
Algorithmica
https://doi.org/10.1007/s00453-024-01233-4

Sample-Based Distance-Approximation for
Subsequence-Freeness

Omer Cohen Sidon1 · Dana Ron1

Received: 3 September 2023 / Accepted: 23 April 2024
© The Author(s) 2024

Abstract
In this work, we study the problem of approximating the distance to subsequence-
freeness in the sample-based distribution-free model. For a given subsequence (word)
w = w1 . . . wk , a sequence (text) T = t1 . . . tn is said to contain w if there exist
indices 1 ≤ i1 < · · · < ik ≤ n such that ti j = w j for every 1 ≤ j ≤ k.
Otherwise, T is w-free. Ron and Rosin (ACM Trans Comput Theory 14(4):1–31,
2022) showed that the number of samples both necessary and sufficient for one-sided
error testing of subsequence-freeness in the sample-based distribution-free model is
�(k/ε). Denoting by �(T , w, p) the distance of T to w-freeness under a distri-
bution p : [n] → [0, 1], we are interested in obtaining an estimate ̂�, such that
|̂�−�(T , w, p)| ≤ δ with probability at least 2/3, for a given error parameter δ. Our
main result is a sample-based distribution-free algorithm whose sample complexity
is Õ(k2/δ2). We first present an algorithm that works when the underlying distribu-
tion p is uniform, and then show how it can be modified to work for any (unknown)
distribution p. We also show that a quadratic dependence on 1/δ is necessary.

Keywords Property testing · Subsequence-freeness · Distance-approximation ·
Sample-based

1 Introduction

Distance approximation algorithms, as defined in [31], are sublinear algorithms that
approximate (with constant success probability) the distance of objects from satisfying
a prespecified property P . Distance approximation (and the closely related notion of

This research was supported by the Israel Science Foundation (Grant Number 1146/18) and the
Kadar-family award.

B Dana Ron
danaron@tau.ac.il

Omer Cohen Sidon
omercs123@gmail.com

1 Tel Aviv University, Tel Aviv-Yafo, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01233-4&domain=pdf
http://orcid.org/0000-0001-6576-7200

Algorithmica

tolerant testing) is a natural extension of property testing [21, 34], where the goal is
to distinguish between objects that satisfy a property P and those that are far from
satisfying the property.1 Indeed, while in some cases a (standard) property testing
algorithm suffices, in others, actually approximating the distance to the property in
question is more desirable.

In this work, we consider the property of subsequence-freeness. For a given subse-
quence (word) w1 . . . wk over some alphabet �, a sequence (text) T = t1 . . . tn over
� is said to be w-free if there do not exist indices 1 ≤ j1 < · · · < jk ≤ n such that
t ji = wi for every i ∈ [k].2

In most previous works on property testing and distance approximation, the algo-
rithm is allowed query access to the object, and distance to satisfying the property in
question, P , is defined as the minimum Hamming distance to an object that satisfies
P , normalized by the size of the object. However, there are applications in which we
need to deal with the more challenging setting in which only sampling access to the
object is available, and furthermore, the samples are not necessarily uniformly dis-
tributed, so that the distance measure should be defined with respect to the underlying
distribution.

In this work, we consider the sample-based model in which the algorithm is only
given a random sample from the object. In particular, when the object is a sequence
T = t1 . . . tn , each element in the sample is a pair (j, t j). We study both the case
in which the underlying distribution according to which each index j is selected
(independently) is the uniformdistribution over [n], and themore general case inwhich
the underlying distribution is some arbitrary unknown p : [n] → [0, 1]. We refer to
the former as the uniform sample-based model, and to the latter as the distribution-free
sample-based model. The distance (to satisfying the property) is determined by the
underlying distribution. Namely, it is the minimum total weight according to p of
indices j such that t j must be modified so as to make the sequence w-free. Hence,
in the uniform sample-based model, the distance measure is simply the Hamming
distance normalized by n.

The related problem of testing the property of subsequence-freeness in the
distribution-free sample-basedmodelwas studiedbyRonandRosin [33]. They showed
that the sample-complexity of one-sided error testing of subsequence-freeness in this
model is �(k/ε) (where ε is the given distance parameter). A natural question is
whether we can design a sublinear algorithm, with small sample complexity, that
actually approximates the distance of a text T to w-freeness. It is worth noting that,
in general, tolerant testing (and hence distance-approximation) for a property may be
much harder than testing the property (see e.g., [3, 13, 19, 22, 32]). We also empahsize
that we consider a general alphabet �, rather than the special case of a binary alpha-
bet � = {0, 1}. Hence, we cannot simply reduce the problem of (tolerant) testing of
subsequence-freeness to (agnostic) learning of the corresponding function class (when
viewing T as a function from [n] to �), as can be done when � = {0, 1}.

1 Tolerant testing algorithms are required to distinguish between objects that are close to satisfying a
property and those that are far from satisfying it.
2 For an integer x , we use [x] to denote the set of integers {1, . . . , x}

123

Algorithmica

1.1 Our Results

For a text T of length n and a distribution p over [n], represented as a vector p =
(p1, . . . , pn), we say that a sample is selected from T according to p, if for each
sample point (j, t j), j is selected independently from [n] according to p. When p is
the uniform distribution, then we say that the sample is selected uniformly from T . For
a word w, we use �(T , w, p) to denote the distance of T from w-freeness under the
distribution p. That is, �(T , w) is the minimum, taken over all texts T ′ = t ′1, . . . , t ′n
that are w-free, of

∑

j :t j �=t ′j p j . When p is the uniform distribution, then we use the

shorthand �(T , w). Let δ ∈ (0, 1) denote the error parameter given to the algorithm.
Our main theorem is stated next.

Theorem 1.1 There exists a sample-based distribution-free distance-approximation
algorithm for subsequence-freeness, that, for any subsequence w of length k, takes a

sample of size O
(

k2

δ2
· log (k

δ

)

)

from T , distributed according to an unknown distri-

bution p, and outputs an estimate ̂� such that |̂�−�(T , w, p)| ≤ δ with probability

at least 2
3 .
3 The running time of the algorithm is O

(

k2

δ2
· log2 (k

δ

)

)

.

As we discuss in detail in Sect. 1.2, we prove Theorem 1.1 by first presenting an
algorithm for the case in which p is the uniform distribution, and then show how to
build on this algorithm so as to obtain the more general result stated in Theorem 1.1.

We also address the question of how tight is our upper bound. We show (using a
fairly simple argument) that the quadratic dependence on 1/δ is indeed necessary,
even when p is the uniform distribution. To be precise, denoting by kd the number
of distinct symbols in w, we give a lower bound of �(1/(kdδ2)) under the uniform
distribution (that holds for every w with kd distinct symbols, sufficiently large n and
sufficiently small δ—for a precise statement, see Theorem 4.1).

1.2 A High-Level Discussion of Our Algorithms

Our starting point is a structural characterization of the distance to w-freeness under
the uniform distribution, which is proved in [33, Sec. 3.1].4 In order to state their
characterization, we introduce the notion of copies of w in T , and more specifically,
role-disjoint copies.

Definition 1.1 A copy of w = w1 . . . wk in T = t1 . . . tn is a sequence of indices
(j1, . . . , jk) such that 1 ≤ j1 < · · · < jk ≤ n and t j1 . . . t jk = w. A copy is
represented as an array C of size k where C[i] = ji .

We say that two copies C and C ′ of w in T are role-disjoint if C[i] �= C ′[i] for
every i ∈ [k] (though it is possible that C[i] = C ′[i ′] for i �= i ′). A set of copies is
role-disjoint if every pair of copies in the set are role-disjoint.

3 As usual, we can increase the success probability to 1 − η, for any η > 0 at a multiplicative cost of
O(log(1/η)) in the sample complexity.
4 Indeed, Ron and Rosin note that: “The characterizationmay be useful for proving further results regarding
property testing of subsequence-freeness, as well as (sublinear) distance approximation.”

123

Algorithmica

Observe that in the special case where the symbols of w are all different from each
other, a set of copies is role-disjoint simply if it consists of disjoint copies. Ron and
Rosin prove [33, Theorem3.4+Claim3.1] that�(T , w) equals themaximumnumber
of role-disjoint copies of w in T , divided by n.

Note that the analysis of the sample complexity of one-sided error sample-based
testing of subsequence-freeness translates to bounding the size of the sample that is
sufficient and necessary for ensuring that the sample contains evidence that T is not
w-free when �(T , w) > ε. Here evidence is in the form of a copy of w in the sample,
so that the testing algorithm simply checks whether such a copy exists. On the other
hand, the question of distance-approximation has a more algorithmic flavor, as it is
not determined by the problem what must be done by the algorithm given a sample.

Focusing first on the uniform case, Ron and Rosin used their characterization (more
precisely, the direction by which if �(T , w) > ε, then T contains more than εn role-
disjoint copies of w), to prove that a sample of size �(k/ε) contains at least one
copy of w with probability at least 2/3. In this work, we go further by designing an
algorithm that actually approximates the number of role-disjoint copies ofw in T (and
hence approximates �(T , w)), given a uniformly selected sample from T . It is worth
noting that the probability of obtaining a copy in the sample might be quite different
for texts that have exactly the same number of role-disjoint copies of w (and hence
the same distance to being w-free).5

In the next subsection we discuss the aforementioned algorithm (for the uniform
case), and in the following one address the distribution-free case. As can be seen from
this discussion, whilewe rely on structural results presented in [33], themain focus and
contribution of our work is in designing and analyzing new sublinear sample-based
approximation algorithms that exploit these results.

1.2.1 The Uniform Case

Let R(T , w) denote the number of role-disjoint copies of w in T . In a nutshell, the
algorithm works by computing estimates of the numbers of occurrences of symbols of
w in a relatively small number of prefixes of T , and using them to derive an estimate
of R(T , w). The more precise description of the algorithm and its analysis are based
on several combinatorial claims that we present and which we discuss shortly next.

Let R j
i (T , w) denote the number of role-disjoint copies of the length-i prefix of w,

w1 . . . wi , in the length- j prefix of T , t1 . . . t j , and let N j
i (T , w) denote the number

of occurrences of the symbol wi in t1 . . . t j . In our first combinatorial claim, we show

that for every i ∈ [k] and j ∈ [n], the value of R j
i (T , w) can be expressed in terms

of the values of N j ′
i (T , w) for j ′ ∈ [j] (in particular, N j

i (T , w)) and the values of

R j ′−1
i−1 (T , w) for j ′ ∈ [j]. In other words, we establish a recursive expression which

implies that if we know what are R j ′−1
i−1 (T , w) and N j ′

i (T , w) for every j ′ ∈ [j], then
we can compute R j

i (T , w) (and as an end result, compute R(T , w) = Rn
k (T , w)).

5 For example, consider the word w for which wi = i , T1 = wn/k and T2 = 1n/k . . . kn/k (where for a
subsequence α and an integer x , we use αx to denote the sequence that consists of x repetitions of α).

123

Algorithmica

In our second combinatorial claim we show that if we only want an approximation
of R(T , w), then it suffices to define (also in a recursive manner) a measure that
depends on the values of N j

i (T , w) for every i ∈ [k] but only for a relatively small
number of choices of j , which are evenly spaced. To be precise, each such j belongs
to the set J = {r · γ n}1/γr=1 for γ = �(δ/k). We prove that since each interval of
integers6 [(r − 1)γ n + 1, rγ n] is of size γ n for this choice of γ , we can ensure that
the aforementionedmeasure (which uses only j ∈ J) approximates R(T , w) to within
O(δn).

We then prove that if we replace each N j
i (T , w) for these choices of j (and for

every i ∈ [k]) by a sufficiently good estimate, then we incur a bounded error in
the approximation of R(T , w). Finally, such estimates are obtained using (uniform)
sampling, with a sample of size Õ(k2/δ2).

1.2.2 The Distribution-Free Case

In [33, Sec. 4] it is shown that, given a word w, a text T and a distribution p, it
is possible to define a word w̃ and a text ˜T for which the following holds. First,
�(T , w, p) is closely related to�(˜T , w̃). Second, the probability of observing a copy
of w in a sample selected from T according to p is closely related to the probability
of observing a copy of w̃ in a sample selected uniformly from ˜T .

We use the first relation stated above (i.e., between �(T , w, p) and �(˜T , w̃)).
However, since we are interested in distance-approximation rather than one-sided
error testing, the second relation stated above (between the probability of observing a
copy of w in T and that of observing a copy of w̃ in ˜T) is not sufficient for our needs,
and we need to take a different (once again, more algorithmic) path, as we explain
shortly next.

Ideally,wewould have liked to sample uniformly from˜T , and then run the algorithm
discussed in the previous subsection using this sample (and w̃). However, we only have
sampling access to T according to the underlying distribution p, and we do not have
direct sampling access to uniform samples from ˜T . Furthermore, since ˜T is defined
based on (the unknown) p, it is not clear how to determine the aforementioned subset
of (evenly spaced) indices J .

For the sake of clarity,we continue the current expositionwhilemaking two assump-
tions. The first is that the distribution p is such that there exists a value β, such that
p j/β is an integer for every j ∈ [n] (the value of β need not be known). The sec-
ond is that in w there are no two consecutive symbols that are the same. Under these
assumptions, ˜T = t p1/β1 . . . t pn/βn , w̃ = w, and �(˜T , w̃) = �(T , w, p) (where t xj for
an integer x is the subsequence that consists of x repetitions of t j).

Our algorithm for the distribution-free case (working under the aforementioned
assumptions), starts by taking a sample distributed according to p and using it to select
a (relatively small) subset of indices in [n]. Denoting these indices by b0, b1, . . . , b�,
where b0 = 0 < b1 < · · · < b�−1 < b� = n, we would have liked to ensure that the
weight according to p of each interval [bu−1 + 1, bu] is approximately the same (as is

6 For two integers x ≤ y, we use [x, y] to denote the subset of consecutive integers (interval) { j : x ≤ j ≤
y}.

123

Algorithmica

the case when considering the intervals defined by the subset J in the uniform case).
To be precise, we would have liked each interval to have relatively small weight, while
the total number of intervals is not too large. However, since it is possible that for some
single index j ∈ [n], the probability p j is large, we also allow intervals with large
weight, where these intervals consist of a single index (and there are few of them).

The algorithm next takes an additional sample, to approximate, for each i ∈ [k] and
u ∈ [�], the weight, according to p, of the occurrences of the symbol wi in the length-
bu prefix of T . Observe that prefixes of T correspond to prefixes of ˜T . Furthermore,
the weight according to p of occurrences of symbols in such prefixes, translates to
numbers of occurrences of symbols in the corresponding prefixes in ˜T , normalized by
the length of ˜T . The algorithm then uses these approximations to obtain an estimate
of �(˜T , w̃).

We note that some pairs of consecutive prefixes in ˜T might be far apart, as opposed
to what we had in the algorithm for the uniform case described in Sect. 1.2.1. However,
this is always due to single-index intervals in T (for j such that p j is large). Each such
interval corresponds to a consecutive subsequence in ˜T with repetitions of the same
symbol, and we show that no additional error is incurred because of such intervals.

1.3 Related Results

As we have previously mentioned, the work most closely related to ours is that of Ron
and Rosin on distribution-free sample-based testing of subsequence-freeness [33]. For
other related results on property testing (e.g., testing other properties of sequences,
sample-based testing of other types of properties and distribution-free testing (possibly
with queries)), see the introduction of [33], and in particular Sect. 1.4.7 For another line
of work, on sublinear approximation of the longest increasing subsequence, see [29]
and references within. Here we shortly discuss related results on distance approxima-
tion / tolerant testing.

As already noted, distance approximation and tolerant testing were first formally
defined in [31], and were shown to be significantly harder for some properties in [3,
13, 19, 22, 32]. Almost all previous results are query-based, and where the dis-
tance measure is with respect to the uniform distribution. These include [1, 7, 11,
17, 18, 20, 23, 25, 27, 28, 30]. Kopparty and Saraf [26] present results for query-
based tolerant testing of linearity under several families of distributions. Berman,
Raskhodnikova andYaroslavtsev [5] give tolerant (query based) L p-testing algorithms
for monotonicity. Berman, Murzbulatov and Raskhodnikova [4] give a sample-based
distance-approximation algorithms for image properties that work under the uniform
distribution.

Canonne et al. [12] study the property of k-monotonicity of Boolean functions over
various posets. A Boolean function over a finite poset domain D is k-monotone if it
alternates between the values 0 and 1 at most k times on any ascending chain in D. For
the special case of D = [n], the property of k-monotonicity is equivalent to being free
of w of length k + 2 where w1 ∈ {0, 1} and wi = 1 − wi−1 for every i ∈ [2, k + 2].

7 An additional related work, which was not cited in [33] is [16].

123

Algorithmica

One of the results in [12] implies an upper bound of ˜O
(

k
δ3

)

on the sample complexity

of distance-approximation for k-monotonicity of functions f : [n] → {0, 1} under
the uniform distribution (and hence for w-freeness when w is a binary subsequence
of a specific form). This result generalizes to k-monotonicity in higher dimensions (at
an exponential cost in the dimension d).

Blum and Hu [9] study distance-approximation for k-interval (Boolean) functions
over the line in the distribution-free active setting. In this setting, an algorithm gets
an unlabeled sample from the domain of the function, and asks queries on a subset of
sample points. Focusing on the sample complexity, they show that for any underlying

distribution p on the line, a sample of size ˜O
(

k
δ2

)

is sufficient for approximating

the distance to being a k-interval function up to an additive error of δ. This implies a
sample-based distribution-free distance-approximation algorithm with the same sam-
ple complexity for the special case of being free of the same pair of w’s described in
the previous paragraph, replacing k + 2 by k + 1.

Blais, Ferreira Pinto Jr. and Harms [8] introduce a variant of the VC-dimension and
use it to prove lower and upper bounds on the sample complexity of distribution-free
testing for a variety of properties. In particular, one of their results implies that the
linear dependence on k in the result of [9] is essentially optimal.

Finally, we mention that our procedure in the distribution-free case for constructing
“almost-equal-weight” intervals by sampling is somewhat reminiscent of techniques
used in other contexts of testing when dealing with non-uniform distributions [6, 10,
24].

1.4 Further Research

The main open problem left by this work is closing the gap between the upper and
lower bounds that we give, and in particular understanding the precise dependence
on k, or possibly other parameters determined by w (such as kd). One step in this
direction can be found in the Master Thesis of the first author [14].

1.5 Organization

In Sect. 2, we present our algorithm for distance-approximation under the uniform
distribution. The algorithm for the distribution-free case appears in Sect. 3. In Sect. 4
we prove our lower bound. In the appendix we provide Chernoff bounds and a few
proofs of technical claims.

2 Distance Approximation Under the UniformDistribution

In this section, we establish Theorem 1.1 for the case in which p is the uniform
distribution over [n]. Namely, we design and analyze a sample-based distance approx-
imation algorithm for the case in which the underlying distribution is uniform, whose

sample complexity is O
(

k2

δ2
· log (k

δ

)

)

. As mentioned in the introduction, Ron and

123

Algorithmica

Rosin showed [33, Thm. 3.4] that �(T , w) (the distance of T from w-freeness under
the uniform distribution), equals the number of role-disjoint copies of w in T , divided
by n = |T | (where role-disjoint copies are as defined in the introduction—see Defini-
tion 1.1 in Sect. 1.2).

We start with some central notations (some already appeared in the introduction).

Definition 2.1 For T = t1, . . . , tn , we let T [j] = t j for every j ∈ [n]. For every
i ∈ [k] and j ∈ [n], let N j

i (T , w) denote the number of occurrences of the symbol

wi in the length j prefix of T , T [1, j] = T [1] . . . T [j].8 Let R j
i (T , w) denote the

number of role-disjoint copies of the subsequence w1 . . . wi in T [1, j].
Observe that R(T , w) (the total number of role-disjoint copies of w in T) equals
Rn
k (T , w), and that R j

1 (T , w) equals N j
1 (T , w) for every j ∈ [n]. Also note that

R j
i (T , w) ≤ R j

i−1(T , w) for every i ∈ [k] such that i > 1 and every j ∈ [n].
The reason is that for each set of role-disjoint copies of the subsequence w1 . . . wi

in T [1, j], the prefixes of length i − 1 of these copies are role disjoint copies of
w1 . . . wi−1 in T [1, j].

Since, as noted above,�(T , w) = R(T , w)/n, we would like to estimate R(T , w).
More precisely, given δ > 0 we would like to obtain an estimate ̂R, such that:
∣

∣̂R − R(T , w)
∣

∣ ≤ δn. To this end, we first establish two combinatorial claims. The

first claim shows that the value of each R j
i (T , w) can be expressed in terms of the val-

ues of N j ′
i (T , w) for j ′ ∈ [j] (in particular, N j

i (T , w)) and the values of R j ′−1
i−1 (T , w)

for j ′ ∈ [j]. In other words, if we know what are R j ′−1
i−1 (T , w) and N j ′

i (T , w) for

every j ′ ∈ [j], then we can compute R j
i (T , w).

Claim 2.1 For every i ∈ {2, . . . , k} and j ∈ [n],

R j
i (T , w) = N j

i (T , w) − max
j ′∈[j]

{

N j ′
i (T , w) − R j ′−1

i−1 (T , w)
}

. (2.1)

Clearly, R j
i (T , w) ≤ N j

i (T , w) (for every i ∈ {2, . . . , k} and j ∈ [n]), since each
role-disjoint copy of w1 . . . wi in T [1, j] must end with a distinct occurrence of wi in
T [1, j]. Claim 2.1 states by exactly how much is R j

i (T , w) smaller than N j
i (T , w).

The expression max j ′∈[j]
{

N j ′
i (T , w) − R j ′−1

i−1 (T , w)
}

accounts for the number of

occurrences of wi in T [1, j] that cannot be used in role-disjoint copies of w1 . . . wi

in T [1, j].
Proof For simplicity (in terms of notation), we prove the claim for the case that i = k
and j = n. The proof for general i ∈ {2, . . . , k} and j ∈ [n] is essentially the same
up to renaming of indices. Since T and w are fixed throughout the proof, we use the
shorthand N j

i for N j
i (T , w) and R j

i for R j
i (T , w).

For the sake of the analysis, we start by describing a simple greedy procedure, that
constructs a set of role-disjoint copies of w in T . It follows from [33, Claim 3.5] and

8 Indeed, if wi = wi ′ for i �= i ′, then N j
i (T , w) = N j

i ′ (T , w) for every j .

123

Algorithmica

a simple inductive argument, that the size of this set, denoted R, is maximum. That is,
R = Rn

k (for details see Appendix B).
Every copy Cm , for m ∈ [R] is an array of size k whose values are monotonically

increasing, where for every i ∈ [k] we have that Cm[i] ∈ [n], and T [Cm[i]] = wi .
Furthermore, for every i ∈ [k] the indices C1[i], . . . ,CR[i] are distinct. For every
m = 1, . . . , R and i = 1, . . . , k, the procedure scans T , starting from T [Cm[i−1]+1]
(where we define Cm[0] to be 0) and ending at T [n] until it finds the first index j such
that T [j] = wi and j /∈ {C1[i], . . . ,Cm−1[i]}. It then setsCm[i] = j . For i > 1we say
in such a case that the procedure matches j to the partial copy Cm[1], . . . ,Cm[i − 1].

For each i ∈ [k], let Gi denote the subset of indices in [n] that correspond to
occurrences of wi in T . That is, Gi = { j ∈ [n] : T [j] = wi }. We also define two
(complementary) subsets of Gi . The first, G

+
i , consists of those indices j ∈ Gi for

which there exists a “greedy copy” (i.e., a copy of w found by the greedy algorithm),
whose i-th symbol occurs in index j of T . The second,G−

i , consists of those indices in
Gi for which there is no such greedy copy. That is, G

+
i = { j ∈ Gi : ∃m,Cm[i] = j}

and G−
i = { j ∈ Gi : �m,Cm[i] = j} (recall that Cm[i] denotes the i-th index in the

m-th greedy copy).
Observe that |Gi | = Nn

i ,
∣

∣G+
i

∣

∣ = Rn
i and |Gi | = ∣

∣G+
i

∣

∣ + ∣∣G−
i

∣

∣. To complete the

proof, we will show that
∣

∣G−
i

∣

∣ = max j∈[n]
{

N j
i − R j−1

i−1

}

.

Let j∗ be an index j thatmaximizes
{

N j
i − R j−1

i−1

}

. In the interval [j∗]we have N j∗
i

occurrences ofwi , and in the interval [j∗ −1]we only have R j∗−1
i−1 role-disjoint copies

of w1 . . . wi−1. This implies that in the interval [j∗] there are at least N j∗
i − R j∗−1

i−1
occurrences of wi that cannot be the i-th index of any greedy copy, and so we have

∣

∣G−
i

∣

∣ ≥ N j∗
i − R j∗−1

i−1 = max
j∈[n]

{

N j
i − R j−1

i−1

}

. (2.2)

On the other hand, denote by j∗∗ the largest index inG−
i . Since each index j ∈ [j∗∗]

such that T [j] = wi is either the i-th element of some copy or is not the i-th element of
any copy, N j∗∗

i = R j∗∗−1
i +∣∣G−

i

∣

∣.We claim that R j∗∗−1
i = R j∗∗−1

i−1 . As noted following

Definition 2.1, R j∗∗−1
i ≤ R j∗∗−1

i−1 , and hence it remains to verify that R j∗∗−1
i is not

strictly smaller than R j∗∗−1
i−1 . Assume, contrary to this claim, that R j∗∗−1

i < R j∗∗−1
i−1 .

But then, the index j∗∗, which belongs to Gi , would have to be the i-th element of a
greedy copy, in contradiction to the fact that j∗∗ ∈ G−

i . Hence,

∣

∣G−
i

∣

∣ = N j∗∗
i − R j∗∗−1

i−1 ≤ max
j∈[n]

{

N j
i − R j−1

i−1

}

. (2.3)

In conclusion,
∣

∣G−
i

∣

∣ = max
j∈[n]

{

N j
i − R j−1

i−1

}

, (2.4)

and the claim follows.
�

123

Algorithmica

In order to state our next combinatorial claim,wefirst introduce onemore definition,
which will play a central role in obtaining an estimate for R(T , w) (the number of
role-disjoint copies of w in T).

Definition 2.2 For � ≤ n, let N be a k × � matrix of non-negative numbers, where
we use N r

i to denote N [i][r]. For every r ∈ [�], let Mr
1(N) = N r

1 , and for every
i ∈ {2, . . . , k}, let

Mr
i (N)

def= N r
i − max

r ′∈[r]

{

N r ′
i − Mr ′

i−1(N)
}

. (2.5)

When i = k and r = �, we use the shorthand M(N) for M�
k (N).

Consider letting � = n, and determining the k × n matrix N in Definition 2.2 by
setting N [i][r] = Nr

i (T , w) (the number of occurrences of wi in T [1, r]) for each
i ∈ [k] and r ∈ [n]. Then the recursive definition ofMr

i (N) in Eq. (2.5) for this setting
ofN , almost coincides with Eq. (2.1) in Claim 2.1 for Rr

i (T , w) (the number of role-
disjoint copies of w1 . . . wi in T [1, r]). Indeed, if the maximum on the right hand side
of Eq. (2.5) would be over N r ′

i − Mr ′−1
i−1 (N) rather than over N r ′

i − Mr ′
i−1(N), then

we would get that Mr
i (N) equals Rr

i (T , w) for every i ∈ [k] and r ∈ [n], and in
particular M(N) would equal R(T , w).

In our second combinatorial claim, we show that for an appropriate choice of a

matrix N , whose entries are only a subset of all values in
{

N j
i (T , w)

} j∈[n]
i∈[k] , we can

bound the difference between M(N) and R(T , w). We later apply sampling to obtain
an estimated version of N and use this estimated version to obtain an estimate of
R(T , w) by combining Claim 2.2 and Definition 2.2.

Claim 2.2 Let J = { j0, j1, . . . , j�} be a set of indices satisfying j0 = 0 < j1 < j2 <

· · · < j� = n. LetN = N (J , T , w) be thematrixwhose entries areN r
i = N jr

i (T , w),
for every i ∈ [k] and r ∈ [�]. Then we have

|M(N) − R(T , w)| ≤ (k − 1) · max
τ∈[�] { jτ − jτ−1} .

Proof Recall that M(N) = M�
k (N) and R(T , w) = R j�

k (T , w). We shall prove

that for every i ∈ [k] and for every r ∈ [�],
∣

∣

∣Mr
i (N) − R jr

i (T , w)

∣

∣

∣ ≤ (i − 1) ·
maxτ∈[r] { jτ − jτ−1}. We prove this by induction on i .
For i = 1 and every r ∈ [�],

∣

∣

∣Mr
1(N) − R jr

1 (T , w)

∣

∣

∣ =
∣

∣

∣N
jr
1 (T , w) − N jr

1 (T , w)

∣

∣

∣

= 0 ≤ (1 − 1) · max
τ∈[1] { jτ − jτ−1} , (2.6)

where the first equality follows from the setting of N and the definitions of Mr
1(N)

and R jr
1 (T , w).

123

Algorithmica

For the induction step, we assume the claim holds for i − 1 ≥ 1 (and every r ∈ [�])
and prove it for i . We have,

Mr
i (N) − R jr

i (T , w)

= N jr
i (T , w) − max

b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− R jr
i (T , w) (2.7)

= max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

− max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

, (2.8)

where Eq. (2.7) follows from the setting of N and the definition of Mr
i (N), and

Eq. (2.8) is implied by Claim 2.1. Denote by j∗ an index j ∈ [jr] that maximizes the
first max term and let b∗ be the largest index such that jb∗ ≤ j∗. We have:

max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

− max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

≤ N j∗
i (T , w) − R j∗−1

i−1 (T , w) − N
jb∗
i (T , w) + Mb∗

i−1(N)

= N j∗
i (T , w) + R

jb∗
i−1(T , w) − R

jb∗
i−1(T , w) − R j∗−1

i−1 (T , w)

−N
jb∗
i (T .w) + Mb∗

i−1(N)

=
(

Mb∗
i−1(N) − R

jb∗
i−1(T , w)

)

+
(

N j∗
i (T , w) − N

jb∗
i (T , w)

)

+
(

R
jb∗
i−1(T , w) − R j∗−1

i−1 (T , w)
)

≤ (i − 2) max
τ∈[b∗] { jτ − jτ−1} + (j∗ − jb∗

)+ (jb∗ − (j∗ − 1)
)

(2.9)

≤(i − 2)max
τ∈[r] { jτ − jτ−1} + 1

≤ (i − 2)max
τ∈[r] { jτ − jτ−1} + max

τ∈[r] { jτ − jτ−1}
= (i − 1)max

τ∈[r] { jτ − jτ−1} , (2.10)

where in Eq. (2.9) we used the induction hypothesis. By combining Eqs. (2.8)
and (2.10), we get that

Mr
i (N) − R jr

i (T , w) ≤ (i − 1)max
τ∈[r] { jτ − jτ−1} . (2.11)

Similarly to Eq. (2.8),

R jr
i (T , w) − Mr

i (N) = max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

. (2.12)

123

Algorithmica

Let b∗∗ be the index b ∈ [r] that maximizes the first max term. We have

max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

≤ N
jb∗∗
i (T , w) − Mb∗∗

i−1(N) − N
jb∗∗
i (T , w) + R

jb∗∗−1
i−1 (T , w)

=R
jb∗∗
i−1 (T , w) − Mb∗∗

i−1(N) ≤
∣

∣

∣R
jb∗∗
i−1 (T , w) − Mb∗∗

i−1(N)

∣

∣

∣

≤ (i − 2)max
τ∈[r] { jτ − jτ−1} ≤ (i − 1)max

τ∈[r] { jτ − jτ−1} . (2.13)

Hence (combining Eqs. (2.12) and (2.13)),9

R jr
i (T , w) − Mr

i (N) ≤ (i − 1)max
τ∈[r] { jτ − jτ−1} . (2.14)

Together, Eqs. (2.11) and (2.14) give us that

∣

∣

∣Mr
i (N) − R jr

i (T , w)

∣

∣

∣ ≤ (i − 1)max
τ∈[r] { jτ − jτ−1} , (2.15)

and the proof is completed.
�

In our next claim, we bound the difference between M(A) and M(D) for any two
matricesA andD (with dimensions k×�), given a bound on the L∞ distance between
them. We later apply this claim with D = N for N as defined in Claim 2.2, and A
being a matrix that contains estimates of N jr

i (T , w). We discuss how to obtain such a
matrix A in Claim 2.4.

Claim 2.3 Let γ ∈ (0, 1), and let A and D be two k × � matrices. If for every i ∈ [k]
and r ∈ [�],

∣

∣Ar
i − Dr

i

∣

∣ ≤ γ n ,

then
|M(A) − M(D)| ≤ (2k − 1)γ n .

Proof We prove that, given the premise of the claim, for every t ∈ [k] and for every
r ∈ [�], ∣∣Mr

t (A) − Mr
t (D)

∣

∣ ≤ (2t − 1)γ n. We prove this by induction on t .
For t = 1 and every r ∈ [�], we have

∣

∣Mr
1(A) − Mr

1(D)
∣

∣ = ∣

∣Ar
1 − Dr

1

∣

∣ ≤ γ n . (2.16)

9 It actually holds that Mr
i (N) ≥ R jr

i (T , w), so that R jr
i (T , w) − Mr

i (N) ≤ 0, but for the sake of

simplicity of the inductive argument, we prove the same upper bound on R jr
i (T , w) − Mr

i (N) as on

Mr
i (N) − R jr

i (T , w).

123

Algorithmica

Now assume the claim is true for t − 1 ≥ 1 and for every r ∈ [�], and we prove it for
t . For any r ∈ [�], by the definition of Mr

t (·),
∣

∣Mr
t (A) − Mr

t (D)
∣

∣

=
∣

∣

∣

∣

Ar
t − max

r ′∈[r]

{

Ar ′
t − Mr ′

t−1(A)
}

− Dr
t + max

r ′′∈[r]

{

Dr ′′
t − Mr ′′

t−1(D)
}

∣

∣

∣

∣

≤ γ n +
∣

∣

∣

∣

max
r ′′∈[r]

{

Dr ′′
t − Mr ′′

t−1(D)
}

− max
r ′∈[r]

{

Ar ′
t − Mr ′

t−1(A)
}

∣

∣

∣

∣

, (2.17)

where in the last inequality we used the premise of the claim.
Assume that the first max term in Eq. (2.17) is at least as large as the second (the

case that the second term is larger than the first is handled analogously), and let r∗ be
the index that maximizes the first max term.

Then,

∣

∣

∣

∣

max
r ′′∈[r]

{

Dr ′′
t − Mr ′′

t−1(D)
}

− max
r ′∈[r]

{

Ar ′
t − Mr ′

t−1(A)
}

∣

∣

∣

∣

≤
∣

∣

∣

(

Dr∗
t − Ar∗

t

)

+
(

Mr∗
t−1(A) − Mr∗

t−1(D)
)∣

∣

∣

≤
∣

∣

∣Dr∗
t − Ar∗

t

∣

∣

∣+
∣

∣

∣Mr∗
t−1(A) − Mr∗

t−1(D)

∣

∣

∣

≤ γ n + (2t − 3)γ n = (2t − 2)γ n, (2.18)

where we used the premise of the claim once again, and the induction hypothesis. The
claim follows by combining Eqs. (2.17) with (2.18).
�

The next claim states that we can obtain good estimates for all values in
{

N jr
i (T , w)

}r∈[�]
i∈[k] (with a sufficiently large sample). Its proof is deferred toAppendixB

(the probabilistic analysis is simple and standard, and the running time analysis is tech-
nical).

Claim 2.4 For any γ ∈ (0, 1) and J = { j1, . . . , j�} (such that 1 ≤ j1 < · · · < j� =
n), by taking a sample of size s = O

(

log(k·�)
γ 2 ·

)

from T , we can obtain, with probability

at least 2/3, estimates
{

̂N r
i

}r∈[�]
i∈[k] , such that

∣

∣

∣

̂N r
i − N jr

i (T , w)

∣

∣

∣ ≤ γ n , (2.19)

for every i ∈ [k] and r ∈ [�]. Furthermore, the k · � estimates
{

̂N r
i

}r∈[�]
i∈[k] can be

obtained in time O(k · (log k + �) + s · (log k + log �)).

Before stating and proving our main theorem for distance approximation under the
uniform distribution, we establish one more claim regarding the computation of M(·).
Claim 2.5 For � ≤ n, let N be a k × � matrix of non-negative numbers. Then M(N)

can be computed in time O(k · �).

123

Algorithmica

Proof Considering Definition 2.2, we first set Mr
1(N) to N r

1 for each r ∈ [�] (taking
time O(�)). For i = 2 to k, we compute Mr

i (N) for every r ∈ [�] using Eq. (2.5) in
Definition 2.2, so that when i = k and r = � we get M(N) = M�

k (N). At first glance

it seems that, according to Eq. (2.5), computing each Mr
i (N) (given Mr ′

i−1(N) for all
r ′ ≤ r) takes time linear in r (since we need to compute a maximum over r values).
This would give a total running time of O(k�2).

However, it is actually possible to compute Mr
i (N) for any i > 1 and all r ∈

[�] (given Mr
i−1(N) for all r ∈ [�]), in time O(�). To verify this, let Xr

i (N) =
maxr ′≤r {N r ′

i − Mr ′
i (N)}, so that Mr

i (N) = N r
i − Xr

i (N). Observe that for any
r > 1, we have that Xr

i (N) = max{Xr−1
i (N),N r

i − Mr
i (N)}. Therefore, for any

i > 1, we can compute M1
i (N), . . . , M�

i (N) one after the other, in time O(�), giving
a total running time of O(k · �) to compute M(N) = M�

k (N).
�
Theorem 2.1 There exists a sample-based distance-approximation algorithm for
subsequence-freeness under the uniform distribution, that, for any subsequence w

of length k, takes a sample of size O
(

k2

δ2
· log (k

δ

)

)

and outputs an estimate ̂� such

that |̂� − �(T , w)| ≤ δ with probability at least 2/3.10 The running time of the

algorithm is O
(

k2

δ2
· log2 (k

δ

)

)

.

Proof The algorithm performs the following steps.

1. Set γ = δ/(3k) and J = {r · γ n}�r=1 for � = 1/γ .
2. Apply Claim 2.4 with the above setting of γ and J to obtain the estimates

{

̂N r
i

}

for every i ∈ [k] and r ∈ [�]. Let ̂N be the k×�matrix defined by ̂N [i][r] = ̂N r
i .

3. Compute M(̂N) following Definition 2.2 (as described in the proof of Claim 2.5).
4. Output ̂� = M(̂N)/n.

The sample complexity of the algorithm follows from Claim 2.4, and the running time
from Claim 2.4 and Claim 2.5, together with the setting of γ and �.

It remains to verify that̂� is as stated in the theorem. ByClaim 2.4, with probability
at least 2/3, every estimate ̂N r

i satisfies Eq. (2.19). We henceforth condition on this
event.

If we take A = ̂N and D = N for N as defined in Claim 2.2, then the premise of
Claim 2.3 holds. We can therefore apply Claim 2.3, and get that

∣

∣M(̂N) − M(N)
∣

∣ ≤
(2k − 1)γ n. By Claim 2.2 and the definition of J ,

∣

∣

∣M(N) − R(T , w)

∣

∣

∣ ≤ (k − 1)γ n.

Hence, by the triangle inequality,

∣

∣M(̂N) − R(T , w)
∣

∣ ≤ ∣∣M(̂N) − M(N)
∣

∣+
∣

∣

∣M(N) − R(T , w)

∣

∣

∣ (2.20)

≤ (2k − 1)γ n + (k − 1)γ n = (3k − 2)γ n ≤ δn.

(2.21)

Since ̂� = M(̂N)/n and R(T , w)/n = �(T , w), the theorem follows.
�
10 As usual, we can increase the success probability to 1 − η, for any η > 0 at a multiplicative cost of
O(log(1/η)) in the sample complexity.

123

Algorithmica

3 Distribution-Free Distance Approximation

As noted in the introduction, our algorithm for approximating the distance from
subsequence-freeness under a general distribution p works by reducing the problem
to approximating the distance from subsequence-freeness under the uniform distribu-
tion. However, we won’t be able to use the algorithm presented in Sect. 2 as is. There
are two main obstacles, explained shortly next. In the reduction, given a word w and
access to samples from a text T , distributed according to p, we define a word w̃ and
a text ˜T such that if we can obtain a good approximation of �(˜T , w̃) then we get a
good approximation of �(T , w, p). (Recall that �(T , w, p) denotes the distance of
T from being w-free under the distribution p.) However, first, we don’t actually have
direct access to uniformly distributed samples from ˜T , and second, we cannot work
with a set J of indices that induce equally sized intervals (of a bounded size), as we
did in Sect. 2.

We address these challenges (as well as precisely define ˜T and w̃) in several stages.
We start, in Sects. 3.1 and 3.2, by using sampling according to p, in order to construct
intervals in T that have certain properties (with sufficiently high probability). The role
of these intervals will become clear in the subsections that follow.

3.1 Interval Construction and Classification

We begin this subsection by defining intervals of integers in [n] that are determined
by p (which is unknown to the algorithm). We then construct intervals by sampling
from p, where the latter intervals are in a sense approximations of the former (this
will be formalized subsequently). Each constructed interval will be classified as either
“heavy” or “light”, depending on its (approximated) weight according to p. Ideally,
we would have liked all intervals to be light, but not too light, so that their number
won’t be too large (as was the case when we worked under the uniform distribution
and simply defined intervals of equal size). However, for a general distribution p we
might have single indices j ∈ [n] for which p j is large, and hence we also need to
allow heavy intervals (each consisting of a single index). We shall make use of the
following two definitions.

Definition 3.1 For any two integers j1 ≤ j2, let [j1, j2] denote the interval of integers
{ j1, j1 + 1, . . . , j2}. For every j1, j2 ∈ [n], define

wt p([j1, j2]) def=
j2
∑

j= j1

p j

to be the weight of the interval [j1, j2] according to p. We use the shorthand wt p(j)
for wt p([j, j]).

123

Algorithmica

Definition 3.2 Let S be a multiset of size s, with elements from [n]. For every j ∈ [n],
let NS(j) be the number of elements in S that equal j . For every j1, j2 ∈ [n], define

wtS([j1, j2]) def= 1

s

j2
∑

j= j1

NS(j)

to be the estimated weight of the interval [j1, j2] according to S. We use the shorthand
wtS(j) for wtS([j, j]).

In the next definition, and the remainder of this section, we use

z = 100k

δ
. (3.1)

We next define the aforementioned set of intervals, based on p. Roughly speaking,
we try to make the intervals as equally weighted as possible, keeping in mind that
some indices might have a large weight, so we assign each to an interval of its own.

Definition 3.3 Define a sequence of indices in the following iterative manner. Let
h0 = 0 and for � = 1, 2, . . . , as long as h�−1 < n, let h� be defined as follows.
If wt p(h�−1 + 1) > 1

8z , then h� = h�−1 + 1. Otherwise, let h� be the maximum

index h′
� ∈ [h�−1 + 1, n] such that wt p([h�−1 + 1, h′

�]) ≤ 1
4z and for every h′′

� ∈
[h�−1 + 1, h′

�], wt p(h′′
�) ≤ 1

8z . Let L be such that hL = n.
Based on the indices {h�}L�=0 defined above, for every � ∈ [L], let H� = [h�−1 +

1, h�] and letH = {H�}L�=1. We partitionH into three subsets as follows. LetHsin be
the subset of all H ∈ H such that |H | = 1 and wt p(H) > 1

8z . Let Hmed be the set

of all H ∈ H such that |H | �= 1 and 1
8z ≤ wt p(H) ≤ 1

4z . Let Hsml be the set of all

H ∈ H such that wt p(H) < 1
8z .

Observe that sincewt p(T) = 1,wehave that |Hsin∪Hmed | ≤ 8z. In addition,we claim
that |Hsml | ≤ 8z + 1. To verify this, consider any pair of intervals H ′, H ′′ ∈ Hsml ,
where H ′ = [h�(H ′)−1+1, h�(H ′)], H ′′ = [h�(H ′′)−1+1, h�(H ′′)], and �(H ′) < �(H ′′).
Given the process by which the indices {h�}L�=0 are selected and the definition of
Hsml and Hsin , there has to be at least one H ∈ Hsin between H ′ and H ′′ (i.e.,
H = [h�(H)−1 + 1, h�(H)] where �(H ′) < �(H) < �(H ′′)).

By its definition,H is determined by p. We next construct a set of intervals B based
on sampling according to p (in a similar, but not identical, fashion to Definition 3.3).
Consider a sample S1 of size s1 selected from [n] according to p (with repetitions),
where s1 will be set subsequently.

Definition 3.4 Given a sample S1 (multiset of elements in [n]) of size s1, determine a
sequence of indices in the following iterativemanner. Let b0 = 0 and for u = 1, 2, . . . ,
as long as bu−1 < n, let bu be defined as follows. If wtS1(bu−1 + 1) > 1/z, then
bu = bu−1 + 1. Otherwise, let bu be the maximum index b′

u ∈ [bu−1 + 1, n] such that
wtS1([bu−1 + 1, b′

u]) ≤ 1
z . Let y be such that by = n.

123

Algorithmica

Based on the indices {bu}yu=0 defined above, for every u ∈ [y], let Bu = [bu−1 +
1, bu], and let B = {Bu}yu=1. For every u ∈ [y], if wtS1(Bu) > 1

z , then we say that Bu

is heavy, otherwise it is light.

Observe that each heavy interval consists of a single element and that y = O(z) =
O(k/δ).

In order to relate betweenH and B, we introduce the following event, based on the
sample S1.

Definition 3.5 Denote by E1 the event where

∀H ∈ Hsin ∪ Hmed , wtS1(H) ≥ 1

2
wt p(H) .

Claim 3.1 If the size of the sample S1 is s1 ≥ 100z log(40z) then

Pr [E1] ≥ 4

5
,

where the probability is over the choice of S1.

Proof Recall that wt p(H) ≥ 1
8z for every H ∈ Hsin ∪Hmed . Using the multiplicative

Chernoff bound (see Theorem A.1) we get that for every H ∈ Hsin ∪ Hmed ,

Pr

[

wtS1(H) <
1

2
wt p(H)

]

< exp

(

− 1

12
wt p(H)s1

)

<
1

40z
. (3.2)

Using a union bound over all H ∈ Hmed∪Hsml (recall that by the discussion following
Definition 3.3, |Hsin ∪ Hmed | ≤ 8z), we get

Pr[E1] ≥ 1 − 8z · 1

40z
≥ 4

5
, (3.3)

and the claim is established.
�
Claim 3.2 Conditioned on the event E1, for every u ∈ [y] such that Bu is light,
wt p(Bu) < 5

z .

Proof Consider an interval Bu that is light. Let H(Bu) = {H ∈ H : H ⊆ Bu}, and
H′(Bu) = {H ∈ H\H(Bu) : H ∩ Bu �= ∅}, so that

⋃

H∈H(Bu)

H ⊆ Bu ⊆
⋃

H∈H(Bu)∪H′(Bu)
H . (3.4)

Observe that |H′(Bu)| ≤ 2 (because Bu is an interval) and that for each H ∈ H′(Bu)

we have that H ∈ Hmed ∪ Hsml (because for every H ∈ Hsin it holds that |H | = 1
implying that either H ⊆ Bu or H ∩ Bu = ∅). Let Hsin(Bu) = H(Bu) ∩ Hsin , and
define Hmed(Bu) and Hsml(Bu) analogously.

123

Algorithmica

Conditioned on E1 (Definition 3.5), we have that wtS1(H) ≥ 1
2wt p(H) for every

H ∈ Hsin , and sincewt p(H) ≥ 1
8z for every H ∈ Hsin , we get thatwtS1(H) ≥ 1

16z for

every H ∈ Hsin(Bu). Since Bu is light, wtS1(Bu) ≤ 1
z , implying that |Hsin(Bu)| ≤ 16.

As mentioned before, there has to be at least one interval H ∈ Hsin between any pair
of intervals H ′, H ′′ ∈ Hsml , implying that |Hsml(Bu)| ≤ |Hsin(Bu)| + 2 ≤ 18.
Therefore (recalling that wt p(H) ≤ 1

4z for every H ∈ Hmed and wt p(H) ≤ 1
8z for

every H ∈ Hsml),

wt p(Bu) ≤
∑

H∈H(Bu)

wt p(H) +
∑

H∈H′(Bu)
wt p(H) (3.5)

=
∑

H∈Hsin(Bu)∪Hmed (Bu)

wt p(H) +
∑

H∈Hsml (Bu)

wt p(H) +
∑

H∈H′(Bu)
wt p(H)

(3.6)

≤ 2
∑

H∈Hsin(Bu)∪Hmed (Bu)

wtS1(H) + |Hsml(Bu)| · 1

8z
+ 2 · 1

4z
(3.7)

≤ 2wtS1(Bu) + 18

8z
+ 1

2z
(3.8)

≤ 2

z
+ 11

4z
<

5

z
, (3.9)

and the claim follows.
�

3.2 Estimation of Symbol Density andWeight of Intervals

In this subsection we estimate the weight, according to p, of every interval [bu] for
u ∈ [y], as well as its symbol density, focusing on symbols that occur in w. Note that
[bu] is the union of the intervals B1, . . . , Bu . We first introduce some notations.

Definition 3.6 For anywordw∗, textT ∗, i ∈ [|w∗|] and j ∈ [|T ∗|], let I ji (T ∗, w∗) = 1
if T ∗[j] = w∗

i and 0 otherwise.

Definition 3.7 Let w∗ be a word of length k∗, T ∗ a text of length n∗, p∗ a distribution
over [n∗], and b∗

0 = 0 < b∗
1 < · · · < b∗

y∗ = n a sequence of indices. For each i ∈ [k∗]
and u ∈ [y∗], define the following density measure:

ξui

(

T ∗, w∗, p∗, {b∗
r }y

∗
r=1

)

=
∑

j∈[b∗
u]
I ji (T ∗, w∗)p∗

j . (3.10)

Namely, ξui

(

T ∗, w∗, p∗, {b∗
r }y

∗
r=1

)

is the weight, according to p∗, of those indices in
the interval [b∗

u], where w∗
i appears in T ∗ (i.e., j ∈ [b∗

u] such that T ∗[j] = w∗
i).

When T ∗ = T , w∗ = w, p∗ = p, and {b∗
r }y

∗
r=1 = {br }yr=1 are as determined

in Definition 3.4 (based on a sample S1 selected according to p), we shall use the
shorthand

ξui = ξui
(

T , w, p, {br }yr=1

)

, (3.11)

123

Algorithmica

for the “original” density measure.We later apply the definition of the density measure
ξui (·, ·, ·, ·) to other texts, words, distributions and sequence of indices (endpoints of
intervals).

Definition 3.8 Let S2 be a sample of size s2 of pairs (j, t j)with repetitions. For {br }yr=1
as determined in Definition 3.4, and for each i ∈ [k] and u ∈ [y], define the estimator:

ξ̆ui = 1

s2

∑

j∈[bu]
I ji (T , w)NS2(j) . (3.12)

Namely, ξ̆ui is the fraction of sampled indices j in S2 that fall in the interval [bu], and
for which T [j] = wi . Thus, for S2 selected according to p, ξ̆ui is an empirical estimate
of ξui .

Definition 3.9 The event E2 (based on a sample S2) is defined as follows. For every
i ∈ [k] and u ∈ [y],

∣

∣

∣ξ̆
u
i − ξui

∣

∣

∣ ≤ 1

z
, (3.13)

and for every u ∈ [y],
∣

∣wtS2([bu]) − wt p([bu])
∣

∣ ≤ 1

z
. (3.14)

Claim 3.3 If the size of the sample S2 is s2 ≥ z2 log (40ky), then

Pr [E2] ≥ 9

10
,

where the probability is over the choice of S2.

Proof Using the additive Chernoff bound (see Theorem A.1) along with the fact that

E
[

NS2 (j)
s2

I ji (T , w)
]

= I ji (T , w)p j , yields the following.

Pr

[

∣

∣

∣ξ̆
u
i − ξui

∣

∣

∣ >
1

z

]

= Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

1

s2

∑

j∈[bu]
I ji (T , w)NS2(j) −

∑

j∈[bu]
I ji (T , w)p j

∣

∣

∣

∣

∣

∣

>
1

z

⎤

⎦

(3.15)

< 2 exp(−2
1

z2
s2) ≤ 1

20ky
. (3.16)

By applying a union bound over all i ∈ [k] and u ∈ [y], we get that with probability

of at least 19
20 ,
∣

∣

∣ξ̆ui − ξui

∣

∣

∣ ≤ 1
z . Another use of the additive Chernoff bound along with

123

Algorithmica

the fact that E
[

NS2 (j)
s2

]

= p j gives us that

Pr

[

∣

∣wtS2([bu]) − wt p([bu])
∣

∣ >
1

z

]

= Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

1

s2

∑

j∈[bu]
NS2(j) −

∑

j∈[bu]
p j

∣

∣

∣

∣

∣

∣

>
1

z

⎤

⎦

(3.17)

< 2 exp(−2
1

z2
s2) ≤ 1

20y
. (3.18)

Again using a union bound over all u ∈ [y], we get that with probability of at least
19
20 we have

∣

∣wtS2([bu]) − wt p([bu])
∣

∣ ≤ 1
z . One last use of the union bound gives us

that Pr [E2] ≥ 9
10
�

3.3 Reducing fromDistribution-Free to Uniform

In this subsection we give the details for the aforementioned reduction from the
distribution-free case to the uniform case, using the intervals and estimators that were
defined in the previous subsections. We start by providing three definitions, taken
from [33], which will be used in the reduction. The first two definitions are for the
notion of splitting (variants of this notion were also used in previous works, e.g., [15]).

Definition 3.10 For a text T = t1 . . . tn , a text ˜T is said to be a splitting of T if
˜T = tα11 . . . tαnn for some α1 . . . αn ∈ N+. We denote by φ the splitting map, which
maps each (index of a) symbol of ˜T to its origin in T . Formally, φ : [|˜T |] → [n] is
defined as follows. For every � ∈ [|˜T |] = [∑n

i=1 αi], let φ(�) be the unique i ∈ [n]
that satisfies

∑i−1
r=1 αr < �≤∑i

r=1 αr .

Note that by this definition, φ is a non-decreasing surjective map, satisfying ˜T [�] =
T [φ(�)] for every � ∈ [|˜T |]. For a set S ⊆ [|˜T |] we let φ(S) = {φ(�) : � ∈ S}.
With a slight abuse of notation, for any i ∈ [n] we use φ−1(i) to denote the set
{

� ∈ [|˜T |] : φ(�) = i
}

, and for a set S ⊆ [n] we let φ−1(S) = {� ∈ [|˜T |] : φ(�) ∈ S
}

Definition 3.11 For a text T = t1 . . . tn and a corresponding probability distribu-
tion p = (p1, . . . , pn), a splitting of (T , p) is a text ˜T along with a corresponding
probability distribution p̂ = (p̂1, . . . , p̂|˜T |), such that ˜T is a splitting of T and
∑

�∈φ−1(i) p̂� = pi for every i ∈ [n].
The third definition is of a set of words, where no two consecutive symbols are the

same.

Definition 3.12 Let Wc = {w : w j+1 �= w j ,∀ j ∈ [k − 1]} .

3.3.1 A Basis for Reducing from Distribution-Free to Uniform

Let w̃ be a word of length˜k and ˜T a text of length ñ. In this subsection we establish
a claim, which gives sufficient conditions on a (normalized version) of an estimation

123

Algorithmica

matrix ̂N , under which it can be used to obtain an estimate of �(˜T , w̃) with a small
additive error.

We first state a claim that is similar to Claim 2.2, with a small, but important
difference, that takes into account intervals in ˜T (determined by a set of indices J)
that consist of repetitions of a single symbol. Since its proof is very similar to the proof
of Claim 2.2, it is deferred to Appendix B. Recall that R(˜T , w̃) denotes the number of
role-disjoint copies of w̃ in ˜T and that M(·) was defined in Definition 2.2. We remind
the reader that M(·) is defined via a recursive formula in a manner similar to what is
shown in Claim 2.1 holds for R(·). As in the proof of Claim 2.2, this similarity allows
us to bound the difference between M(N) and R(˜T , w̃) for an appropriate choice of
N .

Claim 3.4 Let J = { j0, j1, . . . , j�} be a set of indices satisfying j0 = 0 < j1 < j2 <

· · · < j� = ñ. Let N be the matrix whose entries are N r
i = N jr

i (˜T , w̃) for every
i ∈ [˜k] and r ∈ [�]. Let J ′ = {r ∈ [�] : ˜T [jr−1 + 1] = · · · = ˜T [jr]}. Then

∣

∣M(N) − R(˜T , w̃)
∣

∣ ≤ (˜k − 1) · max
r∈[�]\J ′ {(jr − jr−1)} .

The following observation can be easily proved by induction.

Observation 3.5 Let ̂N be a matrix of size˜k × �. Then

1

ñ
M(̂N) = M

(

̂N
ñ

)

. (3.19)

Thenext claimwill serve as the basis for our reduction from thegeneral, distribution-
free case, to the uniform case.

Claim 3.6 Let ̂N be a˜k×�matrix, J = { j0, j1, j2, . . . , j�} be a set of indices satisfying
j0 = 0 < j1 < j2 < · · · < j� = ñ and let c1 and c2 be constants. Suppose that the
following conditions are satisfied.

1. For every r ∈ [�], if jr − jr−1 > c1 · δñ
˜k
, then ˜T [jr−1 + 1] = · · · = ˜T [jr].

2. For every i ∈ [˜k] and r ∈ [�],
∣

∣

∣

̂N r
i − N jr

i (˜T , w̃)

∣

∣

∣ ≤ c2 · δñ
˜k
.

Then,
∣

∣

∣

∣

∣

M

(

̂N
ñ

)

− �(˜T , w̃)

∣

∣

∣

∣

∣

≤ (c1 + 2c2)δ .

Proof Let N be the matrix whose entries are N r
i = N jr

i (˜T , w̃) for every i ∈ [˜k]
and r ∈ [�]. We use Claim 3.4 and Item 1 in the premise of the current claim to
obtain that

∣

∣M(N) − R(˜T , w̃)
∣

∣ ≤ c1δñ. We also use Claim 2.3 and Item 2 in the
premise of the current claim to obtain that

∣

∣M(̂N) − M(N)
∣

∣ ≤ 2c2δñ. Combining
these bounds we get that

∣

∣M(̂N) − R(˜T , w̃)
∣

∣ ≤ (c1 + 2c2)δñ. The claim follows by

applying Observation 3.5 along with the fact that R(˜T ,w̃)
ñ = �(˜T , w̃).
�

123

Algorithmica

3.3.2 Establishing the Reduction forw ∈ Wc and Quantized p

For ease of readability, we begin by addressing the special case in which w ∈ Wc

(recall Definition 3.12) and where there exists β ∈ (0, 1) such that p j/β is an integer
for every j ∈ [n]. We later show how to deal with the general case, where we rely on
techniques from [33] and introduce some new ones that are needed for implementing
our algorithm.

For the case considered in this subsection, let ˜T = tα11 . . . tαnn where α j = p j
β

for

every j ∈ [n], so that |˜T | = 1
β
. Define p̃ by p̃ j = β for every j ∈, so that p̃ is the

uniform distribution over [|˜T |]. Since p j = β · α j , for every j ∈ [n], we get that
(˜T , p̃) is a splitting of (T , p) (recall Definition 3.11), and hence by [33, Clm. 4.4]
(using the assumption that w ∈ Wc),

�(˜T , w, p̃) = �(T , w, p) . (3.20)

Denote ñ = |˜T |. We begin by defining a set of intervals of [̃n], where {b0, . . . , by}
and B = {B1, . . . , By} are as defined in Sect. 3.1, and φ is as in Definition 3.11.

Definition 3.13 Let˜b0 = 0, and for everyu ∈ [y], let˜bu = max {h ∈ [̃n] : φ(h) = bu}.
For every u ∈ [y], let ˜Bu = [˜bu−1 + 1,˜bu], and define ˜B = {˜Bu

}y
u=1 .

Thus, there is a one-to-one correspondence between the intervals in ˜B and the intervals
in B, where the former are “splitted versions” of the latter, so that, in particular,
wt p̃(˜Bu) = wt p(Bu) for every u ∈ [y].

For every i ∈ [k] and u ∈ [y], we use the shorthand

˜ξui = ξui
(

˜T , w, p̃, {˜br }yr=1

)

(3.21)

where ξ iu(·, ·, ·, ·) is as in Definition 3.7. Therefore, the “splitted” density measure,˜ξui ,
is the weight, according to p̃, of those indices in the interval [˜bu], where wi appears in
˜T (i.e., j ∈ [˜bu] such that ˜T [j] = wi). Since p̃ is the uniform distribution over [̃n],

˜ξui = 1

ñ
Nbu
i (˜T , w) . (3.22)

For the next claim recall that ξui is a shorthand for ξui

(

T , w, p, {br }yr=1

)

.

Claim 3.7 For every i ∈ [k] and u ∈ [y],

˜ξui = ξui .

123

Algorithmica

Proof

ξui =
∑

j∈[bu]
I ji (T , w)p j =

∑

j∈[bu]
I ji (T , w)

∑

j̃∈φ−1(j)

p̃ j̃ (3.23)

=
∑

j∈[bu]

∑

j̃∈φ−1(j)

I ji (T , w) p̃ j̃ =
∑

j∈[bu]

∑

j̃∈φ−1(j)

I j̃i (˜T , w) p̃ j̃

=
∑

j̃∈˜bu
I j̃i (˜T , w) p̃ j̃ =˜ξui , (3.24)

and the claim is established.
�
We can now state and prove the following lemma.

Lemma 3.8 Letw be aword of length k inWc, T a text of length n, and p a distribution
over [n] for which there exists β ∈ (0, 1) such that p j/β is an integer for every j ∈ [n].
There exists an algorithm that, given a parameter δ ∈ (0, 1), takes a sample of size

�
(

k2

δ2
· log (k

δ

)

)

from T , distributed according to p, and outputs an estimate ̂� such

that |̂� − �(T , w, p)| ≤ δ with probability at least 2/3. The running time of the

algorithm is O
(

k2

δ2
· log2 (k

δ

)

)

.

Proof The algorithm performs the following steps.

1. Take a sample S1 of size s1 = 100z log(40z) and construct a set of intervals B as
defined in Definition 3.4.

2. Take an additional sample, S2, of size s2 = z2 log(40ky), and use it to determine
an estimation matrix̂ξ of size k × y by settinĝξ [i][u] = ξ̆ui for every i ∈ [k] and
u ∈ [y], where ξ̆ui is as defined in Definition 3.8.

3. Compute M(̂ξ) following Definition 2.2 (as described in the proof of Claim 2.5)
and output ̂� = M(̂ξ).

Since z = O(k/δ) and y = O(z) (the upper bound y ≤ s1 would also suffice
for our purposes), the total sample complexity of the algorithm is as stated in the
lemma. We next verify that the running time is also as stated in the lemma. First note
that Step 1 takes time O(s1 log s1). This holds because the sequence b0, . . . , by , which
determines the set of intervalsB, can be constructed by first sorting the sample indices,
and then making a single pass over the sorted sample. Similarly to what is shown in
the proof of Claim 2.4, Step 2 takes time O(k · (log k + y) + s2 · (log k + log y)). By
Claim 2.5, Step 3 times time O(k · y). Summing over all steps we get the stated upper
bound on the running time.

We would next like to apply Claim 3.6 in order to show that |̂� − �(˜T , w)| ≤ δ

with probability of at least 2
3 . By the setting of s1, applying Claim 3.1 gives us that

with probability at least 4
5 , the event E1, as defined in Definition 3.5, holds. By the

setting of s2, applying Claim 3.3 gives us that with probability at least 9
10 , the event

E2, as defined in Definition 3.9, holds. We henceforth condition on both events (where
they hold together with probability at least 7/10).

123

Algorithmica

In order to apply Claim 3.6, we set w̃ = w, J = {

˜b0,˜b1, . . . ,˜by
}

(recall Defini-
tion 3.13) and ̂N = ñ ·̂ξ , for̂ξ as defined above. Also, we set c1 = 1

2 and c2 = 1
4 . We

next show that both items in the premise of the claim are satisfied.
To show that Item 1 is satisfied, we first note that since p̃ is uniform, then for every

u ∈ [y], wt p̃(bu) = ˜bu−˜bu−1
ñ . We use the consequence of Claim 3.2 (recall that we

condition on E1) by which for every u such that
˜bu−˜bu−1

ñ ≥ 5
z , Bu is heavy (since for

every u ∈ [y], wt p̃(˜Bu) = wt p(Bu)). By Definition 3.4 this implies that Bu contains
only one index, and so ˜T [˜bu−1 + 1] = · · · = ˜T [˜bu]. By the definition of z (Eq. (3.1))
and the setting of c1, the item is satisfied.

To show that Item 2 is satisfied, we use the definition of E2 (Definition 3.9,
Eq. (3.13)) together with Claim 3.7, which give us |̂ξui −˜ξui | ≤ 1

z for every i ∈ [k]
and u ∈ [y]. By Eq. (3.22), the definition of z and the setting of c2, we get that the
item is satisfied.

After applying Claim 3.6 we get that |̂� − �(˜T , w)| ≤ (c1 + 2c2)δ, which by
the setting of c1 and c2 is at most δ. Since p̃ is the uniform distribution, �(˜T , w) =
�(˜T , w, p̃) and since �(˜T , w, p̃) = �(T , w, p) (by Eq. (3.20)), the lemma follows.

�

In the next subsections we turn to the general case where we do not necessarily
have that w ∈ Wc or that there exists a value β such that for every j ∈ [n], p j/β is
an integer. In this general case we need to take some extra steps until we can perform
a splitting. Beginning with performing a reduction to a slightly different distribution,
then performing a reduction to w ∈ Wc. While this follows [33], for the sake of
our algorithm, along the way we need to show how to define the estimation matrix
̂ξ (= ̂N /̃n) and the corresponding set of indices J so that we can apply Claim 3.6,
similarly to what was shown in the proof of Lemma 3.8.

3.4 Quantized Distribution

Let η = cη
1
nz , where cη = 1

2 . We define p̈: [n] → [0, 1] by “rounding” p j for every

j ∈ [n] to its nearest larger integer multiple of η. Namely, p̈ j = ⌈ p j
η

⌉

η, for every
j ∈ [n]. By this definition,

L1(p̈, p) =
n
∑

j=1

| p̈ j − p j | ≤ ηn = cη

z
. (3.25)

We define ṗ to be a normalized version of p̈. That is, letting ζ = 1
∑n

j=1 p̈ j
, we set

ṗ j = ζ p̈ j , for every j ∈ [n], and note that ζ ≤ 1. Observe that

L1(ṗ, p̈) =
n
∑

j=1

|ζ p̈ j − p̈ j | = |ζ − 1|
ζ

= 1

ζ
− 1 . (3.26)

123

Algorithmica

Also observe that 1
ζ

=∑n
j=1(p j + (p̈ j − p j)) = 1 +∑n

j=1(p̈ j − p j). Therefore,

L1(ṗ, p̈) = 1

ζ
− 1 =

n
∑

j=1

(p̈ j − p j) ≤
n
∑

j=1

| p̈ j − p j | = L1(p, p̈) . (3.27)

Using the triangle inequality we get that

L1(p, ṗ) ≤ L1(p, p̈) + L1(p̈, ṗ) ≤ 2L1(p, p̈) ≤ 2
cη

z
. (3.28)

By [33, Clm. 4.1] we have that

|�(T , w, p) − �(T , w, ṗ)| ≤ L1(p, ṗ) . (3.29)

Finally, note that for every j ∈ [n], ṗ j is an integer multiple of ζη, as ṗ j = ζη
⌈ p j

η

⌉

.
Recalling Definition 3.7 for ξui (·, ·, ·, ·), for every i ∈ [k] and u ∈ [y], we use the

shorthand
ξ̇ui = ξui

(

T , w, ṗ j , {br }yr=1

)

, (3.30)

for the “quantized” density measure. Once again recall that ξui is a shorthand for
ξui

(

T , w, p, {br }yr=1

)

(the “original” density measure).

Claim 3.9 For every i ∈ [k] and u ∈ [y],
∣

∣ξ̇ui − ξui

∣

∣ ≤
∑

j∈[bu]
| ṗ j − p j | , (3.31)

and for every u ∈ [y],

|wt ṗ([bu]) − wt p([bu])| ≤
∑

j∈[bu]
| ṗ j − p j | . (3.32)

Proof Recall that by Definition 3.6, I ji (T , w) = 1 if T [j] = wi and 0 otherwise.
Equation (3.31) follows by using the triangle inequality along with the fact that
I ji (T , w) ≤ 1 for every i ∈ [k] and j ∈ [n]. and hence,

∣

∣ξ̇ui − ξui

∣

∣ =
∣

∣

∣

∣

∣

∣

∑

j∈[bu]
I ji (T , w)(ṗ j − p j)

∣

∣

∣

∣

∣

∣

≤
∑

j∈[bu]

∣

∣ ṗ j − p j
∣

∣ . (3.33)

Equation (3.32) follows by the triangle inequality:

|wt ṗ([bu]) − wt p([bu])| =
∣

∣

∣

∣

∣

∣

∑

j∈[bu]
ṗ j − p j

∣

∣

∣

∣

∣

∣

≤
∑

j∈[bu]
| ṗ j − p j | , (3.34)

and the claim is established.
�

123

Algorithmica

3.5 Handlingw /∈ Wc

We would have liked to consider a splitting (recall Definition 3.11) of (T , ṗ) for ṗ as
defined in Sect. 3.4, and then use the relationship between the distance fromw-freeness
before and after the splitting. However, we only know this connection between the
distances in the case ofw ∈ Wc. Hence, we shall apply a reduction from a generalw to
w ∈ Wc, as was done in [33], in their proof of Lemma 4.8. Without loss of generality,
assume 0 is a symbol that does not appear inw = w1 . . . wk or T = t1 . . . tn . Letw′ =
w10w20 . . . wk−10wk0, T ′ = t10t20 . . . tn0 and p′ = (ṗ1/2, ṗ1/2, . . . , ṗn/2, ṗn/2).
Note that w′ is inWc. By [33, Clm. 4.6],

�(T ′, w′, p′) = 1

2
�(T , w, ṗ) . (3.35)

Here too we define a set of intervals, this time of [|T ′|] =[2n], given an indication
whether corresponding intervals of [n] are heavy or light. The preciseway the setting of
the end-points of these intervals is determined, is described in Algorithm 1, but first we
explain the underlying idea. LetB be a set of (disjoint and consecutive) intervals of [n],
where each interval is either heavy or light, and each heavy interval contains a single
element.We define a set of intervalsB′ of [2n] as follows. For each interval B = [x, y]
in B, if B is light, then we have an interval B ′ = [2x − 1, 2y] in B′, and if B is heavy,
so that y = x , then we have two single-element intervals, B ′ = [2x − 1, 2x − 1] and
and B ′′ = [2x, 2x]. Observe that by the definition of T ′ (which is based on T), in
the first case, T ′[B ′] = T ′[2x − 1, 2y] = tx0tx+10 . . . ty0, and in the second case,
T ′[B ′] = T ′[2x −1, 2x −1] = tx , and T ′[B ′′] = T ′[2x, 2x] = 0. This ensures that if
an interval B in B is heavy, so that it contains a single element, the two corresponding
interval, B ′ and B ′′, in B′ each contains a single element as well. This will play a role
when we perform a splitting of (T ′, p′) and want to apply Claim 3.6.

Definition 3.14 Let b′
0 = 0. Define y′,

{

b′
u

}y′
u=1 and the function f : [y′] → [y] using

Algorithm 1. For every u ∈ [y′], let B ′
u = [b′

u−1 + 1, b′
u], and define B′ = {B ′

u

}y′
u=1 .

We make two simple observations following Algorithm 1. The first relates between
weights of intervals according to p′ and weights of corresponding intervals according
to ṗ.

Observation 3.10 For every u ∈ [y′], if B f (u) is light, then wt p′(B ′
u) = wt ṗ(B f (u)),

and if B f (u) is heavy, then wt p′(B ′
u) = 1

2wt ṗ(B f (u)) and B ′
u is a single-element

interval.

Recalling Definition 3.7 for ξui (·, ·, ·, ·), for every i ∈ [2k] and u ∈ [y′], we use the
shorthand

ξ ′
i
u = ξui

(

T ′, w′, p′
j , {b′

r }y
′

r=1

)

, (3.36)

for the “separated” density measure (where we use the term “separated” since symbols
in w and T are separated by 0s in w′ and T ′, respectively).

The second observation relates between the above separated density measures and
the corresponding quantizied ones.

123

Algorithmica

Algorithm 1
Input: y, {bv}y

v=1, an indication for every v ∈ [y] whether Bv = [bv−1 + 1, bv] is heavy or light.

Output: y′,
{

b′
u
}y′
u=1.

1: u = 1, v = 1
2: while v ≤ y do
3: if Bv is heavy then
4: b′

u = 2bv − 1, b′
u+1 = 2bv

5: f (u) = v, f (u + 1) = v

6: v = v + 1, u = u + 2
7: else
8: b′

u = 2bv

9: f (u) = v

10: v = v + 1, u = u + 1
11: end if
12: end while
13: y′ = max

{

f −1(y)
}

Observation 3.11 For every u ∈ [y′] and for every i ∈ [2k] such that 2 � | i (meaning
w′
i �= 0),

ξ ′
i
u = 1

2
ξ̇
f (u)
i+1
2

, (3.37)

whereas if 2 | i (meaning w′
i = 0),

ξ ′
i
u = 1

2

⎧

⎪

⎨

⎪

⎩

wt ṗ
([b f (u)]

)

if B f (u)is light

wt ṗ
([b f (u)]

)

if B f (u)is heavy and T ′[b′
u] = 0

wt ṗ
([b f (u)−1]

)

if B f (u)is heavy and T ′[b′
u] �= 0.

(3.38)

3.6 Uniform Distribution via Splitting

Recall that η and ζ were defined at the beginning of Sect. 3.4, whereas T ′ = t ′1 . . . t ′2n
and p′ : [2n] → [0, 1] were defined in Sect. 3.5. Let ˜T = t ′α11 . . . t ′α2n2n where α j =
⌈ p j

η

⌉

for every j ∈ [2n]. Define the distribution p̃ by p̃ j = 1
2ζη for every j ∈ [|˜T |],

so that p̃ is the uniform distribution over [|˜T |]. Since p′
j = 1

2ζη ·α j =∑ j̃∈φ−1(j) p̃ j̃ ,

for every j ∈ [2n], we get that (˜T , p̃) is a splitting of (T ′, p′) (recall Definition 3.11).
We make another use of [33, Thm. 4.4], by which splitting preserves the distance

from w-freeness, to establish that

�(˜T , w′, p̃) = �(T ′, w′, p′) . (3.39)

Denote ñ = |˜T | = 2
ζη
. We next define a set of intervals of [̃n].

Definition 3.15 Let˜b0 = 0, and for everyu ∈ [y′], let˜bu = max
{

h ∈ [̃n] : φ(h) = b′
u

}

.

For every u ∈ [y′] let ˜Bu = [˜bu−1 + 1,˜bu], and define ˜B = {˜Bu
}y′
u=1 .

123

Algorithmica

Here we use the shorthand

˜ξui = ξui

(

˜T , w′, p̃, {˜br }y
′

r=1

)

, (3.40)

and note that (since p̃ is the uniform distribution over [̃n]),

˜ξui = 1

ñ
N
˜bu
i (˜T , w′) . (3.41)

The proof of the next claim is almost identical to the proof of Claim 3.7, and is
hence omitted.

Claim 3.12 For every i ∈ [2k] and u ∈ [y′],˜ξui = ξ ′
i
u .

For the last claim in this subsection, recall that the event E1 was defined in Defini-
tion 3.5 (based on a sample of indices from [n]).
Claim 3.13 Conditioned on the event E1, for every u ∈ [y′], if B f (u) is light, then

wt p̃(˜Bu) < 5
z + 2cη

z .

Proof Consider any u ∈ [y′] such that B f (u) is light. Conditioned on the event E1,
the consequence of Claim 3.2 holds and so wt p(B f (u)) < 5

z . By Observation 3.10,
if B f (u) is light, then wt p′(B ′

u) = wt ṗ(B f (u)), so that wt p′(B ′
u) − wt p(B f (u)) =

wt ṗ(B f (u)) −wt p(B f (u)), which is upper bounded by L1(ṗ, p). By the definition of

p̃ and ˜Bu , wt p̃(˜Bu) = wt p′(B ′
u) and by Eq. (3.28), L1(ṗ, p) ≤ 2cη

z . Combining the
above,

wt p̃(˜Bu) = wt p′(B ′
u) = wt ṗ(B f (u)) = wt p(B f (u)) + wt ṗ(B f (u)) − wt p(B f (u))

<
5

z
+ 2cη

z
, (3.42)

and the claim follows.
�

3.7 Estimators for the Distribution-Free Case

In this subsectionwedefine estimators for theweights of intervals of ñ = |˜T | according
to p̃. As there are several cases, it will be useful to introduce the following notations.
For every i ∈ [2k] and u ∈ [y′], let x(u, i) take the following values:

x(u, i) = 1 if 2 � | i (so that wi �= 0),
x(u, i) = 2 if 2 | i and B f (u) is light,
x(u, i) = 2 (also) if 2 | i and B f (u) is heavy and T ′[b′

u] = 0,
x(u, i) = 3 if 2 | i and B f (u) is heavy and T ′[b′

u] �= 0.

Define the following estimator. For every i ∈ [2k] and u ∈ [y′],

̂ξui = 1

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ξ̆
f (u)
i+1
2

if x(u, i) = 1

wtS2
([b f (u)]

)

if x(u, i) = 2

wtS2
([b f (u−1)]

)

if x(u, i) = 3 ,

(3.43)

123

Algorithmica

where ξ̆u
′

i ′ is the “original” estimator defined in Definition 3.8.
For the next claim, recall that the event E2 was defined in Definition 3.9.

Claim 3.14 Conditioned on the event E2, for every i ∈ [2k] and u ∈ [y′],
∣

∣̂ξui −˜ξui
∣

∣ ≤ cη

z
+ 1

2z
. (3.44)

Proof Using Claim 3.12 (for the first equality below), Eq. (3.43) and Observation 3.11
(for the second equality), the triangle inequality and Claim 3.9 (for the final step), we
get that for every i ∈ [2k] and u ∈ [y′],

∣

∣̂ξui −˜ξui
∣

∣ = ∣

∣̂ξui − ξ ′u
i

∣

∣

= 1

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣

∣

∣

∣

ξ̆
f (u)
i+1
2

− ξ̇
f (u)
i+1
2

∣

∣

∣

∣

if x(u, i) = 1
∣

∣wtS2
([b f (u)]

)− wt ṗ
([b f (u)]

)∣

∣ if x(u, i) = 2
∣

∣wtS2
([b f (u−1)]

)− wt ṗ
([b f (u−1)]

)∣

∣ if x(u, i) = 3.

≤ 1

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣

∣

∣

∣

ξ̆
f (u)
i+1
2

− ξ
f (u)
i+1
2

∣

∣

∣

∣

if x(u, i) = 1
∣

∣wtS2
([b f (u)]

)− wt p
([b f (u)]

)∣

∣ if x(u, i) = 2
∣

∣wtS2
([b f (u−1)]

)− wt p
([b f (u−1)]

)∣

∣ if x(u, i) = 3

+1

2

∑

j∈[b f (u)]

∣

∣ ṗ j − p j
∣

∣ .

Using Eq. (3.28) and since we conditioned on E2 we get the desired inequality.
�
We prove another claim to establish a connection between �(˜T , w′, p̃) and

�(T , w, p).

Claim 3.15
|2�(˜T , w′, p̃) − �(T , w, p)| ≤ L1(p, ṗ) . (3.45)

Proof The claim follows by combining Eqs. (3.29), (3.35) and (3.39).
�

3.8 Wrapping Things Up in the General Case

We can now restate and prove the main theorem of this section (as it appeared in the
introduction).

Theorem 1.1 There exists a sample-based distribution-free distance-approximation
algorithm for subsequence-freeness, that, for any subsequence w of length k, takes a

sample of size O
(

k2

δ2
· log (k

δ

)

)

from T , distributed according to an unknown distri-

bution p, and outputs an estimate ̂� such that |̂� − �(T , w, p)| ≤ δ with probability

at least 2
3 .
11 The running time of the algorithm is O

(

k2

δ2
· log2 (k

δ

)

)

.

11 As usual, we can increase the success probability to 1 − η, for any η > 0 at a multiplicative cost of
O(log(1/η)) in the sample complexity.

123

Algorithmica

The proof of Theorem 1.1 is similar to the proof of Lemma 3.8, but there are several
important differences, and for the sake of completeness it is given in full detail.

Proof The algorithm performs the following steps.

1. Take a sample S1 of size s1 = 100z log(40z) and construct a set of intervals B as
defined in Definition 3.4. For each interval in B, determine whether it is heavy or
light (as stated in the definition).

2. Take an additional sample, S2, of size s2 = z2 log(40ky). Compute wtS2([bu]) for
every u ∈ [y] according to Definition 3.2, and define a matrix ξ̆ of size k × y as
follows. For every i ∈ [k] and u ∈ [y], set ξ̆ [i][u] = ξ̆ui , where ξ̆ui is as defined in
Definition 3.8 (based on B and the sample S2).

3. Set w′ = w10w20 . . . wk0 and let B′ be the set of y′ intervals as defined in Defini-
tion 3.14, usingAlgorithm 1. Recall that the algorithm also determines the function
f : [y′] → [y].

4. Define a matrix̂ξ of size 2k × y′ as follows. For every i ∈ [2k] and u ∈ [y′], set
̂ξ [i][u] =̂ξui , wherêξui is as defined in Eq. (3.43).

5. Compute M(̂ξ) following Definition 2.2 (as described in the proof of Claim 2.5),
and output ̂� = 2M(̂ξ).

Since z = O(k/δ) and y = O(z) (the upper bound y ≤ s1 would also suffice
for our purposes), the total sample complexity of the algorithm is as stated in the
theorem. We next verify that the running time is also as stated in the Theorem. As
in the proof of Lemma 3.8, Step 1 takes time O(s1 log s1), and Step 2 takes time
O(k · (log k + y)+ s2 · (log k + log y)). Step 3 takes time O(y), and Step 4 takes time
O(k · y). By Claim 2.5, Step 5 times time O(k · y). Summing over all steps we get
the stated upper bound on the running time.

We would next like to apply Claim 3.6 in order to show that |̂�−�(T , w, p)| ≤ δ

with probability of at least 2
3 . By the setting of s1, applying Claim 3.1 gives us that

with probability at least 4
5 , the event E1, as defined in Definition 3.5, holds. By the

setting of s2, applying Claim 3.3 gives us that with probability at least 9
10 the event

E2, as defined in Definition 3.9, holds. We henceforth condition on both events (where
they hold together with probability at least 7/10).

In order to apply Claim 3.6, we set w̃ = w′, J = {

˜b0,˜b1, . . . ,˜by′
}

(recall Defini-
tion 3.15) and ̂N = ñ̂ξ , for̂ξ as defined above. We also set c1 = 1

8 and c2 = 1
8 , and

recall that z = 100k
δ

(Eq. (3.1)) and cη = 1
2 (as set in the beginning of Sect. 3.4). We

next show that all the items in the premise of Claim 3.6 are satisfied.
To show that Item 1 is satisfied, we first note that the following is true for every

u ∈ [y′]. Since p̃ is the uniform distribution over [̃n], ˜bu−˜bu−1
ñ = wt p̃(˜Bu). Therefore,

if
˜bu−˜bu−1

ñ > c1 · δ

k̃
= 25

4 · 1
z , then wt p̃(˜Bu) > 25

4 · 1
z , which by the setting of cη is

greater than (5 + 2cη) · 1
z . By Claim 3.13 (recall we condition on E1), we get that

B f (u) is heavy. This in turn means that B′
u contains only one index, which implies that

˜T [˜bu−1 + 1] = · · · = ˜T [˜bu]. Hence, the first item is satisfied.
To show that Item 2 is satisfied, we use Claim 3.14, which gives us that

∣

∣̂ξui −˜ξui
∣

∣ ≤
cη
z + 1

2z for every i ∈ [2k] and u ∈ [y′]. By the setting of c2 along with Eq. (3.41) and
the definitions of z and cη we get that this item is satisfied as well.

123

Algorithmica

After applying Claim 3.6 we get that |̂� − 2�(˜T , w′)| ≤ 2(c1δ + 2c2δ), which by
the setting of c1 and c2 is at most 3δ

4 . Since p̃ is the uniform distribution, �(˜T , w′) =
�(˜T , w′, p̃). Using Claim 3.15 and Eq. (3.28) we get |2�(˜T , w′, p̃)−�(T , w, p)| ≤
2 cη

z , which by the definition of z and cη is at most δ
4 , so the claim follows.
�

4 A Lower Bound for Distance Approximation

In this section we give a lower bound for the number of samples required to perform
distance-approximation fromw-freeness of a text T . The lower bound holds when the
underlying distribution is the uniform distribution.

Theorem 4.1 Let kd be the number of distinct symbols in w. Any distance-
approximation algorithm for w-freeness under the uniform distribution must take

a sample of size �(1
kdδ2

), conditioned on δ ≤ 1
300kd

and n > max
{

8k
δ

, 200
kdδ2

}

.

Note that if δ ≥ 1/kd , then the algorithm can simply output 0. This is true since the
number of role disjoint copies of w in T is at most the number of occurrences of the
symbol in w that is least frequent in T . This number is upper bounded by n

kd
, and so

the distance from w-freeness is at most 1
kd
. In this case no sampling is needed, so only

the trivial lower bound holds. The proof will deal with the case of δ ∈ (0, 1
300kd

].
Proof The proof is based on the difficulty of distinguishing between an unbiased coin
and a coin with a small bias. Precise details follow.

Let V = {

v1, . . . , vkd
}

be the set of distinct symbols in w, and let 0 be a symbol
that does not belong to V . We define two distributions over texts, T1 and T2 as follows.
For each τ ∈ [n

kd
] and ρ ∈ [0, 1], let λτ

ρ be a random variable that equals 0 with
probability ρ and equals v1 with probability 1 − ρ. Let δ′ = 3kdδ and consider the
following two distributions over texts

T1 =
[

λ11
2
, v2, v3, . . . , vkd , λ

2
1
2
, v2, v3, . . . , vkd , , λ

n/kd
1
2

, v2, v3, . . . , vkd

]

,

(4.1)

T2 =
[

λ11
2+δ′ , v2, v3, . . . , vkd , λ

2
1
2+δ′ , v2, v3, . . . , vkd , , λ

n/kd
1
2+δ′ , v2, v3, . . . , vkd

]

.

(4.2)

Namely, the supports of both distributions contain texts that consist of n/kd blocks of
size kd each. For i ∈ {2, . . . , kd}, the i-th symbol in each block is vi . The distributions
differ only in the way the first symbol in each block is selected. In T1 it is 0 with
probability 1/2 and v1 with probability 1/2, while in T2 it is 0 with probability 1/2+
δ′ = 1/2 + 3δkd , and v1 with probability 1/2 − δ′.

For b ∈ {1, 2}, consider selecting a text Tb according to Tb (denoted by Tb ∼ Tb),
and let Ob be the number of occurrences of v1 in the text (so that Ob is a random
variable). Observe thatE[O1] = n

2kd
andE[O2] = n

2kd
−3δn. By applying the additive

123

Algorithmica

Chernoff bound (Theorem A.1) and using the premise of the theorem regarding n,

PrT1∼T1 [O1 < E[O1] − δn/8] ≤ exp(−2(kdδ/8)
2 · n/kd) ≤ 1

100
, (4.3)

and

PrT2∼T2 [O2 < E[O2] + δn/8] ≤ exp(−2(kdδ/8)
2 · n/kd) ≤ 1

100
. (4.4)

For b ∈ {1, 2} let Rb = R(Tb, w) (recall that R(Tb, w) denotes the number of
disjoint copies of w in Tb, and note that Rb is a random variable). Observe that
R1 ≥ O1 − k + 1, and R2 ≤ O2.

Hence, by Eq. (4.3), if we select T1 according to T1 and use the premise that n > 8k
δ
,

then R(T1, w) ≥ n
2kd

− 1
8δn − k + 1 ≥ n

2kd
− 2

8δn with probability at least 99/100,

and by Eq. (4.4), if we select T2 according to T2, then R(T2, w) ≤ n
2kd

−3δn+ 1
8δn =

n
2kd

− 23
8 δn with probability at least 99/100.

Assume, contrary to the claim, thatwe have a sample-based distance-approximation
algorithm for subsequence-freeness that takes a sample of size Q(kd , δ) = 1/(ckdδ2),
for some sufficiently large constant c, and outputs an estimate of the distance to w-
freeness that has additive error atmost δ, with probability at least 2/3.Consider running
the algorithm on either T1 ∼ T1 or T2 ∼ T2. Let L denote the number of times that the
sample landed on an index of the form j = � · kd + 1 for an integer �. By Markov’s
inequality, the probability that L > 10 · Q(kd , δ)/kd = 10/(ck2dδ

2) is at most 1/10.
By the above, ifwe run the algorithmon T1 ∼ T1, thenwith probability at least 2/3−

1/100−1/10 the algorithm outputs an estimate ̂� ≥ n
2kd

− 10
8 while L ≤ 10/(ck2dδ

2).
Similarly, if we run it on T2 ∼ T2, then with probability at least 2/3−1/100−1/10 the
algorithm outputs an estimate ̂� ≤ n

2kd
− 15

8 while L ≤ 10/(ck2dδ
2). (In both cases the

probability is taken over the selection of Tb ∼ Tb, the sample that the algorithm gets,
and possibly additional internal randomness of the algorithm.) Based on the definitions
of T1 and T2, this implies that it is possible to distinguish between an unbiased coin
and a coin with bias 3kdδ with probability at least 2/3− 1/100− 1/10 > 8

15 , using a
sample of size 1

c′k2dδ2
in contradiction to the result of Bar-Yosef [2, Thm. 8] (applied

with m = 2, ε = 3kdδ. Since we have δ < 1
300kd

, then ε < 1
96 , as the cited theorem

requires).
�

A Chernoff Bounds

Theorem A.1 Let χ1, . . . , χm be m independent random variables where χi ∈ [0, 1]
for every 1 ≤ i ≤ m. Let p

def= 1
m

∑

i E[χi]. Then, for every γ ∈ (0, 1], the following
bounds hold:

123

Algorithmica

• (Additive Form)

Pr

[

1

m

m
∑

i=1

χi > p + γ

]

< exp
(

−2γ 2m
)

(A.1)

Pr

[

1

m

m
∑

i=1

χi < p − γ

]

< exp
(

−2γ 2m
)

(A.2)

• (Multiplicative Form)

Pr

[

1

m

m
∑

i=1

χi > (1 + γ)p

]

< exp
(

−γ 2 pm/3
)

(A.3)

Pr

[

1

m

m
∑

i=1

χi < (1 − γ)p

]

< exp
(

−γ 2 pm/2
)

(A.4)

B Missing Proofs

Claim B.1 The greedy algorithm described as a part of the proof of Claim 2.1 finds a
maximum-size set of role-disjoint copies of w in T .

Proof We start by introducing the notion of ordered role-disjoint copies. According
to [33, Definition 3.8], two role-disjoint copiesC = (i1, . . . , ik) andC ′ = (i ′1, . . . , i ′k)
of w in T are ordered and C ′ succeeds C , if i ′j > i j for every j ∈ [k]. A sequence
(C1, . . . ,Cm) of role-disjoint copies of w in T is a sequence of ordered role-disjoint
copies if for every r ∈ [m − 1] we have it that Cr+1 succeeds Cr .

By [33, Claim 3.5], for every set of role-disjoint copies of w in T , there exists a
sequence of ordered role-disjoint copies ofw in T with the same size. Since the greedy
algorithm described in the proof of Claim 2.1 finds a sequence of ordered role-disjoint
copies of w in T , it remains to show that there is no other longer (larger) sequence of
ordered role-disjoint copies of w of T .

Denote by C = (C1, . . . ,C|C|) the sequence of ordered role-disjoint copies of w

in T that is found by the greedy algorithm. Assume, contrary to the claim that there
is a longer sequence, ˜C = (˜C1, . . . , ˜C|˜C|) of ordered role-disjoint copies of w in T .

In what follows we show, by induction on m and i , that Cm[i] ≤ ˜Cm[i] for every pair
(m, i) ∈ [|C|] × [k], which will imply a contradiction to the counter assumption.

For every m ∈ [|C|] and for i = 1, by the definition of the greedy algorithm,
Cm[1] is the index of the mth occurrence of w1 in T . Since ˜C is ordered, so that
˜C1[1] < ˜C2[1] < · · · < ˜Cm[1], we have that ˜Cm[1] is the index of occurrence number
m′ ≥ m of w1 in T . Hence Cm[1] ≤ ˜Cm[1] for every m ∈ [|C|].

In order to prove the claim for (m, i) where i > 1, we assume by induction that it
holds for (m, i − 1) and for (m − 1, i), where for the sake of the argument (so that
Cm−1 and ˜Cm−1 are defined also for m = 1) we define C0[i] = ˜C0[i] = −k + i . By
the induction hypothesis, Cm[i − 1] ≤ ˜Cm[i − 1] and Cm−1[i] < ˜Cm−1[i]. Because

123

Algorithmica

indices of a copy are always strictly increasing, ˜Cm[i − 1] < ˜Cm[i], and since ˜C is
ordered, ˜Cm−1[i] < ˜Cm[i]. Therefore, Cm[i − 1] < ˜Cm[i] and Cm−1[i] < ˜Cm[i].
By the definition of the algorithm, Cm[i] is the index of the first occurrence of wi

following Cm[i − 1] that is larger than Cm−1[i]. Since T [˜Cm[i]] = wi we get that
Cm[i] ≤ ˜Cm[i], as claimed.

Finally, by the counter assumption, |˜C| > |C|. By what we have shown above, this
implies that Cm[i] < ˜C|C|+1[i] for every m ∈ [|C |], and i ∈ [k]. But this contradicts
the fact that the algorithm did not find any role-disjoint copy after C|C|.
�

Proof of Claim 2.4 Let s = log(6k·�)
2γ 2 . We take s samples from [n] selected uniformly,

independently at random (allowing repetitions). Denote the q-th sampled index by ρq .
For every i ∈ [k], r ∈ [�] and q ∈ [s], define the random variables χ

i,r
q to equal 1 if

and only if ρq ∈ [jr] and T [ρq] = wi , Otherwise χ
i,r
q = 0.

For every i ∈ [k] and r ∈ [�], set

̂N r
i = n

s

s
∑

q=1

χ i,r
q , (B.1)

and notice that

E
[

χ
i, j
q

]

= N jr
i (T , w)

n
. (B.2)

By the additive Chernoff bound (see Theorem A.1) and the setting of s, we get

Pr
[∣

∣

∣

̂N r
i − N jr

i (T , w)

∣

∣

∣ > γ n
]

= Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

n

s

s
∑

q=1

χ i,r
q − N jr

i (T , w)

∣

∣

∣

∣

∣

∣

> γ n

⎤

⎦

= Pr

⎡

⎣

∣

∣

∣

∣

∣

∣

1

s

s
∑

q=1

χ i,r
q − N jr

i (T , w)

n

∣

∣

∣

∣

∣

∣

> γ

⎤

⎦

< 2 exp
(

−2γ 2s
)

= 1

3k · �
. (B.3)

Applying the union bound over all pairs (i, r) ∈ [k]× [�] we get that with probability
at least 2

3 , for every i ∈ [k] and r ∈ [�],
∣

∣

∣

̂N r
i − N jr

i (T , w)

∣

∣

∣ ≤ γ n , (B.4)

as required. Computing the estimates can be done as follows.

1. Perform a preprocessing step that depends only on w. Let k′ be the number of
distinct symbols in w. We may assume that there is some total order over these
symbols (and in general, the symbols in �). Create an array W of size k′ where
entry number d in W contains the d-th distinct symbol in w in sorted order and a
pointer to a sorted list of the indices in w where this symbol appears.

123

Algorithmica

2. Initialize each ̂N r
i to 0.

3. Make a single pass over the sample, and for each sample point (j, t j), let r(j) be
the minimum r for which j ≤ jr and let i(t j) be the minimum i such thatwi = t j .

Increase ̂N r(j)
i(t j)

by n
s .

4. For r = 2 to �, increase ̂N r
i by ̂N r−1

i for every i ∈ k.
5. For i = 2 to k, let i ′ be the minimum index for which wi = wi ′ . If i �= i ′, then set
̂N r
i = ̂N r

i ′ for every r ∈ [�].
The first step takes time O(k log k). The second step takes time O(k ·�). The third step
takes time O(s · (log � + log k)) (using J and W to find r(j) and i(t j), respectively,
for each sample point (j, t j)). The fourth and fifth steps take time O(k · �).
�
Proof of Claim 3.4 For the sake of simplicity, we use T and w instead of ˜T and w̃,
respectively. Recall that M(N) = M�

k (N) and R(T , w) = R j�
k (T , w). We shall

prove that for every i ∈ [k] and for every r ∈ [�],
∣

∣

∣Mr
i (N) − R jr

i (T , w)

∣

∣

∣ ≤ (i − 1) ·
maxτ∈[r]\J ′ { jτ − jτ−1}. We prove this by induction on i .
For i = 1 and every r ∈ [�]:

∣

∣

∣Mr
1(N) − R jr

1 (T , w)

∣

∣

∣ =
∣

∣

∣N
jr
1 (T , w) − N jr

1 (T , w)

∣

∣

∣

= 0 ≤ (1 − 1) · max
τ∈[1]\J ′ { jτ − jτ−1} , (B.5)

where the first equality follows from the setting of N and the definitions of Mr
1(N)

and R jr
1 (T , w).

For the induction step, we assume the claim holds for i − 1 ≥ 1 (and every r ∈ [�])
and prove it for i . We have,

Mr
i (N) − R jr

i (T , w)

= N jr
i (T , w) − max

b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− R jr
i (T , w) (B.6)

= max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

− max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

, (B.7)

where Eq. (B.6) follows from the setting of N and the definition of Mr
i (N), and

Eq. (B.7) is implied by Claim 2.1. Denote by j∗ an index j ∈ [jr] that maximizes the
first max term and let b∗ be the smallest index such that jb∗ ≥ j∗. We have:

max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

− max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

≤ N j∗
i (T , w) − R j∗−1

i−1 (T , w) − N
jb∗
i (T , w) + Mb∗

i−1(N)

= N j∗
i (T , w) + R

jb∗
i−1(T , w) − R

jb∗
i−1(T , w) − R j∗−1

i−1 (T , w)

−N
jb∗
i (T .w) + Mb∗

i−1(N)

≤
(

Mb∗
i−1(N) − R

jb∗
i−1(T , w)

)

+
(

N j∗
i (T , w) − N

jb∗
i (T , w)

)

123

Algorithmica

+
(

R
jb∗
i−1(T , w) − R j∗−1

i−1 (T , w)
)

≤ (i − 2) max
τ∈[r]\J ′ { jτ − jτ−1}

+
{

0 , if T [j∗a] = · · · = T [j∗b]]
maxτ∈[r]\J ′ { jτ − jτ−1} otherwise

≤ (i − 1) max
τ∈[r]\J ′ { jτ − jτ−1} , (B.8)

Where in the third inequality we used the induction assumption and the fact that

if we don’t have T [jb∗] = · · · = T [j∗]], then
(

N j∗
i (T , w) − N

jb∗
i (T , w)

)

+
(

R
jb∗
i−1(T , w) − R j∗−1

i−1 (T , w)
)

≤ (jb∗ − j∗ + 1) ≤ maxτ∈[r]\J ′ { jτ − jτ−1}.
By combining Eqs. (B.7) and (B.8), we get that

Mr
i (N) − R jr

i (T , w) ≤ (i − 1) max
τ∈[r]\J ′ { jτ − jτ−1} . (B.9)

Similarly to Eq. (B.7):

R jr
i (T , w) − Mr

i (N) = max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

.

(B.10)

Let b∗∗ be the index b ∈ [r] that maximizes the first max term. We have:

max
b∈[r]

{

N jb
i (T , w) − Mb

i−1(N)
}

− max
j∈[jr]

{

N j
i (T , w) − R j−1

i−1 (T , w)
}

≤ N
jb∗∗
i (T , w) − Mb∗∗

i−1(N) − N
jb∗∗
i (T , w) + R

jb∗∗−1
i−1 (T , w)

≤ R
jb∗∗
i−1 (T , w) − Mb∗∗

i−1(N)

≤
∣

∣

∣R
jb∗∗
i−1 (T , w) − Mb∗∗

i−1(N)

∣

∣

∣

≤ (i − 2) max
τ∈[r]\J ′ { jτ − jτ−1} ≤ (i − 1) max

τ∈[r]\J ′ { jτ − jτ−1} . (B.11)

Hence (combining Eqs. (B.10) and (B.11)),12

12 It actually holds that Mr
i (N) ≥ R jr

i (T , w), so that R jr
i (T , w) − Mr

i (N) ≤ 0, but for the sake of

simplicity of the inductive argument, we prove the same upper bound on R jr
i (T , w) − Mr

i (N) as on

Mr
i (N) − R jr

i (T , w).

123

Algorithmica

R jr
i (T , w) − Mr

i (N) ≤ (i − 1) max
τ∈[r]\J ′ { jτ − jτ−1} (B.12)

Together, Eqs. (B.9) and (B.12) give us that

∣

∣

∣Mr
i (N) − R jr

i (T , w)

∣

∣

∣ ≤ (i − 1) max
τ∈[r]\J ′ { jτ − jτ−1} , (B.13)

and the proof is completed.
�

Author Contributions Both authors wrote the main manuscript text and reviewed it.

Funding Open access funding provided by Tel Aviv University.

Declarations

Conflict of interest The authors have no competing interests to declare.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ailon,N., Chazelle, B., Comandur, S., Liu,D.: Estimating the distance to amonotone function. Random
Struct. Algorithms 31(3), 371–383 (2007)

2. Bar-Yossef, Z.: Sampling lower bounds via information theory. In: Proceedings of the 35th Annual
ACM Symposium on the Theory of Computing (STOC), pp. 335–344 (2003)

3. Ben-Eliezer, O., Fischer, E., Levi, A., Rothblum R.D.: Hard properties with (very) short PCPPs and
their applications. In: Proceedings of the 11th Innovations in Theoretical Computer Science conference
(ITCS), pp. 9:1–9:27 (2020)

4. Berman, P., Murzabulatov, M., Raskhodnikova, S.: Tolerant testers of image properties. ACM Trans.
Algorithms 18(4), 1–39 (2022). (Article number 37)

5. Berman, P., Raskhodnikova, S., Yaroslavtsev, G.: Lp-testing. In: Proceedings of the 46th Annual ACM
Symposium on the Theory of Computing (STOC), pp. 164–173 (2014)

6. Black, H., Chakrabarty, D., Seshadhri, C.: Domain reduction for monotonicity testing: a o(d) tester
for boolean functions in d-dimensions. In: Proceedings of the 31st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1975–1994 (2020)

7. Blais, E., Canonne, C.L., Eden, T., Levi, A., Ron, D.: Tolerant junta testing and the connection to
submodular optimization and function isomorphism. ACMTrans. Comput. Theory 11(4), 1–33 (2019)

8. Blais, E., Pinto, R.F. Jr., Harms, N.: VC dimension and distribution-free sample-based testing. In:
Proceedings of the 53rd Annual ACM Symposium on the Theory of Computing (STOC), pp. 504–517
(2021)

9. Blum, A., Hu, L.: Active tolerant testing. In: Proceedings of the 31st Conference on Computational
Learning Theory (COLT), pp. 474–497 (2018)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

10. Braverman,M.,Khot, S., Kindler, G.,Minzer, D.: Improvedmonotonicity testers via hypercube embed-
dings. In: Proceedings of the 13th Innovations in Theoretical Computer Science Conference (ITCS),
pp. 25:1–25:24 (2024)

11. Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers for connectivity and
diameter. In: Proceedings of the 17th International Workshop on Randomization and Computation
(RANDOM), pp. 411–424 (2013)

12. Canonne, C.L., Grigorescu, E., Guo, S., Kumar, A., Wimmer, K.: Testing k-monotonicity: the rise and
fall of Boolean functions. Theory Comput. 15(1), 1–55 (2019)

13. Chen, X., Patel, S.: New lower bounds for adaptive tolerant junta testing. In: Proceedings of the 64th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1778–1786 (2023)

14. Cohen Sidon, O.: Sample-based distance-approximation for subsequence-freeness. M.Sc thesis, Tel
Aviv University (2023)

15. Diakonikolas, I., Kane, D.: A new approach for testing properties of discrete distributions. In: Proceed-
ings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 685–694
(2016)

16. Dixit, K., Raskhodnikova, S., Thakurta, A., Varma, N.: Erasure-resilient property testing. SIAM J.
Comput. 47(2), 295–329 (2018)

17. Fattal, S., Ron, D.: Approximating the distance to monotonicity in high dimensions. ACM Trans.
Algorithms 6(3), 1–37 (2010)

18. Fiat, N., Ron, D.: On efficient distance approximation for graph properties. In: Proceedings of the 32nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1618–1637 (2021)

19. Fischer, E., Fortnow, L.: Tolerant versus intolerant testing for Boolean properties. Theory Comput. 2,
173–183 (2006)

20. Fischer, E., Newman, I.: Testing versus estimation of graph properties. SIAM J. Comput. 37(2), 482–
501 (2007)

21. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connections to learning and approxi-
mation. J. ACM 45, 653–750 (1998)

22. Goldreich, O.,Wigderson, A.: Robustly self-ordered graphs: constructions and applications to property
testing. Theoretics, 1 (2022). Article number 1

23. Guruswami, V., Rudra, A.: Tolerant locally testable codes. In: Proceedings of the 9th International
Workshop on Randomization and Computation (RANDOM), pp. 306–317 (2005)

24. Harms, N., Yoshida, Y.: Downsampling for testing and learning in product distributions. In: Automata,
Languages and Programming: 49th International Colloquium (ICALP), pp. 71:1–71:19 (2022)

25. Hoppen, C., Kohayakawa, Y., Lang, R., Lefmann, H., Stagni, H.: Estimating the distance to a hereditary
graph property. Electron. Notes Discrete Math. 61, 607–613 (2017)

26. Kopparty, S., Saraf, S.: Tolerant linearity testing and locally testable codes. In: Proceedings of the 13th
International Workshop on Randomization and Computation (RANDOM), pp. 601–614 (2009)

27. Levi, A., Waingarten, E.: Lower bounds for tolerant junta and unateness testing via rejection sampling
of graphs. In: Proceedings of the 10th Innovations inTheoretical Computer ScienceConference (ITCS),
pp. 52:1–52:20 (2019)

28. Marko, S., Ron, D.: Distance approximation in bounded-degree and general sparse graphs. Trans.
Algorithms 5(2) (2009), Article number 22

29. Newman, I., Varma, N.: New sublinear algorithms and lower bounds for LIS estimation. In: Automata,
Languages and Programming: 48th International Colloquium (ICALP), pp. 100:1–100:20 (2021)

30. Pallavoor, R.K.S., Raskhodnikova, S., Waingarten, E.: Approximating the distance to monotonicity of
Boolean functions. Random Struct. Algorithms 60(2), 233–260 (2022)

31. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approximation. J. Comput.
Syst. Sci. 72(6), 1012–1042 (2006)

32. Raskhodnikova, S., Ron-Zewi, N., Varma,N.: Erasures vs. errors in local decoding and property testing.
Random Struct. Algorithms 59, 640–670 (2021)

33. Ron, D., Rosin, A.: Optimal distribution-free sample-based testing of subsequence-freeness with one-
sided error. ACM Trans. Comput. Theory 14(4), 1–31 (2022)

34. Rubinfeld, R., Sudan,M.: Robust characterization of polynomials with applications to program testing.
SIAM J. Comput. 25(2), 252–271 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Sample-Based Distance-Approximation for Subsequence-Freeness
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 A High-Level Discussion of Our Algorithms
	1.2.1 The Uniform Case
	1.2.2 The Distribution-Free Case

	1.3 Related Results
	1.4 Further Research
	1.5 Organization

	2 Distance Approximation Under the Uniform Distribution
	3 Distribution-Free Distance Approximation
	3.1 Interval Construction and Classification
	3.2 Estimation of Symbol Density and Weight of Intervals
	3.3 Reducing from Distribution-Free to Uniform
	3.3.1 A Basis for Reducing from Distribution-Free to Uniform
	3.3.2 Establishing the Reduction for winmathcalWc and Quantized p

	3.4 Quantized Distribution
	3.5 Handling w -.25ex-.25ex-.25ex-.25exmathcalWc
	3.6 Uniform Distribution via Splitting
	3.7 Estimators for the Distribution-Free Case
	3.8 Wrapping Things Up in the General Case

	4 A Lower Bound for Distance Approximation
	A Chernoff Bounds
	B Missing Proofs
	References

