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Abstract. Let C be a collection of n Jordan regions in the plane in general position, such
that each pair of their boundaries intersect in at most s points, where s is a constant. If
the boundaries of two sets in C cross exactly twice, then their intersection points are called
regular vertices of the arrangement .A(C). Let R (C) denote the set of regular vertices on the
boundary of the union of C. We present several bounds on I R (C) 1, depending on the type of
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the sets of C. (i) If each set of C is convex, then I R (C) I = O(n 15 )  for any e > 0.' (ii) If no
further assumptions are made on the sets of C, then we show that there is a positive integer r
that depends only on s such that J R(C) = 0 (n 2-" I !'). (iii) If C consists of two collections C i

and C2 where C, is a collection of m convex pseudo-disks in the plane (closed Jordan regions
with the property that the boundaries of any two of them intersect at most twice), and C 2 is
a collection of polygons with a total of n sides, then I R(C)I = O(m213n2/3 + m + n), and
this bound is tight in the worst case.

1. Introduction

Let C be a collection of n Jordan regions (the interiors of closed Jordan curves) in the
plane, with the property that the boundaries of any pair of regions intersect in at most
some constant number s of points. We assume that the sets of C are in general position,
so that no point is incident to more than two boundaries, and that the boundaries cross
transversally at each intersection point. Let U denote the union of C. We consider the
arrangement A(C), formed by the boundaries of the sets in C, and define a vertex of
A(C) formed by an intersection point of two boundaries 0C1, 8C2 to be regular if 0C1
and 8C2 cross exactly twice; all other vertices are called irregular. The goal is to obtain
sharp bounds on the maximal number of regular vertices that appear on 8 U. We denote
the set of regular vertices on aU by R(C).

The interest in this problem goes back to the work of Kedem et al. [121, where it was
shown that if all vertices of A(C) are regular (such a collection C is called a family of
pseudo-disks), then the number of (regular) vertices of 8 U is at most 6n — 12, for n >_ 3,
and this bound is tight in the worst case. Recently, Pach and Sharir [16] have shown that
if C is an arbitrary collection of n convex sets (so that any two of their boundaries can
intersect in an arbitrary number of points), then I R (C) 21 1 (C) I + 6n —12, where I (C)
is the set of irregular vertices on 8 U. This result was instrumental in a recent paper by
Efrat and Sharir [8], showing that the complexity of the union of n planar "fat" convex
sets, each pair of whose boundaries intersect in at most some constant number of points,
is nearly linear in n. However, since I (C) can be 0 (n2) for a general collection C, even
when no pair of boundaries cross at more than four points, the bound of [ 16] only yields
the trivial 0(n 2) upper bound on I R (C) 1. As an example of such a construction, consider
a collection of n narrow rectangles arranged in an n/2 x n/2 grid.

Pach and Sharir [ 16] also construct a set C of n rectangles and m unit disks for
which IR(C)I = 52(m2/3 n2/3 + m + n). This is the best known lower bound for the
general problem stated above, with a constant number of intersections between any pair
of boundaries. If two regions are allowed to intersect in an arbitrary number of points,
then it is easy to obtain examples with Sl (n2) regular vertices on the boundary of the
union; see, e.g., [13], [16], and Fig. 1.

For deriving the main results of the paper, we first present in Section 2 a technique for
transforming the family of regions so that every regular vertex in R (C) becomes a point
of tangency between the two regions, and so that the number of intersections between
any pair of boundaries does not increase (see Lemma 1).

Next, in Section 3, we consider the case of general convex regions, and show:

1 Throughout this paper, a stands for an arbitrarily small positive constant; the constants of proportionality
in bounds that involve a also depend on a and, generally, tend to infinity as a approaches zero.
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Fig. 1. Union of polygons with a quadratic number of regular vertices on its boundary: the middle rectangles
represent n/2 polygons, each with n/2 vertices; adding n/2 triangles as shown, we get the asserted quadratic
lower bound.

Theorem 1. The number of regular vertices on the boundary of the union of a family
of n convex Jordan regions in the plane, where any two boundaries intersect in at most
a constant number of points, is O(n t.5+E) for any constants > 0.

Next, in Section 4, we study the case of general Jordan regions, and show:

Theorem 2. The number of regular vertices on the boundary of the union of a family of
n Jordan regions in the plane, where any two boundaries intersect in at most a constant
numbers of points, is O(n2-1 /'), where r is a positive integer that depends only on s.

In other words, we show that in fairly general settings, the number of regular vertices
on aU is subquadratic.

Finally, in Section 5 we show that the 0(m 2/3n213 + m + n) lower bound is tight for
the special class (iii) of collections C as in the abstract. Specifically, we show:

Theorem 3. The number of regular vertices on the boundary of the union of afamily of
m convex pseudo-disks and a family of polygons with a total of n edges is O (m2/3n2/3 +
m + n).

Besides being an interesting collection of results in itself, the study in this paper is
likely to have implications on the analysis of the complexity of the union of geometric
objects in two and three dimensions. Moreover, our experience has been that improved
combinatorial bounds on the complexity of the union of geometric objects often en-
tails efficient algorithms for computing such unions, a task that often arises in several
application areas, such as robot motion planning [11], solid modeling, and others.

Remark. Note that using a straightforward perturbation scheme (such as the one in
[ 17]), one can show that the maximum number of regular vertices on the union is achieved
when the given regions are in general position (i.e., when no three boundaries have a com-
mon point and each crossing between two boundaries is transversal), so this assumption
involves no loss of generality.
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2. Transforming the Regions

The next lemma is used as a first step in the proofs of Theorems 1 and 2.

Lemma 1. Let C be a collection of n Jordan regions in the plane, so that each pair
of boundaries intersect in at most a finite number s of points. Then we can transform
this collection so that if (c, c') is a pair of regions in C whose boundaries originally
crossed regularly, with at least one of these two crossing points lying on 3U, then after
the transformation c and c' are openly disjoint and touch at a single point that lies
on the new union boundary. Moreover, the number of intersections between any two
region boundaries does not increase after the transformation. (If two region boundaries
cross each other irregularly, then after the transformation they either continue to cross
irregularly, or cross regularly, or become disjoint.) Finally, if all original regions in C
are convex, then they remain so after the transformation.

Proof. Before starting the transformation process, we first remove from C any region
that is fully contained in the interior of the union U and any region that is disjoint from
all the other sets (and so does not contribute any vertex to the union). This can be done
without loss of generality. We thus assume from now on that C does not contain any such
region.

The transformation process is iterative: Order the regions in C arbitrarily as (cl, ... ,
ca ). Let C, denote the collection after the first i steps of the transformation, with Co = C.
We now describe how to transform C, _ I into C,.

Put c = c,, and apply a homeomorphism zc of the plane that maps c onto the closed
unit disk D; the existence of such a homeomorphism is a consequence of Schonfliess'
theorem [ 14]. If all the sets are convex, then we take rc to be the identity and for uniformity
put D = c. We now apply the following steps:

(i) For each c' c E C, we replace each maximal connected arc of D l ar^(c') by
the line segment connecting its endpoints. See Fig. 2(ii). (It is possible that such
an arc is a single point, in which case this step does not modify it.)

(ii) We shortcut each maximal connected arc y of 8D f1 int(rc (U)) as follows. Let
u and v denote the endpoints of y, and let a, b E C, a, b c, be the sets whose
transformed boundaries contain u, v, respectively. If a ; b, we replace y by the
line segment uv; see the left-hand side of Fig. 2(iii). If a = b, we choose a point
v' on 8D that lies outside r(a) very close to v (and does not lie inside any other
transformed set), and again replace the portion of 8D between u and v' by the
line segment uv'; see the right-hand side of Fig. 2(iii) (where the relevant set
is d).

(iii) We now transform the plane back using ç

We iterate these three stages, applying them to each c, E C in the above order.
We claim that this transformation does not increase the number of intersections be-

tween any pair of boundaries. Indeed, consider the step where a set c i is processed, and
let a, b be two distinct sets in Cj_1. If c, ,0 a, b, then the portions of da and db outside c,
do not change, while their portions inside c, after applying r, and our "straightening"
step (step (ii)), consist of straight segments. If two such segments u v and wz, lying on
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Fig. 2. Demonstration of the transformation rules: (i) The disk D with the images of four other sets, referred
to as a, b, d, and f. (ii) The modified sets a, b, d, and f; the arcs y of 8D shortcut in the next stage are
highlighted. (iii) D after applying stage (ii) of the transformation; the shaded region is a new connected
component of the complement of the union (a new "hole").

the modified respective boundaries 8a, 8b inside D, cross at some point x, then, since
u, w, v, z all lie on 8D and must appear there in this cyclic order, and since the original
respective portions of 8t0 (a) and 8r, (b) connecting u to v and w to z lie fully inside D,
these original portions must cross each other at some point x'. We charge x to x', and note
that this charging is unique, implying that the number of intersections has not increased.

Suppose then that ci = a, say, and let x be a new intersection between a D and 8tc; (b),
after the straightening step. Then x must lie (in the r^ ; image) on one of the new straight
segments uv or uv' on 8a in the transformed plane, and on some new straight portion wz
of the transformed ab. If x is a common endpoint of these two straight segments, then it
must have been an intersection point between 8a and ab in Ct_1, so no new intersection
arises in this case. Otherwise, as above, it follows that one of w, z, say w, must lie on
the portion of 8D that has been replaced by uv or uv', so we can charge x to w, which
was an old intersection point of 8a and 8b (in the transformed plane), and this charging
is unique, again implying that the number of intersections has not increased.

In particular, every pair of new boundaries intersect (transversally) at most s times, and
every pair of boundaries that originally intersected in two (regular) vertices either con-
tinue to do so, or just touch each other in a single point, or do not intersect at all after the
transformation. Specifically, in the case of regular intersection between two boundaries
8a, ab, if at least one of the two intersections lies on a U, then the two transformed bound-
aries touch at a single point that lies on a U; see Fig. 2(iii). Indeed, suppose that 8a and 8b
intersect at exactly two points u, v, at least one of which lies on a U, and suppose that a is
processed before b. When a is processed, 8a and 8b become touching by construction. It
is easy to verify that this situation does not change after any subsequent transformation
step (one needs to verify this only for the step that processes b because no other step
affects the neighborhood of this touching point that lies outside all other regions).

All these considerations complete the proof of the lemma. C

Observe that U might be changed by these transformations: The original 8 U is still a
portion of the new boundary (not taking into account the slight perturbation introduced
in the second case of step (ii)), but U could have gained additional "holes," as shown in
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Fig. 2(iii). Note also that the result of the transformation depends on the order in which
the sets are processed. Finally, note that the transformation used here is different from
that used in [ 12], although they do have some common features.

3. Convex Regions: Proof of Theorem 1

We first apply the transformation described in the previous section to the given family
C of convex sets. As already noted, if the sets are convex, then there is no need to apply
a homeomorphism to the plane at each step of this process, and the sets remain convex
after the transformation. The transformed sets have the following properties. They are
convex. No set forms a single component of the union. Any two boundaries intersect
at most s times. Any two sets that intersected regularly become disjoint or touch at a
single point. If two sets intersected regularly with at least one point of intersection of
their boundaries on 8U, the transformed sets are openly disjoint and touch on W. If
they intersected regularly without creating vertices on 8U, they are now disjoint. From
now on, we assume that C has the properties just noted.

For each c E C, let er denote its "equator," namely, the segment connecting the leftmost
point and the rightmost point in c. (By an appropriate general position assumption, or
by appropriate tilting of the plane, e, is uniquely defined for each c E C; these segments
were called "sentinels" in [2].) In what follows we ignore boundary touchings that occur
at endpoints of equators—there are at most 2n such touchings.

We first construct a hereditary segment tree Q on the x-projections of the equators
(which are the same as the x-projections of the sets in C), as in [5] (consult [5] for more
details, and for the terminology that we use below). Each node v of Q stores the standard
segment-tree list L„ of sets with so-called "long" equators, and also a list S„ of sets
with "short" equators, those that are stored in some list L, for a proper descendant w
of v, and thus have at Ieast one equator endpoint in the interior of the vertical strip o,
associated with v. It is easily verified that for any boundary touching between two sets
a, b E C, not occurring at an endpoint of any equator, there is a unique node v of Q (on
the path to the leaf w whose strip Qw contains the touching), such that the touching point
lies in v, and either both a and b belong to L„ or one of them belongs to L„ and the
other to S. Also, any such touching occurs between the upper boundary of one set and
the lower boundary of the other. We have E„(I L„ I + I S„ 1) = O (n log n).

We now fix a node v and bound the number of boundary touchings within o„ formed
between two sets in L„ U S, at least one of which lies in L. We only describe the case
where the other set lies in S, because the case where both of them lie in L„ is simpler and
can be handled by a similar approach. Moreover, with no loss of generality, it suffices to
consider only boundary touchings where the set in L„ lies above the set in Si,.

We apply fairly standard range-searching techniques, described in some detail below,
to obtain a finite collection {A, x Bj ) 1 of complete bipartite graphs, such that:

(a) For each i, A; c S„ and B; C L,,.
(b) For each i there is a substrip a ( ' ) C a,,, such that for each a E A;, b E B;, the

x-projection of a contains that of Q (1) , the equator eb lies fully above a within a,
and the equator ea lies fully below b within a ( ` ) . See Fig. 3.
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av

Fig. 3. Illustrating property (b).

(c) For each pair of sets a E S, b E L, such that 8a touches 8b at a point within
a„ and a lies below b, there is an index i such that a E A1, b E B1, and E a 0) .

(d) F^(IA1I+IB,I) = 4(ISUI' +6 1L,I t /2+
e^.ILy1 1+6 1SU1 1 ^2+, ) foranyc > 0, where

the constant of proportionality depends on s and on s.

Suppose this has been done. Then fix an index i, and note that any boundary touching
^ E a U that occurs within between a set a in Ai and a set b in Bi must occur
along the upper envelope of the upper boundaries of the sets of A 1 , and along the lower
envelope of the lower boundaries of the sets of B 1 . Indeed, suppose to the contrary
that, say, does not lie on this upper envelope. Since lies on the boundary of the
union of A ; , the set a' appearing on the envelope at the x-coordinate of must be
such that ea ' lies above , which contradicts the property that ea' has to lie fully below b
within or (`) . The argument for the lower envelope is fully symmetric. The number of such
touchings is therefore proportional to the combined complexity of these envelopes within
a ( ' ) , which is at most X s (1A 1 ) + Xs(I B i I), where (n) denotes the maximum length of
(n, s)-Davenport—Schinzel sequences [17]. Summing over all i's, we obtain that the total
number of boundary touchings "associated" with v is proportional to 0 (1 S„ I I L, I 1/2+e +
IL„IIS, 1/2+E), for a slightly larger, but still arbitrarily small e > 0. Summing these
bounds over all nodes v of Q, we obtain the overall bound 0 (n3/2+E), again for slightly
larger, but still arbitrarily small e > 0, with the constant of proportionality depending
on s and on s. This therefore completes the proof of the theorem.

To obtain the decomposition {A, x B'), we use a multilevel range-searching structure,
where each node w at each level of the structure will store a complete bipartite graph
A', x Bu,, such that A', c S„ and B c L. Each subsequent level of the structure
enforces some more of the desired constraints, and the bipartite graphs within each
subsequent level form a refinement of the graphs obtained at the previous level. See [1]
and [3] for more details concerning multilevel range-searching structures.

In the first level we enforce the property that the segments eb, for b E L, lie above the
sets a in S„ (for each of the bipartite graphs to be generated at this step). In what follows,
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we clip all the relevant a's and b's to within Q,,. Actually, we want to have the property
that the equator eb of any such b lies above the upper boundary of any such a. We may
replace any eb by the line containing it (this has no effect on what happens within Q„),
and replace any a by the portion of v„ lying below the upper boundary of the original a
(so we first make a smaller by ignoring its portion outside o, and then make a larger
by allowing it to expand downward within o r ). We apply a standard duality transform to
the plane (as in [7]), which preserves incidences and the above/below relationship. This
duality maps the upper boundary of any a E S„ to a convex x-monotone curve yQ , and
the (extended) equators eb of sets in L„ are mapped to points eb. An equator eb lies above
the upper boundary of a if and only if the dual point eb lies above ya . Note also that any
pair of curves ya . Va ' intersect each other at most s times, because any such intersection
point is the dual of a common tangent to the upper boundaries of a and a', and there can
be at most s such common tangents, because da and 8a' intersect in at most s points.

Thus, in this dual setting, the desired first-level decomposition {A` x B} ofof S„ x L„
has to satisfy the following properties:

(e) For each w, the point eb dual to the equator eb of any set b E Bw lies above yQ ,
for every a E A'.

(f) For any a E Si,, b E L,,, such that eb lies above ya , there is a w such that a E A',
and b E B.

Put m„ = I S„ I, n„ = I L„ I. To obtain this decomposition, we fix some sufficiently
large constant parameter , draw a random sample R of sets a E S,,, consider the
arrangement AR of the corresponding curves ya , and apply a vertical decomposition
to AR that produces 0 (42) pseudo-trapezoidal cells. Since each pseudo-trapezoid is
determined by at most four curves Va , it follows from [6] that with high probability, no
pseudo-trapezoid is crossed by more than (cm/^) log curves, for some appropriate
constant c. We may assume that our sample R does indeed have this property.

For each pseudo-trapezoid r, let Bt denote the subset of L,, consisting of those sets b
whose dual points eb lie inside r, and let A r (resp. Cr ) denote the subset of S, consisting
of those sets a whose dual curves ya pass below r (resp. cross r). Put ki = IA r I,
nr = IBrI,andmr = ICTI.WehaveFr nr =n,ki <m»,andmr < (cm„/^)log^.By
partitioning r vertically into subcells, if necessary, we may also assume that n t < n„/L 2

for each r, while the total number of subcells remains O(^ 2).
We add to the first-level output collection of complete bipartite graphs all the products

A x Br , and repeat the whole process recursively within each cell r, with the sets C r

and Br . We stop the recursion when the size of Cr or of Br falls below some speci-
fied constant, and then output all appropriate singleton products {a} x {b}, for a E Cr ,
b E Br .

It is clear from the construction that the resulting decomposition satisfies the required
properties (e) and (I). We next estimate its total size E i (IAr I + Br ). At the top level
of the recursion we have F t I B, I = n. Since the number of levels of recursion is
O (log n„) and the points eb are partitioned among the recursive subproblems, it follows
that in total we have > T 1 Br I = 0 (n„ log n„). Similarly, at the top level of the recursion
we have F z I A t l = O (m„4 2), and rr ICIl = O (m„^ log 4) (where both constants
of proportionality depend only on s). The maximum depth j of the recursion satisfies
^' 2j < n,,, or nt, . It follows that, for an appropriate constant c' that depends on s,
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the overall sum E r IA I is at most proportional to

m v4 2 (1 + c' loge +•.. + (c log^) 3 - 1 ) = O(m^(c4 log%)') = O(m„n 112+e),

where we can makes > 0 arbitrarily small by choosing 4 sufficiently large (as a function
of e and s). Hence we have

>21A11 = O(m„n/
i+E) and ^ IBTI = O(n„ lognv)	 (1)

t	 r

Next, fix a pair A = A, B = B7 in this decomposition. For each a E A, b E B the
equator eb lies above the upper boundary of a (within o,). This already implies (arguing
as above) that any boundary touching between aa and 8b, for any pair a E A, b E B that
lies on the union boundary, must lie on the lower envelope E of the lower boundaries of
the sets in B. The complexity of E is at most A. s (I B I), which is nearly linear in I B I.

For each a E A, let ax denote its x-projection, clipped to within o. We construct
a secondary segment tree T on the intervals ax . Each node u of T is associated with a
vertical strip a (" ) C cr. In addition to the standard segment-tree list A (" ) of x-projections
of sets in A that is stored at u, we also store there a list B (" ) of the sets in B whose lower
boundaries appear in E flaw.(") . We clearly have that F_" I A (") I = O (I A I log I A I) and that

8'(>> IB (" ) ) = O(Xs(IBI) logJA)).
Indeed, the first bound is a standard property of segment trees. The second bound is

a consequence of the following observations: (a) The number of breakpoints of E is at
most ,Xs (I B 1) . (b) Each breakpoint belongs to at most log I AI strips a(u).  (c) For any u,
the size of B (" ) is upper bounded by I plus the number of breakpoints of E in a

 suppose that there is a pair a E A, b E B, with a touching C between the upper
part of aa and the lower part of 8b that lies on the union boundary. There is a unique
node u of T such that a E A (" ) and C E o (" ) . Hence 8b appears on E within Q (" ) , so
b E B (") . Note also that the line containing e" passes fully below b n o (") (because the
x-projection of a fully contains the projection of

We now fix a node u for which I B (" ) I > 1, and apply a symmetric version of the
first-level decomposition to A(u) x B (" ) , to obtain a collection {A x B} of complete
bipartite graphs, such that:

(g) For each j, we have A	 A (" ) and B^ c B (" ) ; we also associate the strip aW
with j.

(h) For each j, each a E A and each b E B, the equator e" lies fully below b within
a (u)

(i) For any boundary touching C as above, there is an index j such that a E A and
b E B^ (and lies in the strip off, that is, in a (") ).

(j) F_1(IA^I + IBB1) = O(IA (") I log IA (" ) I + IB(")IIA(")I1/2+E), for any e > 0.

If I B (") I = 1 we output only one bipartite graph A (") x	 where A (") consists of all
a E A (" ) such that eQ lies fully below the unique b E B (") within a (" ) .

The grand collection of complete bipartite graphs A x B5 , gathered over all nodes
u of T, and over all first-level pairs A x B (recall that we originally denoted such a pair
by A T x Bt for some trapezoid r), is the desired output collection. It clearly satisfies



212	 B. Aronov, A. Efrat, D. Halperin, and M. Sharir

properties (a)—(c). Concerning (d), we first sum the bounds (j) over all u E T, to obtain
the bound

O(IAI loge IAI + As(I BI)I AI' n+E),

for a slightly larger but still arbitrarily small e > 0, where the constant of proportionality
depends on e and on s. Clearly, this bound also subsumes the case I B (" ) I = 1.

Finally, we sum these bounds over all pairs A = A, B = B, in the first-level
decomposition, and make use of (1), to conclude that this sum is at most proportional to

O(IAzI log2 IA T I + As(IBzI)IAzIUJ2+e) = O(m 1+sn1'2+s +n l+em 1 /2+e) ,

again, for a slightly larger but still arbitrarily small e > 0, where the constant of pro-
portionality depends on a and on s. Hence (d) is also satisfied. As already noted, this
completes the proof of the theorem. q

Remark. An obvious open problem is to close the gap between this upper bound and
the lower bound S2 (n413 ) noted earlier.

4. Arbitrary Regions: Proof of Theorem 2

We prove the theorem using the following "forbidden subgraph" argument. We first
transform C as described in Lemma 1, but continue to denote the transformed collection
by C. Now we define a graph H whose vertices are the regions in C and whose edges
connect pairs of regions that touch at a point on the boundary of the union. We claim that
H does not contain a complete bipartite graph Kr , g for some sufficiently large constants
r = r(s), g = g(s), where s is the maximum number of intersections between any two
region boundaries.

Suppose to the contrary that there exist subsets 7Z, G of C of sizes r, g, respectively,
such that for each (c, c') E R x G, c and c' touch at only one point and that point lies on
the boundary of the union U. With no loss of generality, we may assume that C = R U G.
We refer to sets of 7Z (resp. G) as "red" (resp. "green").

Consider the arrangement A(G) and let Ug denote the union of G. We claim that any
c E R is fully contained in the closure of a single hole (connected component of the
complement) of Ug. Indeed, if this were false, 8c would have to cross some boundary
of a green region c', which is impossible by construction.

Consider the collection of holes of Ug that contain red regions. We call them inter-
esting green holes. Since each red region must touch the boundary of every green set at
a point that lies on aUg, it follows that all interesting green holes are part of the zone in
A(M) of any green boundary, which is the collection of cells in the arrangement whose
closure is met by the boundary. Hence the overall complexity, i.e., the number of vertices
and edges, of all these holes is at most aA,.+2 (g), for some absolute constant a (see [15]).
Symmetrically, the overall complexity of interesting red holes, defined analogously for
7Z, is at most als+2(r).

We now construct a planar bipartite graph G, whose nodes are the arcs forming the
boundaries of interesting green and red holes; each edge of G connects a green arc 4 to



On the Number of Regular Vertices of the Union of Jordan Regions 	 213

Fig. 4. Both pairs u, v are pseudo-regular.

a red arc r if these two arcs touch at a (regular) vertex of the overall union. It is easy
to verify that G is indeed planar, and that it has no multiple edges. Since the graph is
bipartite, the number of its edges is at most twice the number of its nodes, that is, at
most 2a(X5+2(g) + As+2(r)). On the other hand, the number of edges of G must be rg,

because every green set and every red set touch at some (regular) vertex on 8 U. We thus
obtain: rg < 2a(X5+2(g) +Xs+2(r)), which is impossible if r and g are sufficiently large
constants (that depend on s).

Using standard results in extremal graph theory (see [15]), it follows that the number
of regular vertices on the boundary of the union of C is 0(n 2-t"). This completes the
proof of the theorem. q

Remarks. (1) The following is a natural extension of the concept of regular intersec-
tion: We say that the boundaries of two Jordan regions a and b meet pseudo-regularly at
u and v if there is a connected component of a fl b that contains u and v and no other
intersection point of as fl 8b on its boundary. In other words, we allow 8a and 8b to cross
more than twice, but require that their intersections u and v behave "locally" as regular
intersections; see Fig. 4. Unfortunately, it is possible to construct families of n Jordan
regions, each pair of whose boundaries cross at most six times, such that the boundary
of their union has 0(n 2) pseudo-regular vertices. Such a construction is depicted in
Fig. 5. We start with a grid-like arrangement of thin rectangles and deform the horizontal
rectangle near each hole to create two pseudo-regular vertices. Thus Theorem 2 fails for
pseudo-regularity.

In the lower bound construction just given, even though any two boundaries cross at
most six times, the shape of some of the boundaries is quite complicated. We do not
know whether a similar construction can be obtained for semialgebraic Jordan regions
of constant description complexity, 2 so the question whether Theorem 2 holds in this
case remains open.

2 That is, regions that are each described by a Boolean combination of a constant number of polynomial
equalities and inequalities of constant maximum degree.
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Fig. 5. Regions with at most six intersections between any pair of boundaries, whose union has O(n 2 )

pseudo-regular vertices.

(2) Nevertheless, if any two boundaries cross at most four times, then if two boundaries
cross four times but meet pseudo-regularly, then the four intersections come in two pairs,
each of which is a pseudo-regular pair; see Fig. 4(right). It is easy to verify that Theorem 2
continues to hold in this case, using the same proof with slight and obvious modifications.
In fact, this suggests an alternative definition of pseudo-regularity: we say that a and b
intersect pseudo-regularly if the intersection a (lb consists of a finite number of connected
components, each with at most two points of 8a fl 3b on it. With this modification, the
proof of Theorem 2 carries through, for any fixed s.

5. Pseudo-Disks and Polygons: Proof of Theorem 3

We finally turn to the special case considered in Theorem 3. Let C = Cl U C2 where Cl
is a collection of m convex pseudo-disks in the plane (closed Jordan regions with the
property that the boundaries of any two of them intersect at most twice), and C2 is a
collection of simple polygons with a total of n sides. Let U1, U2 be the union of Cl, C2,
respectively, and put U = Ut U U2. By [12], the number of regular vertices on 8U that
are incident to two boundaries of sets in Ct is at most 6m.

Next, we show that the number of regular vertices on U incident to two boundaries
of polygons in C2 is 0 (n). Let v be such a vertex, and let c, c' be the two polygons in C2
whose boundaries contain v. Let K be the connected component of c fl c' that contains
v. The connected component of 8K that contains v is a polygonal cycle that contains
only two vertices (one of which is v) where 8c and dc' meet. Hence it must also contain
at least one vertex w of c or of c', such that vw is an edge of K. We charge v to such a
vertex w, and note that any vertex w can be charged at most twice in this manner. Hence
the total number of vertices of 8 U of this type is 0 (n).

It thus remains to bound the number of mixed regular vertices of 8U, namely, those
that are incident to the boundaries of a pseudo-disk in Cl and of a polygon in C2. Without
loss of generality, we count only those mixed vertices that lie on the top portion of the
boundary of pseudo-disks in C1. Let F denote the set of arcs of 8 Ui that lie on the top
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portion of the boundaries of pseudo-disks; arcs that contain the leftmost or rightmost
points are split at those points. Let M = 0(m) denote the number of these arcs.

Let y E F, let d E C 1 be the pseudo-disk whose boundary contains y, and consider
its interaction with a polygon c of C2 that forms a regular vertex on y. Since y lies on
the top boundary of d, it follows that either c contains the extreme left or right point of
d, or c fl ad lies completely in the top portion of 8d. Polygons c e C2 that contain the
leftmost (rightmost) point of d contribute at most one mixed vertex of 8 U on y (two
if c contains both extreme points of d), for a total of at most 2n vertices. Similarly we
can eliminate polygons c which contain one of the endpoints of y, as those produce at
most 2M = 0(m) mixed vertices on 8 U. From this point on we restrict our attention
to polygons c that form regular vertices on y and satisfy c fl ad C y. Let c be such
a polygon, and let v, w be the two points of intersection of y with 8c. If v, w lie on
different edges of c, then the portion of c inside d must contain a vertex of c, and we can
then charge v and w to such a vertex, in the same manner as in a preceding paragraph.
It follows that the number of such vertices v, w is 0(n), and we can thus ignore such
cases in subsequent analysis. We can thus assume that y crosses the boundary of each
such polygon c at two points that lie on the same edge e of c. We refer to these remaining
regular vertices as edge-touching vertices. Note that since y lies on the top boundary of
d, the edge e must lie on the bottom boundary of c (meaning that c lies locally above e).

We adapt the analysis technique of [9] and [ 10]. First, we derive a weaker upper bound
on the number of mixed edge-touching regular vertices on a U. To this end, we construct
a bipartite graph H whose nodes are the arcs in F and the polygon edges, and each of
its edges connects an arc y to a polygon edge e if y crosses e twice, at two regular
vertices, at least one of which lies on 8U. We claim that H does not contain a K2,3 as a
subgraph (composed of two arcs in 1' and of three polygon edges). Indeed, suppose that
H did contain such a subgraph, consisting of two arcs yi , y2 E F, and of three polygon
edges el, e2, e3 of polygons Cl, C2, c3, respectively. Suppose y l C ad1, d1 E C1. Since yj
intersects each of the three edges twice and each edge e, lies on the lower boundary of
its polygon, the portion of yy outside c I U c2 U c3 must lie below the lower envelope L of
the lines containing e l , e2 , e3 . Moreover, the regular vertices of 8U formed by yl with
the three edges must lie on L. Assume, with no loss of generality, that e1, e2, e3 appear
in this left-to-right order along L; see Fig. 6.

L is partitioned by yj into at most seven sections: the three segments d1 fl e; fl L,
i = 1, 2, 3, and at most four maximal connected complementary sections of L where

Cl

Fig. 6. The graph H does not contain any K2,3 consisting of two arcs yl, yz, and three polygon edges

el, e2, e3.
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the edge-touching vertices of y2 and the edges e, that appear on a U may show up. Since
y i and y2 are openly disjoint and y2\(c1 U c2 U c3) has to lie below L, all edge-touching
vertices of 8 U induced by y2 must appear along only one of the latter four complementary
sections of the envelope (refer to Fig. 6). However, none of these sections contain portions
of all three edges. Hence Y2 cannot connect to all of el, e2, and e3 in the graph.

Since the graph H is bipartite, with at most M and n nodes, respectively, in each
class, and since it contains no K2 ,3 as a subgraph, it follows from standard extremal
graph-theoretic arguments (see Corollary 9.7 of [15]) that the number of its edges, and
hence the number of mixed edge-touching regular vertices on 8 U, is 0 (Mn 1 /2 + n).

We next choose an integer parameter r, to be fixed below, and construct a (1 /r)-
cutting of the arrangement of the edges of the polygons in C2 (see [4] for details). This
yields a tiling of the plane by 0 (r2) pairwise openly disjoint vertical trapezoids, each
crossed by at most n/r edges. For each trapezoid r, consider the set I' t of all the arcs in
I' that cross r, clipped to within r; some of these arcs may intersect r in two connected
portions, and we regard each such portion as a separate arc.

We classify the arcs in F r according to the pairs of sides of z that they cross. One
class consists of short arcs that have at least one endpoint inside r; any other long arc
meets 8r exactly twice. There are at most 2M short arcs in total. One class of long arcs
is referred to as the class of bottom-edge arcs; these are the arcs that have both endpoints
on the bottom side of r.

Let CH(X) denote the convex hull of the set X. We claim that, for any class F' c F,
of arcs, other than those of the short arcs or of the bottom-edge arcs, the number of mixed
edge-touching regular vertices on 8U that are formed within r by arcs of F' is 0 (n/r).
The proof is similar to that in [9] and [ 10]. It is based on the observation that none of the
at most n/r polygon edges that cross r can form mixed edge-touching regular vertices
on 8U with more than one arc of F'. Indeed, if this could happen for one such edge e
and two such arcs y, y', then CH(e fl y) and CH(e fl y') must be disjoint, with, say,
CH(e fl y) lying to the left of CH(e fl y'); see Fig. 7. (Indeed, the convexity of the
pseudo-disks rules out the case that these two intervals are nested within each other; on
the other hand, if these intervals overlapped without being nested, then y and y' would
have to cross, which is impossible.) If we trace y from the right endpoint of CH(e fl y)
to the right, and trace y' from the left endpoint of CH(e n y') to the left, then these

_ _.-- ---

Fig.  7. e cannot form mixed edge-touching regular vertices with both y and y', unless the family they belong
to is the family of short arcs or of bottom-edge arcs.
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curves must cross within r—a contradiction. Indeed, for this not to happen, either one of
these curves has to end inside r (so F' is the class of short arcs), or both extensions must
cross the bottom side of r (so F' is the class of bottom-edge arcs). Since F' is neither of
these classes, the claim follows; see [9] and [10] for a similar argument. We have thus
shown that the number of mixed edge-touching regular vertices on a U that are formed
within r by arcs that are neither short nor bottom-edge is 0 (n / r), for an overall bound
of 0(r 2 • (n/r)) = O(nr), over all trapezoids r.

We next claim that the total number of bottom-edge arcs, over all trapezoids r, is
O (r2 + m). More precisely, we first discard any bottom-edge arc that does not form
a mixed edge-touching regular vertex of 8 U within its containing trapezoid, and then
claim the above bound for the number of remaining bottom-edge arcs. If i is a trapezoid
with bottom edge e, then any two remaining bottom-edge arcs y, y' within r are such
that CH(e fl y), CH(e fl y') are disjoint. This follows from an argument similar to that
in the preceding paragraph.

We establish our claim using a graph-planarity argument, similar to that used in [10].
We construct a plane embedding of a planar graph G as follows. The nodes of G are the
bottom edges of the trapezoids of our cutting. The edges of G are defined and drawn as
follows.

Let y' be a bottom-edge subarc of some arc y E F, formed within some trapezoid r.
Let e denote the bottom edge of r, and let u and v be the two intersection points of y
with e, where u lies to the left of v—these are the endpoints of y'. Now follow y from
v to the right until another bottom edge e' of some trapezoid r' is encountered; denote
the traced subarc of y by y R . Note that y can hit e' either from above or from below.
(If we do not meet any bottom edge, we can charge y' uniquely to the right endpoint of
y, so the overall number of these bottom-edge arcs is at most M = 0(m). We disregard
them in the following argument.) We distinguish between two cases: If the portion of y
to the left of u does not intersect e', then we connect e and e' in the graph G along y'.
If, on the other hand, the portion of y to the left of u does intersect e', then we claim that
both u and v must lie on the top edge of r'. Indeed, by construction, y R does not meet
any nonvertical edge of the cutting. Moreover, y R must hit e' from above, for otherwise
the convexity of y implies that the entire portion of y to the left of the hitting point lies
below the line supporting e', so it cannot meet e' again. Now if we follow y R from e' to
the left, the first vertical edge of the cutting that we meet must be the left edge of r', but
then y could not have met e' again further to the left. Hence y R is fully contained in r',
so v lies on the top side oft'. It follows that u also lies on the top side of r', for otherwise
e' would have ended to the right of u, so y could not have intersected it to the left of
u. A similar, slightly modified argument implies that the portion of y between u and e'
is also fully contained in r'. Let u' and v' be the intersection points of y with e', where
u' lies to the left of v'. We now apply the same analysis to the portions of y extending
to the left of u' and to the right of v', respectively. We iterate this process until those
portions do not end up on the same bottom side. When this is the case, we add the last
right portion of y as an edge of the graph G. (Again, if during this process we reach the
right endpoint of y, we charge y' uniquely to that endpoint; the overall number of these
bottom-edge subarcs is at most M = 0(m).) See Fig. 8. Note that the entire portion
of y between (the final) points u' and v' contains only one bottom-edge subarc, namely
y'. Hence the number of edges of G is equal to the number of bottom-edge subarcs
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Fig. 8. The portion of y between v' and v" is added as an edge to the graph G.

excluding those that we have already charged to the right endpoint of their containing
arcs in F.

Since the relative interiors of the arcs of F are pairwise disjoint, G is indeed a plane
embedding of a planar graph. Let f be a face of G of degree 2. By construction, f is
bounded by the subarcs 8, S' of two respective distinct arcs y, y' of r, and by portions of
the bottom edges e, e' of two respective trapezoids r, r'. If the interior of f, as a planar
region, contains an endpoint of e or of e', then we can charge f to this endpoint (see
Fig. 9 for an illustration of this case). Since there are 0(r2) such endpoints and each of
them is charged at most once, the number of such faces f is 0(r2). Otherwise, both 8,8'
must leave e from the same (top or bottom) side of it, and similarly for e'. (We say that
S leaves the top (bottom) side of e, if in a small neighborhood of the intersection point
of S and e, S is on the top (bottom) side of e.) Since, by construction, each of S, S' must
leave at least one of e, e' from its bottom side, there are only two possible cases:

(i) 8 and S' leave both e and e' from their bottom sides (see Fig. 10(i)). It is easily
seen that in this case the left endpoints of S, S' lie on the same edge, say e. Suppose,
without loss of generality, that v = S n e lies to the right of w = S' fl e. Let u be the other
intersection of y with e; by construction, such a point must exist. By convexity of the
pseudo-disks in C1, u must lie between w and v, and the extension of y to the left of u lies
in f locally near u. Moreover, this extension lies fully below the lines containing e and
e', implying that it cannot intersect any of the four sides off, and thus the left endpoint
of y must lie inside f. The number of such faces is therefore at most M = 0(m).

(ii)S and 8' leave, say, efrom its bottom side and e' from its top side (see Fig. 10(ii)).
In this case, by construction, the left endpoints of & and 8' lie on e. Again, we assume
that v = 8 fl e lies to the right of w = S' r1 e. Let u be the other intersection of y with e;

Fig. 9. A face of G of degree 2 containing an endpoint of a bottom side.
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Fig. 10. The portion of y to the left of CH(y fl e) must lie fully within f.

as above, by construction, such a point must exist, it must lie between w and v, and the
extension of y to the left of u must lie in f locally near u. As above, we claim that this
extension lies fully within f. As in the previous case, this extension cannot intersect e,
S, or S'. Moreover, it also cannot meet e' (from its top side), since this would contradict
our assumption that S is an edge of G. Hence, in this case too the left endpoint of y must
lie inside f, so the overall number of faces of G of degree 2 is at most M = 0(m).

Hence, a straightforward application of Euler's formula for planar graphs implies that
the number of edges of G is 0(r2 + m).

Let m i denote the number of short and (undiscarded) bottom-edge arcs in r. The
preceding analysis implies that F r m, = 0 (r2 + m). The weaker bound obtained above
implies that the number of mixed edge-touching regular vertices on a U that are formed
within a trapezoid r by its m 7 short and bottom-edge arcs is O(m r (n/r) 1 /2 + n/r), for
a total of

r	 n 1/2 n	 ( (M	n1/2
O	 mz ( n)+^=O-I- r 2) (>+nr)

r	 r 	 r )

As argued above, the overall number of all other mixed edge-touching regular vertices
on 8U is 0(m + nr). We now choose

1m 2/3 /n 1 /3 1	 if n 1 /2 < m < n2 ,
r= 1	 if m < n 1 /2 ,

n	 if m>n 2 .

The overall bound then becomes 0 (m 2/3 n 2/3 + m + n). This, combined with the lower
bound construction in [16], completes the proof of Theorem 3. 	 0
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