lfususug € K, Lk(ug) and Lk(ug) show that
eitherugUgUg Or Usugug € K. Again, in both cases, considering (), Lk(ug) and
Lk (ug) we see thati,usug, Uzusug € K. So,ususug € K. Sinceusug already belongs
to two faces,usuzug ¢ K. Hence,uzugu; andusugug € K, thereby showing that
Cs(ug, Ug, U7, U, Us, Uy) is in Lk(ug). This proves Claim 3.

The links ofuy, us andus show thati; usue, U Usug and eithet usuy or ususug € K.

Subcasé\: ususu; € K. Considering LKuy), eitherusugu; or ugusug € K. In both
caseslyus € Lk(u7) and therefore, from L{us), UUsug andusUsug € K.
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If ususu7 € K, the links ofug, Ug, Ug, Uz andus show thatusugug, UsUgUg, UsUgUs,
UoUgUg, UoU4Ug, UsUsUg, UsUgUg, UsU7Ug andususu; are faces and, thu& is N,.

If uguzug € K, the links ofug, ug, Ue, U7, Us andug show thati,usug, UsUgUsg, UsUgUg,
U3UsU7, UoUgU7, UaUsUg, UsUgUg, UsUgUg andu,ugUg are faces. HereK is isomorphic,
via the map(0, 4, 2, 3, 1)(5, 8, 7, 6, 9), to Ns.

SubcaseaB: ususug € K. The links ofug, u7, Ug, Ug, Us andug show thatusugus,
UgUesU7, UaU4U7, UgUgUg, UzUsU7, UzUeUg, U2UesUg, UzUgUs, UoU3Ug, UzUsUg, UxUsU7,
UoUsUg andusuyUg € K. Inthis cas& isisomorphic, viathe mai®, 4, 6, 8, 1)(2, 5, 9, 3,
7), to Ns.

2.1.2:u;u4us € K.

Claim 4. For a vertex x# u, Uy, uz and w, cannot occur together in any order in the
link of any of the vertices

Let x be any vertex irK. If uyuzx andususX are faces, the@4(uy, X, Ug, U) is in
Lk (u3). If ususx andususx are faces, the@g(us, U, Us, U1, Uy, X) isin Lk(us) and finally
if uousx anduousX are faces, the@s(ug, Ug, U, Uz, X) is in Lk(u,). Hence, Claim 4 is
proved.

The links ofu; andus show thatu;usus or ususug € K.

Claim5. ujusugis aface

If uyusus € K, then Lku,) and Lk(us) show thatuiugug and one ofi,usug, UsugUg
Or UsUgUg € K.

If ususus € K, Lk(us) shows thatisu7ug andusuzug € K (if usugug andusu;ug are
faces, then degig) < 9). Henceusug ¢ Lk(u;) and thereforel;ugu; andujusug € K.
This shows tha€g(u1, Ug, Us, Ug, U, Ug) is in Lk(u7).

If usugug € K, considering the links afig andu;, we see thati; usug andu;u;ug are
faces, which imply thatl,, uz andu, are together in Liug), which is impossible from
Claim 4. Thususugug € K.

It is clear thatu;usug anduiusug are faces (sincejugu; ¢ K, from Lk(ug) and
Claim 4). Sinceuyug ¢ Lk(us), ususu; anduyusug are faces. To complete I(ks),
either usu;uUg or usugug € K, both of which are impossible by looking at k),
Lk(ug) and Claim 4. This proves Claim 5.

From Claim 5 and Lku,), uyusug and thereforai,usug € K.

The link of us shows thatisug is an edge in one af,usug, UsUsUg OF UsUgUg.

If ususug € K, considering the links afig anduy, u;ugug andu;uzuy; are faces. The
links of us, u7 and Claim 4 show thati,usus ¢ K. Hence, LKus) and Lk(uz) show
thatususug andususuy € K. The links ofug, us and Claim 4 show thaisugug ¢ K,
UsU7Ug anduyUsug € K. SinceugUg ¢ LK(ug), itis clear from LKug) and Claim 4 that
UoUgUg andugUgUg are faces. Since eith@kusug or UszusUg is a face, LKusz) implies
thatusu;ug € K. The links ofu7, ug andus show thatu,usuy, usuguz, UsUgUsg, UsUgUg
andusuyug are faces, thereby showing ti@&(us, ug, Ug, U, U7) is in Lk(ug). Therefore,
eitheru,usug or usugug is a face.

Subcasé\: uyusug € K. The links ofus andu; and Claim 4 show that,usus ¢ K.
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If ususug € K, so isususuy. If usuzug € K, Lk(u7), Lk(ug) and Claim 4 show that
neitheru;ugu7 nor u;ugUg is a face, a contradiction. Hence, from(uk), ususug and
UsU7Ug € K. Considering the links af; andu; we see thatl;ugu7 andu; uzug are faces.
This is seen to be impossible by applying Claim 4 tqu®. Hence, LKus) shows that
Ususuy € K.

We now observe, from Lkis), that eithemususuz or usuzug is a face.

In the first case the links afis, ug andu; show thatusugug, usUsUg, UjusUg and
UiUgU; are faces (iu ugug € K, the remaining three vertices in UWkg) areu,, uz and
Ug). Sinceugug ¢ Lk(u3), Lk(ug) shows thati,usug andusugug are faces. The links of
Us, Ug, U7 andug show thatuizugug, UsUgUg, UsUaUg, UoU7Ug, UsUsU7, UgU7Ug anduoUsug
are faces and hend€ is Nqg.

In the second case the links @, ug andu; show thatususug, UsUsug, UjUgUg and
UiUzu; are faces. Itis easy to see from(uk), Lk (ug) and Lk(ug) thatususu; anduzugUg
are faces (if eithet,usug or ususug is a face, then from Claim 4 and on completing
Lk(ug), we get de@us) < 9). The links ofug, Us, Us, U7 andug show thatu,usug,
UoUgUg, UgUgUg, UgUgUg, U3UgU7, U2U7Ug, andu2u3u8 are faces. HereK is Naj.

Subcas®: usugug be a face The link ofug and Claim 4 show thatsu;ug ¢ K and
hence LKus) shows that eithem,usug Or ususug is a face.

B.1:ususug € K. Here,usu7 € Lk(us) and the links ofis, u7, ug and Claim 4 show
thatususug ¢ K. Now, Lk(us), Lk(ug) and Lk(u;) show thatususug, UsUsU7, UjUgUg
andujusu; € K. Now, the links ofu; andug show that the edge;ug belongs tai,u;ug
and thereforai,ugu; andugusug are faces (ifugugu; € K, then considering Liuy),
Lk (ug) and Lk(ue), usugug andu,ugug are faces which show th&étz(u,, us, ug) is in
Lk(ug)). To complete Lkug), eitheru,usug or usugug € K.

In the first case the links af,, uz andug show thatususug, usugUg, UsUgUg, U3U4Ug
andujugug are faces. In this cask, is Nis.

In the second case the linksw, ug andug show thatizugug, UoUzUg, UsUaUsg, UaUgUs
anduzuaug € K. Here K isisomorphic, viathe maf®, 1, 5, 7)(2, 8)(3, 6, 9, 4), to Ny3.

B.2: ususug € K. Itis clear that ifu,usus andusuyug € K, then the links ofi,, u,
u; andus show thatC;(us, ug, Uy, Us, U7, U, Ug) iS in Lk(ug). Therefore, from Lkus),
UoUsUg, UsUsu7 andususu; € K. Now, if ususug € K, the links ofu7, ug, us andug
show thatCs(ug4, ug, U, ug, uy) is in Lk(ug). Henceusu;ug is a face.

In caseususug € K, the links ofuz, ug, ug andu, show thatu,usu;, usueuz,
UiUgug € K andusugUsg, UaUsUg ¢ K (If UoUusug € K, to Complete LKUG), Uzugug and
UgUgUg € K which |mpI|eS thatC4(U5, Ug, U7, Ug) is in Lk(U4)) SinCG,U3U6U9 ¢ K
(from Lk(ug)), to complete LKug), ususus andususus € K, a contradiction. Further,
usuguy ¢ K (if uuguy € K, completing LKu7), we getuausug € K, a contradiction).
Hence, from LKu-;), ususu; € K.

The links ofuz, uy, us, ug andug show thatu;ugu7, Uou7uUg, U1U3zUg, UsUgUg, UsUgUg,
UoU4Ug, UoU3Ug, UoUgUg andusugUg are faces. In this cask, is isomorphic, via the map
(2,9)(3,8)(4, 7)(5, 6), to Nyg.

2.1.3:u1u4U6 € K. Using the same method as the one above, we findktligisomorphic
to one Osz, N4, N5, Nz, ..., Nio.

2.1.4:uiugug € K. In this case we find thaK is isomorphic to one of\y, ..., N7,
No, ..., Nia.
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Subcase.2:ujusug € K. The link ofu; shows that one afi;usUg, UjU4Us, U1UsU7 OF
ujugug € K.

2.2.1:u1u4ug € K. We observe that eitherug € Lk(u;) or u7ug ¢ Lk(uz)

2.2.1.1:u7ug € Lk(uy). The link ofu;, shows that eithem;usu; or ujusug € K.

2.2.1.1.2u3usu7 € K. In this caseK is isomorphic to one oNy, N7, Nij or Nya.

2.2.1.1.2:.uyusug € K. The links ofu; andu; show thatu,usug andu,usu; € K.
Considering LkKug) and Lk(u7), we see that eithar,ugu; or ugusUg € K.

Claim 6. ugu7ug is a face

If usugu7 € K, then Lu7) and Lk(uz) shows that eithemsusu; or ususu; € K.

If ususuz € K, the links ofuz, us, us anduz show thatu,usuz, Usu7Ug, UsU7Ug,
UoUgUs, UgUgUsg, UgUgUg, UsUsUg, UsUsUg, UoUsUg andusugug € K. Here, degug) < 9.
Henceususu; € K.

To complete LKu7), uausuz, UsusUg andusu;ug have to be faces (ifizusu; € K,
Lk(us) implies that eitherzusug or usugug is a face, which is seen to be impossible
from the links ofuz andug). This shows that the face4(uusus) havingusus as an edge
iS UzU4Us, a contradiction. This proves Claim 6.

From Lk(u7) and Claim 6, we see that one wfusuz, ususU7 Or UsUsuy is a face.

If ususuz is a face, the links ofi7, Ua, Ug andu5 show thatu2u4u7, UoUsU7, UsU7Ug,
UsUsUg andu,usus are faces which implies that deg) < 9.

If uousu7is aface, the links afi7, u,, us, uz andug show thati,usu7, usUsuz, UsU7Ug,
UoUsUg, U3UsUg, U3UsUg, UzUgUg, U3UgUg, U2UgUg, U2UgUg, UoUgUg andu4u8u9 are faces.
Here,K is Nj.

In the last case the link af; shows thati,usu7, Uusu7 andugusug € K (if ugusu; €
K, to complete LKkus), eitherugusug or usugug € K, a contradiction). It is clear that
UsUsUg € K, from Lk(us) and Lk(us). The links ofug, ug, u> anduz show thatusususg,
UsUgUg, UoUsUg, UoUgUg, UsUgUg, UolUgUg, UoUsUg and uzusug are faces. HereK is
isomorphic, via the maf0, 9, 7)(1, 2,5, 4, 6, 8), to Ns.

2.2.1.2:u7ug ¢ Lk(uq). Hence,u usu7 andu;iusug are faces. To complete k),
eitheru,ugu; andujusug or ujugug andujusu; are faces

2.2.1.2.1:u1ugu7 andujugug are faces. The edge;,ug belongs to one ofi,u;ug,
Usu7yUg Or UgU7Ug.

SubcaseA: uyusug € K. If uyusuy € K, the links ofu; andus show thatusu;ug,
UsU7Ug, UgUsU7 and ususug are faces. This implies th&s(us, up, uz) is in Lk(ug).
Hence, eithet,usu7 Or usU7Ug € K.

A.1l: uzusug € K. To complete LKu7), ugusuz, Ususuz andususug have to be faces.
Considering LKuy), we see that eithar,ugug or usugug € K (since,usuy ¢ LK(ug)).

In the first case the links afi4, ug, ug andug show thatu,usug, usUsUg, UsUgUg,
UgUgUg, UpUsUg, UsUsUg, UoUsUg andu,UsUg are faces and, henck, is isomorphic, via
the map(0, 3,1, 2,8,4,6,5,9), to Nqo.

In the second case the linkswf, ug, ug, U, andug show thatisugug, UsUaUs, UoUsUsg,
U3UgUg, UU3Ug, UoUgUg, UsUgUg andusUsug are faces. HereK is Ng.

A.2: upugu; € K. The link of (u7) shows thauzu;ug € K. Considering the links
of ug andug, uyugug andu,usug ¢ K and hence the link afi, shows thau,usug and
UoUgUg are faces. To complete I(l4;), eitherugusuz or uzuzug € K.
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In the first case the links af7, ug, U4, ug andus show thatusu;ug, UsUgUg, UsUgUg,
U4UsUg, UoUgUg, UsUgUsg, UoUsUs andususug are faces. NowK is isomorphic, via the
map(0, 2)(1, 3)(5, 9, 8, 6, 7), to N1p.

In the second case l(l4;) shows thatsugug ¢ K. The links ofuz, ug, us, ug and
Ug NOwW show thatizusuz, UsUsUg, UgUgUg, UoUsUg, UoU3Ug, UzUaUg, UsUgUg andusUsUg
are faces. Here is isomorphic, via the maf0, 4,5, 1,7, 9, 8, 6, 2, 3), to Np.

Subcas®: usuyug € K. If uusu; € K, the links ofuz, u, andus show thatu,u;ug,
UsU7Ug, U4UsU7, U3UsUg, U3UsUg andususug are faces. This |mplles th@%(UQ,, Ug, Ug, U7,
U, Us) is in LKk(ug). It is easy to see th&4(uz, ug, Uz, Ug) is in LK(ug) if usuzug € K.
Hence, from LKu-), ususu; andusu;ug are faces.

The link of uz shows thatigusug, Ususus andusugug € K. (If ususug andususug €
K, the links ofug, ug, u; andu, show thatugugug, UsusUg, UsUsU7, UsU7Ug, UsUsUg
and uzugug € K. Here, C4(ug, Uy, Uq, Ug) is in Lk(l.l4)) The links of ug, ug, U7,
us and ug show thatusugug, UoUgUsg, UoUglUg, UaUsUg, UgUgUg, UsU7Ug, UoUgU7 and
UoUsug are faces. HereK is isomorphic, via the may0, 9, 5, 2)(1, 8, 3)(4, 7, 6), to
Nj_o.

SubcaseC: usurug € K. Lk(uy) shows that one ofi,usU7, UsugU7 OF UgU7Ug IS @
face.

C.1:ususu; € K. The links ofu, andu; show thatu,uzug, UsU7Ug andususug € K.
Sinceugug ¢ Lk(uy) and Lk(ug), the links ofug, Uy, Us, Us andus show thatususug,
UsUgUg, U3U4Ug, UsUsUg, U3UsUg, UsUgUg, UgUgUg, UoUsUg andususUg are faces. In this
caseK is isomorphic, via the maf0, 7, 2, 8,5, 1, 4, 6, 9, 3), to Nip.

C.2:uzuguy € K. Itis easy to see from Lki4) thatususug € K (sinceugusug ¢ K
from Lk(ug)). The links ofuz, us, ug, us and ug show thatu,usu;, Usu;Ug, UsU7Ug,
UoU3Us, U3UsUg, UsUgUg, UsUgUg, UsUgUg, UsUaUg, UoUgUg andusUgUg are faces. In this
caseK is isomorphic, via the maf0, 5, 3, 1, 2, 8)(4, 7, 6, 9), to Ng.

C.3:u4u7ug € K. The link of (uy) shows thatzusu;, uausu; anduyuzug € K- (if
UsU7Ug € K, the links ofuy, uz andug show thatususus € K). Sinceusus ¢ Lk(ug),
eitherususug Or ususug € K. If ususug € K, the links ofus andu, show thatu,usug €
K, which implies thatC3(u,, Uy, Ug) is in Lk(ug). Henceususug € K.

The links ofus, Uy, us, us andug show thatizusUg, UzUgUsg, UoUsUg, UsUsUg, UoUsUg,
UoUsUg, UoUgUg anduguglg € K. Now, K is isomorphic, via the ma®, 8,7, 4, 3,1, 9)
(2,5), to Nqq.

2.2.1.2.2:u ugug andu;usu; are faces. In this case, using the above metikods
isomorphic to one oNs, Ng, N7, Ng, N1g or N1o.

2.2.2:u1u4Us € K. In this caseK is isomorphic toN;;.
2.2.3:u1u4u7 € K. In this caseK is isomorphic toN4, N5, N7, N1, ..., Nz2 or Ngg.

2.2.4:u1u4ug € K. In this caseK is isomorphic to one oN4, N7, N1g, N11 Or Nig.

Subcase.3: ujusug € K. In this caseK is isomorphic to one 0Ny, Ng, ..., Nia.
Subcase.4:u;ugUg € K. In this caseK is isomorphic to one oNy, Ng, ..., Nig.
The theorem now follows from Lemma 5. O

Proof of TheorenY. LetK be ann-vertex g < 11) {3, g}-equivelar polyhedron. If
x(K) > 0, then, by Corollary 3K is isomorphic toS;, O or RPZ.
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If x(K) < 0,then, by (2)g > 6 and henca > 7. From (1) ,nqis divisible by 6. So,
(n,q) = (7,6), (8,6), (9,6), (9, 8), (10, 6), (10, 9) or (11, 6).

If g = 6, theny (K) = 0 and hence, by Theorem K, is isomorphic toT, .. ., Ty,
As3, B3z or Q. Since, the non-edge graphs ©f, As3 and B3 are pairwise non-
isomorphic,Ty, Az 3 and Bz 3 are pairwise non-isomorphic. Observe that NEXp is
a bipartite graph. As NE@1p) contains an induced pentagon, it is therefore not iso-
morphic to NEGQ). HenceQ Z Tio. Thus, all these eight polyhedra are distinct
(non-isomorphic).

If (n,q) = (9, 8), then, by Theorem 5K is isomorphic toM; or M,. Moreover,

M1 Z Mo.

If (n,q) = (10, 9), then, by Theorem & is isomorphic toNy, ..., N14. Moreover,
Ni Z N; for1 <i # j < 14. This completes the proof. O
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