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Abstract
We present a new generalization of the bin covering problem that is known to be a
strongly NP-hard problem. In our generalization there is a positive constant Δ, and
we are given a set of items each of which has a positive size. We would like to find
a partition of the items into bins. We say that a bin is near exact covered if the total
size of items packed into the bin is between 1 and 1+ Δ. Our goal is to maximize the
number of near exact covered bins. IfΔ = 0 orΔ > 0 is given as part of the input, our
problem is shown here to have no approximation algorithmwith a bounded asymptotic
approximation ratio (assuming that P �= N P). However, for the case where Δ > 0
is seen as a constant, we present an asymptotic fully polynomial time approximation
scheme (AFPTAS) that is our main contribution.

Keywords Bin covering · Asymptotic approximation ratio · Approximation
algorithms

1 Introduction

We are given a parameter Δ > 0 (independent of the input). The input to the near
exact bin covering problem (nebc) consists of a set of n input items I =
{1, 2, . . . , n} where item j is associated with its size s j ∈ (0, 1]. A feasible solution
is a partition of the items into subsets called bins. For a given bin (in a fixed solution)
we say that the bin is near exact covered if the total size of items in the bin is at least 1
and strictly smaller than 1 + Δ. The goal function (also known as reward function or
objective function) is the number of near exact covered bins. Our problem nebc is to
find a partition of the item set into bins so as to maximize the goal function. We refer
to the variant of nebc where Δ is given as part of the input as Δ-nebc.
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We focus on the offline settings of the problem and study it with respect to the
criterion of asymptotic approximation ratio defined as follows. Given an algorithm A
and an input I we denote by A(I ) the goal function value of the solution output by A.
We denote by opt an (exponential-time) algorithm that computes an optimal solution
for our problem. We say that a polynomial time algorithm Alg is a ρ asymptotic
approximation algorithm for nebc if

lim sup
I :opt(I )→∞

opt(I )

Alg(I )
≤ ρ.

In many cases it is easier to establish a stronger upper bound on the reward of the
algorithm, and it is well-known that if there exists a constant C such that for every
instance I we have

opt(I ) ≤ ρ · Alg(I ) + C,

then Alg is a ρ asymptotic approximation algorithm. We refer to the value of ρ as
the asymptotic approximation ratio of algorithmAlg. An asymptotic polynomial time
approximation scheme (APTAS) is a family of algorithms such that for every ε > 0, the
family contains an algorithmAlgε that is an 1+ε asymptotic approximation algorithm.
In this family the constant C in the stronger definition of asymptotic approximation
ratio may depend on ε. If we require that the time complexity upper bound on Algε

is polynomial of the input encoding length and 1/ε, then the family is referred to as
an asymptotic fully polynomial time approximation scheme (AFPTAS).

Next, we describe the connection of nebc to the bin covering problem that was
studied in the literature. The special case of nebc where Δ = 1 is equivalent to the
bin covering problem. This equivalence means that a solution to one problem can be
transformed to the other problem and vice versa. The definition of bin covering allows
bins of total size larger than 2 (and they are still considered to be covered) but since
the reward for such a bin is 1, we can delete one item at a time (to be packed in a
dedicated bin) from such a bin and create a solution to nebc with at least the same
value. On the other hand, a solution to nebc is a feasible solution for the bin covering
problem with at least the same reward. The bin covering problem was suggested in
[1, 2]. They proved that the greedy algorithm (which simply keeps putting items into
the same bin until it is covered and then moves on to the next bin) has an asymptotic
approximation ratio of 2. This is best possible for online algorithms as shown by [10].
Moreover, two more offline algorithms were derived with asymptotic approximation
ratios 3

2 and 4
3 , respectively. Most relevant to our work Csirik, Johnson, and Kenyon

[9] designed an elegant APTAS for bin covering. The running time of this asymptotic
scheme was improved into an AFPTAS by Jansen and Solis-Oba [23]. Since nebc is a
generalization of the bin covering problem, our AFPTAS for nebcwill use some of the
techniques of [9, 23]. Additional algorithmic results established for the bin covering
problem and variants of it appear in e.g. [3, 5–8, 12, 13, 16, 17, 19, 21, 25].

For the bin covering problemwe have the followingmotivating application.Assume
that we have a food producer that sells its product as containers. The product has a
minimumweight per container, and the goal of the producer is tomaximize the number
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of packed containers that meet this minimum weight constraint. With this application
in mind, the bin covering problem is the case where there is no upper limit on the
weight of a container. Obviously, the producer has certain packages used for packing
the product that cannot be over-packed. This requires an upper bound on the total
weight of the packed containers, so we get an instance of nebc.

In the bin packing literature where the total size of items packed into a bin must be
at most 1 we refer to [15, 24] for an AFPTAS. The variant where the cost of the bin
depends on the total size of items packed into the bin, is called bin packing with bin
utilization cost. For this variant under the condition that the cost function is monotone
non-decreasing there is an AFPTAS established in [14]. Note that in nebc the reward
of a bin is not a monotone function of the total size of items packed in the bin.
Paper outline. In Sect. 2 we consider a variant of nebc where Δ = 0, and show that
this variant does not admit an approximation algorithm with a bounded asymptotic
approximation ratio. This result also implies the same hardness of approximation for
Δ-nebc as we show in Sect. 2. Then, we turn our attention to designing an AFPTAS
for nebc that is our main contribution. We start our exposition of this result in Sect. 3
where we discuss some initial steps and mainly describe the main guessing step allow-
ing the algorithm to partition the instance into two subproblems that can be solved
independently. Then, in Sect. 4 we approximate the first subproblem, and in Sect. 5
we approximate the second subproblem. The novelty of our scheme is mainly in the
guessing step allowing the algorithm to partition the problem into two independent
subproblems.

2 Hardness of Approximation of1-NEBC

We define the Maximum Exact Partition problem denoted as mep. Specifically,
mep is the variant of nebc with Δ = 0. Observe that the standard reduction from 3-
partition to bin packing implies that mep is NP-hard in the strong sense. Furthermore,
the standard reduction from partition implies that in mep it is NP-hard to distinguish
between instances in which the optimal value is at least 2 and instances in which the
optimal value is zero. Note that in instances of mep where all items have sizes larger
than 1

t+1 (for a constant value of t) there is a t
2 + ε approximation algorithm for every

ε > 0 by [20]. Thus, the proof of our next inapproximability result needs to be based
on instances where some of the items are small.

Theorem 1 Unless P = N P, for every constant value of ρ, problem mep does not
admit a polynomial time algorithm Alg with an asymptotic approximation ratio that
is at most ρ.

Proof Assume by contradiction that the claim does not hold for a constant ρ. So
there is a polynomial time algorithm Alg for mep with an asymptotic approximation
ratio that is not larger than ρ. Without loss of generality, ρ is an integer (otherwise,
we can increase ρ to an integer). By definition of lim sup, we know that there is a
positive integer T such that if opt(I ) ≥ T , then Alg(I ) ≥ opt(I )

ρ+1 ≥ T
ρ+1 , whereas if

opt(I ) = 0, then Alg(I ) = 0. Note that T is a constant defined by the performance
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guarantee of Alg. Thus it suffices to show that deciding if opt(I ) is exactly zero is
NP-complete even if we assume that if opt(I ) > 0 then opt(I ) ≥ T . We show this
claim via reduction from the partition problem.

Let a1, a2, . . . , an be positive integers such that
∑n

i=1 ai = 2B where B is an
integer. The partition problem asks if there is a subset S ⊆ {1, 2, . . . , n} such that∑

i∈S ai = B. The partition problem is known to be NP-complete [18]. Given such
an instance to the partition problem we consider the following instance to mep.

For j = 1, 2, . . . , T , we have n + 1 items which will be referred to as generation
j items. The first n items of generation j have sizes

ai, j = ai
(3B) j

i = 1, 2, . . . , n

and the last item of generation j has size

an+1, j = 1 − B

(3B) j
.

We say that item (i, j) is the i-th item of generation j (the one of size ai, j ). This
defines the instance of mep. Note that ai, j > 1/2 if and only if i = n + 1 (for all j).
We argue the following two claims. The first claim is that if the partition instance is
a YES instance, then the optimal solution value of the instance of mep is at least T .
The second claim is that if the partition instance is a NO instance, then every feasible
solution of the instance of mep has a zero reward.

Assume first that the partition instance is a YES instance. Let S ⊆ {1, 2, . . . , n} be
an index subset such that

∑
i∈S ai = B. For every generation j , the items of generation

j are packed as follows. We have one exact bin of generation j with the items (i, j)
for all i ∈ S ∪ {n + 1}. The other items of generation j are packed into dedicated bins
(one bin per item). The total size of the items in the exact bin of generation j is

∑

i∈S∪{n+1}
ai, j =

∑

i∈S

ai
(3B) j

+ 1 − B

(3B) j
= 1

where the last equality holds as
∑

i∈S ai = B. So indeed the objective function value
of our solution for mep is at least T .

Next, assume that the partition instance is a NO instance. Assume by contradiction
that there is a feasible solution with at least one bin denoted as B whose items have
total size exactly 1. Consider the set of items packed into B then by definition it has at
most one item of size larger than 1/2. However, since

∑T
j=1

∑n
i=1 ai, j < 1, B must

have exactly one item of size larger than 1/2. Assume that it is item (n + 1, j), that
is, the last item of generation j .

We claim that all items packed in B are of generation j . First assume that there is
an item (i, j ′) of generation j ′ < j packed into B, then ai, j ′ ≥ 1

(3B) j
′ > 1 − an+1, j .

So the total size of items in B is strictly larger than 1. This contradicts our assumption
on B. Thus, all items packed into B are of generation at least j . Next, observe that all
items of generations strictly larger than j which are smaller than 1/2 have total size
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T∑

j ′′= j+1

n∑

i=1

ai, j ′′ =
T∑

j ′′= j+1

2B

(3B) j
′′ <

1

(3B) j
.

However, the size of every item of generation j is an integer multiple of 1
(3B) j

. Thus,
B must contain items of a common generation j . We let

S = {i : (i, j) is packed into bin B} \ {n + 1}.

By definition of B and S, we conclude that
∑

i∈S ai = (3B) j
∑

i∈S ai, j = B. There-
fore, the partition instance is a YES instance after all, contradicting our assumption.
Therefore, such a bin B may not exist. ��

Observe that in the last proof, if we use Δ = 1
(3B)T+1 , we get an instance of Δ-

nebc where the binary encoding length of Δ is upper bounded by a polynomial in
the binary encoding length of the items in this instance. In the resulting instance of
Δ-nebc whenever a near exact covered bin exists it must have items of total size
exactly 1. This property holds as all items have sizes that are integer multiples of

1
(3B)T

. Therefore, the last hardness of approximation claim holds even for Δ-nebc.
We summarize this conclusion in the following theorem.

Theorem 2 Unless P = N P, for every constant value of ρ, problemΔ-nebc does not
admit a polynomial time algorithm with an asymptotic approximation ratio that is at
most ρ.

3 The Initial Steps of the AFPTAS for NEBC

Let ε > 0 be such that we would like to get an algorithm with an asymptotic approxi-
mation ratio (1+ε)c for a constant c for nebcwhose time complexity is upper bounded
by a polynomial in the input encoding length and in 1

ε
. Without loss of generality we

assume that ε ≤ 1
12 and that 1

ε
is an integer. We define δ > 0 to be the largest value

satisfying δ ≤ Δ
4 for which 1

δ
is an integer. Then δ ≥ Δ

8 and since Δ is a positive
constant, so does δ.

Our scheme has an initial item classification step followed by a characterization of
near optimal solutions. This characterization motivates a guessing step that basically
separates the input into two parts. One part of the input is handled using the methods
of [15, 24] developed for the bin packing problem (see Sect. 4). Whereas the second
part of the input is tackled using the methods of [9, 23] for the bin covering problem
(see Sect. 5). The novelty of our approach lies in the characterization of the near
optimal solution together with the resulting guessing step. We turn our attention to
the description of the necessary background for presenting the characterization of the
optimal solution.
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3.1 The Initial Classification of Items into Huge and Non-Huge Items

We say that an item j whose size is s j is a huge item if s j ≥ δ, and otherwise it is a
non-huge item. The set of huge items is denoted as H, the set of all items is denoted
as I, so the set of non-huge items is I \ H.

We partition H into classes based on the following rule. The item set Hψ (for
ψ ∈ {0, 1, . . . , 1

δ3
− 1

δ2
) is defined as

Hψ = { j ∈ H : δ + ψ · δ3 ≤ s j < δ + (ψ + 1) · δ3}.

Observe that this is indeed a partition ofH, andwe say thatHψ is classψ of huge items
that consists of |Hψ | items. The index set of classes is denoted as Ψ . Furthermore,
we assume that each such class is sorted in a non-decreasing order of sizes of items
in this class breaking ties based on decreasing indexes. For example, when we say the
5-th item in the class we refer to this sorting.

Tomotivate this classification, consider a binBwhose items have total size between
1 and 1+Δ. Consider the operation of replacing its huge items by another set of huge
items such that for every class of huge items, the new set has the same number of items
as B used to have in the original solution. After applying this operation, the total size
of items in B changes by at most 2δ2. This holds as B has at most 2

δ
huge items and

each of which is replaced by an item whose size differs by at most δ3. Furthermore,
the number of classes of huge items is a constant.

3.2 Characterization of Nice Solutions

Next, we would like to show that every feasible solution sol for nebc can be trans-
formed into a new solution sol- nice satisfying the following. sol- nice has an
objective function value not significantly smaller than the objective function value
of sol and sol- nice has the characterization named being a nice solution with a
certificate vector. This characterization enables the next guessing step of our scheme.

Definition 1 A solution sol- nice for nebc is a nice solution with a certificate vector
(vψ, uψ)ψ∈Ψ if there is a partition of the near exact covered bins in sol- nice into
two sets called type 1 and type 2 bins such that the following properties hold.

1. Every type 1 bin B in sol- nice has items of total size at least 1+ δ and less than
1 + Δ. Every type 2 bin B in sol- nice has items of total size at least 1 and at
most 1 + 3δ.

2. Type 1 bins in sol- nice do not contain non-huge items.
3. For every class ψ ∈ Ψ the following holds. For every type 1 bin B, the bin B

may contain an item of the class only if the item is among the last vψ items of the
class. Similarly, every type 2 bin may contain an item of the class only if the item
is among the first uψ items of the class.
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4. For every ψ ∈ Ψ , we have |Hψ | ≥ uψ + vψ . Moreover, both uψ and vψ are
integer powers of 1 + εδ3 rounded down to the next integer, that is,

uψ, vψ ∈
{⌊(

1 + ε · δ3
)t

⌋

: t ∈ Z

}

, ∀ψ ∈ Ψ .

5. Last, for every ψ ∈ Ψ , the following two conditions are satisfied. The number of
items ofHψ packed into near exact covered bins in sol- nice of type 1 is at least
vψ

2 . Furthermore, the number of items of the class packed into near exact covered
bins of type 2 in sol- nice is at least uψ

2 .

Lemma 1 Given a feasible solution sol, there exists another feasible solution
sol- nice with some certificate vector (vψ, uψ)ψ∈Ψ that is a nice solution whose
objective function value is at least (1− 2ε) times the objective function value of sol.

Proof Consider sol. For every bin B of sol that is not near exact covered, we pack
every item of the bin in a dedicated bin. This operation does not decrease the objective
function value of the solution. Next, if a bin B of the resulting solution is near exact
covered, but has items of total size at least 1 + δ, we can assume without loss of
generality that this bin has only huge items. This is so as otherwise we remove one
non-huge item at a time and pack this item into a dedicated bin until the first point
in time where either the total size of the remaining items in B is smaller than 1 + δ,
or there are no further non-huge items in B. We apply this operation as long as there
are such near exact covered bins. This process does not decrease the number of near
exact covered bins and create a solution satisfying the required property. Let sol′ be
the resulting solution.

Next we partition the set of near exact covered bins in sol′. We say that a near
exact covered bin B is a type 1 bin if the total size of its items is at least 1 + 2δ and
otherwise it is a type 2 bin. Note that at this point sol′ satisfies the first two properties
of nice solutions. In order to obtain a nice solution we apply the following procedure
for every class ψ of huge items.

For everyψ , we count the number of huge items of classψ that sol′ packs into bins
of type 1 denoted as v̂ψ and the number of such items that sol′ packs into bins of type
2 denoted as ûψ . Our next step is to form an initial certificate vector (v′

ψ, u′
ψ)ψ∈Ψ .

This initial certificate vector will be modified later to the certificate vector that we will
use for the proof of the lemma. The value of v′

ψ (u′
ψ , respectively) is the largest value

in the set
{⌊(

1 + ε · δ3
)t

⌋
: t ∈ Z

}
that is at most v̂ψ (at most ûψ , respectively). Note

that v̂ψ + ûψ ≤ |Hψ |. By definition, v′
ψ ≤ v̂ψ and u′

ψ ≤ ûψ so v′
ψ + u′

ψ ≤ |Hψ |
holds for all ψ ∈ Ψ . Our certificate vector will be component-wise not larger than the
initial certificate vector so this required property will be satisfied.

We apply the following process in which we process every classHψ of huge items.
In this process we say we delete a near exact covered bin and we mean that all its
items are packed into dedicated bins and the number of near exact covered bins is
decreased by 1. If v′

ψ < v̂ψ we delete up to εδ3 times the number of bins of type 1

in sol′ containing items of this class where we delete one such bin at a time until the
first time when the number of items in such non-deleted bins decreases to be at most
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v′
ψ where the bins are sorted in non-increasing order of items of this class. Similarly,

if u′
ψ < ûψ , we delete up to εδ3 times the number of bins of type 2 in sol′ containing

items of this class where we delete one such bin at a time until the first time when the
number of items of Hψ in such non-deleted bins decreases to be at most u′

ψ where
the bins are sorted in non-increasing order of items of this class. Then, we move to
the next class of huge items. Note that at later iterations we may delete additional bins
containing items of the class. We denote by sol′′ the resulting solution. Observe that
whenever we process a class, we may delete up to 2εδ3 times the number of near exact
covered bins in sol′. So in total we may decrease the objective function value by at
most 2ε times the objective function value of sol′. In later steps we will not decrease
the number of near exact covered bins so the output solution will have an objective
function value that is at least (1 − 2ε) times the objective function value of sol.

At the end of this step, we set vψ (uψ ) to be the smallest value in the set{⌊(
1 + ε · δ3

)t
⌋

: t ∈ Z

}
that is at least the number of items of class ψ contained

in (remaining) bins of type 1 (and 2, respectively). Observe that this last step cannot
increase the values of the certificate vector, so properties 4,5 in the definition of nice
solutions will be satisfied using this certificate vector.

Then we identify the set S(ψ, 1) of vψ last items of class ψ . Whenever a type 1
bin contains items of this class that do not belong to S(ψ, 1), we remove such items
from the bin leaving space for items of class ψ and add items from S(ψ, 1) to this
bin (among the items which are not used to be packed in near exact covered bins of
type 1). Similarly, we let S(ψ, 2) be the set of uψ first items of class ψ . Whenever a
type 2 bin contains items of this class that do not belong to S(ψ, 2), we remove such
items from the bin leaving space for items of class ψ and add items from S(ψ, 2) to
this bin (among the items which are not used to be packed in near exact covered bins
of type 2). In both cases the number of items of each class in every bin is left without
modification.

This process does not hurt the properties 2,4,5. Property 3 is trivially satisfied and it
remains to take care of the first property.We denote by sol- nice the resulting solution
and we consider the first property. Before this last step occurred every bin of type 1
had items of total size at least 1 + 2δ and less than 1 + Δ, and we replace up to 2

δ
huge items by other huge items of a common class. Each such replacement can only
decrease the total size of items in such a bin and such a decrease is not larger than δ3.
Therefore, the total size of items in such a bin is at least 1+ 2δ − 2δ2 > 1+ δ and at
most 1 + Δ. Similarly every bin of type 2 had items of total size at most 1 + 2δ and
at least 1, and we replace up to 2

δ
huge items by other huge items of a common class.

Each such replacement can only increase the total size of items in such a bin and such
an increase is not larger than δ3. Therefore, the total size of items in such a bin is at
least 1 and at most 1 + 2δ + 2δ2 < 1 + 3δ. So the first property of nice solutions is
satisfied as well. ��
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3.3 Guessing the Certificate Vector and Partitioning the Input into Independent
Problems

We fix a nice solution whose objective function value is maximized. We let opt- nice
be this solution. Our guessing step is to guess the certificate vector (uψ, vψ)ψ∈Ψ

corresponding to opt- nice (or one such certificate vector if its identity is not well-
defined). By the term guess, we mean that the next steps of our scheme will be applied
for every possible value of the guessed certificate vector, each of which will lead to
a feasible solution, and at the end of the scheme we will output the solution with
the maximum objective function value breaking ties arbitrarily. In the analysis of our
scheme we analyze the iteration of this exhaustive enumeration in which we have used
the vector corresponding to opt- nice. We next show that this exhaustive enumeration
has a polynomial number of iterations for fixed Δ.

Lemma 2 The number of iterations of the exhaustive enumeration loop implied by the

guessing step is O
(
(
log n

ε
)O(1/δ3)

)
.

Proof We have that the number of components in the certificate vector is O( 1
δ3

). Each
such component is a non-negative integer that is at most maxψ |Hψ | ≤ n and it is a
rounded value of an integer power of 1+ε·δ3. Therefore, the number of possible values
for each component is at most 2 + log1+ε·δ3 n = O(

log n
ε

) using Δ
8 < δ < Δ ≤ 1 and

by the fact that Δ is a constant. Therefore, the number of possible certificate vectors

is O
(
(
log n

ε
)O(1/δ3)

)
. ��

We define two disjoint subsets of items. The first subset of items consists of items
that may belong to bins of type 1 in opt- nice and the second subset consists of items
that may belong to bins of type 2 in opt- nice. The first subset has for every ψ ∈ Ψ

the last vψ items of the class (and this subset has no non-huge items). The second
subset consists of all non-huge items and the first uψ items of every class ψ of huge
items. We denote by I1 and I2 the two inputs to our problem where in Ik the items
are of the k-th subset. By the fourth property in the definition of nice solutions we
conclude that the two subsets are disjoint. Our algorithm will find a feasible solution
apx1 for I1 and a feasible solution apx2 for I2. Then, the output of our scheme is the
union of the bin sets of these two solutions and its objective function value is the sum
of the objective function value of apx1 and the objective function value of apx2.

For the sake of our analysis, for I1 we consider a solution that maximizes the
number of bins with items of total size in [1 + δ, 1 + Δ) subject to the constraint
that for every ψ ∈ Ψ at least vψ

2 items of class ψ are packed in such bins. We refer
to both the solution and the number of those bins in this solution by opt1. Similarly,
for I2 we consider a solution that maximizes the number of bins with items of total
size in [1, 1 + 3δ) subject to the constraint that for every ψ ∈ Ψ the number of items
of class ψ that are packed in such bins is at least uψ

2 . We refer to both the solution
and the number of those bins in this solution by opt2. Then, we have the following
observation by the fact that opt- nice is an optimal nice solution.

Observation 3 Thenumber of near exact coveredbins inopt- nice equalsopt1+opt2.
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Thus, by definition the following holds. Assume that we can find suchapx1,apx2 in
polynomial time, such that (1−κε)opt1+C1 ≤ apx1 and (1−κε)opt2+C2 ≤ apx2
for a given constant κ that is not a function of ε or δ, and for given constants C1 and
C2 (that may depend on ε, δ). Then we obtain an AFPTAS for nebc. This scheme has
an asymptotic approximation ratio of 1

(1−κε)(1−2ε) .

4 Approximating I1

Here, we apply a method similar to the AFPTAS’s for the bin packing problem [15,
24]. These methods are based on linear grouping of the items, formulating a set of
so-called bin configurations, solving a linear program for deciding how many bins are
packed with each configuration, and then rounding up the resulting fractional solution.
Most applications of this procedure invoke an approximated separation oracle to the
dual linear program and use this approximated separation oracle to approximately
solve the (primal) linear program. Here we simplify this step using the assumption
that every item has size at least δ ≥ Δ

8 where Δ > 0 is a fixed constant. Using
this simplification, we solve exactly the primal linear program without using this
mechanism of [24]. When we consider I1 with respect to opt1 we say that a bin is a
good bin if the total size of its items is in [1 + δ, 1 + Δ).

4.1 Linear Grouping of Each Class of Huge Items

For every ψ ∈ Ψ , we apply linear grouping ofHψ into 1
ε2δ

subsets. That is, for every

ψ , if there are strictly less than 1
ε2δ

items of class ψ in the input I1, then every item

of the class has its own set in the collection of sets Hα
ψ for α = 1, 2, . . . , 1

ε2δ
, and

no rounding is applied so the rounded up size of an item in the class equals its size.
Furthermore, we assume thatH1

ψ = ∅, and for α ≥ 2, the setHα
ψ contains the α−1-th

largest index item of the class, and if there is no such item, then the last set is the empty
set.

If for the given value of ψ we have at least 1
ε2δ

items of class ψ in the input I1,

then we require the following. First, |H1
ψ | ≥ |H2

ψ | ≥ · · · ≥ |H1/(ε2δ)
ψ | ≥ |H1

ψ | − 1.

Second, the indexes of the items in H1
ψ are the largest ones in the class, the indexes

of the items in H2
ψ are the next largest ones in the class, and so on. In this case, we

apply rounding and we let the rounded up size of an item of the class to be the largest
size of an item in its subset.

Observe that for everyψ we have |H1
ψ | ≤ 2ε2δ · |Hψ |. We denote by s′

i the rounded

up size of item i . Let opt′
1 be a solution for the input items in I1 where the size of each

item is its rounded up size such that opt′
1 maximizes the number of good bins. The

use of the linear grouping to approximate I1 is motivated by the following lemma. In
what follows we will approximate opt′

1.

Lemma 3 We have (1− ε) ·opt1 ≤ opt′
1. Furthermore, let sol be a feasible solution

to the rounded instance whose number of good bins is also denoted as sol. Then,
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packing each item of the original (non-rounded) instance exactly as in sol, results in
a solution whose number of near exact covered bins is at least sol.

Proof First, consider the second part of this lemma. This claim holds as every good
bin B of sol (in the rounded instance) has at most 2

δ
(huge) items of I1. Thus, when

we compute the difference in the total size of items in B with respect to the rounded
up size and with respect to the size, then this difference is non-negative and at most
2
δ

· δ3. Therefore, if B was one of the good bins in sol of total (rounded up) size in
[1 + δ, 1 + Δ), then the total size of its items is in [1 + δ − 2δ2, 1 + Δ). Thus, in
this case B is a near exact covered bin in this solution of the original instance. This
suffices for this claim.

It remains to prove the inequality (1 − ε) · opt1 ≤ opt′
1. We consider the solution

opt1 and construct a feasible solution for the rounded instance based on opt1. For a
bin B whose total (original) size of items is either at most 1 + 3δ or at least 1 + Δ,
we leave the items in B as they were in opt1. Next, we claim that the number of those
bins with total size in [1+δ, 1+Δ) is at least their number in opt1. This is so because
by rounding up the size of each item we can only increase the total size of items, and
since we round the size of an item to a size of another item in the same class, such
an increase is not larger than δ3. Using the fact that B has at most 2/δ items this last
claim holds. Consider the other bins, and we refer to such a bin as a free bin whose
items are called free items.

Next, for the purpose of this proof we re-index the items of every class so that the
free items appear first (sorted by the original index of the items in the class) and only
afterwards the non-free items. We repack the free bins as follows. For a class ψ that
has less than 1

ε2δ
items we do not change the assignment of the items of the class (there

is no rounding of such class) and we say that every item of the class is replaced by
itself. For other classes, we apply the following process. For a free item of class Hψ

whose index (in the class) is i , we pack it in the bin of opt1 that used to have the
item of index i − �2ε2δvψ� in this class. We say that item i − �2ε2δvψ� is replaced
by i . Note that the rounded size of i − �2ε2δvψ� is at most the (original) size of i . If
i − �2ε2δvψ� ≤ 0 (meaning there is no such item), then we pack i in a new dedicated
bin. We have that if a bin B in opt1 has only items that are replaced by items, then the
total rounded up size of the replacing items of B (in the new solution) is at most the
total original size of items inB and this is at most 1+Δ. On the other hand, every such
replaced item has a size that is at most δ3 smaller than the item it replaces. Since B has
less than 2

δ
items, the total (rounded) size of the items of the bin after this replacement

is not smaller than 1 + 3δ − 2
δ

· δ3 > 1 + δ.
It remains to show that the number of free bins containing items that are not replaced

by other items is at most εopt1. First note that every good bin of opt1 has at most 2
δ

items out of at least
∑

ψ∈Ψ
vψ

2 items that participate in such bins. Therefore,

opt1 ≥ δ

4

∑

ψ∈Ψ

vψ.

123



Algorithmica

Second, for a classψ , the number of items that are not replaced is at most �2ε2δvψ� ≤
2ε2δvψ + 1. But such items exist only if ε2δvψ ≥ 1 so we have at most 3ε2δvψ such
items of class ψ . Thus, by summing over all classes, we have at most

∑
ψ∈Ψ 3ε2δvψ

such items. This is also a valid upper bound on the number of free bins containing an
item that is not replaced. Finally, we have

∑

ψ∈Ψ

3ε2δvψ = 3ε2δ ·
∑

ψ∈Ψ

vψ ≤ 12ε2opt1 ≤ εopt1

where the last inequality holds using ε ≤ 1
12 . ��

4.2 The Configuration LP

Wedefine a bin configuration to describe a packing of one bin. These bin configurations
are used next to formulate the so-called configuration integer program that directs our
algorithm. We would like to approximate opt′

1 and consider the instance with item
set I1 where the size of every item i is the rounded up size of the item s′

i , i.e., the
rounded-up instance. Our goal is to maximize the number of good bins.

Formally, a bin configuration is a multi-set of sizes of items in the rounded up
instance where the total size of items in this multi-set is strictly less than 1+Δ. Since
the size of every item in this instance is at least δ, each multi-set of items described
by a configuration has at most 2

δ
items. Furthermore, we say that a bin configuration

has a unit reward if the total size of its items is in [1 + δ, 1 + Δ) and otherwise it has
zero reward. Next, we prove that there are polynomially many bin configurations (for
a fixed value of δ).

Lemma 4 There are at most ( 1
ε2δ4

+ 1)2/δ bin configurations.

Proof In the rounded-up instance the number of different sizes is at most 1
ε2δ4

. We

consider the items in a bin configuration as a sequence containing 2
δ
positions. In such

a sequence the i-th position is the index (in the list of sizes) of the size of the i-th item
in the sequence where if no such item exists, then the corresponding position is 0. In
total there are exactly 2

δ
positions and each of which is described as a non-negative

integer that is at most 1
ε2δ4

. So the claim holds. ��
Observe that this last bound on the number of bin configurations is polynomial (of

a constant degree) in 1
ε
and independent of the input encoding length. So in order to

design an AFPTAS we can have a step whose time complexity is polynomial in the
number of bin configurations. Next, we formulate the configuration integer program.

For this formulationwe treat a bin configuration as a vector of non-negative integers
where the i-th component of the vector is the number of items of the i-th size in the
multi-set described by the configuration. We let C denote the set of all bin configura-
tions. The decision variable xc for a configuration c ∈ C is the number of bins with
configuration c. For the i-th size in the input we denote by ci the i-th component of
configuration c ∈ C and by νi the number of items in the rounded up instance of this
size. We denote the subset of C consisting of all configurations with unit reward by

123



Algorithmica

C1. We denote by σ the index set of sizes of items in the rounded up instance. The
configuration integer program is the following integer program.

max
∑

c∈C1 xc
s.t .

∑
c∈C ci · xc = νi ∀i ∈ σ

xc ≥ 0 ∀c ∈ C.

The number of decision variables is the number of bin configurations that is at most
( 1
ε2δ4

+ 1)2/δ . The number of constraints (excluding the non-negativity constraints) is

|σ | ≤ 1
ε2δ4

. The configuration LP is the linear programming relaxation obtained from
the above integer program by allowing the variables to be non-integers.

Our algorithm formulates the configuration LP and solves it (optimally) using the
ellipsoid algorithm or another polynomial time algorithm for solving linear programs.
This step runs in polynomial time as the dimension (i.e., the number of decision
variables) and the number of constraints are upper bounded by a polynomial in 1

ε
. The

maximum encoding length of a number that appears in this linear program is O(log n).
Therefore, the polynomial time algorithms for solving a linear program run in time
that is upper bounded by a polynomial in 1

ε
times a polylog in the number of items n.

Furthermore, we can assume that this algorithm outputs a basic optimal solution (by
applying a basis-crashing algorithm like [4]). We denote an optimal basic solution of
this linear program by x∗. We have that opt′

1 ≤ ∑
c∈C1 x

∗
c as we show next using the

fact that opt′
1 defines an integer feasible solution to the configuration LP.

Lemma 5 We have opt′
1 ≤ ∑

c∈C1 x
∗
c .

Proof Based on opt′
1 we define a bin configuration for every bin of this solution, that

is, the multi-set of sizes packed into this bin. Observe that without loss of generality
every bin in this solution has items of total size less than 1 + Δ, so indeed there
is a configuration in C with this multi-set of sizes. Then, we set the integer feasible
solution xo as follows. For every c ∈ C, the value of xoc is the number of bins in the
solution opt′

1 with configuration c. Since every item is packed into exactly one bin,
the constraint

∑
c∈C ci · xc = νi is satisfied for all i ∈ σ . Thus, indeed xo is a feasible

integer solution for the configuration LP. Its objective function value as a solution to
this linear program is exactly opt′

1. The claim holds as x∗ is an optimal solution for
the linear program. ��

We let x ′
c = �x∗

c � for all c ∈ C.We pack a subset of items based on this integer vector
x ′ using the following process. For every c ∈ C we have x ′

c bins packed according to
c. For each such bin B packed according to c and every size i ∈ σ , we pick ci items
of the i-th size and pack them into B. These picked items are not picked to other bins.
We have enough items of each size as c is non-negative for all c ∈ C and x ′

c ≤ x∗
c so

∑

c∈C
ci · x ′

c ≤
∑

c∈C
ci · x∗

c = νi

holds for all i ∈ σ . Additional items that were not packed by this process are packed
into dedicated bins and do not contribute to the objective function value of x ′. In this
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way we output a feasible solution apx1 satisfying the required performance guarantee
as we establish next.

Lemma 6 We have

apx1 ≥ (1 − ε) · opt1 − 1

ε2δ4
.

Proof We have the following.

apx1 =
∑

c∈C1
x ′
c

≥
∑

c∈C1
x∗
c − 1

ε2δ4

≥ opt′
1 − 1

ε2δ4

≥ (1 − ε) · opt1 − 1

ε2δ4
,

where the first inequality holds as x∗ is a basic optimal solution for the linear program,
the second inequality by Lemma 5, and the last inequality by Lemma 3. ��

5 Approximating I2

Here, we will say that a bin B is a good bin if the total size of items in B is in the
interval [1, 1+3δ). Recall that opt2 is a solution maximizing the number of good bins
among all solutions that for every ψ have at least uψ/2 items packed in good bins.
We have that without loss of generality every good bin in opt2 that has a non-huge
item has items of total size in [1, 1 + δ), and there is at most one bin that is not a
good bin containing non-huge items. To see the first observation we can repack one
non-huge item placed in a good bin with items of total size larger than 1 + δ into a
dedicated bin, and repeat as long as this first property does not hold. To verify the
second observation, move all non-huge items packed into bins that are not good bins,
into one bin. This process cannot decrease the number of good bins and satisfy the
second property. If the first property stops to hold, we partition this one new bin into
several ones, where at most one of these new bins is not a good bin.

Additional guessing step.Our first step is to guess the value of β defined as the number
of good bins in opt2 containing non-huge items. Since β is a non-negative integer not
larger than the number of non-huge items and in particular β ≤ n, we can enumerate
all possibilities for the value of β. For each such possibility, we construct a feasible
solution for our problem instance (see below). Lastwe choose the best feasible solution
(among all iterations of the exhaustive enumeration implementing this guessing step).
In what follows, β is the value of the guessed information.

Another classification of items.We let X denote the set of non-huge items. We sort the
items in X in a non-increasing order of size (breaking ties based on the index of the
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item). We classify the items in X as follows. The first min{|X |, �β+1
ε

�} items in the
sorted list of X are large items, and we let L = H0 be the set of large items. As will
be clear later on, we also let L be the class 0 of huge items (although they are not huge
items). The next β items in the sorted list are medium items and their set is denoted
as M . Last, the remaining items are small items whose set S is S = X \ (L ∪ M). If
|X | − |L| < β, then M = X\L and S = ∅. Furthermore, we let Ψ ′ = Ψ ∪ {0} be the
set of classes of huge items including the class 0 containing the large items, and we
letH′ = H ∪ L .

5.1 Linear Grouping of Each Class inH′ and Excluding the Items inM

We apply a linear grouping step similar to [9, 23], that is, this time the rounded size
will be rounded down and not rounded up as we did when approximating I1. For every
ψ ∈ Ψ ′ we apply linear grouping ofHψ into 1

ε2δ
subsets. That is, for every ψ , if there

are strictly less than 1
ε2δ

items of class ψ in the input I2, then every item of the class

has its own set in the collection of sets Hα
ψ for α = 1, 2, . . . , 1

ε2δ
. In this case, no

rounding is applied so the rounded down size of an item in the class equals its size
and we assume that H1

ψ = ∅.
If for the given value of ψ ∈ Ψ ′ we have at least 1

ε2δ
items of class ψ in the input

I2, then we will require that |H1
ψ | ≥ |H2

ψ | ≥ · · · ≥ |H1/(ε2δ)
ψ | ≥ |H1

ψ |−1 and that the

indexes of the items inH1
ψ are the largest ones in the class, the indexes of the items in

H2
ψ are the next largest ones in the class, and so on. In this case, we apply rounding

and we let the rounded down size of an item of the class to be the smallest size of an
item in its subset. Observe that for every ψ , we have |H1

ψ | ≤ 2ε2δ · |Hψ |.
We denote by s′

i the rounded down size of item i and for item in S ∪ M we
let the rounded down size of the item be its size. For a subset of items Λ we let
s(Λ) = ∑

i∈Λ s′
i be its total rounded size. Furthermore, we allow the algorithm to

temporarily pack the items in S fractionally. That is, we treat the small items as fluid
or sand of total size s(S), and every bin may pack an arbitrary sized sand as long as
the total size of the packed sand is not larger than s(S). We define the rounded down
instance of the problem as the input with item set I2 \ M , the size of every item is
the rounded down size of the item, and sand of total size s(S) that can be packed
fractionally.

Let opt′
2 be a solution for the rounded down instance such that opt′

2 maximizes
the number of good bins subject to the constraint that the number of good bins with
non-zero sand is at most β. The use of the linear grouping to approximate I2 is justified
by the following two lemmas.

Lemma 7 There is a polynomial time algorithm accomplishing the following task. The
input consists of a solution sol′ for the rounded-down instance whose number of good
bins is sol′ where we assume that the number of good bins with non-zero space for
sand in sol′ is at most β. The output is a solution to the original instance I2 whose
number of near exact covered bins is at least sol′.
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Proof First,we consider the packing of huge or large items in sol′, that is of the original
sized items and without modifying the allocated sand for each bin. We identify the
set ζ of good bins in sol′ containing non-zero space for sand (as a solution to the
rounded down instance). Consider a bin B in the resulting solution, and we show that
if B was a good bin in sol′, then either B is a near exact covered bin in the resulting
solution, or we can can repack some of the large items used to be packed into B (and
move these repacked items into dedicated bins), so that the resulting bin of the items
and sand left in B is near exact covered. Thus, the upper bound of β on the number of
good bins containing sand will continue to hold.

Since the rounding of itemswas rounding down andBwas a good bin in the rounded
down instance, the total (original) size of its items and sand, whose size is notmodified,
is at least 1. If B has no large items, then it has at most 2

δ
items plus some additional

sand, and themaximumdifference between the original size of an item and its rounded-
down size is at most δ3. Since B was a good bin, its total rounded-down size is smaller
than 1 + 3δ. Using the fact that the total size is at most 1 + 3δ + 2

δ
· δ3 < 1 + Δ, the

claim follows. Next, consider the case where some items in B are large. If the total
size of the items in B is less than 1+Δ, then we are done. Otherwise, we start deleting
large items fromB, one after the other. The process stops either once there are no large
items, or when the total size of the items and sand left in B is less than 1+ Δ. By the
proof of the case where the original bin had no large items, we conclude that when
the process ends it must be the case that the total size of the items and sand left in B
is less than 1 + Δ.

At this point, the set ζ contains all good bins with non-zero sand and by the assump-
tion of the lemma, ζ has at most β bins. Our next goal is to replace the sand in the
bins of ζ by the items in S∪ M , so that the number of near exact covered bins will not
decrease. First, note that we can decrease the amount of packed sand in some good
bins to ensure that if a good bin has non-zero sand, then its total size of items and sand
is exactly 1. With a slight abuse of notation, we let ζ be the resulting set of good bins
with non-zero sand. This is a subset of the original set ζ so it has at most β bins.

We process the bins in ζ , one by one. Consider the current bin B ∈ ζ . We remove
the sand from B and we start adding items from S until the first time in which the
added item is about to increase the total size of items in B to be at least 1. This last
item from S is not added toB and instead we add one item from M . Then, we conclude
that the resulting bin has size not smaller than 1 and not larger than 1 + δ where the
upper bound follows as medium items are not huge. The items that we added to B are
deleted from the corresponding sets (S or M) and we continue to process the next bin
from ζ .

Observe that the total size of small items that we pack to a good bin B is not larger
than the size of sand packed into B in the solution sol′. Therefore, by summing over
all bins in ζ , we have sufficiently many small items to pack into all bins in ζ . We have
enough medium items as every bin in ζ gets one medium item and |ζ | ≤ β ≤ |M |
where the second inequality holds in cases where there is sand in the instance (and
otherwise ζ = ∅ and this step does not exist). If the process leaves some unpacked
small or medium items (after processing all bins in ζ ), then we pack each such item
in its own dedicated bin without modifying the number of near exact covered bins. ��
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Next, we consider the other direction showing that approximating the rounded down
instance is sufficiently close to approximate the original instance.

Lemma 8 We have (1 − 3ε) · opt2 − 1 ≤ opt′
2.

Proof We consider the solution opt2 and modify it in two steps. First, we consider
the rounded-down instance including the items in M (the rounded down size of such
an item is its original size) and construct a feasible solution sol whose number of
good bins is at least (1− 2ε)opt2 − 1. Then, in the second step we construct another
solution for the rounded down instance without medium items whose number of near
exact covered bins is at least (1 − 3ε)opt2 − 1. In both steps the allocation of small
items is not modified and we will not use the ability to pack them fractionally when
we consider the rounded down instance. Furthermore, we will say below that every
small item i is replaced by itself.

Consider the first step. Assume without loss of generality that in opt2 every bin of
total size at least 1+ δ satisfies that the bin consists only of huge items (so every item
has size at least δ). For a bin B whose total size of items in the original instance is
either less than 1 or at least 1+ δ, we leave the items in B as they were in opt2. Next,
we claim that the number of those good bins is the same as it were in opt2. To show
this first note that by rounding down the size of each item, we can only decrease the
total size of items, and since we round the size of an item to a size of another item
in the same class, such decrease is at most δ3. Since by our assumption a good bin B
has no large items and the size of small items is not modified, B has at most 2/δ huge
items, and so this last claim holds. Consider the other bins, and we refer to such a bin
as free bin whose items are called free items.

Next, for the purpose of this proof we re-index the items of every class of H′ so
that the free items appear first (sorted by the original index of the items in the class)
and only afterwards the non-free items. We repack the free bins as follows. For a class
ψ ∈ Ψ ′ that has less than 1

ε2δ
items, we do not change the assignment of the items of

the class (there is no rounding of such class) and we say that every item of the class is
replaced by itself.

For other classes, we apply the following process where we let u0 = |L| be the
number of large items. For a free item of classHψ whose index (in the class) is i , we
pack it in the bin of opt2 that used to have the item of index i −�2ε2δuψ�, and we say
that item i −�2ε2δuψ� is replaced by i . We note that the rounded size of i −�2ε2δuψ�
is at least the (original) size of i . If i −�2ε2δuψ� ≤ 0 (meaning there is no such item),
then we pack i in a new dedicated bin.

We have that if a bin B in opt2 has only items that are replaced by (perhaps other)
items, then the total rounded down size of the replacing items ofB (in the new solution)
is at least the total original size of items in B and this is at least 1. On the other hand,
every such replaced item has a size that is at most δ3 larger than the item it replaces.
Since the free bin B has less than 2

δ
huge items, the total (rounded) size of the bin after

this replacement is not larger than 1 + δ + 2
δ

· δ3 < 1 + 3δ if there are no large items
in B, so this is a good bin.

Note that if there are also large items in B, then the last proof shows that the total
rounded size of the replaced items of the huge and small items is less than 1+ 3δ, and
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we can add one large item after the other until the first iteration in which the resulting
bin is a good bin. Since the size of every large item is at most δ, the resulting bin will
be indeed a good bin.

It remains to show that the number of free bins containing items that are not replaced
by other items is at most 2εopt2 + 1. First note that every good bin of opt2 has at
most 2

δ
huge items and the number of huge items participating in good bins is at least

∑
ψ∈Ψ

uψ

2 . Therefore,

opt2 ≥ δ

4

∑

ψ∈Ψ

uψ.

Second, for a class ψ ∈ Ψ , the number of items that are not replaced is at most
�2ε2δuψ� ≤ 2ε2δuψ + 1, but such items exist only if ε2δuψ ≥ 1 so we have at most
3ε2δuψ such items of class ψ ∈ Ψ . Summing over all such classes, we have at most

∑

ψ∈Ψ

3ε2δuψ

such items and this is also a valid upper bound on the number of free bins containing
a huge item that is not replaced. Note that

∑

ψ∈Ψ

3ε2δuψ = 3ε2δ ·
∑

ψ∈Ψ

uψ ≤ 12ε2opt2 ≤ εopt2

where the last inequality holds using ε ≤ 1
12 . Next consider the number of large items

that are not replaced. These are at most 3ε2δ|L| items. By definition of L , we know
that |L| ≤ β+1

ε
+ 1, and β ≤ opt2. So the number of non-replaced large items is at

most

3ε2δ ·
(

β + 1

ε
+ 1

)

≤ εopt2 + 1

using δ ≤ 1
4 . This is a valid upper bound on the number of free bins containing large

items that are not replaced. This concludes the first step where we have considered
the rounded-down instance including the items in M and construct a feasible solution
denoted as sol whose number of good bins is at least (1 − 2ε)opt2 − 1.

In the last step of the proof, wemodify sol into a feasible solution that does not pack
the items in M . We replace the medium items in sol by large items by repacking the
items of at most εβ good bins and other bins containing large items. In this repacking
process every bin containing i medium items will be assigned i large items that were
not packed there prior to this step. This repacking increases the total rounded size of
items in the bin so it will be at least 1. However, if it becomes at least 1+3δ, we remove
one large item after another until the total rounded size becomes less than 1+3δ. Thus
this repacking will generate the required solution for the rounded instance.
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However, we need to show that there is a set of at most εβ good bins such that
together with all non-good bins contains at least |M | large items. This is so, as in opt2
there is a set of β + 1 bins containing all large items and |L| ≥ β+1

ε
or M = ∅. By

the pigeonhole principle, out of the bins of opt2 with large items, there is a set of εβ

good bins such that together with the unique non-good bin having large items we get
a subset BI N S of the bins with at least β large items. So the claim follows. ��

5.2 The Configuration LP

Wedefine a bin configuration to describe a packing of one bin. These bin configurations
will be used to formulate the configuration integer programwhose linear programming
relaxation is used to direct our algorithm. Both the definition of bin configurations as
well as the configuration integer program differ from the ones we have considered
in Sect. 4 to approximate I1. We would like to approximate opt′

2 and consider the
rounded down instance.

Formally, a bin configuration is a multi-set of sizes of items in H′ together with
a non-negative allocated space for sand such that the total rounded down size of the
items together with the space for sand is at most 1+ 3δ. It is clear that without loss of
generality we conclude that for every bin configuration corresponding to a good bin
either the space for sand is zero, or it is exactly 1 minus the total size of the items inH′
in this bin configuration. However, for a multi-set of items of total size smaller than
1 there are two configurations, one with sand so that it is a good bin and one without
sand (and in this case it is not a good bin). Therefore, the information regarding the
allocated space for sand in the configuration is implied by the multi-set of items in
H′ together with one additional bit of information. Furthermore, we say that a bin
configuration has a unit reward if the total size of its items and sand is in [1, 1 + 3δ)
and otherwise it has zero reward. However, unlike the case of I1, the number of bin
configurations is not polynomially bounded and we prove the following upper bound.

Lemma 9 There are at most 2 · (n + 1)
1

ε2δ4 bin configurations.

Proof The items in H′ have at most 1
ε2δ4

different sizes of items, and for each such
size the number of items in the configuration is a non-negative integer that is at most
n. Every such multi-set of items has at most two configurations where one of those
has unit reward and at most one of those has zero reward. Therefore, a valid upper

bound on the number of configurations is 2(n + 1)
1

ε2δ4 . ��
Observe that this last bound on the number of bin configurations is not polynomial

(of a constant degree). So in order to design an AFPTAS we cannot enumerate all bin
configurations. Next, we formulate the configuration integer program. Here, we con-
sider bin configuration as a vector of non-negative integers where the i-th component
of the vector is the number of items of the i-th size in the multi-set described by the
configuration. We let C denote the set of all bin configurations. For c ∈ C, we let s(c)
denote the space for sand in the configuration c. We denote the subset of C consisting
of all configurations with unit reward by C1. We let σ denote the index set of sizes of
items inH′. For i ∈ σ , let νi denote the number of items of (rounded down) size si in
the rounded instance.
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The decision variable xc for a configuration c ∈ C is the number of bins with
configuration c. For i ∈ σ , we denote by ci the i-th component of configuration c ∈ C.
The configuration integer program is the integer program stated below. Here, we use
the assumption that if a solution to this integer program does not use all items of a given
size (or the full amount of sand in the instance), then additional items can be packed
into dedicated bins without changing the objective function value. This motivates our
use of inequalities (instead of equalities) in the constraints (beside the non-negativity
constraints) of the configuration integer program.

max
∑

c∈C1 xc
s.t .

∑
c∈C ci · xc ≤ νi ∀i ∈ σ

∑
c∈C1 s(c) · xc ≤ s(S)

∑
c∈C1:s(c)>0 xc ≤ β

xc ≥ 0 ∀c ∈ C.

The number of decision variables is the number of bin configurations. The number
of constraints (excluding the non-negativity constraints) is |σ | + 2 ≤ 1

ε2δ4
+ 2. The

configuration LP is the linear programming relaxation obtained from the above integer
program by allowing the variables to be non-integers.

Our algorithm considers the configuration LP without stating its formulation, and
solve it approximately within a multiplicative factor of 1 − ε using the ellipsoid
algorithm via the column-generation approach of [24]. We postpone the details of
this step and assume that we are given a feasible solution x∗ to the configuration
LP such that the support of x∗ has at most polynomial number of elements, and
satisfying that for every other feasible solution x̂ for the configuration LP, we have∑

c∈C1 x
∗
c ≥ (1 − ε) · ∑

c∈C1 x̂c. Furthermore, using a basis-crashing algorithm [4]

we can assume that the support of x∗ has at most 1
ε2δ4

+ 2 elements. We have that

(1− ε) ·opt′
2 ≤ ∑

c∈C1 x
∗
c as we show next using the fact that opt′

2 defines an integer
feasible solution to the configuration LP.

Lemma 10 We have (1 − ε) · opt′
2 ≤ ∑

c∈C1 x
∗
c .

Proof Based on opt′
2 we define a bin configuration for every bin of this solution,

that is, the multi-set of sizes of H′ packed into this bin. Observe that without loss of
generality every bin in this solution has items of total size at most 1 + 3δ. So indeed
there is a configuration in C with this multi-set of sizes where we may have identical
configurations where one copy belongs to C1 with non-zero sand packed into it and
the other copy to C \ C1. We pick the first such copy if the bin is a good bin in opt′

2
and the second copy if it is not a good bin. Then, we let the integer feasible solution
xo be defined as follows. For every c ∈ C, the value of xoc is the number of bins in the
solution opt′

2 with configuration c. Since every item is packed into exactly one bin, the
constraint

∑
c∈C ci · xc ≤ νi is satisfied for all i ∈ σ . Similarly the sand resulting from

small items is packed once, so the constraint
∑

c∈C1 s(c) · xc ≤ s(S) is also satisfied.

Last, the number of unit reward bins with some small items in opt′
2 is at most β by

the guessing step. So indeed this is a feasible integer solution for the configuration LP.
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Its objective function value as a solution to this linear program is exactly opt′
2. The

claim holds as x∗ is a 1 − ε approximation for the linear program. ��
We let x ′

c = �x∗
c � for all c ∈ C. We pack a subset of items based on this integer

solution x ′ using the following process. For every c ∈ C we have x ′
c bins packed

according to c. For each such bin B packed according to c and every size i ∈ σ ,
we pick ci items of the i-th size and pack them into B. These picked items are not
picked to other bins. We have enough items of each size as c is non-negative for all
c ∈ C and x ′

c ≤ x∗
c so

∑
c∈C ci · x ′

c ≤ ∑
c∈C ci · x∗

c ≤ νi (for all i). Additional
items of H′ that were not packed by this process are packed into dedicated bins and
do not contribute to the objective function value of x ′. The sand is allocated only
to bins where the corresponding configuration belongs to C1 and such a bin gets
sand of size that is the minimum amount for which the total size of its items and
sand will be at least 1. Since s(c) is non-negative for all configurations, we have∑

c∈C1 s(c) · x ′
c ≤ ∑

c∈C1 s(c) · x∗
c ≤ s(S). Similarly, since x ′ ≤ x∗, we conclude

that
∑

c∈C1:s(c)>0 x
′
c ≤ ∑

c∈C1:s(c)>0 x
∗
c ≤ β. Therefore, x ′ satisfies the constraints of

the configuration LP. Thus, we can apply Lemma 7, and obtain a feasible solution to
the original instance whose number of near exact covered bins is exactly the objective
function value of x ′ to the configuration LP. We let apx2 be the resulting solution that
is a feasible solution to the original instance whose number of near exact covered bins
satisfies the following lower bound.

Lemma 11 The solution apx2 has at least (1 − 3ε) · (1 − ε) · opt2 − 1
ε2δ4

− 3 near
exact covered bins.

Proof We have the following.

apx2 =
∑

c∈C1
x ′
c

≥
∑

c∈C1
x∗
c − 1

ε2δ4
− 2

≥ (1 − ε) · opt′
2 − 1

ε2δ4
− 2

≥ (1 − 3ε) · (1 − ε) · opt2 − 1

ε2δ4
− 3,

where the first inequality holds as x∗ is a basic solution for the linear program, the
second inequality by Lemma 10, and the last inequality by Lemma 7. ��
It remains to show thatwe can indeed solve the configurationLPwithin amultiplicative
factor of 1 − ε in polynomial time as we prove next.

5.3 Approximating the Configuration LP

Here, we refer to the configuration LP as the primal LP. Since the dimension of this
linear program is exponential in 1

ε
, we consider its dual linear program and refer to

123



Algorithmica

it as the dual LP. This dual LP has number of variables that is polynomial in 1
ε
and

1
δ
, and we plan to use the ellipsoid algorithm to solve this dual LP. However, the

number of constraints of the dual LP is the number of configurations, and if we try
to use separation oracle for deciding if the current dual solution is feasible or not, we
get an NP-complete problem. We will use the column-generation method of [24] to
overcome this difficulty.
The dual linear program. First, we state the dual linear program. We have a dual
variable yi associated with the primal constraint

∑
c∈C ci ·xc ≤ νi . In addition to these

dual variables, we let z1 be the dual variable associated with
∑

c∈C1 s(c) · xc ≤ s(S)

and z2 be the dual variable associated with
∑

c∈C1:s(c)>0 xc ≤ β. The dual LP is the
following linear program (once again the algorithm does not list all constraints of this
linear program).

min
∑

i∈σ νi · yi + s(S) · z1 + β · z2 (1)

s.t .
∑

i∈σ ci · yi ≥ 0 ∀c ∈ C \ C1 (2)
∑

i∈σ ci · yi + s(c) · z1 + z2 ≥ 1 ∀c ∈ C1 : s(c) > 0 (3)
∑

i∈σ ci · yi ≥ 1 ∀c ∈ C1 : s(c) = 0 (4)

yi , z1, z2 ≥ 0 ∀i (5)

In order to utilize the ellipsoid algorithm forfinding a1+ε approximated solution for
the dual LP, we will design approximated separation oracle that given an assignment
of values to the decision variables (ỹ, z̃) decides in polynomial time if the vector
resulting by multiplying every component by 1+ ε, that is, (1+ ε) · (ỹ, z̃) is a feasible
solution for the dual LP, or provide a dual constraint that is violated by (ỹ, z̃) namely
a configuration c ∈ C for which the corresponding constraint is violated. The time
complexity of this separation oracle needs to be polynomial in n, 1

ε
, and in the binary

encoding length of I2.
Given such a vector (ỹ, z̃), we check in linear time that all its components are non-

negative. If one of these variables is negative, we are done as we found a constraint that
is violated by this solution. Otherwise, we observe that since for every configuration
c ∈ C the components of c are non-negative, the constraints (2) are satisfied by (ỹ, z̃).
In what follows, we denote the i-th size in σ by si .

We define the value of ỹi as the value of an item of size si . A configuration is
a multi-set of items of sizes in σ whose value is

∑
i∈σ ỹi · ci and whose size is∑

i∈σ ci · si . We treat the values ci as decision variables of the separation oracle while
ỹi , si , z̃1, z̃2 for all i are constants. We first round up the values of ỹi to the next
integer multiple of ε

n , and denote the corresponding rounded value by y′
i . Since every

configuration has at most n items in the multi-set, we observe that if y′, z̃1, z̃2 satisfies
all the constraints of the form constraint (3) and (4), then (1+ε) · ỹ, z̃1, z̃2 also satisfies
all these constraints. Furthermore, if there exists a constraint in this family that is not
satisfied by (1+ ε) · ỹ, z̃1, z̃2, then y′, z̃1, z̃2 violates at least one of these constraints.

In the following we partition our treatment to configurations c ∈ C1 with s(c) = 0
and the size of c is in the interval [1, 1+ δ) (first case of constraint (4)), configurations
c ∈ C1 with s(c) = 0 and the size of c is in the interval [1 + δ, 1 + 3δ) (second case
of constraint (4)), and last to configuration c ∈ C1 with s(c) > 0 (constraint (3)).
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Theapproximated separationoracle for constraint (4) corresponding to configurations
with size in [1, 1 + δ). Consider the subset of configurations c ∈ C1 of items in H′
with size in [1, 1 + δ). The motivation for the following oracle is that in this case we
can round up a little bit the sizes and still get a good bin. For this case, we define the

modified size of an item of size si as ŝi = � n·si
δ

� · δ
n . Since every configuration has

at most n items, we are guaranteed that if a subset of items has total modified size in
the interval [1, 1 + δ), then its total size is at most 1 + 2δ, so it is a good bin. So we
consider the following set of integer programs in the vector of decision variables c
where the integer program denoted as I P1(ι, ι′) is parameterized by two parameters
ι, ι′.

max
∑

i∈σ ci · si (6)

s.t .
∑

i∈σ ci · y′
i = ι (7)

∑
i∈σ ci · ŝi = ι′ (8)

0 ≤ ci ≤ νi ∀i ∈ σ (9)

We solve these problems for every pair of values of ι, ι′ that are non-negative integer
multiples of εδ

n subject to the constraint ι, ι′ ≤ 2. Observe that if we multiply the two
constraints (7) and (8) by n

εδ
we get an equivalent integer program where there are

only two constraints (excluding the box constraints of the form (9)) and the constraint
matrix has only non-negative integer entries that are at most 2n

εδ
. Such integer programs

can be solved in polynomial time (polynomial in n, 1
δ
, 1

ε
, |σ |) using e.g. the algorithms

of [11, 22]. Since there is a polynomial number of pairs of values (ι, ι′) satisfying our
conditions, we solve all these problems in polynomial time. We denote by c(ι,ι′) an
optimal solution for the integer program I P1(ι, ι′). For each pair (ι, ι′), we check if
the configuration c(ι,ι′) has total size at least 1 and less than 1+3δ, and if so, we check
if its corresponding constraint (4) is violated.

If we found such a violating constraint, we are done. Otherwise, we argue next
that all constraints of the form (4) corresponding to configurations with size in the
interval [1, 1 + δ) are satisfied. To see this last claim, assume by contradiction that
there is a configuration c′ ∈ C1 with s(c′) = 0 and total size in the interval [1, 1 + δ)

whose corresponding constraint is violated. Let (ι, ι′) be the pair for which c′ is a
feasible solution to I P1(ι, ι′). Since c(ι,ι′) is optimal for this integer program we have

that
∑

i∈σ c(ι,ι′)
i si ≥ ∑

i∈σ c′
i s

i ≥ 1, and so by our assumption the constraint (4)

corresponding to c(ι,ι′) is not violated. However, since the constraint corresponding
to c′ is violated, so ι < 1. Therefore, the constraint corresponding to c(ι,ι′) is also
violated. This contradicts the assumption, so the claim holds.

Theapproximated separationoracle for constraint (4) corresponding to configurations
with size in [1+ δ, 1+3δ). Consider the subset of configurations c of items inH′ with
size in [1 + δ, 1 + 3δ). The motivation for the following oracle is that in this case we
can round down a little bit the sizes and still get a good bin. Note the difference with
the earlier case where decreasing the size of a configuration whose size was slightly
larger than 1 could potentially make it smaller than 1 so the bin is no longer a good
bin.
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For this case,we define themodified size of an itemof size si as ŝi = � n·si
δ

�· δ
n . Since

every configuration has at most n items, we are guaranteed that if a subset of items has
total size in the interval [1 + δ, 1 + 3δ), then its total modified size is in the interval
[1, 1+3δ). So we consider the following set of integer programs denoted as I P2(ι, ι′)
in the vector of decision variables c where the integer program is parameterized by
two parameters ι, ι′.

min
∑

i∈σ ci · si (10)

s.t .
∑

i∈σ ci · y′
i = ι (11)

∑
i∈σ ci · ŝi = ι′ (12)

0 ≤ ci ≤ νi ∀i ∈ σ (13)

We solve these problems for every pair of values of ι, ι′ that are non-negative integer
multiples of εδ

n subject to the constraint ι, ι′ ≤ 2. Observe that if we multiply the two
constraints (11) and (12) by n

εδ
, we get an equivalent integer program where there are

only two constraints (excluding the box constraints of the form (13)) and the constraint
matrix has only non-negative integer entries that are at most 2n

εδ
. Such integer programs

can be solved in polynomial time (polynomial in n, 1
δ
, 1

ε
, |σ |) using [11, 22]. Since

there is a polynomial number of pairs (ι, ι′) satisfying our conditions, we can indeed
solve all these problems in polynomial time. We denote by c(ι,ι′) an optimal solution
for the integer program I P2(ι, ι′). For each pair (ι, ι′) we check if the configuration
c(ι,ι′) has total size at least 1 and less than 1+3δ, and if so, we check if its corresponding
constraint (4) is violated.

If we found such a violating constraint, we are done. Otherwise, we argue next
that all constraints of the form (4) corresponding configurations of size in the interval
[1+ δ, 1+ 3δ) are satisfied. To see this last claim, assume by contradiction that there
is a configuration c′ ∈ C1 with s(c′) = 0 and total size in the interval [1 + δ, 1 + 3δ)
whose corresponding constraint (4) is violated. Let (ι, ι′) be the pair for which c′ is
a feasible solution to I P2(ι, ι′) and there is such a pair of values with ι′ ≥ 1 since
every such configuration of total size in the interval [1+ δ, 1+ 3δ) has total modified
size in the interval [1, 1+ 3δ). Since c(ι,ι′) is optimal for this integer program we have

that
∑

i∈σ c(ι,ι′)
i si ≤ ∑

i∈σ c′
i s

i < 1 + 3δ. Therefore, as the size of c(ι,ι′)
i is at least

ι′ ≥ 1, by our assumption, the constraint corresponding to c(ι,ι′) is not violated so
ι ≥ 1. However, since the constraint corresponding to c′ is violated, ι < 1 and this is
a contradiction, so the claim holds.
The approximated separation oracle for constraint (3). Here, we define the modified
size of an item of size si as rounded down, namely, as ŝi = � n·si

δ
� · δ

n . Since every
configuration has at most n items, we are guaranteed that if a subset of items has a
total modified size of at most 1, then its total size is at most 1 + δ. So we consider
the following set of integer programs denoted as I P3(ι, ι′) in the vector of decision
variables c where the integer program is parameterized by two parameters ι, ι′.

max
∑

i∈σ ci · si (14)

s.t .
∑

i∈σ ci · y′
i = ι (15)
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∑
i∈σ ci · ŝi = ι′ (16)

0 ≤ ci ≤ νi ∀i ∈ σ (17)

We solve these problems for every pair of values of ι, ι′ that are non-negative integer
multiples of εδ

n subject to the constraints that ι < 1 and ι′ ≤ 1. Observe that if we
multiply the two constraints (15) and (16) by n

εδ
, we again obtain an equivalent integer

program where there are only two constraints (excluding the box constraints of the
form (17)) and the constraint matrix has only non-negative integer entries that are at
most n

εδ
. So it can be solved using [11, 22]. Since there is a polynomial number of pairs

(ι, ι′) satisfying our conditions, we can indeed solve all these problems in polynomial
time. We denote by c(ι,ι′) an optimal solution for the integer program I P3(ι, ι′). For
each pair (ι, ι′), we check if the configuration c(ι,ι′) has a total size smaller than 1, and
if so, we check if its corresponding constraint (3) is violated.

If we found such a violating constraint, we are done. If we have found a constraint
from the family (4) that is violated using the earlier cases, we are also done. Otherwise,
we argue next that all constraints of the form (3) are satisfied. To see this last claim,
assume by contradiction that there is a configuration c′ ∈ C1 with s(c′) > 0 whose
corresponding constraint (3) is violated. Let (ι, ι′) be the pair for which c′ is a feasible
solution to I P3(ι, ι′). Since c(ι,ι′) is optimal for this integer program, we have that
s(c(ι,ι′)) ≤ s(c′), and so ι + s(c(ι,ι′)) · z1 + z2 ≤ ι + s(c′) · z1 + z2. Since the
constraint corresponding to c′ is violated, the last term is smaller than 1. Therefore, if
s(c(ι,ι′)) > 0, then the constraint corresponding to configuration c(ι,ι′) is also violated.
If however, s(c(ι,ι′)) = 0, then using ι < 1, we get that the constraint (4) corresponding
to c(ι,ι′) is violated. This contradicts the assumption, so the claim holds.
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