
Algorithmica
https://doi.org/10.1007/s00453-024-01226-3

Analysing Equilibrium States for Population Diversity

Johannes Lengler1 · Andre Opris2 · Dirk Sudholt2

Received: 11 July 2023 / Accepted: 10 March 2024
© The Author(s) 2024

Abstract
Population diversity is crucial in evolutionary algorithms as it helps with global explo-
ration and facilitates the use of crossover. Despite many runtime analyses showing
advantages of population diversity, we have no clear picture of how diversity evolves
over time. We study how the population diversity of (μ + 1) algorithms, measured by
the sum of pairwise Hamming distances, evolves in a fitness-neutral environment. We
give an exact formula for the drift of population diversity and show that it is driven
towards an equilibrium state. Moreover, we bound the expected time for getting close
to the equilibrium state. We find that these dynamics, including the location of the
equilibrium, are unaffected by surprisingly many algorithmic choices. All unbiased
mutation operators with the same expected number of bit flips have the same effect
on the expected diversity. Many crossover operators have no effect at all, including
all binary unbiased, respectful operators. We review crossover operators from the lit-
erature and identify crossovers that are neutral towards the evolution of diversity and
crossovers that are not.

Keywords Evolutionary algorithms · Runtime analysis · Diversity · Population
dynamics

1 Introduction andMotivation

Evolutionary algorithms are general-purpose algorithms for optimisation and design
thatmaintain a population (multiset) of candidate solutions and create new solutions by

B Andre Opris
Andre.Opris@uni-passau.de

Johannes Lengler
johannes.lengler@inf.ethz.ch

Dirk Sudholt
Dirk.Sudholt@uni-passau.de

1 Institute of Theoretical Computer Science, ETH Zürich, Zurich, Switzerland

2 Faculty of Computer Science and Mathematics, University of Passau, Passau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01226-3&domain=pdf

Algorithmica

applying operators such as crossover, mutation and selection. The use of a population
helps with exploration, is important for escaping local basins of attraction, and is
the basis for efficient use of crossover operators [1]. However, this only applies if
the population contains dissimilar individuals, commonly referred to as diversity. A
major challenge in applying evolutionary algorithms is the fact that the population
may collapse to copies of the same search point. Maintaining population diversity is
an important aspect of evolutionary algorithms [2–5]. There exist many mechanisms
that explicitly encourage or force the population to become more diverse. Several
studies confirmed the benefits of such explicit diversity-preserving mechanisms on
various test functions [6–12]. For some operators, like lexicase selection, it is even
known that diversity decreases the runtime of this operator [13].

Many theoretical and practical results show that even low levels of population
diversity can improve runtime. Even on the most simple benchmark OneMax, which
counts the number of bits set to 1 in a bit string of length n, the standard (2 + 1) GA
(with mutation rate 1/n) is by a constant factor faster than the fastest mutation-based
evolutionary algorithm without crossover [14–16]. This is due to the beneficial effects
of crossover, which can exploit even small amounts of diversity. For the more complex
monotone function HotTopic, the same effect reduces the exponential optimisation
time of the (μ+1) EA to O(n log n) for the (μ+1) GA if μ is a large constant and the
algorithms are started close to the optimum [17]. Finally, it was also shown to benefit
memetic (hybrid) evolutionary algorithms on Hurdle functions [18].

Exampleswhere crossover betweenmore diverse individuals can help includeReal
Royal Road functions [19] and Jumpk . For Jumpk , it is necessary to cross a fitness
valley of size k. The (μ+1) GA can do this with crossover in time O(4k) if sufficiently
diverse individuals exist, whilemutation-based operators need�(nk) trials [20]. How-
ever, the original approach by Jansen andWegener, later improved byKötzing, Sudholt
and Theile, only showed that sufficiently diverse individuals appear for unrealistically
small crossover probabilities [20, 21]. Dang et al. [22] showed that a more modest
improvement of roughly a factor n is still possible when always performing crossover.
This study showed that diversity emerges naturally on the set of all search points with
n − k ones, and that on this set crossover serves as a catalyst for boosting population
diversity. However, the full benefits of crossover can still be obtained if the (μ+1) GA
is equipped with diversity-preserving mechanisms [23].

So there is no shortage of results showing that diversity can be beneficial. Despite
these results, our understanding of how population diversity evolves is still very
limited. Even on OneMax, for a standard (μ+1) EA, we do not have a complete
picture. While there are upper bounds whose leading constants decrease with μ up to
μ = o(

√
log n) [16], lower bounds that are tight including leading constants are only

known for μ = 2 [24]. For Jumpk , empirical results suggest that the improvement by
crossover is much larger than the mentioned factor of n from the theoretical analysis
[22]. In both scenarios, the main obstacle is understanding the population dynamics
and the evolution of diversity.

When considering problems with large degrees of neutrality, that is, contiguous
regions of the search space (with respect to the Hamming neighbourhood) of equal
fitness, or plateaus in the fitness landscape, our understanding of population diversity
is also not well developed. Many important problems feature neutrality, and functions

123

Algorithmica

with plateaus have been analysed in the literature in the context of runtime analysis
of evolutionary algorithms. This includes, for example, (1) the hidden subset problem
[25–28], where the fitness only depends on a small fraction of all variables, and it is not
known which variables are relevant and which ones only lead to neutral changes, (2)
majority functions returning the majority bit value [29, 30], (3) the moving Hamming
ball benchmark [31] from dynamic optimisation where a Hamming ball around a
moving target must be tracked and the fitness areas within and outside of the Hamming
ball are both flat, and (4) the Plateauk function [32, 33], a variant of OneMax in
which the best k fitness levels are turned into a neutral region, except for the optimumat
�1. However, except for [32, 33] the above results either concern populations of size 1 or
do not give detailed insights into the diversity of the population. The aforementioned
work on Jump [22] does give insights into the population diversity as part of the
analysis, however these insights are limited to the specific set of search points with
n − k ones.

We aim to initiate the systematic theoretical analysis of population diversity in
steady-state algorithms to gain insights into how diversity evolves, how quickly diver-
sity evolves, and which factors play a role in the evolution of diversity. In contrast to
previous work, we do not consider functions with specific fitness gradients but take
an orthogonal approach. We study how the population diversity, defined as the sum of
pairwise Hamming distances in the population, evolves in the absence of fitness-based
guidance as found in a completely neutral environment, that is, a flat fitness function.

We consider general classes of (μ+1) EAs and (μ+1) GAs equipped with various
mutation and crossover operators. As diversity measure S, we consider twice the sum
of pairwise Hamming distances of populationmembers.We show that, for all unbiased
mutation operators (as will be defined later), the diversity in all (μ+1) EAs is pushed
towards an equilibrium state S0 that depends on the population size μ, the expected
number χ of bits flipped during mutation, and the problem size n:

S0 := (μ − 1)μ2χn

2(μ − 1)χ + n
.

At this equilibrium the expected Hamming distance between two random population
members (with replacement) is roughly (μ − 1)χ if 2(μ − 1)χ � n, i.e. increasing
linearly with the population size μ and the mutation strength χ , and roughly n/2 if
2(μ−1)χ � n, respectively. The term n/2makes sense as this is the expected average
Hamming distance in a uniform random population.

We show that, for reasonable parameters, the expected time to decrease the diversity
below (1 + ε)S0, with ε > 0 constant, when starting with any larger diversity is
bounded by O(μ2 ln n). This bound grows very mildly with the problem size n. On
the other hand, the expected time to increase diversity above (1− ε)S0, when starting
with less diversity, can be �(n) even for μ = 2 and can thus be larger by a factor
n/μ for small values of μ. We prove a general bound of O(n ln n) for all mutation
operators. However, the situation is much better for tail-bounded unbiased mutation
operators, i.e. for an unbiased mutation operator mut for which the Hamming distance
H(mut(y), y) between an offspring mut(y) and its parent y decays exponentially:

123

Algorithmica

Pr(H(mut(y), y) ≥ �) ≤ q−� for some base q = 1 + �(1) and all � ≥ 0. For those,
the expected time for increasing diversity is again O(μ2 ln n) if μ is moderately large
(μ = �(

√
ln n)). For very small values of μ, we can still show a bound of O(ln2(n))

for tail-bounded mutation operators. Most mutation operators used in practice are
tail-bounded, including standard bit mutation. However, there also exist heavy-tailed
mutation operators which are not tail-bounded [34]. Table 1 gives a summary on all
upper time bounds shown in this work.

We also show that, surprisingly, the dynamics are to a very large extent independent
of the specifics of the algorithm1:

• For fixed χ > 0, every unbiased mutation operator which flips χ bits in expecta-
tion, leads to the same dynamics. For example, standard bit mutationwithmutation
rate 1/n has the same dynamics as the mutation operator in Randomised Local
Search (RLS) that always flips one bit.

• Large classes of crossover operators, including uniform crossover and k-point
crossover, have no effect on the dynamics.

For these reasons, we systematically classify which crossover operators have an
effect on the dynamics of population diversity. In Sect. 5 we show that crossover
operators are neutral with respect to diversity if and only if they satisfy a certain
characteristic equation. Consequently, we call such operators diversity-neutral. In
Sect. 6, we investigate this property further and show that it is implied if the crossover
is respectful with a mask independent of the order of the parents, see Sect. 2 for formal
definitions. Moreover, we will show that unbiased crossover operators are diversity-
neutral if and only if they are respectful, i.e., if and only if the offspring are in the convex
hull of the parents. Finally, in Sect. 6.2 we apply our classification, building on results
from [35], to classify five crossover operators from the literature as diversity-neutral,
and seven other operators as not diversity-neutral.

An extended abstract with parts of the results was presented at GECCO 2023 [36].
This improved and extended manuscript includes all omitted proofs, many further
details and discussions, a refinement of the upper bound on the expected time to
approach the equilibrium state from a population of low diversity (Theorem 12 (i i)
and (14) in Theorem 14) and a new upper bound that further refines this result for
tail-bounded mutation operators (Theorem 12 (i i i) and (15) in Theorem 14).

1.1 Motivation for Studying Flat Landscapes

There are two major motivations for our study of a flat fitness landscape. One reason
is that, informally, they could provide upper bounds on the population diversity that
we obtain in many non-neutral environments. While we suspect that counterexamples
exist, we also suspect that for many “natural” fitness functions, diversity in non-flat
environments is generally lower than diversity in flat environments. After all, selection
tends to favour individuals which are similar to each other, since it systematically
promotes individuals which have a similar trait (namely, high fitness). In contrast, in a

1 By “dynamics”, we mean the expected change per generation, the equilibrium value S0, and our upper
bounds for the expected time to reduce or increase diversity towards S0.

123

Algorithmica

Ta
bl
e
1

O
ve
rv
ie
w
of

up
pe
rb

ou
nd

s
on

th
e
ex
pe
ct
ed

tim
e
to
ap
pr
ox

im
at
e
or

sk
ip
ov
er
th
e
eq
ui
lib

ri
um

st
at
e
S 0

(c
f.
T
he
or
em

14
)f
or

(μ
+1

)-
ev
ol
ut
io
na
ry

an
d
ge
ne
tic

al
go

ri
th
m
s

w
ith

μ
≥

2
m
ee
tin

g
th
e
co
nd

iti
on

s
of

C
or
ol
la
ry

9.
S(

P t
)
is
th
e
di
ve
rs
ity

of
th
e
po
pu
la
tio

n
at
tim

e
t.
G
iv
en

ε
∈

(0
,
1]

w
e
ha
ve

T ε
,↓

:=
in
f{t

|S
(
P t

)
≤

(1
+

ε
)S

0
(e
xp

ec
te
d

tim
e
to

re
du
ce

ex
ce
ss

di
ve
rs
ity

)
an
d
T ε

,↑
:=

in
f{t

|S
(
P t

)
≥

(1
−

ε
)S

0
}(
ex
pe
ct
ed

tim
e
to

ge
ne
ra
te
di
ve
rs
ity

).
A
ss
um

pt
io
ns

ar
e
st
at
ed

in
th
e
se
co
nd

co
lu
m
n.

D
efi

ni
tio

ns
fo
r

re
sp
ec
tf
ul

an
d
ta
il
-b
ou

nd
ed

ar
e
gi
ve
n
in

Se
ct
.2
.F

in
al
ly
,l
n+

(x
)
:=

m
ax

{1,
ln

(x
)}

U
pp

er
tim

e
bo

un
d

A
ss
um

pt
io
ns

G
en
er
al
bo

un
ds
:

E
(T

ε
,↓

)
∈
O

(μ
·m

in
{μ

,n
/
χ

}
ε

·ln
(1

+n
/
(μ

χ
)

ε

))

E
(T

ε
,↑

)
∈
O

(
n ε
χ

·ln
(1+

n/
(μ

2
χ

)
ε

))

E
(T

ε
,↑

)
∈
O

(m
in

{μ
2
,n

/
χ

}+
1 χ
lo
g q

(
μ
n

ε
χ

)

ε
·ln

(1+
μ
n2

/
(ε

χ
2
ln
q
)

ε

))
re
sp
ec
tf
ul

cr
os
so
ve
r,
q
-t
ai
l-
bo

un
de
d
m
ut
at
io
n

B
ou

nd
s
si
m
pl
ifi
ed

fo
r
ε
,
χ

=
�

(1
):

E
(T

ε
,↓

)
∈
O

(μ
2
ln

+ (
n/

(μ
χ

))
)

μ
χ

=
O

(n
)

E
(T

ε
,↓

)
∈
O

(μ
n/

χ
)

μ
χ

=
�

(n
)

E
(T

ε
,↑

)
∈
O

(n
ln

+ (
n/

(μ
2
χ

))
/
χ

)

E
(T

ε
,↑

)
∈
O

(n
/
χ

)
μ
2
χ

=
�

(n
)

E
(T

ε
,↑

)
∈
O

(μ
2
ln

(n
)
+

ln
2
(n

))
re
sp
ec
tf
ul

cr
os
so
ve
r,

(1
+

�
(1

))
-t
ai
l-
bo

un
de
d
m
ut
at
io
n,

μ
2
χ

≤
ln
n

E
(T

ε
,↑

)
∈
O

(μ
2
ln
n)

re
sp
ec
tf
ul

cr
os
so
ve
r,

(1
+

�
(1

))
-t
ai
l-
bo

un
de
d
m
ut
at
io
n,
ln
n

≤
μ
2
χ

≤
n

123

Algorithmica

flat fitness landscape any new offspring is accepted, allowing the population to spread
out without restrictions imposed by the topology of the search space. Thus, there is
some hope that the diversity bounds of this paper may still hold as upper bounds in
many non-neutral environments.

The second reason is that, in addition to OneMax and Jumpk mentioned earlier,
there are several processes of interest to the runtime analysis community that fea-
ture large degrees of neutrality or very low selective pressure, either continuously or
temporarily.

• For the well-known LeadingOnes function, if the best-so-far fitness value is k
then the bits at positions k + 2, . . . , n receive no fitness signal and thus this sub-
space of the hypercube is a perfectly neutral environment. The dynamics of a
(μ+1) EA or (μ+1) GA in accepted steps are similar to the dynamics studied in
the following.

• Clearing [1, 8] is a diversity-preserving mechanism in which an individual of high
fitness “clears” a region around itself, i.e. the fitness of “cleared” individuals is
replaced with a plateau of low fitness. The evolution of the population happens on
a flat fitness function, except for the fact that winner individuals are guaranteed to
survive and continuously spawn offspring close to them.

• A similar process can be seen for (μ+1) EAs on HotTopic functions. It has been
shown that after an improving individual is found, the offspring of this individual
may essentially evolve free from selective pressure for a while, as if they were
in a fitness-neutral environment. The defects accumulated in this phase cause the
(μ + 1) EA to take exponential time on HotTopic if μ is a large constant [37].

• Selection pressure can also be absent if an evolutionary algorithm uses inappro-
priate parameter settings or operators that are not suitable. Examples of inefficient
parameter settings are given in [38]. Selection pressure was also found to be
nearly absent when using fitness-proportional replacement selection in probabilis-
tic crowding [9] or when using stochastic pure ageing, where individuals are being
removed from the population probabilistically [39]. So our results may be helpful
to understand the effects of bad EA designs or parameter choices.

We emphasise that all these scenarios are unique in their ownway: fitness plateaus have
a topology that may be different from the hypercube; the clearing diversity mechanism
continuously injects offspring of the current winners into the population; the phases
without selective pressure in HotTopic optimisation only last for a certain amount of
time. These unique traits do affect the dynamics of population diversity. Therefore,
our results only apply partially to those situations. Nevertheless, we believe that our
study is a good starting point for better understanding such specific situations.

1.2 RelatedWork in Population Genetics

We remark that in biology, specifically in population genetics, evolution in the absence
of selection has been studied as well, justified by the fact that many loci (bits) have
little effect on the overall fitness of the organism [40, Chapter 3] and the hypothesis
that evolution is largely driven by genetic drift [41]. According to [42], the (μ+1) EA
is known in population genetics as the Moran model and the diversity measure is

123

Algorithmica

known as gene diversity according to [43]. The gene diversity can be derived from
allele frequencies (in our case: frequencies of bit values) asμ2 ·∑n

i=1 fi,0 · fi,1, where
fi,b for i ∈ {1, . . . , n} and b ∈ {0, 1} is the frequency of bit value b in the population
at position i (cf. the discussion after Definition 5). For allele frequencies, equilibria
on flat fitness landscapes are well-known [44].

However, despite these close links there are important differences between popula-
tion genetics literature and our work. Firstly, apart from very few exceptions [45–47],
studies in population genetics consider a fixed, constant number of loci (see, e.g. [44,
48, 49]). In contrast, our work deals with equilibria for gene diversity on strings of
arbitrary length n (where n is often also used to parameterise the mutation strength).
This is especially important because we focus on the expected time to approach (or
skip over) the equilibrium state, and how this time depends on n. Apart from the excep-
tions cited above, we could not find directly related work in population genetics on
the convergence speed or speed of adaptation that goes beyond O(1) loci. Secondly,
we directly study the effect of algorithmic components like mutation and crossover,
and show how their properties affect the process. Finally, our work covers a much
broader range of mutation and crossover operators, many of which are not natural in
the context of population genetics.

2 Preliminaries

For x, y ∈ {0, 1}n , the Hamming distance H(x, y) is the number of positions in
which x and y differ. For k, � ∈ N with k ≤ � we write [k] := {1, 2, . . . , k} and
[k, �] := {k, . . . , �}. By a flat (or fitness-neutral) fitness functionwemean the function
f (x) = 0 for all x ∈ {0, 1}n . For x ∈ {0, 1}n we mean by |x |1 the number of ones and
by |x |0 the number of zeros, respectively. By �i ∈ {0, 1, 2}n we mean �i := (i, . . . , i)
for i ∈ {0, 1, 2}. We write ln+(z) := max{1, ln z}.

2.1 Algorithms

We define the following schemes of a steady-state EA without crossover and a steady-
state GA using crossover. The former starts with some initial population, selects a
parent uniformly at randomand creates an offspring y through somemutation operator.
Then y replaces a worst search point z in the current population if its fitness is noworse
than the fitness of z. The steady-state GA picks two parents uniformly at random
with replacement and applies some crossover operator to the two parents, followed
by some mutation operator applied to the offspring. The mutant replaces the worst
member of the population if it is no worse.

We deliberately do not specify operators for initialisation, crossover and mutation
at this point to obtain a scheme that is as general as possible. Note that Algorithm 2
chooses two parents with replacement. It is straightforward to adapt our results to
selecting parents without replacement (that is, ensuring that two different parents are
recombined), see Remark 19 in Sect. 5. Parent selection is assumed to be uniform. For
our setting, this is no restriction: assuming the fitness function is flat and ties are broken

123

Algorithmica

Algorithm 1: Scheme of a Steady-State (μ + 1) EA
1 t ← 0

Initialise P0 as a multiset of μ search points
while termination criterion not met do

2 Select x ∈ Pt uniformly at random
y ← mutation(x)
Select z ∈ Pt uniformly at random from all search points with minimum fitness in Pt
if f (y) ≥ f (z) then

3 Pt+1 ← (Pt ∪ {y})\{z}
4 t ← t + 1

Algorithm 2: Scheme of a Steady-State (μ + 1) GA
1 t ← 0

Initialise P0 as a multiset of μ search points
while termination criterion not met do

2 Select x1 ∈ Pt uniformly at random
Select x2 ∈ Pt uniformly at random
y ← crossover(x1, x2)
y′ ← mutation(y)
Select z ∈ Pt uniformly at random from all search points with minimum fitness in Pt
if f (y′) ≥ f (z) then

3 Pt+1 ← (Pt ∪ {y′})\{z}
4 t ← t + 1

uniformly at random, every selection method based on fitness values or rankings of
search points boils down to uniform selection.

Algorithm 2 is a generalisation of Algorithm 1: if we choose a crossover operator
that returns an arbitrary parent (called boring crossover in [35], the algorithm per-
forms a mutation of a parent chosen uniformly at random as in Algorithm 1. It is
also straightforward to implement a crossover probability pc, that is, to apply some
crossover operator c with probability pc. In this case the crossover operator in Line 2
of Algorithm 2 performs a boring crossover with probability 1 − pc and otherwise
executes c.

In both schemes, in case of a fitness tie between the offspring and z, the offspring
is preferred. This reflects a common strategy and it is useful for exploring plateaus.
If the offspring is removed in case of equal fitness, or if z is selected from all search
points with minimum fitness in Pt ∪ {y′} instead of Pt , steps removing the offspring
are idle steps. In the latter case, if the fitness function is flat, an idle step occurs with
probability 1/(μ + 1). Idle steps do not affect the equilibrium states of population
diversity, but they slow down the process by a factor μ/(μ + 1), see Remark 20.

2.2 Mutation and Crossover Operators

One contribution of the paper is to characterise diversity-neutral crossover operators,
which we will define in Sect. 5. In preparation for this, we define important properties
of mutation and crossover operators.

123

Algorithmica

Anm-ary operator takes m search points x1, . . . , xm ∈ {0, 1}n as input and outputs
y ∈ {0, 1}n , where y may be random. For example, mutation operators are unary
(1-ary) operators, and crossover operators are most often binary (2-ary), although
crossover operators with higher arity exist as well. We will use the notion of unbiased
operators by Lehre and Witt [50]. Intuitively, an operator is unbiased if it treats bit
values and bit positions symmetrically. Formally, we require the following.

Definition 1 A m-ary operator op(x1, . . . , xm) is unbiased if the following holds for
all x1, . . . , xm ∈ {0, 1}n . Let D(y | x1, . . . , xm) := Pr(op(x1, . . . , xm) = y).

(i) For every permutation of n bit positions σ we have

D(y | x1, . . . , xm) = D(σ (y) | σ(x1), . . . , σ (xm)).

(ii) For every z ∈ {0, 1}n we have (⊕ denoting exclusive OR)

D(y | x1, . . . , xm) = D(y ⊕ z | x1 ⊕ z, . . . , xm ⊕ z).

Most mutation operators are unbiased, including standard bit mutation and the heavy-
tailed mutation operators used in fast EAs/GAs [34]. Many of them (like standard
bit mutation) are tail-bounded, which means that the probability of creating a certain
offspring decreases exponentially in the Hamming distance to its parent.

Definition 2 For q > 1, an unbiased mutation operator mut is q-tail-bounded if
Pr(H(mut(y), y) ≥ �) ≤ q−� for every � ≥ 0.

Many crossover operators are also unbiased, but not all of them are. A detailed
discussion by Friedrich et al. can be found in [35]. For an unbiased, q-tail-bounded
mutation operator which flips χ bits in expectation we have χ ≤ ∑

�≥1 q
−� ≤ 1/

(q − 1). Thus if q ∈ 1 + �(1) then χ = O(1).
A crossover operator is respectful [51] if components on which all parents agree

are passed on to the offspring, i.e., the output is in the convex hull of the inputs (a char-
acteristic of geometric crossovers [52]). For our purposes, the following description
via masks is useful.

Definition 3 An m-ary operator op is respectful if it chooses a possibly random mask
a ∈ [m]n (where the probabilities may depend on the parents) such that the i-th bit of
y is taken from xai .

Note that the mask in Definition 3 is not unique in positions in which parents have the
same bit. We will consider respectful operators where the mask does not depend on
the order of the parents. Here we restrict ourselves to binary operators.

Definition 4 For a binary respectful operator c, let M(a, x1, x2) be the probability
of c(x1, x2) choosing the mask a ∈ {1, 2}n . We call the mask order-independent if
M(a, x1, x2) = M(a, x2, x1) for all x1, x2 ∈ {0, 1}n and a ∈ {1, 2}n , and we then say
for short that c has an order-independent mask (OIM).

123

Algorithmica

Since a respectful operator can be described by different masks, it can happen that
the same respectful operator can either be described by an order-independent mask
or by a mask that does depend on the order. For all our results, the existence of an
order-independent mask is sufficient, so our results also apply to the case described
above.

A respectful operator trivially has an OIM if the mask is created without consid-
ering the parents. Uniform crossover, biased uniform crossover (where each bit is
chosen independently from parent x1 with a given probability c ∈ [0, 1]) and k-point
crossover are examples of respectful crossovers with OIM. Note that OIM does not
imply symmetry between the parents. For instance, the operator which always returns
the first parent, that is,M(�1, x1, x2) = 1, has anOIM since themask �1 does not depend
on the order of the parents; in fact, it does not depend on the parents at all. On the
other hand, the bitwise AND operator is respectful, but does not have an OIM, as for
bits where both parents differ, the mask has to reflect the unique parent having a bit
value of 0. We give a formal proof in Lemma 22.

2.3 Diversity Measure

We consider the sum of Hamming distances as a natural and standard [43] diversity
measure:

Definition 5 For a population Pt = {x1, . . . , xμ} and a search point y ∈ {0, 1}n we
define

S(y) := SPt (y) :=
μ∑
i=1

H(xi , y)

and

S(Pt) :=
μ∑
i=1

SPt (xi) =
μ∑
i=1

μ∑
j=1

H(xi , x j).

The double sum includes the Hamming distance of each pair xi , x j with i �= j twice. If
instead we sum over all (i, j) with i < j , we would obtain S(Pt)/2. Other re-scalings
are also interesting. The average value of S(y) with y ∈ Pt is S(Pt)/μ. The expected
Hamming distance of two uniform random points in Pt drawn with replacement is
S(Pt)/μ2, and without replacement it is S(Pt)/(μ2 − μ). Since those values differ
only by a fixed factor from S(Pt), all our results transfer straightforwardly to these
other measures.

The sum of Hamming distances is one of the oldest and most popular diversity
metrics [43]. It can be calculated with O(μn) operations [43], which is linear in the
input size and hence optimal for all diversity measures that take into account all of a
population’s genetic information. The idea is simply to count for each bit position i
how many individuals have a 1 at position i . If this number is ci , the contribution
to S(Pt) is 2ci (μ − ci) as this is the number of pairs of population members that

123

Algorithmica

have different values at bit i . Consequently, S(Pt) = 2
∑n

i=1 ci (μ − ci) holds.2 In
the context of a (μ+1) EA, the vector c1, . . . , cn and thus S(Pt) can be updated after
one generation with O(n) operations, which is again optimal. According to [53], the
sum of Hamming distances has two desirable properties. Firstly, diversity increases
when adding a new search point that is not yet contained in the population (called
monotonicity in species [54]). Secondly, the diversity does not decreasewhen replacing
the population with one where all pairs of solutions have a distance at least as large
as the previous one (monotonicity in distance [54]). It does not fulfil the twinning
property, stating that diversity should remain constant when adding a clone of a search
point into the population [54], and it may be maximised by a population forming
clusters of search points such that the clusters have a large Hamming distance [53].
In fact, ci (μ − ci) is maximised by ci := �μ/2� and thus S(Pt) ≤ μ2n/2. (However,
we will often prefer the trivial bound S(Pt) ≤ μ2n for the sake of simplicity.)

2.4 On Stationary Distributions andMixing Times

A steady-state (μ+1) EA or (μ+1) GA can be described by a Markov chain over the
state space of all possible populations. For most mutation and crossover operators,
the Markov chain is irreducible if the algorithm runs on a flat fitness landscape. For
example, standard bit mutation has a non-zero probability to create any offspring y
from any parent x . Thus, there is a positive probability of creating any population P2
from any initial population P1 in a sequence of at most μ generations. The Markov
chain is also usually aperiodic since there is a positive probability of adding a clone
of the search point being removed, and hence there is a positive self-loop probability.
In this case, by the fundamental theorem of Markov chains [55, Theorem 6.2], there
exists a unique stationary distribution. The expected time to approach the stationary
distribution is calledmixing time and there is a well-established machinery for bound-
ing mixing times (see, e.g. [56]). However, the Markov chain lives on the space of all
possible populations, which has size 2nμ, and even a logarithmic mixing time would
be of order�(nμ). Compared to this, our bound for approaching or crossing the equi-
librium state from above is O(μ2 ln+(n/μ)), which can be much smaller. We do not
believe that such results can be directly deduced from mixing times.

Of course, the diversity S(Pt) performs a random walk on a much smaller state
space. But this is in general not a Markov chain, since there may be very different
populations having the same overall diversity, and the possible values of S(Pt+1)

depend on the details of the populations, not only on the value S(Pt).

2 Note that the summand 2ci (μ − ci)ci (μ − ci) can be written as 2μ
2 · ((ci /μ)(1− ci /μ)) where, in the

notion of biology, ci /μ is the allele frequency of the allele (bit value) 1 and (1− ci /μ) is the frequency of
allele 0. Hence S(Pt) can be easily computed from allele frequencies.

123

Algorithmica

3 Drift of Population Diversity for Steady-State EAsWithout
Crossover

Now we will compute the expected change of S(Pt), i.e. E(S(Pt+1)) for a given Pt .
We break the process down into several steps, and work out a unifying formula for a
very general situation, see Corollary 9. This includes the (μ+1) EA for any unbiased
mutation operator (Theorem 10), but as we will see later in Sect. 5, it also includes the
(μ+1) GA with a large variety of crossover operators.

We start with a lemma which describes the expected change for a fixed value of the
offspring y′.

Lemma 6 Consider a population Pt = {x1, . . . , xμ} and a search point y′ ∈ {0, 1}n.
Let Pt+1 := (Pt ∪ {y′})\{xd} for a uniformly random d ∈ [μ]. Then

E(S(Pt+1)) =
(
1 − 2

μ

)
S(Pt) + 2(μ − 1)

μ
SPt (y

′).

Proof For any fixed d ∈ [μ], let P−d
t+1 := (Pt ∪ {y′})\{xd}. Then

S(P−d
t+1) =

∑

z∈P−d
t+1

∑

z′∈P−d
t+1

H(z, z′).

The double sum contains summands H(y′, x j) for all j ∈ [μ]\{d} and summands
H(xi , y′) for all i ∈ [μ]\{d} as well as a summand H(y′, y′) = 0. By virtue of
H(xi , x j) = H(x j , xi), this equals

=
μ∑

i=1,i �=d

μ∑
j=1, j �=d

H(xi , x j) + 2
μ∑

i=1,i �=d

H(xi , y
′).

Compared to S(Pt), the double sum is missing summands H(xd , x j) for all j ∈
[μ]\{d} and summands H(xi , xd) for all i ∈ [μ]\{d} as well as a summand
H(xd , xd) = 0. Thus, this is equal to

=
μ∑
i=1

μ∑
j=1

H(xi , x j) + 2
μ∑

i=1,i �=d

H(xi , y
′) − 2

μ∑
i=1

H(xi , xd)

= S(Pt) + 2
μ∑

i=1,i �=d

H(xi , y
′) − 2

μ∑
i=1

H(xi , xd). (1)

Owing to the uniform choice of d, we get

E(S(Pt+1)) = 1

μ

μ∑
d=1

S(P−d
t+1) = S(Pt) + 2

μ

μ∑
d=1

μ∑
i=1,i �=d

H(xi , y
′) − 2

μ

μ∑
d=1

μ∑
i=1

H(xi , xd).

123

Algorithmica

The first double sum contains terms H(xi , y′) for all i ∈ [μ] exactly μ− 1 times. The
second double sum equals S(Pt). Thus,

=
(
1 − 2

μ

)
S(Pt) + 2(μ−1)

μ

∑μ
i=1 H(xi , y′).

��
The next lemma tells us how, for given x, z, mutating x changes the distance from a

fixed search point z in expectation. Interestingly, if the mutation operator is unbiased
then the result depends only on the expected number of bit flips, but not on the exact
nature of the mutation operator.

Lemma 7 Let x, z ∈ {0, 1}n, and let y be the random search point obtained from x by
an unbiased mutation operator that flips χ bits in expectation. Then

E(H(z, y)) = χ +
(
1 − 2χ

n

)
H(z, x).

Proof Let pi be the probability of flipping the i-th bit of x . By unbiasedness, we have
pi = p j for all i, j ∈ [n]. We also have

∑n
i=1 pi = χ . Since all pi are equal, this

implies npi = χ , or pi = χ/n.
There are H(z, x) positions on which x and z differ. In expectation, χ/n · H(z, x)

of them are flipped, and each flip decreases the distance from z by one. There are
n − H(z, x) positions on which x and z agree. Each such flip increases the distance
from z by one, and their expectation is χ/n · (n− H(z, x)). Hence, E(H(z, y)) equals

H(z, x) − χH(z, x)

n
+ χ(n − H(z, x))

n
= χ + (1 − 2χ/n) H(z, x).

��
Lemmas 6 and 7 together allow us to derive how the diversity evolves if we create

the offspring as a mutation of a given string y.

Theorem 8 Consider a population Pt = {x1, . . . , xμ} and let y ∈ {0, 1}n. Let y′ be
the random search point obtained from y by an unbiased mutation operator which
flips χ bits in expectation. Let Pt+1 = (Pt ∪{y′})\{xd} for a uniform random d ∈ [μ].
Then

E(S(Pt+1)) =
(
1 − 2

μ

)
S(Pt) + 2(μ − 1)χ + 2(μ − 1)

μ

(
1 − 2χ

n

)
S(y).

Proof Note that S(y) = ∑μ
i=1 H(xi , y). Then byLemma6, the law of total probability

and linearity of expectation

E(S(Pt+1)) =
(
1 − 2

μ

)
S(Pt) + 2(μ − 1)

μ
E(S(y′)). (2)

123

Algorithmica

On the other hand, by Lemma 7 and again linearity of expectation, for all i ∈ [n],

E(H(xi , y
′)) = χ +

(
1 − 2χ

n

)
H(xi , y). (3)

Summing (3) over all i yields

E(S(y′)) =
μ∑
i=1

E(H(xi , y
′)) = μχ +

(
1 − 2χ

n

) μ∑
i=1

H(xi , y) = μχ +
(
1 − 2χ

n

)
S(y).

(4)

Plugging (4) into (2) yields the theorem. ��
Remarkably, Theorem 8 depends only on S(y), not on y itself. This means that

all y with the same value of S(y) yield the same dynamics. Moreover, by the law
of total probability the same still holds with E(S(y)) if y is random. The following
corollary describes the special case that E(S(y)) = S(Pt)/μ. As we will see later, this
special case covers many interesting situations. In particular, it covers the (μ+1) EA,
where the parent is chosen at random, and it covers the (μ+1) GA with any unbiased,
respectful crossover operator.

Corollary 9 Consider a population Pt = {x1, . . . , xμ}. Consider any process that
1. creates y by any random procedure such that E(S(y)) = S(Pt)/μ;
2. creates y′ from y by anunbiasedmutation operatorwhich flipsχ bits in expectation;
3. sets Pt+1 = (Pt ∪ {y′})\{xd} for a uniformly random d ∈ [μ].
Then

E(S(Pt+1)) =
(
1 − 2

μ2 − 4(μ − 1)χ

μ2n

)
S(Pt) + 2(μ − 1)χ.

Proof We apply Theorem 8 with a random y. By the law of total probability,

E(S(Pt+1)) =
(
1 − 2

μ

)
S(Pt) + 2(μ − 1)χ + 2(μ − 1)

μ

(
1 − 2χ

n

)
E(S(y))

=
(
1 − 2

μ

)
S(Pt) + 2(μ − 1)χ + 2(μ − 1)

μ

(
1 − 2χ

n

)
S(Pt)

μ

=
(
1 − 2

μ
+ 2

μ
− 2

μ2 − 4(μ − 1)χ

μ2n

)
S(Pt) + 2(μ − 1)χ,

and cancelling the 2/μ-terms yields the corollary. ��
As an immediate consequence, the (μ+1) EA with any unbiased mutation operator

meets the conditions of Corollary 9. In the previous lemmas and theorems, Pt could
be any fixed population. Since we now study the (μ+1) EA, the following theorem
will denote by Pt the (random) t-th population of the (μ+1) EA.

123

Algorithmica

Theorem 10 Consider any (μ+1) EA from Algorithm 1 with any unbiased mutation
operator flipping χ bits in expectation and a population size of μ on a flat fitness
function. Then for all populations Pt

E(S(Pt+1) | Pt) =
(
1 − 2

μ2 − 4(μ − 1)χ

μ2n

)
S(Pt) + 2(μ − 1)χ.

Proof This is an immediate consequence of Corollary 9, where y ∈ Pt is chosen
randomly, since such a random parent y satisfies

E(S(y) | Pt) = 1

μ

μ∑
i=1

μ∑
j=1

H(xi , x j) = S(Pt)

μ
.

��
Finally we describe the probability that a strong increase of S(Pt) occurs if we

use arbitrary respectful m-ary operators, followed by a mutation operator. A limited
increase by at most a factor of two can occur due to crossover. In case of tail-bounded
mutation operators, the probability of any further increase becomes exponentially
small. We will use this insight to derive upper bounds on the expected time until the
equilibrium state is reached from below.

Lemma 11 Consider a population Pt = {x1, . . . , xμ}. Let mut be any mutation oper-
ator. Consider any process that

1. creates y by any respectful m-ary operator from x1, . . . , xμ;
2. creates y′ := mut(y);
3. selects any d ∈ [μ] and sets Pt+1 = (Pt ∪ {y′})\{xd}.
Then for every k ≥ 0

Pr
(
S(Pt+1) ≥ min{2S(Pt), S(Pt) + 2μn} + 2kμ

∣∣ Pt
) ≤ Pr(H(y, y′) ≥ k | Pt).

Proof For brevity, we fix Pt and omit conditioning on Pt from the notation. We first
show that

S(Pt ∪ {y}) ≤ min{2S(Pt), S(Pt) + 2μn}. (5)

Note that the left hand side is a population of size μ + 1, while the right hand side
is a population of size μ. To see S(Pt ∪ {y}) ≤ S(Pt) + 2μn, we simply observe
that H(xi , y) ≤ n for all i , and S(Pt ∪ {y}) contains 2μ summands of that form. To
prove the other part, S(Pt ∪ {y}) ≤ 2S(Pt), consider a position � ∈ [n]. Since y was
obtained by a respectful operator, there exists i ∈ [μ] such that y� = (xi)�. Hence,

2
μ∑
j=1

|y� − (x j)�| =
μ∑
j=1

(|(xi)� − (x j)�| + |(x j)� − (xi)�|
) ≤

μ∑
j=1

μ∑
j ′=1

|(x j)� − (x j ′)�|,

(6)

123

Algorithmica

where the last inequality follows because every summand with indices (i, j) or (j, i)
also appears in the double sum, except that the summand for j = i appears only once,
but that summand is zero. Summing over all � in (6) yields 2

∑μ
j=1 H(y, x j) on the

left hand side and
∑μ

j=1

∑μ

j ′=1 H(x j ′ , x j) on the right hand side. Thus,

2
μ∑
j=1

H(y, x j) ≤
μ∑

j ′=1

μ∑
j=1

H(x j ′ , x j),

and the claim in (5) follows from

S(Pt ∪ {y}) = S(Pt) + 2
μ∑
j=1

H(y, x j) ≤ S(Pt) +
μ∑

j ′=1

μ∑
j=1

H(x j ′ , x j) = 2S(Pt).

Next we observe that changing one bit in y can increase H(xi , y) by at most one. The
diversity S(Pt ∪ {y}) contains each of the summands H(xi , y) and H(y, xi) exactly
once for each i , and does not involve y otherwise (since H(y, y) = 0). Hence,

S(Pt ∪ {y′}) ≤ S(Pt ∪ {y}) + 2μH(y, y′) ≤ min{2S(Pt), S(Pt) + 2μn} + 2μH(y, y′).

Finally, S(Pt+1) ≤ S(Pt ∪ {y}) since Pt+1 ⊂ Pt ∪ {y}. Together, we have

S(Pt+1) ≤ min{2S(Pt), S(Pt) + 2μn} + 2μH(y, y′).

Hence, the event “S(Pt+1) ≥ min{2 S(Pt), S(Pt) + 2μn} + 2μk” implies that
H(y, y′) ≥ k, and thus, conditioned on any fixed Pt ,

Pr(S(Pt+1) ≥ min{2S(Pt), S(Pt) + 2μn} + 2μk) ≤ Pr(H(y, y′) ≥ k),

as required. ��

4 Equilibria and Time Bounds

The preceding results give immediate insights about an equilibrium state for the pop-
ulation diversity. Define

α := 2(μ − 1)χ and δ := 2

μ2 + 4(μ − 1)χ

μ2n
, (7)

then Corollary 9 and Theorem 10 state that

E(S(Pt+1) | Pt) = (1 − δ)S(Pt) + α. (8)

123

Algorithmica

This condition was described in [57] as negative multiplicative drift with an additive
disturbance (in [57] only lower hitting time bounds were given, while we will prove
upper bounds). An equilibrium state with zero drift is attained for

S0 := α

δ
= (μ − 1)μ2χn

2(μ − 1)χ + n

since then E(S(Pt+1) | S(Pt) = S0) = (1 − δ) · α
δ

+ α = α
δ

= S0.
If (μ − 1)χ � n then the equilibrium is close to (μ − 1)μ2χ and the average

Hamming distance is (μ−1)χ , growing linearly in the population size and linearly in
the mutation strength χ . If (μ − 1)χ � n then the equilibrium is close to μ2n/2, that
is, the average Hamming distance between population members is roughly n/2. This
equals the expected Hamming distance between population members in a uniform
random population. Note that the average Hamming distance at the equilibrium is at
most

S0
μ2 = (μ − 1)χn

2(μ − 1)χ + n
≤ (μ − 1)χn

max{2(μ − 1)χ, n} = min {(μ − 1)χ, n/2} ,

hence bounded by the value n/2 for a uniform random population. It is bounded from
below by

S0
μ2 = (μ − 1)χn

2(μ − 1)χ + n
≥ (μ − 1)χn

2max{2(μ − 1)χ, n} = min {(μ − 1)χ/2, n/4} .

Hence, in order to obtain an average Hamming distance of 	(n), we must have μχ =
�(n). In particular, for χ = 	(n), the population size must be at least linear in n.

We stress again that for given μ and n, the equilibrium value α/δ only depends
on the expected number χ of flipped bits. For example, both RLS mutation, which
flips exactly one bit, and standard bit mutation with mutation rate 1/n have the same
value χ = 1 and hence the same equilibrium state. Recently, another type of mutation
operator has become quite popular, where the probability pk of flipping k bits has a
heavy tail [34]. Usually, it scales as pk ∼ k−τ for some τ > 1. In many applications,
all values of τ lead to similar results. However, here they lead to qualitatively different
behaviour due to different values of χ . More precisely, τ > 2 leads to χ = 	(1)
[58], which gives the same dynamics as standard bit mutation with slightly different
mutation rate 	(1/n). In particular, α/δ = 	(μ3) for μ ≤ n. On the other hand,
τ ∈ (1, 2) leads to χ = 	(

∑n
k=1 k · pk) = 	(

∑n
k=1 k

1−τ) = 	(n2−τ). Thus for
μ ≤ nτ−1 the equilibrium state is α/δ = 	(μ3χ) = 	(μ3n2−τ). For constant μ, this
means that the equilibrium state jumps from 	(1) to n�(1) as τ crosses the threshold
τ = 2. For τ = 2, we get an intermediate regime of χ = 	(log n) [58].

For another perspective on the equilibrium state we consider the distance D(Pt) :=
S(Pt) − α/δ. With (8) this changes as

E(D(Pt+1) | Pt) = E(S(Pt+1) | Pt) − α/δ = (1 − δ)S(Pt) + α − α/δ = (1 − δ)D(Pt).

123

Algorithmica

Hence, the distance from the equilibrium state shows a multiplicative drift. However,
note crucially that D(Pt) may take positive and negative values and the multiplicative
drift theorem [59] is not applicable. The process is quite different from the usual
situation of multiplicative drift, in which the target state is reached quickly. In fact, the
equilibrium state S(Pt) = α/δ may never be reached, since it might not be achievable
due to rounding issues or if the diversity changes in large steps. However, we will
show that the diversity will quickly reach an approximation of the equilibrium state,
or that the equilibrium state will be overshot.

The following theoremgives three upper timebounds.When startingwith a diversity
of S(Pt) > (1 + ε)α/δ, we bound the expected time to reach a diversity at most
(1+ε)α/δ. This reflects a scenario where a population has an above-average diversity
andweaskhow long it takes for diversity to reduce. Similarly, startingwith a population
of little or no diversity, S(Pt) < (1 − ε)α/δ, we give two different bounds for the
expected time for diversity to increase to at least (1−ε)α/δ. This reflects the expected
time to generate diversity. The first bound holds in general, and the second bound holds
for combinations of an arbitrary respectful crossover operator with a tail-bounded
mutation operator. As it might be of independent interest, we formulate this theorem
for general finite stochastic processes (Xt)t≥0 inN0 whose drift is bounded from above
or below by (1 − δ)Xt + α, respectively, where α, δ > 0 are arbitrary values.

Theorem 12 Fix 0 < ε ≤ 1 and suppose that α, δ > 0. Let (Xt)t≥0 with
Xt ∈ {0, . . . , Xmax} be a stochastic process. Let Tε,↓ := inf

{
t | Xt ≤ (1 + ε)α

δ

}
and Tε,↑ := inf

{
t | Xt ≥ (1 − ε)α

δ

}
.

(i) If E(Xt+1 | Xt = x) ≤ (1 − δ)x + α for all x > α
δ
(1 + ε) then

E(Tε,↓) ≤ 4

εδ
ln

(2δXmax

εα

)
.

(ii) Assume there is �max > 0 such that for all x < (1 − ε)α
δ
and all t ≥ 0 we

have Xt+1 ≤ α/δ + �max whenever Xt = x and we have E(Xt+1 | Xt = x) ≥
(1 − δ)x + α. Then

E(Tε,↑) ≤ 4�max

εα
ln

(2α + 2δ�max

εα

)
. (9)

(iii) If E(Xt+1 | Xt = x) ≥ (1 − δ)x + α for all x < (1 − ε)α
δ
and there is M ≥ 0

such that for all t and all values X1, . . . , Xt < (1 − ε)α
δ
:

Pr (Xt+1 > α/δ + M | X1, . . . , Xt) ≤ εα

2Xmax
, (10)

then

E(Tε,↑) ≤ 8M

εα
ln

(2α + 2δM

εα

)
. (11)

123

Algorithmica

Proof Weuse a direct argument, similar to the proof of the tail bound formultiplicative
drift [60].

(i): We are interested in the hitting time Tε,↓. For this hitting time, it is irrelevant
how the process transitions further from states Xt ≤ α/δ · (1+ε), and we may change
these transitions arbitrarily without affecting Tε,↓. Hence, even though the condition
E(Xt+1 | Xt = x) ≤ (1 − δ)x + α is only required for x > α/δ · (1 + ε), we may
safely assume that the condition holds for all x ∈ {0, 1, . . . , Xmax}, e.g., by making
the process transition to Xt+1 = 0 from all Xt ≤ α/δ · (1+ ε). With this assumption,
we show by induction on t that

E(Xt | X0) ≤
t−1∑
i=0

(1 − δ)iα + (1 − δ)t X0. (12)

For the base case t = 0 we have E(X0 | X0) = X0 and
∑t−1

i=0(1− δ)iα + X0 = X0 as
the sum is empty. Now assume the claim holds for E(Xt | X0). Using the law of total
expectation E(E(X | Y , Z) | Z) = E(X | Z)

E(Xt+1 | X0) = E(E(Xt+1 | Xt) | X0)

≤ E((1 − δ)Xt + α | X0) = (1 − δ)E(Xt | X0) + α.

Applying the induction hypothesis, we get

E(Xt+1 | X0) ≤ (1 − δ)

(
t−1∑
i=0

(1 − δ)iα + (1 − δ)t X0

)
+ α

=
t−1∑
i=0

(1 − δ)i+1α + (1 − δ)t+1X0 + α

=
t∑

i=0

(1 − δ)iα + (1 − δ)t+1X0.

From (12), we get, bounding the sum by an infinite series
∑∞

i=0(1 − δ)i = 1
δ
and

using 1 − δ ≤ e−δ as well as X0 ≤ Xmax,

E(Xt | X0) ≤
t−1∑
i=0

(1 − δ)iα + (1 − δ)t X0 ≤ α

δ
+ e−δt · Xmax.

Choosing t := ln(Xmax · δ/α · 2/ε)/δ, we obtain

E(Xt | X0) ≤ α

δ
+ 1

Xmax
· α

δ
· ε

2
· Xmax = α

δ
·
(
1 + ε

2

)
.

123

Algorithmica

By Markov’s inequality we get, for all values of X0,

Pr
(
Xt ≥ α

δ
· (1 + ε)

)
≤

α
δ

· (
1 + ε

2

)
α
δ

· (1 + ε)
= 1 + ε/2

1 + ε

and thus Pr(Xt < α
δ

· (1 + ε)) ≥ 1 − 1+ε/2
1+ε

= ε/2
1+ε

≥ ε
4 , where the last inequality

follows from ε ≤ 1.
In case Xt > α

δ
· (1 + ε) we repeat the above arguments with a further phase

of t steps. Here we exploit that the above bound was made independent of X0. The
expected number of phases required is at most 4/ε. This gives an upper bound of 4t/ε.

(ii): Since we are only interested in Tε,↑, we may assume that the process becomes
stationary afterwards, i.e. XTε,↑ = XTε,↑+1 = XTε,↑+2 = Moreover, we may
assume X0 < (1 − ε)α/δ, since otherwise there is nothing to show. Define Ymax :=
α/δ + �max and Yt := Ymax − Xt . Then 0 ≤ Yt ≤ Ymax for all t ≥ 0 by assumption
on Xt .

Let ε′ := εα
δYmax−α

, δ′ := δ, α′ := δYmax − α. Then the event “Xt ≥ (1 − ε)α
δ
” is

equivalent to the event “Yt ≤ (1 + ε′)α′
δ′ ”, because

(1 + ε′)α′
δ′ = (1 + ε′)(Ymax − α

δ
) = Ymax − α

δ
+ ε′ δYmax−α

δ

= Ymax − α
δ

+ ε α
δ

= Ymax − (1 − ε)α
δ
,

and because Yt = Ymax − Xt . We can describe Tε,↑ as the first point in time when
Yt ≤ (1 + ε′)α′

δ′ , since this is equivalent to Xt ≥ (1 − ε)α
δ
.

Moreover, the same calculation shows that for all y > (1+ε′)α′
δ′ the event “Yt = y”

implies Xt < (1 − ε)α
δ
, so that the drift bound for Xt is applicable. Hence, for any

such y, the drift of Yt is

E(Yt+1 | Yt = y) = E (Ymax − Xt+1 | Xt = Ymax − y)

= Ymax − E (Xt+1 | Xt = Ymax − y)

≤ Ymax − (1 − δ) (Ymax − y) − α = (1 − δ′)y + α′.

Therefore, the prerequisites of part (i) are satisfied by Yt with parameters ε′, δ′ and α′.
Hence, part (i) applied to Yt gives

E(Tε,↑) ≤ 4

ε′δ′ · ln
(
2δ′Ymax

ε′α′

)
≤ 4�max

εα
ln

(
2α + 2δ�max

εα

)
.

(iii): Consider the stochastic process Yt := min{Xt , α/δ + M}. We will show that
this process satisfies the conditions in (ii) with �max := M , α′ := α/2, δ′ := δ/2 and
ε′ := ε. Note that this will imply the claim since the condition “Yt < (1− ε′)α′/δ′” is
equivalent to “Xt < (1−ε)α/δ” and since the right hand sides of (9) (withM, α′, δ′, ε′
instead of �max, α, δ, ε) and of (11) coincide. The condition Yt+1 ≤ α/δ + �max is

123

Algorithmica

trivially satisfied by definition of Yt . Moreover, by definition of Yt we may write

Yt+1 = Xt+1 − (
Xt+1 − α

δ
− M

) · 1{Xt+1 > α
δ

+ M}
≥ Xt+1 − Xmax · 1{Xt+1 > α

δ
+ M}.

Hence, for any x < (1 − ε)α
δ
, we can bound

E(Yt+1 | Yt = x) = E(Yt+1 | Xt = x)

≥ E(Xt+1 | Xt = x) − Xmax · E(1{Xt+1 > α
δ

+ M} | Xt = x)

= E(Xt+1 | Xt = x) − Xmax · Pr(Xt+1 > α
δ

+ M | Xt = x)

≥ (1 − δ)x + α − Xmax · εα

2Xmax
,

where the last step holds by the two prerequisites of (iii). Using x < (1 − ε)α
δ

< α
δ
,

we can continue

E(Yt+1 | Yt = x) ≥ (1 − δ)x + α − εα

2
= (1 − δ

2)x + α
2 − δ

2 x + α
2 − εα

2

≥ (1 − δ
2)x + α

2 − δ
2 · (1 − ε)α

δ
+ α

2 − εα
2 = (1 − δ′)x + α′.

This shows that the second condition of (ii) is satisfied, and concludes the proof. ��

We remark that there are also overshoot-aware multiplicative drift theorems [61]
which could also be directly applied in the situation of Theorem 12, but those lead
to poor results since the upper bounds include the expected overshoot, which may be
very large.

To apply Theorem 12 to our situation, we first prove a bound on �max.

Lemma 13 Consider a population Pt = {x1, . . . , xμ} and any y ∈ {0, 1}n. Let Pt+1 =
(Pt ∪ {y})\{xd} for some d ∈ [μ]. Then |S(Pt+1) − S(Pt)| ≤ 2(μ − 1)n.

Proof By Equation (1) we have

S(Pt+1) − S(Pt) = 2
μ∑

i=1,i �=d

H(xi , y
′) − 2

μ∑
i=1,i �=d

H(xi , xd),

and the bound follows since both the positive and the negative term are at most
2(μ − 1)n. ��

Theorem 14 Let μ ≥ 2 and consider a steady-state evolutionary algorithms meeting
the conditions of Corollary 9 with α := 2(μ − 1)χ and δ := 2

μ2 + 4(μ−1)χ
μ2n

as

in (7). Fix 0 < ε ≤ 1 and let Tε,↓ := inf
{
t | S(Pt) ≤ (1 + ε)α

δ

}
and Tε,↑ :=

123

Algorithmica

inf
{
t | S(Pt) ≥ (1 − ε)α

δ

}
. Then

E(Tε,↓) = O

(
μ · min{μ, n/χ}

ε
· ln

(
1 + n/(μχ)

ε

))
, (13)

E(Tε,↑) = O

(
n

εχ
· ln

(
1 + n/(μ2χ)

ε

))
. (14)

Moreover, if step 1 of the GA in Corollary 9 is obtained by a respectful operator, and
step 2 is obtained by a q-tail-bounded mutation operator for some q ∈ (1, 2] then

E(Tε,↑) = O

(
min{μ2, n/χ} + 1

χ
logq(

μn
εχ

)

ε
· ln

(
1 + μn2/(εχ2 ln q)

ε

))
. (15)

Proof In order to apply Theorem 12 to our case of (Xt)t≥0 = (S(Pt))t≥0, we may set
�max := 2(μ − 1)n by Lemma 13. Moreover, we have S(Pt)max ≤ μ2n, since two
individuals have Hamming distance at most n and so the diversity is at most 2

(
μ
2

)
n.

For (13), we have 1/δ = μ2n
2n+4(μ−1)χ , which implies 1/δ ∈ 	(μ · min{μ, n/χ}).

Now (13) follows immediately by plugging this into the bounds from Theorem 12.
For (14), note that �max/α = n/χ . Thus, Theorem 12 implies

E(Tε,↑) ≤ 4n

εχ
ln

(
2

ε
+ 2n

εχ
·
(

2

μ2 + 4(μ − 1)χ

μ2n

))
= O

(
n

εχ
· ln

(
1 + n/(μ2χ)

ε

))
,

where we could omit the last term in the logarithm since (μ−1)/μ2 = O(1). For (15),
we will show that we may apply part (iii) of Theorem 12 with M := min{α/δ, 2μn}+
2kμ where k is defined as k := �logq(2 S(Pt)max/(εα))�. Let mut be the mutation
operator in step 2 of Corollary 9. By Lemma 11, for all x < (1−ε)α

δ
, since α/δ+M =

min{2α/δ, α/δ + 2μn} + 2kμ > min{2x, x + 2μn} + 2kμ,

Pr(S(Pt+1) ≥ α/δ + M | S(Pt) = x)

≤ Pr(S(Pt+1) ≥ min{2x, x + 2μn} + 2kμ | S(Pt) = x)

≤ Pr(H(mut(y), y) ≥ k) ≤ q−k ≤ εα

2S(Pt)max
,

where y is created by the respectful operator in step 1 of Corollary 9. Thus Equa-
tion (10) in part (iii) of Theorem 12 is satisfied, and

E(Tε,↑) ≤ 8M

εα
ln

(
2α + 2δM

εα

)
. (16)

It remains to estimate this term. Since μ ≥ 2 and S(Pt)max ≤ μ2n, we bound α =
2(μ − 1)χ ≥ μχ , and thus k = �logq(2 S(Pt)max/(εα))� ≤ �logq(2μn/(εχ))�.

123

Algorithmica

Moreover, min{1/δ, 2μn/α} ≤ min{μ2, μn/χ, 2n/χ} = min{μ2, 2n/χ}. Hence,

M

α
= min{1/δ, 2μn/α} + 2kμ

α
≤ min{μ2, 2n/χ} + 2μ�logq(2μn/(εχ))�

α

= O

(
min{μ2, n/χ} + 1

χ
· logq(μn

εχ
)

)
.

(17)

We want to plug this into (16), where the factor M/α appears twice. Since the second
appearance is in the logarithm, we aim for a simpler (but much cruder) bound to use
there. We claim that

M

α
= O

(
μn2

εχ2 ln q

)
. (18)

To see (18), first note that the first summand in (17) is covered by (18) since
min{μ2, n/χ} ≤ n/χ ≤ μn2/(εχ2 ln q), where the second step holds because
n/χ ≥ 1, μ ≥ 1, ε < 1 and ln q ≤ ln 2 < 1. The second summand is covered
because 1

χ
logq(μn/(εχ)) = O(μn/(εχ2 ln q)) and n ≥ 1.

Now we plug (17) and (18) into (16) (into the first and second appearance of M/α,
respectively) and use δ = O(1). We obtain

E(Tε,↑) = O

(
min{μ2, n/χ} + 1

χ
logq(

μn
εχ

)

ε
· ln

(
1 + μn2/(εχ2 ln q)

ε

))
,

as required. ��
We can simplify these bounds as follows. If ε = �(1), it can be dropped from all

upper bounds. Then the bound from (13) becomes E(Tε,↓) ∈ O (μ · min{μ, n/χ}·
ln (1 + n/(μχ))). For μχ = O(n) this is O(μ2 ln+(n/(μχ))) and for μχ = �(n)

it is O(μn/χ). The bound from (14) is E(Tε,↑) ∈ O(n ln+(n/(μ2χ))/χ), and for
μ2χ = �(n) this becomes O(n/χ) as then the logarithmic term is 	(1).

If additionallyq = 1+�(1) then ln q = �(1) and the tail bound impliesχ = O(1).
If we also assume χ = �(1) then the bound (15) simplifies to

E(Tε,↑) ∈ O
((

min{μ2, n} + log(μn)
)

· ln
(
1 + μn2

))
.

Then, if μ2 = O(log n) the upper bound simplifies to E(Tε,↑) ∈ O(μ2 ln(n)+ ln2 n).
If μ2 ∈ �(log n)∩O(n), the term ln2(n) can be dropped (as min{μ2, n} = �(log n))
and we obtain the bound O(μ2 ln n). All upper bounds are listed in Table 1.

It should be stressed that these upper bounds are not necessarily tight. We shall
discuss the functional dependencies on parameters n, μ, and χ , but should keep in
mind that we are discussing upper bounds for which we do not have matching lower
bounds.

In terms of the mutation strength χ , note that the bounds E(Tε,↓) ∈ O(μn/χ)

for μχ = �(n) and E(Tε,↑) ∈ O(n ln+(n/(μ2χ))/χ) are proportional to 1/χ , the

123

Algorithmica

inverse of the expected number of flipping bits. However, the upper bound E(Tε,↓) ∈
O(μ2 ln+(n/(μχ))) for μχ = O(n) shows a mild dependency on χ . The refined
upper bounds for (1 + �(1))-tail-bounded mutation operators are much smaller than
the general upper bounds and show no asymptotic dependence on χ since χ = 	(1).

In terms of the dependence on n, the upper bound E(Tε,↓) ∈ O(μ2 ln+(n/(μχ)))

forμχ = O(n) depends very mildly on n, so the speed of reducing diversity is almost
unaffected by the problem dimension. For the expected time to generate diversity, the
general bound E(Tε,↑) ∈ O(n ln+(n/(μ2χ))/χ), which does not rely on a tail bound
on the number of bit flips by the mutation operator, is at least linear in n. Indeed,
consider the scenario with μ = 2, χ = 1, where the mutation operator flips all n bits
with probability 1/n, and does nothing otherwise. When starting with two identical
individuals then E(Tε,↑) = �(n). This example shows that without restrictions on the
mutation operator, the linear dependency in n can occur. On the other hand, with the
exponential tail bound on the mutation operator we obtain E(Tε,↑) ∈ O(μ2 ln(n) +
ln2(n)/χ), which depends only mildly on n.

Exponential tail bounds are quite common. In particular, standard bit mutation,
which flips all bits independently, satisfies exponential tail bounds for χ = 	(1).
We remark that in the proof of (15), we only used the exponential tail bound for one
specific value of k, and it would also be possible to obtain improved bounds for E(Tε,↑)

from Theorem 12 for other mutation operators which do not satisfy exponential tail
bounds, like the so-called fast mutation operators [34].

Note that Theorem 12 only estimates the expected time to pass the borders (1+ε)α
δ

and (1 − ε)α
δ
, respectively. It does not guarantee that the diversity hits the interval

[1 − ε, 1 + ε]α
δ
. We define a stopping time for hitting this interval as follows.

Definition 15 Given a positive constant ε > 0 and an initial population Pt we define
the first time Tε when the diversity S(Pt) is in the equilibrium as

Tε := inf
{
t | S(Pt) ∈ [(1 − ε)α

δ
, (1 + ε)α

δ
]} .

In general, without restriction such as in Corollary 16, Tε does not need to be
finite and it is possible that the process never comes close to the equilibrium. The
simplest (artificial) example is the following. Suppose μ = 2 (so μ ∈ o(

√
n)), ε = 1

3 ,
and χ = n (i.e. every bit is flipped with probability 1), we omit crossover and the
population initialises with two clones. Then we have S(Pt) ∈ {0, 2n} for every t and

[1 − ε, 1 + ε]α
δ

= 4
3n[23 , 4

3] = [89n, 16
9 n].

Therefore Tε = ∞, but Tε,↑ ≤ 1 and Tε,↓ ≤ 1.
The following corollary gives a sufficient condition for not skipping over the interval

of states close to the equilibrium. The key is that the diversity can change at most by
2(μ − 1)n in the setting of Theorem 14.

Corollary 16 If εμ2χ ≥ n + 2(μ − 1)χ (for example if μ ≥ 3
√
n/ε, 0 < ε ≤ 1 and

χ = 1) then Tε = Tε,↓ if S(P0) > (1 + ε)α
δ
and Tε = Tε,↑ if S(P0) < (1 − ε)α

δ
,

respectively (see Theorem 12 for the definition of Tε,↑ and Tε,↓).

123

Algorithmica

Proof Suppose that S(P0) > (1+ ε)α
δ
. Let t := Tε,↓ − 1. Then we obtain S(Pt+1) ≤

(1 + ε)α
δ
. Moreover,

S(Pt) − (1 − ε)
α

δ
> (1 + ε)

α

δ
− (1 − ε)

α

δ
= 4εμ2χ · (μ − 1)n

2n + 4(μ − 1)χ

≥ (4n + 8(μ − 1)χ) · (μ − 1)n

2n + 4(μ − 1)χ
= 2(μ − 1)n.

Since S(Pt)−S(Pt+1) ≤ 2(μ−1)n byLemma13,weobtain S(Pt+1) ∈ [1−ε, 1+ε]α
δ
.

For the other direction, suppose S(P0) < (1 − ε)α
δ
. Let t := Tε,↑ − 1. Then we

obtain S(Pt+1) ≥ (1 − ε)α
δ
and

(1 + ε)
α

δ
− S(Pt) > (1 + ε)

α

δ
− (1 − ε)

α

δ
≥ 2(μ − 1)n.

Hence, S(Pt+1) ≤ S(Pt)+2(μ−1)n ≤ (1+ε)α
δ
and thus S(Pt+1) ∈ [1−ε, 1+ε]α

δ
,

as required. ��

5 Steady-State GAwith Crossover

Now we turn to steady-state GAs that perform crossover before applying mutation to
the resulting offspring (see Algorithm 2). Quite surprisingly, for nearly all common
crossover operators, including crossover does not change the diversity equilibrium.

A sufficient condition is the following, which we term diversity-neutral, as the
diversity equilibrium does not change when applying such a crossover operator.

Definition 17 We call a crossover operator c diversity-neutral if it has the following
property. For all x1, x2, z ∈ {0, 1}n ,

E(H(c(x1, x2), z) + H(c(x2, x1), z)) = H(x1, z) + H(x2, z). (19)

We shall see in Sect. 6 that common crossover operators like uniform crossover and
k-point crossover are diversity-neutral.

Wewill show that the (μ+1)GAwith any diversity-neutral crossover operatormeets
the conditions of Corollary 9. Hence, we obtain the following theorem.

Theorem 18 Consider the (μ+1) GA with any diversity/neutral crossover operator c,
any unbiased mutation operator flipping χ bits in expectation and a population size
of μ on a flat fitness function. Then for all populations Pt ,

E(S(Pt+1) | Pt) = (1 − δ)S(Pt) + α =
(
1 − 2

μ2 − 4(μ − 1)χ

μ2n

)
S(Pt) + 2χ(μ − 1),

(20)

where δ, α are as in (7).

123

Algorithmica

Proof Let y = c(xi , x j) and y′ = c(x j , xi) be the random result of crossover opera-
tions, where xi and x j are the randomly selected parents. We only need to show that
E(S(y)) = S(Pt)/μ, then the theorem follows from Corollary 9. By definition of
diversity neutral crossover, we have for all k ∈ [μ],

E(H(y, xk) + H(y′, xk) | xi , x j) = H(xi , xk) + H(x j , xk).

Summing over all k yields S(y)+S(y′) inside the expectation on the left hand side, and
S(xi)+S(x j) on the right hand side. Therefore, E(S(y)+S(y′) | Pt) = S(xi)+S(x j).
Now we use that xi and x j are chosen uniformly at random. Hence,

E(S(y) + S(y′) | Pt) = 1

μ2

μ∑
i=1

μ∑
j=1

(S(xi) + S(x j)) = 2S(Pt)

μ
. (21)

By the symmetric choice of the parents xi and x j , E(S(y) | Pt) = E(S(y′) | Pt),
and thus E(S(y) | Pt) = 1

2 (E(S(y) + S(y′) | Pt)) = S(Pt)/μ. ��
Remark 19 Theorem 18 still holds if we choose the parents without replacement.

Proof We show that (21) still holds in this case. The rest of the proof carries over.
In order to choose the parents without replacement, we can first take x j uniformly at
random and xi can then be every individual except x j . So we obtain

E(S(y) + S(y′) | Pt) = 1

(μ − 1)μ

μ∑
i=1

μ∑
j=1, j �=i

(S(xi) + S(x j))

= S(Pt)

μ
+ 1

(μ − 1)μ

μ∑
i=1

μ∑
j=1, j �=i

S(x j)

= S(Pt)

μ
+ (μ − 1)S(Pt)

(μ − 1)μ
= 2S(Pt)

μ
.

The third equality holds, because we sum up S(x j) exactly (μ − 1) times for every
j ∈ [μ]. So indeed (21) still holds. ��
We will see later that every diversity-neutral crossover is automatically respectful.

Thus, all three parts of Theorem12hold also for a (μ+1)GAwith any diversity-neutral
crossover operator c.

We assumed in Algorithms 1 and 2 that they break ties in favour of the offspring.
In flat landscapes this means that the offspring is never discarded. We now transfer
our results to variants in which the algorithm may also discard the offspring.

Remark 20 If the (μ+1) GA does not favour the offspring over parents but instead
breaks ties uniformly at random, then the conclusionofTheorem18 still holdswith (20)
replaced by

E(S(Pt+1) | Pt) = (1 − δ̃)S(Pt) + α̃ with δ̃ := μ
μ+1δ, α̃ := μ

μ+1α,

123

Algorithmica

where δ, α are as in (7). In particular, the process has the same equilibrium state
α̃/δ̃ = α/δ and all three parts of Theorem 12 still holds with δ̃ and α̃ instead of δ and
α. Note that the bounds in Theorem 14 are increased precisely by a factor (μ + 1)/μ
since the additional factors in the logarithms cancel out. Since (μ + 1)/μ = 	(1),
Theorem 14 still holds unchanged.

Proof We fix some value for Pt and suppress conditioning on Pt in the following. Let
At denote the event that the individual which we remove is not the offspring. Note
that our results obtained so far always assumed At . By the law of the total probability,

E(S(Pt+1)) = P(At) · E(S(Pt+1) | At) + P(Āt) · E(S(Pt+1) | Āt)

= μ

μ + 1
E(S(Pt+1)) + 1

μ + 1
S(Pt).

Therefore, by (20),

E(S(Pt+1)) = μ

μ + 1
(1 − δ) S(Pt) + μ

μ + 1
α + 1

μ + 1
S(Pt)

=
(
1 − μ

μ + 1
δ

)
S(Pt) + μ

μ + 1
α.

��

6 Classifying Diversity-Neutral Crossover Operators

In this section we classify several known crossover operators into diversity/neutral
ones and those that are not diversity/neutral.

6.1 Structural Results

We start with structural results that connect diversity/neutral with the properties unbi-
ased, respectful and having order-independent mask (OIM), see Sect. 2. We will show
that for unbiased crossover operators, diversity/neutral is equivalent to respectful.
However, outside the class of unbiased operators, this is not true. While every diver-
sity/neutral operator is still respectful, we show that the converse is false in general,
but holds for the very large class of respectful operators with OIM.

Lemma 21 Every diversity/neutral crossover operator is respectful.

Proof Let x1, x2 be parents that both have a one-bit in position i . Let c be a diver-
sity/neutral crossover operator and E be the event that the offspring c(x1, x2) has a
zero-bit in position i . We will assume Pr(E) > 0 and derive a contradiction. The case
that both parents have a zero-bit in position i is handled similarly. Suppose that the
event E appears. Let z0 and z1 be two search points which are identical in all positions

123

Algorithmica

except for position i , where z0 has a zero-bit and z1 has a one-bit at position i . Then

H(x1, z0) = H(x1, z1) + 1 and H(x2, z0) = H(x2, z1) + 1. (22)

Moreover, since z0 and z1 differ in exactly one position, H(y, z0)−H(y, z1) ∈ {−1, 1}
for all y ∈ {0, 1}n . In particular, H(y, z0) − H(y, z1) ≤ 1, and it is a strict inequality
if and only if y has a zero-bit in position i . For y = c(x1, x2), this implies

E(H(c(x1, x2), z0) − H(c(x1, x2), z1)) = Pr(E) · (−1) + Pr(E) · 1 < 1, (23)

where the inequality is strict because we have assumed Pr(E) > 0. For y = c(x2, x1)
we obtain

E(H(c(x2, x1), z0) − H(c(x2, x1), z1)) ≤ 1, (24)

where this timewe cannot claim a strict inequality sincewe have notmade any assump-
tion on c(x2, x1). Adding up (23) and (24), we obtain

E(H(c(x1, x2), z0) + H(c(x2, x1), z0) − H(c(x1, x2), z1) − H(c(x2, x1), z1)) < 2.

But since c is diversity-neutral, the left hand side equals

H(x1, z0) + H(x2, z0) − H(x1, z1) − H(x2, z1))
(22)= 2,

a contradiction. Hence, the assumption Pr(E) > 0 must have been false, and therefore
the offspring of x1 and x2 must have a one-bit in position i with probability 1. This
concludes the proof. ��

Next, we show that the converse is not true.

Lemma 22 Not every respectful crossover is diversity/neutral.

Proof For x1, x2 ∈ {0, 1}n we define c(x1, x2) as the bit-wise AND of x1 and x2. The
operator is respectful since 1 AND 1 is 1 and 0 AND 0 is 0.

Now for any two search points x1, x2 ∈ {0, 1}n with x2 = x1 and z = �0, we have
H(x1, z) + H(x2, z) = n as every bit is set to 1 in exactly one parent. However,
c(x1, x2) = c(x2, x1) = �0 and so

E(H(c(x1, x2), z) + H(c(x2, x1), z)) = 0 �= H(x1, z) + H(x2, z).

So this crossover is not diversity/neutral. ��
The counterexample from Lemma 22 has a strong bias towards setting bits to 0. It is

thus not unbiased. Recall from Definition 4 that a respectful crossover operator has an
order-independent mask (OIM) if the probability distribution for choosing masks does
not depend on the order of parents. Now we show that adding OIM gives a sufficient
condition to be diversity/neutral. Note that this implies that the AND operator used in
the proof of Lemma 22 does not have OIM.

123

Algorithmica

Lemma 23 All respectful crossovers with OIM are diversity/neutral.

Proof We show for all x1, x2, z ∈ {0, 1}n and for each bit i that

E(|c(x1, x2)i − zi | + |c(x2, x1)i − zi |) = |(x1)i − zi | + |(x2)i − zi |.

Taking the sumover all i ∈ [n] turns all absolute differences of bits |ai−bi | in the above
expression into Hamming distances H(a, b), yielding (19). If (x1)i = (x2)i then the
equation is immediate since the left hand side simplifies to E(|(x1)i −zi |+|(x2)i −zi |)
(since c is respectful) and the expression is deterministic.

If (x1)i = 1 − (x2)i then c with OIM implies

Pr(c(x1, x2)i = (x1)i) = Pr(c(x2, x1)i = (x2)i) =: p.

With probability q := 1 − p, c(x1, x2)i = 1 − (x1)i = (x2)i and c(x2, x1)i =
1 − (x2)i = (x1)i , respectively. Together,

E(|c(x1, x2)i − zi | + |c(x2, x1)i − zi |)
= |(x1)i − zi |p + |(x2)i − zi |q + |(x2)i − zi |p + |(x1)i − zi |q
= |(x1)i − zi | + |(x2)i − zi |.

��
Recall that diversity/neutral operators are respectful by Lemma 21. Hence, the

following lemma shows that the converse of Lemma 23 is true for unbiased crossover
operators. In other words, within the class of unbiased binary operators, the properties
diversity/neutral and respectful are equivalent. Outside of this class, Lemma 22 shows
that the terms are not equivalent.

Lemma 24 Every respectful unbiased crossover has an OIM.

Proof Let x1, x2 be parents for a respectful, unbiased crossover operator c with a
corresponding probability distribution D(y | x1, x2) where the condition is meant to
be understood that x1 is the first parent and x2 is the second parent. Let Idiff be the set
of components of x1, x2 which differ, i.e. Idiff := {i ∈ {1, . . . , n} | (x1)i �= (x2)i }.
Let Ieq be the set of components of x1, x2 which are equal, i.e. Ieq := {1, . . . , n}\Idiff.

We show that c can be described as a respectful crossover with a mask created
according to a probability distribution M(a, x1, x2) which is order-independent. For
bits i ∈ Ieq the mask is irrelevant since c is respectful, and we (arbitrarily) define ai :=
1. For y ∈ {0, 1}n with D(y | x1, x2) > 0 choose a mask a = (a1, . . . , an) ∈ {1, 2}n
with probability D(y | x1, x2) in the following way. For bits i ∈ Idiff we choose ai
as the unique value from {1, 2} such that (xai)i = yi . This is possible since i ∈ Idiff
implies {(x1)i , (x2)i)} = {0, 1}. Applying the mask to x1 and x2 creates y. Since the
corresponding mask is chosen with probability D(y | x1, x2), each y is created with
probability D(y | x1, x2). Hence c is respectful.

123

Algorithmica

It is left to show that the choice of the mask does not depend on the order of the
parents for crossover. Define w ∈ {0, 1}n as wi = 0 if i ∈ Ieq and wi = 1 otherwise.
Then we obtain x1 ⊕ w = x2 and x2 ⊕ w = x1. Since c is unbiased we have

D(y | x1, x2) = D(y ⊕ w | x1 ⊕ w, x2 ⊕ w) = D(y ⊕ w | x2, x1).

So it is left to show the following. Let a ∈ {1, 2}n . If we obtain y ∈ {0, 1}n with the
mask a applied to (x1, x2) then we obtain y ⊕ w with the same mask a applied to
(x2, x1). Let i ∈ {1, . . . , n}.

If i ∈ Ieq then applying themask a to (x1, x2) gives yi = (x1)i . Note that (y⊕w)i =
yi = (x1)i = (x2)i which is also the i-th component of the offspring if we apply the
mask a to (x2, x1).

If i ∈ Idiff then applying the mask a to (x1, x2) gives yi = (xai)i . If we apply a to
(x2, x1) we obtain 1 − (xai)i for the i-th bit of the offspring, which equals (y ⊕ w)i
(since (x1)i and (x2)i differ). ��

By Lemma 23, every crossover with OIM is diversity/neutral. The next lemma
shows that the converse is not true. Hence, the class of diversity/neutral crossovers is
strictly larger than the class of crossovers with OIM.

Remark 25 Not every diversity/neutral crossover has an OIM.

Proof Let c be the crossover operator on (x1, x2) which returns a uniform random
bit-string if (x1, x2) = (�1, �0), and in all other cases it returns either x1 or x2 with
probability 1/2 each. In particular, the latter case also applies for (x1, x2) = (�0, �1).
Then in either case, for all x1, x2, z ∈ {0, 1}n ,

E(H(c(x1, x2), z)) = 1

2
(H(x1, z) + H(x2, z)).

For the case (x1, x2) = (�1, �0), this follows since both the left hand side and the right
hand side are n/2 for all z ∈ {0, 1}n , while for all other cases it is obvious. Hence, (19)
is satisfied and c is diversity/neutral. On the other hand, it does not have an OIM, since
for (x1, x2) = (�1, �0) the operator has a positive chance to use the mask that takes the
first half of the result from x1 and the second half from x2, but for (x1, x2) = (�0, �1) it
never uses this mask. ��

6.2 Classifying Known Crossover Operators

We now give examples of diversity/neutral crossover operators, based on [35]. By
Lemma 23 it suffices to show that a crossover is respectful with OIM. For uniform
crossover and k-point crossover, this is trivially true as they are based on masks that
are chosen independently from the parents. The same holds for the boring crossover
(recall that it simply returns one of the parents uniformly at random) as the mask is
chosen uniformly from {�1, �2}.

Shrinking crossover [62] computes amask by startingwith awindow [�, r] = [1, n]
and then shrinking this window by increasing � and/or decreasing r until the sub-string

123

Algorithmica

x1[�, r] has the same number of ones as x2[�, r]. Then it swaps these two sub-strings.
The creation of the mask treats both parents symmetrically.

Balanced uniform crossover [35] is respectful as it copies bit values on which
both parents agree. If the parents differ in k positions, it chooses values for these
bits uniformly at random from all sub-strings that have exactly �k/2� ones at these
positions. The order of parents is irrelevant, hence the crossover has OIM.

Hence, we have shown the following theorem.

Theorem 26 The following crossovers are diversity/neutral:

1. Uniform crossover with arbitrary crossover bias
2. k-point crossover for all k
3. Boring crossover
4. Shrinking crossover
5. Balanced uniform crossover

We mention some crossover operators that are not diversity neutral. For details we
refer to [35] and the original papers.

Alternating crossover [63] on x1 and x2 proceeds as follows. If x1 has ones at
positions i1, . . . , ik and x2 has ones at positions j1, . . . , jk′ , then for k∗ := min{k, k′}
alternating crossover produces a sorted sequence s1, . . . , s2k∗ of these positions. It
outputs a search point that has ones at positions s1, s3, s5, . . . , s2k∗−1.

Counter-based crossover [64] is a variant of uniform crossover ensuring that the
offspring has the same number of ones as x1. It creates an offspring bit by bit, choosing
values from x1 and x2 uniformly at random, but stopping once the offspring contains
|x1|1 ones or |x1|0 zeros. In this case a suffix of all-zeros or all-ones, resp., is appended
to obtain a bit string of length n with |x1|1 ones.

Zero length crossover [64] uses a different representation: a search point x with
|x |1 = k and x = 0a110a21 . . . 0ak10ak+1 is encoded as a vector of runs of zeros:
[a1, a2, . . . , ak+1]. The crossover operator combines encodings from both parents by
choosing run lengths in between the run lengths found in both parents.

Map-of-ones-crossover [64] uses an array that contains all indices of 1-bits to
represent a bit string. The crossover operator then chooses indices from a randomly
chosen parent. In a sense, map-of-ones crossover is a uniform crossover on the map-
of-ones representation.

Balanced two-point crossover [63] resembles a two-point crossover on the same
representation. It randomly generates two cutting points u ≤ v and then it takes the
first u − 1 entries of the map-of-ones of x1, the entries at positions u . . . v from the
map-of-ones of x2 and the remaining entries from position v + 1 from x1 again. Any
duplicate entries are removed and replaced by entries from the positions u . . . v in the
map-of-ones of x1.

Theorem 27 The following crossovers are not diversity/neutral:

1. Alternating crossover
2. Counter-based crossover
3. Zero length crossover
4. Map-of-ones crossover

123

Algorithmica

5. Balanced two-point crossover
6. Bit-wise AND and bit-wise OR

Proof An alternating crossover of 110 and 101 creates a sorted sequence of indices
[1, 1, 2, 3] and the offspring 110, irrespective of the order of the parents. For z :=
110, the left-hand side of (19) is E(H(c(110, 101), 110) + H(c(101, 110), 110)) =
E(2 H(110, 110)) = 0 and the right-hand side is H(110, 110) + H(101, 110) = 2 �=
0.

Crossovers (2)–(5) were shown not to be respectful in [35], thus by the contraposi-
tion of Lemma 21 they are not diversity/neutral. Bit-wise AND was shown not to be
diversity/neutral in the proof of Lemma 22. Bit-wise OR can be treated analogously.

��

7 Conclusions and FutureWork

We have shown that it is possible to understand the dynamics of population diversity in
flat fitness environments in a very general sense, and that it is surprisingly unaffected by
most specifics of the algorithm.We particularised our results on tail-boundedmutation
operators which are very common in practice. For example, standard bitwise mutation
and local search belong to this class.

Of course, our study is only the first step. Possible extensions would include other
classes of algorithms like generational GAs or the effect of diversity-enhancing mech-
anisms [1] on the dynamics, in particular on the equilibrium state. Note that it is not
clear a priori that such a state exists, since the dynamics might be too complex to
reduce them to a single number. Future work could also try to establish connections
with population genetics, where the (μ+1) EA is known as Moran model [42] (cf. the
discussion at the end of Sect. 1.1).

The most pressing question is how the dynamics change with selective pressure.
We conjectured that for “reasonable” situations, the diversity for flat fitness functions
is an upper bound on the diversity for non-flat functions. Can this bemade precise? For
which non-flat fitness functions can we still characterise how the population diversity
evolves over time? These questions have important theoretical and practical implica-
tions, yet they are wide open.

Acknowledgements This work originated at Dagstuhl seminar 22081 “Theory of Randomized Optimiza-
tion Heuristics” and benefited from Dagstuhl Seminar 22182 “Estimation-of-Distribution Algorithms:
Theory and Applications”. We thank Jon Rowe, Duc-Cuong Dang and Tiago Paixão for useful discus-
sions and pointers to the literature, and we thank an anonymous GECCO reviewer for pointing out an
algebra mistake in the first version of this manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

123

Algorithmica

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Sudholt, D.: The benefits of population diversity in evolutionary algorithms: a survey of rigorous
runtime analyses. In: Theory of Evolutionary Computation: Recent Developments in Discrete Opti-
mization, pp. 359–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_8

2. Squillero, G., Tonda, A.: Divergence of character and premature convergence: a survey of methodolo-
gies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016). https://doi.
org/10.1016/j.ins.2015.09.056

3. Glibovets, M., Gulayeva, N.: A review of niching genetic algorithms for multimodal function opti-
mization. Cybern. Syst. Anal. 49(6), 815–820 (2013). https://doi.org/10.1007/s10559-013-9570-8

4. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a
survey. ACM Comput. Surv. 45(3), 1–33 (2013). https://doi.org/10.1145/2480741.2480752

5. Shir, O.M.: Niching in Evolutionary Algorithms. In: Handbook of Natural Computing, pp. 1035–1069.
Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_32

6. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving mechanisms for
global exploration. Evol. Comput. 17(4), 455–476 (2009). https://doi.org/10.1162/evco.2009.17.4.
17401

7. Oliveto, P.S., Sudholt, D., Zarges, C.: On the benefits and risks of using fitness sharing for multimodal
optimisation. Theor. Comput. Sci. 773(C), 53–70 (2019). https://doi.org/10.1016/j.tcs.2018.07.007

8. Osuna, E.C., Sudholt, D.: On the runtime analysis of the clearing diversity-preserving mechanism.
Evol. Comput. 27(3), 403–433 (2019). https://doi.org/10.1162/evco_a_00225

9. Covantes Osuna, E., Sudholt, D.: Runtime analysis of crowding mechanisms for multimodal opti-
misation. IEEE Trans. Evol. Comput. 24(3), 581–592 (2020). https://doi.org/10.1109/TEVC.2019.
2914606

10. Osuna, E.C., Sudholt, D.: Runtime analysis of restricted tournament selection for bimodal optimisation.
Evol. Comput. 30(1), 1–26 (2022). https://doi.org/10.1162/evco_a_00292

11. Oliveto, P.S., Zarges, C.: Analysis of diversity mechanisms for optimisation in dynamic environments
with low frequencies of change. Theor. Comput. Sci. 561, 37–56 (2015). https://doi.org/10.1016/j.tcs.
2014.10.028

12. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization.
Algorithmica 78(2), 641–659 (2017). https://doi.org/10.1007/s00453-016-0262-4

13. Helmuth, T., Lengler, J., Cava, W.L.: Population diversity leads to short running times of lexicase
selection. In: Parallel Problem Solving from Nature (PPSN 2022), vol. 13399, pp. 485–498. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_34

14. Sudholt, D.: How crossover speeds up building-block assembly in genetic algorithms. Evol. Comput.
25(2), 237–274 (2017). https://doi.org/10.1162/EVCO_a_00171

15. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-
only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018). https://doi.org/10.
1109/TEVC.2017.2745715

16. Corus, D., Oliveto, P.S.: On the benefits of populations for the exploitation speed of standard steady-
state genetic algorithms. Algorithmica 82(12), 3676–3706 (2020). https://doi.org/10.1007/s00453-
020-00743-1

17. Lengler, J.: A general dichotomy of evolutionary algorithms onmonotone functions. IEEE Trans. Evol.
Comput. 24(6), 995–1009 (2019). https://doi.org/10.1109/TEVC.2019.2917014

18. Nguyen, P.T.H., Sudholt, D.: Memetic algorithms outperform evolutionary algorithms in multimodal
optimisation. Artif. Intell. 287(1), 103345 (2020). https://doi.org/10.1016/j.artint.2020.103345

19. Jansen, T., Wegener, I.: Real royal road functions—where crossover provably is essential. Discrete
Appl. Math. 149(1–3), 111–125 (2005). https://doi.org/10.1016/j.dam.2004.02.019

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-29414-4_8
https://doi.org/10.1016/j.ins.2015.09.056
https://doi.org/10.1016/j.ins.2015.09.056
https://doi.org/10.1007/s10559-013-9570-8
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1162/evco.2009.17.4.17401
https://doi.org/10.1162/evco.2009.17.4.17401
https://doi.org/10.1016/j.tcs.2018.07.007
https://doi.org/10.1162/evco_a_00225
https://doi.org/10.1109/TEVC.2019.2914606
https://doi.org/10.1109/TEVC.2019.2914606
https://doi.org/10.1162/evco_a_00292
https://doi.org/10.1016/j.tcs.2014.10.028
https://doi.org/10.1016/j.tcs.2014.10.028
https://doi.org/10.1007/s00453-016-0262-4
https://doi.org/10.1007/978-3-031-14721-0_34
https://doi.org/10.1162/EVCO_a_00171
https://doi.org/10.1109/TEVC.2017.2745715
https://doi.org/10.1109/TEVC.2017.2745715
https://doi.org/10.1007/s00453-020-00743-1
https://doi.org/10.1007/s00453-020-00743-1
https://doi.org/10.1109/TEVC.2019.2917014
https://doi.org/10.1016/j.artint.2020.103345
https://doi.org/10.1016/j.dam.2004.02.019

Algorithmica

20. Jansen, T., Wegener, I.: On the analysis of evolutionary algorithms—a proof that crossover really can
help. Algorithmica 34(1), 47–66 (2002). https://doi.org/10.1007/s00453-002-0940-2

21. Kötzing, T., Sudholt, D., Theile, M.: How crossover helps in pseudo-Boolean optimization. In: Pro-
ceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO 2011), pp.
989–996. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2001576.2001711

22. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput.
22(3), 484–497 (2018). https://doi.org/10.1109/TEVC.2017.2724201

23. Dang, D.-C., Friedrich, T., Krejca, M.S., Kötzing, T., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton,
A.M.: Escaping local optima with diversity-mechanisms and crossover. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2016), pp. 645–652. ACM, Denver, USA (2016).
https://doi.org/10.1145/2908812.2908956

24. Oliveto, P.S., Sudholt, D., Witt, C.: Tight bounds on the expected runtime of a standard steady
state genetic algorithm. Algorithmica 84(6), 1603–1658 (2022). https://doi.org/10.1007/s00453-021-
00893-w

25. Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform mutation rates for problems with unknown solution
lengths. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms (FOGA 2011),
pp. 173–180. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1967654.1967670

26. Doerr, B., Doerr, C., Kötzing, T.: Unknown solution length problems with no asymptotically optimal
runtime. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017),
pp. 1367–1374. ACM, Berlin, Germany (2017). https://doi.org/10.1145/3071178.3071233

27. Doerr, B., Doerr, C., Kötzing, T.: Solving problems with unknown solution length at almost no extra
cost. Algorithmica 81(2), 703–748 (2019). https://doi.org/10.1007/s00453-018-0477-7

28. Einarsson, H., Gauy, M.M., Lengler, J., Meier, F., Mujika, A., Steger, A., Weissenberger, F.: The linear
hidden subset problem for the (1+1)-EA with scheduled and adaptive mutation rates. Theor. Comput.
Sci. 785(2), 150–170 (2019). https://doi.org/10.1016/j.tcs.2019.05.021

29. Bian, C., Qian, C., Tang, K., Yu, Y.: Running time analysis of the (1+1)-EA for robust linear optimiza-
tion. Theor. Comput. Sci. 843, 57–72 (2020). https://doi.org/10.1016/j.tcs.2020.07.001

30. Doerr, C., Krejca, M.S.: Run time analysis for random local search on generalized majority functions.
IEEE Trans. Evol. Comput. 27(5), 1385–1397 (2022). https://doi.org/10.1109/TEVC.2022.3216349

31. Dang, D., Jansen, T., Lehre, P.K.: Populations can be essential in tracking dynamic optima. Algorith-
mica 78(2), 660–680 (2017). https://doi.org/10.1007/s00453-016-0187-y

32. Antipov, D., Doerr, B.: Precise runtime analysis for plateau functions. ACMTrans. Evol. Learn. Optim.
1(4), 1–28 (2021). https://doi.org/10.1145/3469800

33. Eremeev, A.V.: On non-elitist evolutionary algorithms optimizing fitness functions with a plateau.
In: Mathematical Optimization Theory and Operations Research—19th International Conference,
MOTOR 2020, pp. 329–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49988-4_23

34. Doerr, B., Le, H.P., Phuoc, H., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 777–784. ACM, New
York, NY, USA (2017). https://doi.org/10.1145/3071178.3071301

35. Friedrich, T., Kötzing, T., Radhakrishnan, A., Schiller, L., Schirneck, M., Tennigkeit, G., Wietheger,
S.: Crossover for cardinality constrained optimization. ACM Trans. Evol. Learn. Optim. 3(2), 1–32
(2023). https://doi.org/10.1145/3603629

36. Lengler, J., Opris, A., Sudholt, D.: Analysing equilibrium states for population diversity. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2023). ACM, New York, NY,
USA (2023). https://dl.acm.org/doi/abs/10.1145/3583131.3590465

37. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (μ + 1)-EA on monotone
functions. Theor. Comput. Sci. 875(1), 28–51 (2021). https://doi.org/10.1016/j.tcs.2021.03.025

38. Lehre, P.K.: Negative drift in populations. In: 11th International Conference on Parallel Problem
Solving from Nature (PPSN 2010), vol. 6238, pp. 244–253. Springer, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-15844-5_25

39. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mechanisms. In: Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 113–120. ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2576768.2598328

40. Kingman, J.F.C.: Mathematics of Genetic Diversity. CBMS-NSF Regional Conference Series in
Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1980). https://
doi.org/10.1137/1.9781611970357

123

https://doi.org/10.1007/s00453-002-0940-2
https://doi.org/10.1145/2001576.2001711
https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1145/2908812.2908956
https://doi.org/10.1007/s00453-021-00893-w
https://doi.org/10.1007/s00453-021-00893-w
https://doi.org/10.1145/1967654.1967670
https://doi.org/10.1145/3071178.3071233
https://doi.org/10.1007/s00453-018-0477-7
https://doi.org/10.1016/j.tcs.2019.05.021
https://doi.org/10.1016/j.tcs.2020.07.001
https://doi.org/10.1109/TEVC.2022.3216349
https://doi.org/10.1007/s00453-016-0187-y
https://doi.org/10.1145/3469800
https://doi.org/10.1007/978-3-030-49988-4_23
https://doi.org/10.1145/3071178.3071301
https://doi.org/10.1145/3603629
https://dl.acm.org/doi/abs/10.1145/3583131.3590465
https://doi.org/10.1016/j.tcs.2021.03.025
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1145/2576768.2598328
https://doi.org/10.1137/1.9781611970357
https://doi.org/10.1137/1.9781611970357

Algorithmica

41. Kimura, M.: The neutral theory of molecular evolution. Sci. Am. 241(5), 98–129 (1979)
42. Paixão, T., Badkobeh, G., Barton, N., Corus, D., Dang, D.-C., Friedrich, T., Lehre, P.K., Sudholt, D.,

Sutton, A.M., Trubenova, B.: A unified model of evolutionary processes. J. Theor. Biol. 383, 28–43
(2015). https://doi.org/10.1016/j.jtbi.2015.07.011

43. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used in evolutionary
computation. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2003), pp. 1493–1504. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-
2_21

44. Kimura, M.: Genetic variability maintained in a finite population due to mutational production of
neutral and nearly neutral isoalleles. Genetics Res. 11(3), 247–270 (1968). https://doi.org/10.1017/
S0016672300011459

45. Chatterjee, K., Pavlogiannis, A., Adlam, B., Nowak, M.A.: The time scale of evolutionary innovation.
PLoS Comput. Biol. 10(9), 1003818 (2014). https://doi.org/10.1371/journal.pcbi.1003818

46. PérezHeredia, J., Trubenová,B., Sudholt,D., Paixão,T.: Selection limits to adaptivewalks on correlated
landscapes. Genetics 205(2), 803–825 (2017). https://doi.org/10.1534/genetics.116.189340

47. Trubenová, B., Krejca,M.S., Lehre, P.K., Kötzing, T.: Surfing on the seascape: adaptation in a changing
environment. Evolution 73(7), 1356–1374 (2019). https://doi.org/10.1111/evo.13784

48. Griffiths, R.C.: Neutral two-locusmultiple allelemodelswith recombination. Theor. Popul. Biol. 19(2),
169–186 (1981). https://doi.org/10.1016/0040-5809(81)90016-2

49. Aulbach, B., Hadeler, K.P.: Convergence to equilibrium in the classical model of population genetics.
J. Math. Anal. Appl. 102(1), 220–232 (1984). https://doi.org/10.1016/0022-247X(84)90215-4

50. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4), 623–642 (2012)
51. Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339–384 (1994).

https://doi.org/10.1007/BF01531276
52. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. PhD thesis, University of

Essex (2007)
53. Ulrich, T.: Exploring structural diversity in evolutionary algorithms. Doctoral thesis, ETH Zurich,

Zürich (2012). https://doi.org/10.3929/ethz-a-007562769
54. Solow, A.R., Polasky, S.: Measuring biological diversity. Environ. Ecol. Stat. 1(2), 95–103 (1994).

https://doi.org/10.1007/BF02426650
55. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995).

https://doi.org/10.1017/CBO9780511814075
56. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical

Society, Providence, RI (2008). https://doi.org/10.1090/mbk/058
57. Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative multiplicative drift. Evol.

Comput. 29(2), 305–329 (2021). https://doi.org/10.1162/evco_a_00283
58. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351

(2005). https://doi.org/10.1080/00107510500052444
59. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64(4), 673–697

(2012). https://doi.org/10.1007/s00453-012-9622-x
60. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65(1), 224–250 (2013). https://doi.

org/10.1007/s00453-011-9585-3
61. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis. Algorithmica 84(6),

1762–1793 (2022). https://doi.org/10.1007/s00453-021-00881-0
62. Chen, J.-S., Hou, J.-L.: A combination genetic algorithm with applications on portfolio optimization.

In: Advances in Applied Artificial Intelligence, pp. 197–206. Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11779568_23

63. Meinl, T., Berthold, M.R.: Crossover operators for multiobjective k-subset selection. In: Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 1809–
1810. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1569901.1570173

64. Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algorithms. Swarm Evol.
Comput. 54, 100646 (2020). https://doi.org/10.1016/j.swevo.2020.100646

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.jtbi.2015.07.011
https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1017/S0016672300011459
https://doi.org/10.1017/S0016672300011459
https://doi.org/10.1371/journal.pcbi.1003818
https://doi.org/10.1534/genetics.116.189340
https://doi.org/10.1111/evo.13784
https://doi.org/10.1016/0040-5809(81)90016-2
https://doi.org/10.1016/0022-247X(84)90215-4
https://doi.org/10.1007/BF01531276
https://doi.org/10.3929/ethz-a-007562769
https://doi.org/10.1007/BF02426650
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1090/mbk/058
https://doi.org/10.1162/evco_a_00283
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/s00453-011-9585-3
https://doi.org/10.1007/s00453-011-9585-3
https://doi.org/10.1007/s00453-021-00881-0
https://doi.org/10.1007/11779568_23
https://doi.org/10.1145/1569901.1570173
https://doi.org/10.1016/j.swevo.2020.100646

	Analysing Equilibrium States for Population Diversity
	Abstract
	1 Introduction and Motivation
	1.1 Motivation for Studying Flat Landscapes
	1.2 Related Work in Population Genetics

	2 Preliminaries
	2.1 Algorithms
	2.2 Mutation and Crossover Operators
	2.3 Diversity Measure
	2.4 On Stationary Distributions and Mixing Times

	3 Drift of Population Diversity for Steady-State EAs Without Crossover
	4 Equilibria and Time Bounds
	5 Steady-State GA with Crossover
	6 Classifying Diversity-Neutral Crossover Operators
	6.1 Structural Results
	6.2 Classifying Known Crossover Operators

	7 Conclusions and Future Work
	Acknowledgements
	References

