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Abstract
We extend known results on chordal graphs and distance-hereditary graphs to much
larger graph classes by using only a common metric property of these graphs. Specifi-
cally, a graph is called αi -metric (i ∈ N ) if it satisfies the following αi -metric property
for every vertices u, w, v and x : if a shortest path between u and w and a shortest path
between x and v share a terminal edge vw, then d(u, x) ≥ d(u, v) + d(v, x) − i .
Roughly, gluing together any two shortest paths along a common terminal edge may
not necessarily result in a shortest path but yields a “near-shortest” path with defect
at most i . It is known that α0-metric graphs are exactly ptolemaic graphs, and that
chordal graphs and distance-hereditary graphs are αi -metric for i = 1 and i = 2,
respectively. We show that an additive O(i)-approximation of the radius, of the diam-
eter, and in fact of all vertex eccentricities of an αi -metric graph can be computed in
total linear time. Our strongest results are obtained for α1-metric graphs, for which
we prove that a central vertex can be computed in subquadratic time, and even better
in linear time for so-called (α1,Δ)-metric graphs (a superclass of chordal graphs and
of plane triangulations with inner vertices of degree at least 7). The latter answers a
question raised in Dragan (Inf Probl Lett 154:105873, 2020), 2020). Our algorithms
follow from new results on centers and metric intervals of αi -metric graphs. In partic-
ular, we prove that the diameter of the center is at most 3i + 2 (at most 3, if i = 1).
The latter partly answers a question raised in Yushmanov and Chepoi (Math Probl
Cybernet 3:217–232, 1991).
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1 Introduction

Euclidean spaces have the following nice property: if the geodesic between u and w

contains v, and the geodesic between v and x contains w, then their union must be
the geodesic between u and x . In 1991, Chepoi and Yushmanov introduced αi -metric
properties (i ∈ N ), as a way to quantify by how much a graph is close to satisfy
this above requirement [53] (see also [14, 15] for earlier use of α1-metric property).
All graphs G = (V , E) occurring in this paper are connected, finite, unweighted,
undirected, loopless and without multiple edges. The length of a path between two
vertices u and v is the number of edges in the path. The distance dG(u, v) is the
length of a shortest path connecting u and v in G. The interval IG(u, v) between u
and v consists of all vertices on shortest (u, v)-paths, that is, it consists of all vertices
(metrically) between u and v: IG(u, v) = {x ∈ V : dG(u, x)+dG(x, v) = dG(u, v)}.
Let also I oG(u, v) = IG(u, v) \ {u, v}. If no confusion arises, we will omit subindex
G.

αi -metric property: if v ∈ I (u, w) and w ∈ I (v, x) are adjacent, then d(u, x) ≥
d(u, v) + d(v, x) − i = d(u, v) + 1 + d(w, x) − i .

Roughly, gluing together any two shortest paths along a common terminal edge may
not necessarily result in a shortest path (unlike in the Euclidean space) but yields a
“near-shortest” path with defect at most i . A graph is called αi -metric if it satisfies the
αi -metric property. αi -Metric graphs were investigated in [14, 15, 53]. In particular, it
is known that α0-metric graphs are exactly the distance-hereditary chordal graphs, also
known as ptolemaic graphs [45]. Furthermore, α1-metric graphs contain all chordal
graphs [14] and all plane triangulations with inner vertices of degree at least 7 [32]. α2-
Metric graphs contain all distance-hereditary graphs [53] and, even more strongly, all
HHD-free graphs [18]. Evidently, every graph is an αi -metric graph for some i . Chepoi
and Yushmanov in [53] also provided a characterization of all α1-metric graphs: They
are exactly the graphs where all disks are convex and the graph W++

6 from Fig. 1 is
forbidden as an isometric subgraph (see [53] or Theorem 5). This nice characterization
was heavily used in [4] in order to characterize δ-hyperbolic graphs with δ ≤ 1/2.

The eccentricity eG(v) of a vertex v in G is defined by maxu∈V dG(u, v), i.e., it is
the distance to a most distant vertex. The diameter of a graph is the maximum over
the eccentricities of all vertices: diam(G) = maxu∈V eG(u) = maxu,v∈V dG(u, v).
The radius of a graph is the minimum over the eccentricities of all vertices: rad(G) =
minu∈V eG(u). The center C(G) of a graph G is the set of its vertices with minimum
eccentricity, i.e., C(G) = {u ∈ V : eG(u) = rad(G)}. Each vertex from C(G)

is called a central vertex. In this paper, we investigate the radius, diameter, and all
eccentricities computation problems inαi -metric graphs. Understanding the eccentric-
ity function of a graph and being able to efficiently compute or estimate the diameter,
the radius, and all vertex eccentricities is of great importance. For example, in the
analysis of social networks (e.g., citation networks or recommendation networks),
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biological systems (e.g., protein interaction networks), computer networks (e.g., the
Internet or peer-to-peer networks), transportation networks (e.g., public transporta-
tion or road networks), etc., the eccentricity of a vertex is used in order to measure
its importance in the network: the eccentricity centrality index of v [46] is defined as
1

e(v)
. Furthermore, the problem of finding a central vertex is one of the most famous

facility location problems in Operation Research and in Location Science. In [53],
the following nice relation between the diameter and the radius of an αi -metric graph
G was established: diam(G) ≥ 2rad(G) − i − 1. Recall that for every graph G,
diam(G) ≤ 2rad(G) holds. Authors of [53] also raised a question1 whether the
diameter of the center of an αi -metric graph can be bounded by a linear function of i .
It is known that the diameters of the centers of chordal graphs or of distance-hereditary
graphs are at most 3 [15, 53].

Related work on computing or estimating the radius, diameter, or all eccentrici-
ties.A naive algorithm which runs a BFS from each vertex to compute its eccentricity
and then (in order to compute the radius, the diameter and a central vertex) picks
the smallest and the largest eccentricities and a vertex with smallest eccentricity has
running time O(nm) on an n-vertex m-edge graph. Interestingly, this naive algorithm
is conditionally optimal for general graphs as well as for some restricted families
of graphs [1, 6, 20, 49] since, under plausible complexity assumptions, neither the
diameter nor the radius can be computed in truly subquadratic time (i.e., in O(namb)

time, for some positive a, b such that a + b < 2) on those graphs. Already for split
graphs (a subclass of chordal graphs), computing the diameter is roughly equivalent
to Disjoint Sets, a.k.a., the monochromatic Orthogonal Vector problem [17].
Under the Strong Exponential-Time Hypothesis (SETH), we cannot solve Disjoint
Sets in truly subquadratic time, and so neither we can compute the diameter of split
graphs in truly subquadratic time [6].

In a quest to break this quadratic barrier (in the size n+m of the input), there has been
a long line of work presenting more efficient algorithms for computing the diameter
and/or the radius, or even better all eccentricities, on some special graph classes, by
exploiting their geometric and tree-like representations and/or some forbidden pattern
(e.g., excluding a minor [41], or a family of induced subgraphs). For example, faster
algorithms for all eccentricities computation are known for distance-hereditary graphs
[12, 23, 29, 33], outerplanar graphs [42], planar graphs [9, 43], graphs with bounded
tree-width [1, 8, 41] and, more generally, graphs with bounded clique-width [12, 38].
Linear-time algorithms for computing all eccentricities are also known for interval
graphs [34, 47]. Some recent works have further studied which properties of interval
graphs could imply on their own faster algorithms for diameter and all eccentricities
computation. Efficient algorithms for these problems have been found for AT-free
graphs [36], directed path graphs [10], strongly chordal graphs [21], dually chordal
graphs [7, 22], Helly graphs and graphs of bounded Helly number [28, 39, 40]. See
also [37]. Chordal graphs are another well-known generalization of interval graphs.
Although the diameter of a split graph can unlikely be computed in subquadratic time,
there is an elegant linear-time algorithm for computing the radius and a central vertex
of a chordal graph [16]. However, until this work there has been little insight about

1 It is conjectured in [53] that diam(C(G)) ≤ i + 2 for every αi -metric graph G.
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how to extend this nice result to larger graph classes (a notable exception being the
work in [18]). This intriguing question is partly addressed in our paper.

Since the exact diameter or radius computation in subquadratic time is impossible
(unless the SETH is false) even for simple families of graphs (in case of the diameter,
even for split graphs), a large volume of work was also devoted to approximation
algorithms. It is known [13] that the diameter of any graph with n vertices and m
edges can be approximated within a multiplicative factor of 3/2 in Õ(m3/2) time.
Furthermore, unless the SETH is false, no O(n2−ε) time algorithm can achieve an
approximation factor better than 3/2 in sparse graphs [49] and no O(m3/2−ε) time
algorithm can achieve an approximation factor better than 5/3 [3]. The eccentricities
of all vertices of any graph can be approximated within a factor of 5/3 in Õ(m3/2) time
[13] and, under the SETH, no O(n2−ε) time algorithm can achieve better than 5/3
approximation in sparse graphs [1] and no O(m3/2−ε) time algorithm can achieve an
approximation factor better than 9/5 [3]. Authors of [3] also show that no near-linear
time algorithm can achieve a better than 2 approximation for the eccentricities and
provide an algorithm that approximates eccentricities within a 2+ ε factor in Õ(m/ε)

time for any 0 < ε < 1. On planar graphs, there is an approximation scheme with
near linear running time [51]. Authors of [13] additionally address a more challenging
question of obtaining an additive c-approximation for the diameter diam(G) of a
graph G, i.e., an estimate D such that diam(G) − c ≤ D ≤ diam(G). A simple
Õ(mn1−ε) time algorithm achieves an additive nε-approximation and, for any ε > 0,
getting an additive nε-approximation algorithm for the diameter running in O(n2−ε′

)

time for any ε′ > 2ε would falsify the SETH.
Much better additive approximations can be achieved for graphs with bounded

(metric) parameters, including chordal graphs, HHD-free graphs, k-chordal graphs,
and more generally all δ-hyperbolic graphs (see [10, 11, 16, 19, 20, 24, 25, 29–
31, 34]). For example, a vertex furthest from an arbitrary vertex has eccentricity at
least diam(G) − 2 for chordal graphs [16] and at least diam(G) − �k/2� for k-
chordal graphs [11]. Hence, the diameter in those graphs can be approximated within
a small additive error in linear time by a BFS. In fact, the last vertex visited by a
LexBFS has eccentricity at least diam(G) − 1 for chordal graphs [34] as well as for
HHD-free graphs [24]. Thus, although the existence of a subquadratic algorithm for
computing the exact diameter of a chordal graph would falsify the SETH, a vertex
with eccentricity at least diam(G) − 1 can be found in linear time by a LexBFS.
Later, those results were generalized to all δ-hyperbolic graphs [19, 20, 30, 31]. Note
that chordal graphs and distance-hereditary graphs are 1-hyperbolic, while k-chordal
graphs are �k/2�/2-hyperbolic [52]. Gromov [44] defines δ-hyperbolic graphs via a
simple 4-point condition: for any four vertices u, v, w, x , the two largest of the three
distance sums d(u, v) + d(w, x), d(u, w) + d(v, x), and d(u, x) + d(v,w) differ by
at most 2δ ≥ 0. Such graphs have become of recent interest due to the empirically
established presence of a small hyperbolicity in many real-world networks.

For every δ-hyperbolic graph, a vertex furthest from an arbitrary vertex has eccen-
tricity at least diam(G) − 2δ [19]. Furthermore, for any m-edge δ-hyperbolic graph
G, a vertex with eccentricity at most rad(G) + 2δ can be found in O(δm) time and
a vertex with eccentricity at most rad(G) + 3δ can be found in O(m) time [19, 20,
30, 31]. Three approximation schemes for all eccentricities were presented in [30]:
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an approximate eccentricity function ê, constructible in O(δm) time, which satisfies
e(v)−2δ ≤ ê(v) ≤ e(v), for all v ∈ V , and two spanning trees T , one constructible in
O(δm) time and the other inO(m) time,which satisfy eG(v) ≤ eT (v) ≤ eG(v)+4δ+1
and eG(v) ≤ eT (v) ≤ eG(v) + 6δ, for all v ∈ V , respectively. Our results of Sect.
2 and Sect. 3 (and some results of [53]) show that αi -metric graphs behave like δ-
hyperbolic graphs. In a forthcoming paper [27], indeed we show that the hyperbolicity
δ of an αi -metric graph depends linearly on i . However, the constants in our Theo-
rems 1-4 are better than those that can be obtained by combining the hyperbolicity
result of [27] with the algorithmic results of [19, 20, 30] on radii, diameters and all
eccentricities of δ-hyperbolic graphs. In [27], we also introduce a natural generaliza-
tion of an αi -metric, which we call a (λ,μ)-bow metric: namely, if two shortest paths
P(u, w) and P(v, x) share a common shortest subpath P(v,w) of length more than
λ (that is, they overlap by more than λ), then the distance between u and x is at least
d(u, v) + d(v,w) + d(w, x) − μ. δ-Hyperbolic graphs are (δ, 2δ)-bow metric and
αi -metric graphs are (0, i)-bow metric.

(α1,Δ)-Metric graphs form an important subclass of both α1-metric graphs and
weakly bridged graphs, and they contain all chordal graphs and all plane triangulations
with inner vertices of degree at least 7. In [32], it was shown that every (α1,Δ)-metric
graph admits an eccentricity 2-approximating spanning tree, i.e., a spanning tree T
such that eT (v) − eG(v) ≤ 2 for every vertex v. As a result, for a chordal graph,
an additive 2-approximation of all eccentricities can be computed in linear time [25].
Finding similar results for general α1-metric graphs was left as an open problem in
[32].

Our Contribution. We prove several new results on metric intervals, eccentricity
function, and centers in αi -metric graphs, and their algorithmic applications, thus
answering open questions in the literature [25, 32, 53]. To list our contributions, we
need to introduce on our way some additional notations and terminology.

Section 2 is devoted to general αi -metric graphs (i ≥ 0). The set Sk(u, v) = {x ∈
I (u, v) : d(u, x) = k} is called a slice of the interval I (u, v) where 0 ≤ k ≤ d(u, v).
An interval I (u, v) is said to be λ-thin if d(x, y) ≤ λ for all x, y ∈ Sk(u, v), 0 <

k < d(u, v). The smallest integer λ for which all intervals of G are λ-thin is called
the interval thinness of G. We show first that, in αi -metric graphs G, the intervals are
(i + 1)-thin.

The disk of radius r and center v is defined as {u ∈ V : d(u, v) ≤ r}, and denoted by
D(v, r). Sometimes, D(v, r) is called the r -neighborhood of v. In particular, N [v] =
D(v, 1) and N (v) = N [v] \ {v} denote the closed and open neighbourhoods of a
vertex v, respectively. More generally, for any vertex-subset S and a vertex u, we
define d(u, S) = minv∈S d(u, v), D(S, r) = ⋃

v∈S D(v, r), N [S] = D(S, 1) and
N (S) = N [S] \ S. We say that a set of vertices S ⊆ V of a graph G = (V , E) is
dk-convex if for every two vertices x, y ∈ S with d(x, y) ≥ k ≥ 0, the entire interval
I (x, y) is in S. For k ≤ 2, this definition coincides with the usual definition of convex
sets in graphs [5, 14, 50]: S is convex if for every x, y ∈ S, the interval I (x, y) is also
in S. Clearly, the intersection of two dk-convex sets is also dk-convex. We show that,
in αi -metric graphs G, the disks (and, hence, the centersC(G)) are d2i−1-convex. The
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main result of Sect. 2.1 states that the diameter of the center C(G) of G is at most
3i + 2, thus answering a question raised in [53].

Let FG(v) be the set of all vertices of G that are most distant from v. A pair
x, y is called a pair of mutually distant vertices if eG(x) = eG(y) = dG(x, y), i.e.,
x ∈ FG(y), y ∈ FG(x). In Sect. 2.2, we show that a vertex x that is most distant
from an arbitrary vertex z has eccentricity at least diam(G) − 3i − 2. Furthermore,
a middle vertex c of any shortest path between x and y ∈ F(x) has eccentricity at
most rad(G) + 4i + (i + 1)/2 + 2, and a middle vertex c∗ of any shortest path
between any two mutually distant vertices has eccentricity at most rad(G) + 2i + 1.
Additionally, all central vertices ofG arewithin a small distance from c and c∗, namely,
C(G) ⊆ D(c∗, 4i+3) andC(G) ⊆ D(c, 4i+(i+1)/2+2). Hence, an additive O(i)-
approximation of the radius and of the diameter of an αi -metric graph G withm edges
can be computed inO(m) time. InSect. 2.3,wepresent three approximation algorithms
for all eccentricities: an O(im) time eccentricity approximation ê(v) based on the
distances from any vertex to two mutually distant vertices, which satisfies e(v)−3i −
2 ≤ ê(v) ≤ e(v) for all v ∈ V , and two spanning trees T , one constructible in O(im)

time and the other in O(m) time, which satisfy eG(v) ≤ eT (v) ≤ eG(v) + 4i + 3 and
eG(v) ≤ eT (v) ≤ eG(v)+7i+5, respectively.Hence, an additive O(i)-approximation
of all vertex eccentricities of an αi -metric graph G with m edges can be computed in
O(m) time.

Section 3 is devoted to α1-metric graphs. The eccentricity function e(v) of a graph
G is said to be unimodal, if for every non-central vertex v of G there is a neighbor
u ∈ N (v) such that e(u) < e(v) (that is, every local minimum of the eccentricity
function is a global minimum). We show in Sect. 3.1 that the eccentricity function on
α1-metric graphs is almost unimodal in the sense that the only non-central vertices that
violate the unimodality (that is, do not have a neighbor with smaller eccentricity) must
have their eccentricity equal to rad(G)+1 and their distance fromC(G)must be 2. In
other words, every local minimum of the eccentricity function on an α1-metric graph
G is a global minimum or is at distance 2 from a global minimum. Such behavior
of the eccentricity function was observed earlier in chordal graphs [32], in distance-
hereditary graphs [29] and in all (α1,Δ)-metric graphs [32] (note also that in Helly
graphs the eccentricity function is unimodal [21]). This almost unimodality of the
eccentricity function turns out to be very useful in locating a vertex with eccentricity
atmost rad(G)+1 in a gradient descent fashion. In Sect. 3.2, using the convexity of the
centerC(G) of an α1-metric graph G, we show that the diameter ofC(G) is at most 3.
This generalizes known results for chordal graphs [15] and for (α1,Δ)-metric graphs
[32]. In Sect. 3.3, we present a local-search algorithm for finding a central vertex
of an arbitrary α1-metric graph in subquadratic time. Our algorithm even achieves
linear runtime on (α1,Δ)-metric graphs, thus answering an open question from [32].
In Sect. 3.4, we show how to approximate efficiently all vertex eccentricities in α1-
metric graphs.

2 General Case of˛i-Metric Graphs for Arbitrary i ≥ 0

First we present an auxiliary lemma.
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Lemma 1 Let G be an αi -metric graph, and let u, v, x, y be vertices such that x ∈
I (u, v), d(u, x) = d(u, y), and d(v, y) ≤ d(v, x) + k. Then, d(x, y) ≤ k + i + 2.

Proof Set ν = i + k + 2, and suppose for the sake of contradiction d(x, y) > ν.
Without loss of generality, k is the minimum value for which a counter-example can
be found. We may also assume, without loss of generality, that d(u, x) is minimized.
Let x ′ ∈ N (x)∩ I (x, u) and let y′ ∈ N (y)∩ I (y, u). Observe that d(u, x ′) = d(u, y′),
x ′ ∈ I (u, v) and d(v, y′) ≤ d(v, y)+ 1 ≤ d(x, v)+ 1+ k = d(x ′, v)+ k. Therefore,
by minimality of d(u, x), we have d(x ′, y′) ≤ ν (otherwise, we could replace x, y
with x ′, y′). Now, there are two cases to be considered:
– Case d(y′, x ′) < d(y′, x). We also have d(v, x) < d(v, x ′). Since G is an αi -
metric graph, it implies d(v, y′) ≥ d(v, x) + 1+ d(x ′, y′) − i . Then, d(x ′, y′) ≤
i − 1 + d(v, y′) − d(v, x) = i + d(v, y′) − d(v, x ′) ≤ i + k. However, ν ≤
d(x, y) − 1 ≤ d(x ′, y′) + 1 ≤ i + k + 1 = ν − 1.

– Case d(y′, x ′) ≥ d(y′, x). Then, d(x, y) ≤ 1+ d(x, y′) ≤ 1+ d(x ′, y′) ≤ ν + 1.
It implies d(x, y) = ν + 1, d(x, y′) = d(x ′, y′) = ν, and y′ ∈ I (x, y) ∩ N (y).
In particular, d(x, y′) < d(x, y). Furthermore, we claim that we have d(v, y) <

d(v, y′). Indeed, suppose for the sake of contradiction d(v, y′) ≤ d(v, y). In this
situation, d(v, y′) ≤ d(u, y′) + d(v, y′) − d(u, y′) ≤ d(u, y) − 1 + d(v, y) −
d(u, y′) ≤ d(u, x) − 1+ d(v, x) + k − d(u, x ′) = d(u, v) − d(u, x ′) + k − 1 =
d(v, x ′) + k − 1. By minimality of k, we obtain d(x ′, y′) ≤ i + (k − 1) + 2 =
i+k+1 < ν, and a contradiction arises. Therefore, as claimed, d(v, y) < d(v, y′).
Since G is an αi -metric graph, it implies d(x, v) ≥ d(x, y′) + 1 + d(y, v) − i =
d(x, y)+d(y, v)−i . But then, ν = d(x, y)−1 ≤ d(x, v)−d(y, v)+i−1 ≤ i−1.

In both cases, we derive a contradiction. ��
Lemma 1 is helpful in proving that in αi -metric graphs the intervals are rather thin.

Lemma 2 If G is an αi -metric graph, then its interval thinness is at most i + 1.

Proof Let u, v, x, y ∈ V be such that x, y ∈ I (u, v), and d(u, x) = d(u, y). Suppose
for the sake of contradiction d(x, y) > i + 1. By Lemma 1 (applied for k = 0), we
have d(x, y) = i + 2. We further assume, without loss of generality, that d(u, x) is
minimized. In particular, let x ′ ∈ N (x)∩ I (u, x), y′ ∈ N (y)∩ I (u, y). By minimality
of d(u, x)we have d(x ′, y′) ≤ i +1. We claim that d(x ′, y) ≥ i +2. Indeed, if it were
not the case, then d(x ′, y) < d(x, y) and so, since we also have d(v, x) < d(v, x ′),
we would obtain d(y, v) ≥ d(y, x)+d(x, v)− i = d(x, v)+2 > d(x, v) = d(y, v),
getting a contradiction. This proves as claimed that d(x ′, y) ≥ i + 2. It implies
d(x ′, y′) ≥ i + 1, and so d(x ′, y′) = i + 1. However, in this situation, d(x ′, y′) <

d(x ′, y) and d(v, y) < d(v, y′). As a result, d(v, x ′) ≥ d(v, y′) + d(x ′, y′) − i =
d(v, y′) + 1 > d(v, y′) = d(v, x ′), and a contradiction arises. ��

2.1 Centers of˛i-Metric Graphs

In this subsection we show that the diameter of the center of an αi -metric graph is
at most 3i + 2, hereby providing an answer to a question raised in [53] whether the
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diameter of the center of an αi -metric graph can be bounded by a linear function of
i . In [53], the following relation between the diameter and the radius of an αi -metric
graph G was proven: 2rad(G) ≥ diam(G) ≥ 2rad(G) − i − 1.

First we show that all disks (and hence the center C(G)) of an αi -metric graph G
is d2i−1-convex.

Lemma 3 Every disk of anαi -metric graph G is d2i−1-convex. In particular, the center
C(G) of an αi -metric graph G is d2i−1-convex.

Proof Since C(G) = ⋂{D(v, rad(G)) : v ∈ V }, it suffices to prove the d2i−1-
convexity of an arbitrary disk. Let v, x, y ∈ V be such that x, y ∈ D(v, r) for some
r ≥ 0 but I (x, y) � D(v, r). Let ax ∈ I (x, y) \ D(v, r) be such that d(x, ax ) is
maximized, and let bx ∈ N (ax ) ∩ I (ax , y) be arbitrary. Note that bx ∈ D(x, r) by
maximality of d(x, ax ). In particular, d(v, bx ) < d(v, ax ). We also have d(x, ax ) <

d(x, bx ) because ax , bx ∈ I (x, y). Since G is an αi -metric graph, r ≥ d(v, x) ≥
d(v, ax ) + d(ax , x) − i = r + 1 + d(ax , x) − i . Therefore, d(ax , x) ≤ i − 1. Now,
let ay ∈ I (x, y) \ D(v, r) be such that d(y, ay) is maximized. We prove as before
d(ay, y) ≤ i − 1. Furthermore, d(ay, y) ≥ d(ax , y) by maximality of d(ay, y). As a
result, d(x, y) = d(x, ax ) + d(ax , y) ≤ d(x, ax ) + d(ay, y) ≤ 2i − 2. ��

Next auxiliary lemma is crucial in obtaining many results of this section.

Lemma 4 Let G be an αi -metric graph. For any x, y, v ∈ V and any inte-
ger k ∈ {0, . . . , d(x, y)}, there is a vertex c ∈ Sk(x, y) such that d(v, c) ≤
max{d(v, x), d(v, y)}−min{d(x, c), d(y, c)}+i andd(v, c) ≤ max{d(v, x), d(v, y)}+
i/2. For an arbitrary vertex z ∈ I (x, y), we have d(z, v) ≤ max{d(x, v), d(y, v)} −
min{d(x, z), d(y, z)} + 2i + 1 and d(z, v) ≤ max{d(x, v), d(y, v)} + 3i/2 + 1.
Furthermore, e(z) ≤ max{e(x), e(y)} − min{d(x, z), d(y, z)} + 2i + 1 and e(z) ≤
max{e(x), e(y)} + 3i/2 + 1 when v ∈ F(z).

Proof Let z ∈ Sk(x, y), for some k ∈ {0, . . . , d(x, y)}, and c be a vertex of Sk(x, y)
closest to v. By Lemma 2, d(c, z) ≤ i + 1.

Consider a neighbor c′ of c on a shortest path from c to v.Wehave d(x, c) < d(x, c′)
or d(y, c) < d(y, c′) since otherwise, when d(x, c) ≥ d(x, c′) and d(y, c) ≥ d(y, c′),
c′ must belong to Sk(x, y) and a contradiction with the choice of c arises. Without
loss of generality, assume d(x, c) < d(x, c′). Then c ∈ I (x, c′), and we can apply
αi -metric property to x, c, c′, v and get d(x, v) ≥ d(x, c)+d(c, v)− i , i.e., d(c, v) ≤
d(x, v)−d(x, c)+ i ≤ max{d(x, v), d(y, v)}−min{d(x, c), d(y, c)}+ i . By adding
also the triangle inequality d(c, v) ≤ d(v, x)+d(x, c) to d(c, v) ≤ d(x, v)−d(x, c)+
i , we get d(c, v) ≤ d(x, v) + i/2 ≤ max{d(x, v), d(y, v)} + i/2.

For arbitrary z ∈ Sk(x, y), as d(z, c) ≤ i + 1, d(x, c) = d(x, z), d(y, c) =
d(y, z), we get d(z, v) ≤ d(z, c) + d(c, v) ≤ i + 1 + d(x, v) − d(x, c) + i ≤
max{d(x, v), d(y, v)} − min{d(x, z), d(y, z)} + 2i + 1 and d(z, v) ≤ d(z, c) +
d(c, v) ≤ i + 1 + d(x, v) + i/2 ≤ max{d(x, v), d(y, v)} + i + i/2 + 1. Apply-
ing both inequalities to the case in which v is furthest from z, we get e(z) = d(z, v) ≤
max{e(x), e(y)} −min{d(x, z), d(y, z)} + 2i + 1 and e(z) ≤ max{e(x), e(y)} + i +
i/2 + 1. ��
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Lemma 4 has an immediate corollary.

Corollary 1 Let G be an αi -metric graph. Any vertices x, y ∈ V and c ∈ I (x, y)
satisfy e(c) ≤ max{e(x), e(y)} + 3i/2 + 1. However, if d(x, y) ≥ 4i + 2, then
any vertex c′ ∈ I (x, y) with d(x, c′) ≥ 2i + 1 and d(y, c′) ≥ 2i + 1 satisfies
e(c′) ≤ max{e(x), e(y)}. Furthermore, if d(x, y) > 4i+3 then any vertex c′ ∈ I (x, y)
with d(x, c′) > 2i + 1 and d(y, c′) > 2i + 1 satisfies e(c′) < max{e(x), e(y)}.
Proof ByLemma 4, e(c) ≤ max{e(x), e(y)}+3i/2+1. Suppose that d(x, y) ≥ 4i+2
and consider any vertex c′ ∈ I (x, y) satisfying d(x, c′) ≥ 2i+1 and d(c′, y) ≥ 2i+1.
By Lemma 4, e(c′) ≤ max{e(x), e(y)} − min{d(x, c′), d(y, c′)} + 2i + 1. Hence,
e(c′) ≤ max{e(x), e(y)}.

Suppose now that d(x, y) > 4i + 3, i.e., d(x, y) ≥ 4i + 4. Consider any vertex
c′ ∈ I (x, y) satisfying d(x, c′) > 2i + 1 and d(c′, y) > 2i + 1. By Lemma 4, e(c′) ≤
max{e(x), e(y)} −min{d(x, c′), d(y, c′)} + 2i + 1. Hence, e(c′) < max{e(x), e(y)}.

��
Using Corollary 1 one can easily prove that the diameter of the center C(G) of an

αi -metric graph G is at most 4i + 3. Below we show that the bound can be improved.

Theorem 1 If G is an αi -metric graph, then diam(C(G)) ≤ 3i + 2.

Proof Let us write r = rad(G) in what follows. Suppose by contradiction
diam(C(G)) > 3i + 2. Since C(G) is d2i−1-convex, every diametral path of
C(G) must be fully in C(G). In particular, there exist x, y ∈ C(G) such that
d(x, y) = 3i + 3 and I (x, y) ⊆ C(G). Furthermore, for every u ∈ V such
that max{d(u, x), d(u, y)} < r , we obtain I (x, y) ⊆ D(u, r − 1) because the
latter disk is also d2i−1-convex. Therefore, for every z ∈ I (x, y), we must have
F(z) ⊆ F(x) ∪ F(y).

Let ab be an edge on a shortest xy-path such that d(a, x) < d(b, x). Assume
F(b) � F(a). Let v ∈ F(b) \ F(a) be arbitrary. Since G is an αi -metric graph,
d(v, y) ≥ d(v, b) + d(b, y) − i = r + (d(b, y) − i). Therefore, d(b, y) ≤ i . In the
same way, if F(a) � F(b), then d(a, x) ≤ i . By induction, we get F(z) ⊆ F(x)
(F(z) ⊆ F(y), respectively) for every z ∈ I (x, y) such that d(y, z) ≥ i+1 (d(x, z) ≥
i + 1, respectively). In particular, for every t such that i + 1 ≤ t ≤ d(x, y) − i − 1,
we must have F(z) ⊆ F(x) ∩ F(y) for every z ∈ St (x, y).

Note that the above properties are true not only for x, y ∈ C(G) with d(x, y) =
3i + 3 but also for every x ′, y′ ∈ C(G) with d(x, y) ≥ 2i − 1, as d2i−1-convexity
argument can still be used.

Let c ∈ I (x, y) be such that F(c) ⊆ F(x) ∩ F(y) and k := |F(c)| is minimized.
We claim that k < |F(x) ∩ F(y)|. Indeed, let v ∈ F(x) ∩ F(y) be arbitrary. By
Lemma 4, some vertex cv ∈ Si+1(x, y) satisfies d(cv, v) ≤ r − 1. Then, F(cv) ⊆
(F(x) ∩ F(y)) \ {v}, and k ≤ |F(cv)| ≤ |F(x)∩ F(y)|−1 by minimality of c. Then,
let yc ∈ I (x, y) be such that F(yc)∩ F(x)∩ F(y) ⊆ F(c) and d(x, yc) is maximized
(such a vertex must exist because c ∈ I (x, y) satisfies that condition). We have
yc �= y because F(x) ∩ F(y) � F(c). Therefore, the maximality of d(x, yc) implies
the existence of some v ∈ (F(x) ∩ F(y)) \ F(c) such that d(v, yc) = r − 1. Since
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G is an αi -metric graph, d(v, y) ≥ d(v, yc) + d(yc, y) − i = r + (d(yc, y) − i − 1).
As a result, d(yc, y) ≤ i + 1.

Then, for every z ∈ Si+1(x, yc), since we have d(z, yc) = d(x, y) − i − 1 −
d(yc, y) ≥ d(x, y)−2i −2 = i +1, we obtain F(z) ⊆ F(x)∩F(y)∩F(yc) ⊆ F(c).
By minimality of k, F(z) = F(c). However, let v ∈ F(c) be arbitrary. By Lemma 4,
there exists some c′ ∈ Si+1(x, yc) such that d(c′, v) ≤ r − 1, thus contradicting
F(c′) = F(c). ��

2.2 Approximating Radii and Diameters of˛i-Metric Graphs

In this subsection, we show that a vertex with eccentricity at most rad(G)+O(i) and
a vertex with eccentricity at least diam(G) − O(i) of an αi -metric graph G can be
found in (almost) linear time.

First we show that amiddle vertex of any shortest path between twomutually distant
vertices has eccentricity at most rad(G) + 2i + 1. Furthermore, the distance between
any two mutually distant vertices is at least diam(G) − 3i − 2.

Lemma 5 Let G be an αi -metric graph, x, y be a pair of mutually distant vertices of
G and z be a middle vertex of an arbitrary shortest path connecting x and y. Then,

e(z) ≤ rad(G) + 2i + 1.
Furthermore, there is a vertex c in S�d(x,y)/2�(x, y) with e(c) ≤ rad(G) + i .

Proof Let r = rad(G) and k = �d(x, y)/2�. We need to show that for every vertex
z ∈ Sk(x, y), e(z) ≤ r + 2i + 1 holds. It will be sufficient to show that for a specially
chosen vertex c ∈ Sk(x, y), we have e(c) ≤ r + i . Then, since for any two vertices
u, v ∈ Sk(x, y), d(u, v) ≤ i + 1 (see Lemma 2), we will get e(z) ≤ d(z, c) + e(c) ≤
r + 2i + 1.

Consider in Sk(x, y) vertices c with smallest eccentricity and among all those
vertices pick that one whose |F(c)| is as small as possible. Let v ∈ F(c) be a most
distant vertex from c and consider a neighbor t of c on a shortest path from c to
v. As x, y is a pair of mutually distant vertices, we have d(x, y) ≥ d(x, v) and
d(x, y) ≥ d(y, v). We know also that d(c, x) ≤ d(c, y) ≤ r as d(x, y) ≤ 2r .

If d(x, c) < d(x, t) then c ∈ I (x, t).By the αi -metric property applied to x, c, t, v,
we get d(x, y) ≥ d(x, v) ≥ d(x, c) + d(c, v) − i . That is, d(c, y) ≥ d(c, v) − i and
therefore e(c) = d(c, v) ≤ d(c, y) + i ≤ r + i . Similarly, if d(y, c) < d(y, t) then
e(c) = d(c, v) ≤ d(c, x) + i ≤ r + i must hold. So, in what follows, we may assume
that d(x, c) ≥ d(x, t) and d(y, c) ≥ d(y, t), i.e., t ∈ Sk(x, y) must hold.

If e(t) = e(c)+1 then for every s ∈ F(t), we have c ∈ I (t, s) andd(c, s) = d(c, v).
If e(t) = e(c) then, by the choice of c, there must exist a vertex s ∈ F(t) \ F(c) (as
v ∈ F(c) \ F(t)), and we have c ∈ I (t, s) and d(c, s) = d(c, v) − 1. In both cases,
by the αi -metric property applied to c ∈ I (t, s) and t ∈ I (c, v), we get d(s, v) ≥
d(s, c) + d(v, c) − i ≥ 2d(c, v) − 1 − i = 2e(c) − 1 − i .

Now, since d(s, v) ≤ diam(G) ≤ 2r , if e(c) ≥ r + i + 1, we get 2r ≥ d(s, v) ≥
2e(c) − 1 − i ≥ 2r + 2i + 2 − i − 1 = 2r + i + 1 > 2r , which is impossible.

This proves that e(c) ≤ r+i and therefore e(z) ≤ r+2i+1 for every z ∈ Sk(x, y).
��
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Lemma 6 Let G be anαi -metric graph and x, y be a pair ofmutually distant vertices of
G. Then, d(x, y) ≥ 2rad(G)−4i−3 and d(x, y) ≥ diam(G)−3i−2. Furthermore,
any middle vertex z of a shortest path between x and y satisfies e(z) ≤ �d(x, y)/2�+
2i + 1.

Proof Let z be a middle vertex of an arbitrary shortest path connecting x and y, and
let v be a vertex furthest from z. By Lemma 4, d(z, v) ≤ max{d(x, v), d(y, v)} −
min{d(x, z), d(y, z)}+2i +1. Since x, y are two mutually distant vertices, d(x, y) ≥
max{d(x, v), d(y, v)}. Hence, e(z) = d(z, v) ≤ d(x, y) − �d(x, y)/2� + 2i + 1 =
�d(x, y)/2� + 2i + 1. That is, d(x, y) ≥ 2e(z) − 4i − 3 ≥ 2rad(G) − 4i − 3.

To prove d(x, y) ≥ diam(G) − 3i − 2, consider a diametral pair of vertices
u, v, i.e., with d(u, v) = diam(G), and let k = �d(x, y)/2�. By Lemma 4,
there are vertices v′, u′ ∈ Sk(x, y) such that d(v′, v) ≤ max{d(x, v), d(y, v)} −
min{d(x, v′), d(y, v′)} + i and d(u′, u) ≤ max{d(x, u), d(y, u)} − min{d(x, u′), d
(y, u′)} + i . By the triangle inequality and Lemma 2, diam(G) = d(u, v) ≤
d(u, u′) + d(u′, v′) + d(v′, v) ≤ (max{d(x, v), d(y, v)} − �d(x, y)/2� + i) +
(i + 1) + (max{d(x, u), d(y, u)} − �d(x, y)/2� + i) = max{d(x, v), d(y, v)} +
max{d(x, u), d(y, u)} − d(x, y) + 3i + 2. Since, x, y are mutually distant ver-
tices, d(x, y) ≥ max{d(x, v), d(y, v)} and d(x, y) ≥ max{d(x, u), d(y, u)}. Hence,
diam(G) ≤ d(x, y) + d(x, y) − d(x, y) + 3i + 2 = d(x, y) + 3i + 2. That is,
d(x, y) ≥ diam(G) − 3i − 2. ��

For each vertex v ∈ V \ C(G) of a graph G we can define a parameter

loc(v) = min{d(v, x) : x ∈ V , e(x) < e(v)}

and call it the locality of v. It shows how far from v a vertex with a smaller eccentricity
than that one of v exists. In αi -metric graphs, the locality of each vertex is at most
i + 1.

Lemma 7 Let G be an αi -metric graph. Then, for every vertex v in V \C(G), loc(v) ≤
i + 1.

Proof Let x be a vertex with e(x) = e(v) − 1 closest to v. Consider a neighbor z of
x on an arbitrary shortest path from x to v. Necessarily, e(z) = e(x) + 1 = e(v).
Consider a vertex u ∈ F(z). We have u ∈ F(x) and x ∈ I (z, u), z ∈ I (x, v). By
the αi -metric property, d(v, u) ≥ d(v, x) + d(x, u) − i = d(v, x) − i + e(x). As
e(v) ≥ d(v, u), we get e(v) ≥ d(v, x) − i + e(x) = d(v, x) − i + e(v) − 1, i.e.,
d(v, x) ≤ i + 1. ��

In αi -metric graphs, the difference between the eccentricity of a vertex v and the
radius of G shows how far vertex v can be from the center C(G) of G.

Lemma 8 Let G be an αi -metric graph and k be a positive integer. Then, for every
vertex v of G with e(v) ≤ rad(G) + k, d(v,C(G)) ≤ k + i .

Proof Let x be a vertex from C(G) closest to v. Consider a neighbor z of x on an
arbitrary shortest path from x to v. Necessarily, e(z) = e(x) + 1 = rad(G) + 1.
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Consider a vertex u ∈ F(z). We have d(u, x) = rad(G) and x ∈ I (z, u), z ∈ I (x, v).
By the αi -metric property, d(v, u) ≥ d(v, x) + d(x, u) − i = d(v, x) − i + rad(G).
As e(v) ≥ d(v, u) and e(v) ≤ rad(G) + k, we get rad(G) + k ≥ e(v) ≥ d(v, x) −
i + rad(G), i.e., d(v, x) ≤ i + k. ��

As an immediate corollary of Lemma 8 we get:

Corollary 2 Let G be an αi -metric graph. Then, for every vertex v of G,

d(v,C(G)) + rad(G) ≥ e(v) ≥ d(v,C(G)) + rad(G) − i .

Proof The inequality e(v) ≤ d(v,C(G)) + rad(G) is true for any graph G and any
vertex v by the triangle inequality. If G is an αi -metric graph then, by Lemma 8,
d(v,C(G)) ≤ e(v) − rad(G) + i . ��

So, in αi -metric graphs, to approximate the eccentricity of a vertex v up-to an addi-
tive one-sided error i , one only needs to know rad(G) and the distance d(v,C(G)).

Now, instead of a pair of mutually distant vertices, we consider a vertex v fur-
thest from an arbitrary vertex. It turns out that its eccentricity is also close enough to
diam(G). Furthermore, a middle vertex of any shortest path between that vertex v

and a vertex u furthest from v has eccentricity at most rad(G) + O(i).

Lemma 9 LetG beanαi -metric graphandv beanarbitrary vertex. Then, for every u ∈
F(v), e(u) ≥ 2rad(G)−2i−diam(C(G)) ≥ 2rad(G)−5i−2 ≥ diam(G)−5i−2.

Proof By Corollary 2, e(v) ≥ d(v,C(G)) + rad(G) − i and e(u) ≥ d(u,C(G)) +
rad(G)− i . Let v′, u′ ∈ C(G) be vertices ofC(G) closest to v and u, respectively. By
the triangle inequality, e(v) = d(v, u) ≤ d(v, v′) + d(v′, u′) + d(u′, u). Combining
two inequalities for e(v), we get d(v,C(G)) + rad(G) − i ≤ e(v) ≤ d(v,C(G)) +
d(v′, u′) + d(u,C(G)), i.e., d(u,C(G)) ≥ rad(G) − i − d(v′, u′) ≥ rad(G) − i −
diam(C(G)). Taking into account inequality e(u) ≥ d(u,C(G)) + rad(G) − i and
Theorem 1, we have e(u) ≥ 2rad(G) − 2i − diam(C(G)) ≥ 2rad(G) − 5i − 2 ≥
diam(G) − 5i − 2. ��

The latter inequality in Lemma 9 can be improved if we do not involve in the proof
the diameter of the center C(G) but relay on the interval thinness. We get the same
bound as for mutually distant vertices (see Lemma 6) on the eccentricity of a vertex
most distant from an arbitrary vertex.

Lemma 10 Let G be an αi -metric graph and u be an arbitrary vertex. Then, for every
v ∈ F(u), e(v) ≥ diam(G) − 3i − 2.

Proof Let x, y be a diametral pair of vertices of G, i.e., d(x, y) = diam(G). We
will show that max{d(v, x), d(v, y)} ≥ diam(G) − 3i − 2, hereby getting e(v) ≥
max{d(v, x), d(v, y)} ≥ diam(G) − 3i − 2.

Assume, bywayof contradiction, thatmax{d(v, x), d(v, y)} ≤ diam(G)−3(i+1).
Let k = �(d(x, y)− 3(i + 1))/2� and x ′, y′ be vertices from Sk(v, u) closest to x and
y, respectively. Note that, since d(u, v) = e(u) ≥ rad(G) and k = �(diam(G) −
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3(i + 1))/2� ≤ �(2rad(G) − 3(i + 1))/2� < rad(G), k is smaller that d(v, u) and
hence vertices x ′, y′ exist. By Lemma 2, d(x ′, y′) ≤ i + 1.

Let d(v, y) ≤ diam(G) − 3(i + 1) and consider a neighbor y′′ of y′ on a shortest
path from y′ to y. As y′′ /∈ Sk(v, u), d(v, y′′) > d(v, y′) or d(u, y′′) > d(u, y′). In
the former case, by the αi -metric property applied to v, y′, y′′, y, we get d(v, y) ≥
d(v, y′) + d(y′, y) − i , i.e., d(y′, y) ≤ d(v, y) − d(v, y′) + i ≤ d(x, y) − 3(i +
1) − �(d(x, y) − 3(i + 1))/2� + i = �(d(x, y) − 3(i + 1))/2� + i . In the latter case
(i.e., when d(u, y′′) > d(u, y′)), by the αi -metric property applied to u, y′, y′′, y, we
get d(u, y) ≥ d(u, y′) + d(y′, y) − i , i.e., d(y′, y) ≤ d(u, y) − d(u, y′) + i . We
know that d(u, v) ≥ d(u, y) (as v ∈ F(u)) and d(u, v)− d(u, y′) = d(v, y′). Hence,
d(y′, y) ≤ d(v, y′) + i = k + i ≤ �(d(x, y) − 3(i + 1))/2� + i . Thus, in either case,
d(y′, y) ≤ �(d(x, y) − 3(i + 1))/2� + i .

By symmetry, also d(v, x) ≤ diam(G) − 3(i + 1) implies d(x ′, x) ≤ �(d(x, y) −
3(i +1))/2�+ i . But then, by the triangle inequality, d(x, y) ≤ d(x, x ′)+d(x ′, y′)+
d(y′, y) ≤ �(d(x, y)−3(i+1))/2�+i+i+1+�(d(x, y)−3(i+1))/2�+i ≤ d(x, y)−
1. The contradiction obtained shows that max{d(v, x), d(v, y)} ≥ diam(G) − 3i − 2
must hold. ��
Lemma 11 Let G be an αi -metric graph, z ∈ V , x ∈ F(z), and y ∈ F(x). Any vertex
c ∈ S�d(x,y)/2�(x, y) satisfies e(c) ≤ rad(G) + 4i + (i + 1)/2 + 2 and e(c) ≤
�d(x, y)/2� + 5i + 3.

Proof Let v ∈ F(c) be a furthest vertex from c. Since y ∈ F(x), d(x, v) ≤ d(x, y). If
also d(y, v) ≤ d(x, y) then, by Lemma 4, e(c) = d(c, v) ≤ max{d(v, x), d(v, y)} −
min{d(x, c), d(y, c)} + 2i + 1 ≤ d(x, y) − �d(x, y)/2� + 2i + 1 = �d(x, y)/2� +
2i + 1 ≤ rad(G) + 2i + 1.

Let now d(y, v) > d(x, y) ≥ d(x, v). Again, by Lemma 4, e(c) = d(c, v) ≤
d(y, v)−�d(x, y)/2�+2i +1. By Lemma 9, d(x, y) = e(x) ≥ 2rad(G)−5i −2 ≥
d(y, v) − 5i − 2. Therefore, e(c) ≤ d(y, v) − �(2rad(G) − 5i − 2)/2� + 2i + 1 ≤
2rad(G) − rad(G) + 4i + (i + 1)/2 + 2 = rad(G) + 4i + (i + 1)/2 + 2. Also,
by Lemma 10, d(x, y) = e(x) ≥ diam(G) − 3i − 2 ≥ d(y, v) − 3i − 2. Hence,
e(c) ≤ d(y, v) − �d(x, y)/2� + 2i + 1 ≤ d(x, y) + 3i + 2− �d(x, y)/2� + 2i + 1 =
�d(x, y)/2� + 5i + 3. ��

Next we show that all central vertices are close to a middle vertex c of a shortest
path between vertices x and y, provided that x is furthest from some vertex and that
y is furthest from x . Namely, D(c, 4i + (i + 1)/2 + 2) ⊇ C(G) holds.

Lemma 12 Let G be an αi -metric graph, and let z ∈ V , x ∈ F(z) and y ∈ F(x).
Let also c be a middle vertex of an arbitrary shortest path connecting x and y. Then,
C(G) ⊆ D(c, 4i + (i + 1)/2 + 2).

Proof Consider an arbitrary vertex u ∈ C(G). By Lemma 4, d(c, u) ≤ max{d(x, u),

d(y, u)}−min{d(x, c), d(y, c)}+2i+1.As e(u) = rad(G), max{d(x, u), d(y, u)} ≤
rad(G) holds. Since c is a middle vertex of a shortest path between x and y,
min{d(x, c), d(y, c)} = �d(x, y)/2�. As x ∈ F(z), by Lemma 9, d(x, y) = e(x) ≥
2rad(G) − 5i − 2. Hence, d(c, u) ≤ rad(G) − �(2rad(G) − 5i − 2)/2� + 2i + 1 ≤
4i + (i + 1)/2 + 2. ��
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A stronger result can be obtained for a middle vertex of a shortest path between
two mutually distant vertices.

Lemma 13 Let G be an αi -metric graph and x, y be a pair of mutually distant vertices
of G. Let also c be a middle vertex of an arbitrary shortest path connecting x and y.
Then, C(G) ⊆ D(c, 4i + 3).

Proof The proof is analogous to that of Lemma 12. However, since x, y are mutually
distant, by Lemma 6, d(x, y) ≥ 2rad(G) − 4i − 3. Hence, for any u ∈ C(G),
d(c, u) ≤ rad(G) − �(2rad(G) − 4i − 3)/2� + 2i + 1 ≤ 4i + 3. ��

There are several algorithmic implications of the results of this subsection. For
an arbitrary connected graph G with m edges and a given vertex z ∈ V , a vertex
x ∈ F(z) most distant from z can be found in linear (O(m)) time by a breadth-
first-search BFS(z) started at z. A pair of mutually distant vertices of an αi -metric
graph can be computed in O(im) total time as follows. By Lemma 10, if x is a most
distant vertex from an arbitrary vertex z and y is a most distant vertex from x , then
d(x, y) ≥ diam(G) − 3i − 2. Hence, using at most O(i) breadth-first-searches, one
can generate a sequence of vertices x := v1, y := v2, v3, . . . vk with k ≤ 3i + 4 such
that each vi is most distant from vi−1 (with v0 = z) and vk , vk−1 are mutually distant
vertices (the initial value d(x, y) ≥ diam(G)−3i −2 can be improved at most 3i +2
times).

We summarize algorithmic results of this section in the following theorem.

Theorem 2 There is a linear (O(m)) time algorithm which finds vertices v and c of
an m-edge αi -metric graph G such that e(v) ≥ diam(G)− 3i − 2, e(c) ≤ rad(G)+
4i + (i + 1)/2 + 2 and C(G) ⊆ D(c, 4i + (i + 1)/2 + 2). Furthermore, there
is an almost linear (O(im)) time algorithm which finds a vertex c of G such that
e(c) ≤ rad(G) + 2i + 1 and C(G) ⊆ D(c, 4i + 3).

Corollary 3 An additive O(i)-approximation of the radius and of the diameter of an
αi -metric graph G with m edges can be computed in O(m) time.

2.3 Approximating all Eccentricities in˛i-Metric Graphs

In this subsection, we show that the eccentricities of all vertices of an αi -metric graph
G can be approximated with an additive one-sided error at most O(i) in (almost) linear
total time.

Interestingly, the distances from any vertex v to two mutually distant vertices give
a very good estimation on the eccentricity of v.

Lemma 14 Let G be an αi -metric graph and x, y be a pair of mutually dis-
tant vertices of G. Any vertex v ∈ V satisfies max{d(x, v), d(y, v)} ≤ e(v) ≤
max{d(x, v), d(y, v)} + 3i + 2.

Proof The inequality e(v) ≥ max{d(x, v), d(y, v)} holds for any three vertices by
definition of eccentricity. To prove the upper bound on e(v) for any v ∈ V , consider a
furthest vertex u ∈ F(v) and let k = �d(x, y)/2�. Note that, as x and y are mutually

123



Algorithmica

distant, d(x, y) ≥ max{d(x, u), d(y, u)}. By Lemma 4, there are vertices v′, u′ ∈
Sk(x, y) such that d(v′, v) ≤ max{d(x, v), d(y, v)} − min{d(x, v′), d(y, v′)} + i
and d(u′, u) ≤ max{d(x, u), d(y, u)} − min{d(x, u′), d(y, u′)} + i . By the trian-
gle inequality and Lemma 2, e(v) = d(u, v) ≤ d(u, u′) + d(u′, v′) + d(v′, v) ≤
(max{d(x, v), d(y, v)} − �d(x, y)/2� + i) + (i + 1) + (max{d(x, u), d(y, u)} −
�d(x, y)/2�+i) = max{d(x, v), d(y, v)}+max{d(x, u), d(y, u)}−d(x, y)+3i+2 ≤
max{d(x, v), d(y, v)}+d(x, y)−d(x, y)+3i +2 = max{d(x, v), d(y, v)}+3i +2.

��
By Lemma 14, we get the following left-sided additive approximations of all vertex

eccentricities. Let x, y be a pair of mutually distant vertices ofG. For every vertex v ∈
V , set ê(v) := max{d(x, v), d(y, v)}.
Theorem 3 Let G be an αi -metric graph with m-edges. There is an algorithm which
in total almost linear (O(im)) time outputs for every vertex v ∈ V an estimate ê(v)

of its eccentricity e(v) such that e(v) − 3i − 2 ≤ ê(v) ≤ e(v).

If the minimum integer i for a graph G so that G is an αi -metric graph is known in
advance, then we can transform ê into a right-sided additive (3i + 2)-approximation
by setting ê(v) := max{d(x, v), d(y, v)} + 3i + 2. Unfortunately, for a given graph
to find the minimum i such that G is an αi -metric graph is not an easy problem. We
observe that even checking whether a graph is α1-metric is at least as hard as checking
if a graph has an induced subgraph isomorphic toC4. Indeed, take an arbitrary graphG
and add a universal vertex to it. Let the resulting graph be G ′. Then, G ′ is an α1-metric
graph if and only if G is C4-free.

In what follows, we present two right-sided additive eccentricity approximation
schemes for all vertices, using a notion of eccentricity approximating spanning tree
introduced in [48] and investigated in [20, 25, 30, 32, 35].We get form-edge αi -metric
graphs a O(m) time right-sided additive (9i + 5)-approximation and a O(im) time
right-sided additive (4i + 2)-approximation.

A spanning tree T of a graph G is called an eccentricity k-approximating spanning
tree if for every vertex v ofG eT (v) ≤ eG(v)+k holds [48]. All (α1,�)-metric graphs
(including chordal graphs and the underlying graphs of 7-systolic complexes) admit
eccentricity 2-approximating spanning trees [32]. An eccentricity 2-approximating
spanning tree of a chordal graph can be computed in linear time [25]. An eccentricity
k-approximating spanning treewithminimum k can be found in O(nm) time for any n-
vertex,m-edge graphG [35]. It is also known [20, 30] that ifG is a δ-hyperbolic graph,
then G admits an eccentricity (4δ + 1)-approximating spanning tree constructible in
O(δm) time and an eccentricity (6δ)-approximating spanning tree constructible in
O(m) time.

Lemma 15 Let G be an αi -metric graph with m edges. If c is a middle vertex of any
shortest path between a pair x, y of mutually distant vertices of G and T is a BFS(c)-
tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) + 4i + 3. That is, G
admits an eccentricity (4i + 3)-approximating spanning tree constructible in O(im)

time.
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Proof Let eG(v) (eT (v)) be the eccentricity of v in G (in T , respectively). The eccen-
tricity in T of any vertex v can only increase compared to its eccentricity in G.
Hence, eG(v) ≤ eT (v). By the triangle inequality and the fact that all graph distances
from vertex c are preserved in T , eT (v) ≤ dT (v, c) + eT (c) = dG(v, c) + eG(c).
We know that eG(v) ≥ max{dG(y, v), dG(x, v)}. By Lemma 4, also dG(v, c) −
max{dG(y, v), dG(x, v)} ≤ 2i+1−min{dG(y, c), dG(x, c)} holds. Since c is a mid-
dle vertex of a shortest path between x and y, necessarily min{dG(y, c), dG(x, c)} =
�dG(x, y)/2� and, by Lemma 6, eG(c) ≤ �dG(x, y)/2� + 2i + 1. Combining
all these, we get eT (v) − eG(v) ≤ dG(v, c) + eG(c) − eG(v) ≤ dG(v, c) −
max{dG(y, v), dG(x, v)} + eG(c) ≤ 2i + 1 − min{dG(y, c), dG(x, c)} + eG(c) ≤
2i + 1− �dG(x, y)/2� + eG(c) ≤ 2i + 1− �dG(x, y)/2� + �dG(x, y)/2� + 2i + 1 ≤
4i + 3. ��
Lemma 16 Let G be an αi -metric graph with m edges, and let z ∈ V , x ∈ F(z) and
y ∈ F(x). If c is a middle vertex of any shortest path between x and y and T is a
BFS(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) + 7i + 5.
That is, G admits an eccentricity (7i + 5)-approximating spanning tree constructible
in O(m) time.

Proof The proof follows the proof of Lemma 15 with one adjustment: replace the
application of Lemma 6 which yields eG(c) ≤ �dG(x, y)/2�+2i +1 with Lemma 11
which yields eG(c) ≤ �dG(x, y)/2� + 5i + 3. Hence, eT (v) − eG(v) ≤ 2i + 1 −
�dG(x, y)/2� + �dG(x, y)/2� + 5i + 3 ≤ 7i + 5. ��

Note that the eccentricities of all vertices in any tree T = (V ,U ) can be computed
in O(|V |) total time. It is a folklore by now that for trees the following facts are true:
(1) The center C(T ) of any tree T consists of one vertex or two adjacent vertices; (2)
The center C(T ) and the radius rad(T ) of any tree T can be found in linear time; (3)
For every vertex v ∈ V , eT (v) = dT (v,C(T )) + rad(T ). Hence, using BFS(C(T ))

on T one can compute dT (v,C(T )) for all v ∈ V in total O(|V |) time. Adding now
rad(T ) to dT (v,C(T )), one gets eT (v) for all v ∈ V . Consequently, by Lemma 15 and
Lemma 16, we get the following additive approximations for the vertex eccentricities
in αi -metric graphs.

Theorem 4 Let G be an αi -metric graph with m edges. There is an algorithm which
in total linear (O(m)) time outputs for every vertex v ∈ V an estimate ê(v) of its
eccentricity e(v) such that e(v) ≤ ê(v) ≤ e(v) + 7i + 5. Furthermore, there is an
algorithm which in total almost linear (O(im)) time outputs for every vertex v ∈ V
an estimate ê(v) of its eccentricity e(v) such that e(v) ≤ ê(v) ≤ e(v) + 4i + 3.

Corollary 4 Anadditive O(i)-approximation of all vertex eccentricities of anαi -metric
graph G with m edges can be computed in O(m) time.

3 Graphs with˛1-Metric

Now we concentrate on α1-metric graphs, which contain all chordal graphs and all
plane triangulations with inner vertices of degree at least 7 (see, e.g., [14, 15, 32,
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Fig. 1 Forbidden isometric
subgraph W++

6

53]). For them we get much sharper bounds. It is known that for α1-metric graphs the
following relation between the diameter and the radius holds: 2rad(G) ≥ diam(G) ≥
2rad(G) − 2 [53].

First we recall some known results and give an auxiliary lemma.

Lemma 17 ([4]) Let G be an α1-metric graph. Let x, y, v, u be vertices of G such that
v ∈ I (x, y), x ∈ I (v, u), and x and v are adjacent. Then d(u, y) = d(u, x)+d(v, y)
holds if and only if there exist a neighbor x ′ of x in I (x, u) and a neighbor v′ of v in
I (v, y) with d(x ′, v′) = 2; in particular, x ′ and v′ lie on a common shortest path of
G between u and y.

Theorem 5 ([53]) G is an α1-metric graph if and only if all disks D(v, k) (v ∈ V ,
k ≥ 1) of G are convex and G does not contain the graph W++

6 from Fig. 1 as an
isometric subgraph.

Lemma 18 ([50]) All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex if and only
if for every vertices x, y, z ∈ V and v ∈ I (x, y), d(v, z) ≤ max{d(x, z), d(y, z)}.

Letting z to be from F(v), we get:

Corollary 5 If all disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex then for every
vertices x, y ∈ V and v ∈ I (x, y), e(v) ≤ max{e(x), e(y)}.
Lemma 19 ([32]) Let G be an α1-metric graph and x be an arbitrary vertex with
e(x) ≥ rad(G) + 1. Then, for every vertex z ∈ F(x) and every neighbor v of x in
I (x, z), e(v) ≤ e(x) holds.

We will need also the following auxiliary lemma.

Lemma 20 Let G be an α1-metric graph. Then, for every shortest path P =
(x1, . . . , xl)with l ≤ 4 and a vertex u of G with d(u, xi ) = k ≥ 2 for all i ∈ {1, . . . , l},
there exists a vertex u′ at distance 2 from each xi (i ∈ {1, . . . , l}) and at distance k−2
from u.

Proof We prove by induction on l. If l = 1, the statement is clearly correct. Assume
now that there is a vertex u′ that is at distance 2 from each xi (i ∈ {1, . . . , l − 1}) and
at distance k − 2 from u. Assume that d(u′, xl) is greater than 2, i.e., d(u′, xl) = 3.
Consider a common neighbor a of u′ and xl−1. We have xl−1 ∈ I (xl , a) and a ∈
I (u, xl−1). Then, by the α1-metric property, k = d(xl , u) ≥ 1 + k − 1 = k, and
therefore, by Lemma 17, there must exist vertices b and c such that bxl , cb, ca ∈ E
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and d(c, u) = k−2. As d(c, u) = d(u′, u) = k−2 and d(u, a) = k−1, by convexity
of disk D(u, k − 2), vertices u′ and c must be adjacent. If c is at distance 2 from x1
then, by convexity of disk D(c, 2), each vertex xi (1 ≤ i ≤ l) is at distance 2 from c,
and we are done. If c is at distance 3 from x1, then from u′ ∈ I (c, x1) and c ∈ I (u′, xl),
by the α1-metric property, we get d(x1, xl) ≥ 2 + 2 = 4, which is impossible since
d(x1, xl) ≤ 3. ��
Corollary 6 Let G be an α1-metric graph. Then, for every edge xy ∈ E and a vertex
u ∈ V with d(u, x) = d(u, y) = k, either there is a common neighbor u′ of x and y
at distance k − 1 from u or there exists a vertex u′ at distance 2 from x and y and at
distance k − 2 from u such that, for every z ∈ N (x) ∩ N (u′) and w ∈ N (y) ∩ N (u′),
the sequence (x, z, u′, w, y) forms an induced C5 in G.

Proof Wemay assume that k ≥ 2. By Lemma 20, there exists a vertex u′ at distance 2
from x and y and at distance k − 2 from u. Consider a common neighbor z of x and u′
and a common neighbor w of y and u′. If zy, wx /∈ E then, by distance requirements,
either (x, z, w, y) induces a C4 (which is impossible) or (x, z, u′, w, y) induces a C5.
��

3.1 The Eccentricity Function on˛1-Metric Graphs is Almost Unimodal

The goal of this section is to prove the following theorem.

Theorem 6 Let G be an α1-metric graph and v be an arbitrary vertex of G. If

(i) e(v) > rad(G) + 1 or
(i i) e(v) = rad(G) + 1 and diam(G) < 2rad(G) − 1,

then there must exist a neighbor w of v with e(w) < e(v).
If e(v) = rad(G) + k for some integer k > 0, then d(v,C(G)) ≤ k + 1.

Theorem 6 says that if a vertex v with loc(v) > 1 exists in an α1-metric graph G
then diam(G) ≥ 2rad(G) − 1, e(v) = rad(G) + 1 and d(v,C(G)) = 2. That is,
only in the case when diam(G) ∈ {2rad(G)−1, 2rad(G)}, the eccentricity function
may fail to be unimodal and yet all local minima of the eccentricity function are
concentrated around the center C(G) of G (they are at distance 2 from C(G)). Two
α1-metric graphs depicted in Fig. 2 show that this result is sharp.

Wewill split the proof of Theorem 6 into a series of lemmas of independent interest.
By Lemma 7, Lemma 8 and Corollary 2, we already know that every vertex v of an
α1-metric graph has locality at most 2, is at distance at most k+1 fromC(G), provided
that its eccentricity e(v) is at most rad(G)+ k, and satisfies d(v,C(G))+ rad(G) ≥
e(v) ≥ d(v,C(G)) + rad(G) − 1. In the following lemmas, two specific properties
of α1-metric graphs stated in Lemma 17 and Theorem 5 are heavily used.

Lemma 21 Let G be an α1-metric graph and v be a vertex of G with loc(v) = 2. Then,
e(v) ≤ rad(G)+ 2. Furthermore, if e(v) = rad(G)+ 2, then diam(G) = 2rad(G).

Proof Let k := e(v) and x be a vertex with d(x, v) = 2 and e(x) = k − 1 such that
|F(x)| is as small as possible. Consider a common neighbor z of x and v and a vertex
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Fig. 2 Sharpness of the result of Theorem 6. a An α1-metric graph G with diam(G) = 2rad(G) − 1 and
a vertex (topmost) with locality 2. b A chordal graph (and hence an α1-metric graph) G with diam(G) =
2rad(G) and a vertex (topmost) with locality 2. The number next to each vertex indicates its eccentricity

u ∈ F(z). Necessarily, e(z) = e(v) = e(x)+1 and u ∈ F(x).We have x ∈ I (z, u) and
z ∈ I (x, v). By the α1-metric property, d(v, u) ≥ d(v, z) + d(x, u) = d(u, x) + 1 =
e(z) = k. As e(v) ≥ d(v, u) ≥ e(z) = e(v), i.e., k = d(v, u), by Lemma 17, there
must exist verticesw and t such thatwv,wt, t x ∈ E and d(t, u) = d(u, x)−1 = k−2.

If e(t) = e(x)+1 then for every s ∈ F(t), we have x ∈ I (t, s) and d(x, s) = k−1.
If e(t) = e(x) then, by the choice of x , there must exist a vertex s ∈ F(t) \ F(x)
(as u ∈ F(x) \ F(t)), and we have x ∈ I (t, s) and d(x, s) = k − 2. In both cases,
by the α1-metric property applied to x ∈ I (t, s) and t ∈ I (x, u), we get d(s, u) ≥
d(s, x) + d(u, t) ≥ k − 2 + k − 2 = 2k − 4.

Since d(s, u) ≤ diam(G) ≤ 2rad(G), we have k ≤ rad(G) + 2 and if k =
rad(G) + 2 then d(s, u) = diam(G) = 2rad(G). ��
Lemma 22 Let G be an α1-metric graph and v be a vertex of G with e(v) = rad(G)+
2. Then, loc(v) = 1.

Proof Assume, by way of contradiction, that loc(v) = 2. Then, by Lemma 8,
d(v,C(G)) ≤ 3. However, since e(v) = rad(G) + 2, v cannot have a vertex from
C(G) at distance 2 or less as that would imply that a neighbor of v on a shortest path
to C(G) has eccentricity at most rad(G) + 1, contradicting with loc(v) = 2. Thus,
d(v,C(G)) = 3.

Let x be a vertex from C(G) closest to v and P = (x, z, y, v) be a shortest path
between x and v chosen in such a way that the neighbor y of v in P has |F(y)| as small
as possible. Necessarily, e(x) = rad(G) = e(z) − 1 and e(z) + 1 = e(y) = e(v) =
rad(G) + 2. Consider a vertex u ∈ F(y). Since d(u, y) = rad(G) + 2, d(u, x) ≤
rad(G) and d(u, z) ≤ rad(G) + 1, we have d(u, x) = rad(G) = d(u, z) − 1 =
d(u, y) − 2, i.e., x ∈ I (u, z). Applying the α1-metric property to x ∈ I (u, z) and
z ∈ I (x, v), we get d(v, u) ≥ d(v, z) + d(x, u) = rad(G) + 2. By Lemma 17, there
exist vertices f , w, t such that f v, f z, f w,wt, t x ∈ E and d(t, u) = rad(G) − 1.
Notice that f �= y since d(u, y) = rad(G) + 2 and d(u, f ) = rad(G) + 1. To
avoid an induced C4, vertices f and y must be adjacent. As loc(v) = 2, we have also
e( f ) ≥ e(v).

Now, we have f ∈ S2(x, v) and u ∈ F(y) \ F( f ). By the choice of y, there must
exist a vertex s which is in F( f ) but not in F(y). Hence, y ∈ I ( f , s). Since also
f ∈ I (y, u), by the α1-metric property, d(u, s) ≥ d( f , u) + d(s, y) ≥ rad(G) +
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Fig. 3 Illustration to the proof of
Lemma 23

1+ rad(G) + 1 = 2rad(G) + 2 > diam(G), which is impossible. Thus, loc(v) = 1
must hold. ��
Lemma 23 Let G be an α1-metric graph. Let v, c, b, f , a, u, s be vertices of G such
that v, c, b, f , a form an induced C5, p = d(u, f ) = d(v, u) − 2 = d(c, u) − 2 and
q = d(s, b) = d(v, s)−2 = d(a, s)−2 (See Fig. 3). Then, either d(u, s) = p+q+1
or there is a vertex h which is adjacent to all vertices of C5 = (v, c, b, f , a).

Proof By distance requirements, f ∈ I (b, u) and b ∈ I ( f , s) hold. Hence, by α1-
metric property, we have d(u, s) ≥ p+q. Assume, inwhat follows, that d(u, s) = p+
q. Then, by Lemma 17, there must exist vertices x, y, z such that x f , xz, yb, yz ∈ E
and d(x, u) = p − 1 and d(y, s) = q − 1. See Fig. 3 for an illustration.

As d(v, x) = d(v, y) = 3 and z ∈ I (x, y), by convexity of disk D(v, 3), we
get d(v, z) ≤ 3. Vertex z cannot be adjacent to v, c, a as d(v, y) = d(a, y) = 3 =
d(v, x) = d(c, x). So, 2 ≤ d(v, z) ≤ 3.

First consider the case when d(v, z) = 2. Consider a common neighbor h of v and
z. As d(v, x) = d(v, y) = 3 and d(v, f ) = d(v, b) = d(v, z) = 2, by convexity
of disk D(v, 2), we get z f , zb ∈ E . Convexities of disks D(y, 2) and D(x, 2) imply
hc, ha ∈ E (notice that v is at distance 3 from both y and x , vertices a, h are at distance
2 from x , vertices h, c are at distance 2 from y). To avoid a forbidden inducedC4, hmust
be adjacent to f and b as well. So, h is adjacent to all vertices of C5 = (v, c, b, f , a).

Now consider the case when d(v, z) = 3. Consider a path (v, h, g, z) between
v and z. If z is adjacent to f then it is adjacent to b (to avoid an induced C4), and
wise versa. But if f z, zb ∈ E , by convexity of D(z, 2), a and c must be adjacent,
contradicting with C5 = (v, c, b, f , a) being an induced cycle. So, z f , zb /∈ E , and
hence (x, z, y, b, f ) forms an induced C5 and g �= f , b.

Vertices c and z cannot be at distance 2 from each other since then convexity of disk
D(c, 2) and d(c, x) = 3 will imply z f ∈ E , which is impossible. Hence, d(z, c) = 3
and, in particular, gc /∈ E and h �= c. Similarly, d(a, z) = 3 holds and, in particular,
ga /∈ E and h �= a.

We claim that d(h, x) = d(h, y) = 2. If d(h, y) = 3 then using also d(c, z) = 3
we get z ∈ I (h, y), y ∈ I (z, c). By the α1-metric property, we obtain d(h, c) ≥
d(h, z) + d(c, y) = 4, contradicting with d(h, c) ≤ 2. Similarly, d(h, x) = 2 must
hold.
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Now, convexity of disks D(y, 2) and D(x, 2) gives first hc, ha ∈ E (as d(y, h) =
d(y, c) = 2 = d(y, v) − 1 and d(x, h) = d(x, a) = 2 = d(x, v) − 1) and then
h f , hb ∈ E (as d(y, h) = d(y, f ) = 2 = d(y, a) − 1 and d(x, h) = d(x, b) = 2 =
d(x, c) − 1). So, h is adjacent to all vertices of C5 = (v, c, b, f , a). ��

Lemma 24 If an α1-metric graph G has a vertex v with loc(v) > 1 and e(v) =
rad(G) + 1, then diam(G) ≥ 2rad(G) − 1.

Proof Set r := rad(G). Assume, by way of contradiction, that diam(G) ≤ 2r − 2.
Let v be an arbitrary vertex with loc(v) > 1 and e(v) = r + 1. Consider a vertex
s ∈ F(v) and a vertex c ∈ S1(v, s)with |F(c)| as small as possible. Since loc(v) > 1,
e(c) ≥ e(v). Let also u be an arbitrary vertex from F(c).

We claim that e(c) = d(u, c) = d(u, v) = e(v). If d(u, c) > d(u, v), then α1-
metric property applied to v ∈ I (c, u) and c ∈ I (s, v) gives d(s, u) ≥ d(s, c) +
d(v, u) ≥ e(v) − 1 + e(v) − 1 = 2r , which is impossible. Hence, e(c) = d(u, c) =
d(u, v) = e(v) = r + 1 must hold.

Assume that a vertex g exists in G such that gc, gv ∈ E and d(g, u) = r =
d(u, c) − 1. If d(g, s) > d(c, s) then, by α1-metric property applied to c ∈ I (g, s)
and g ∈ I (u, c), we get d(s, u) ≥ d(s, c) + d(g, u) = e(v) − 1 + r = 2r , which is
impossible. If d(g, s) ≤ d(c, s), then g ∈ S1(v, s) and, by the choice of c, there must
exist a vertex t ∈ F(g) \ F(c) (recall that u ∈ F(c) \ F(g) as e(g) ≥ r + 1). So,
α1-metric property applied to c ∈ I (g, t) and g ∈ I (u, c), gives d(t, u) ≥ d(t, c) +
d(g, u) ≥ 2r , which is impossible.

So, in what follows, we can assume that no common neighbor g of c and v with
d(g, u) = r = d(u, c) − 1 can exist in G. Since, d(u, c) = d(u, v), by Corollary 6,
there is a vertex f which is at distance 2 from c and v, at distance d(u, c)− 2 = r − 1
from u and forms with any b ∈ N (c) ∩ N ( f ) and any a ∈ N (v) ∩ N ( f ) an induced
C5 = (c, b, f , a, v).

We claim that d(s, a) = d(s, v) for every a ∈ N (v) ∩ N ( f ). Indeed, if d(s, a) <

d(s, v) then, by convexity of disk D(s, r), vertices a and c need to be adjacent (as both
are adjacent to v with d(v, s) = r+1), contradicting with ac /∈ E . If d(s, a) > d(s, v)

then, α1-metric property applied to v ∈ I (a, s) and a ∈ I (u, v), gives d(s, u) ≥
d(s, v) + d(a, u) ≥ 2r + 1, which is impossible.

From d(s, a) = d(s, v), we have also d(s, f ) ≥ d(s, c). Assume d(s, f ) =
d(s, c) + 1. If d(s, b) = d(s, c) then b ∈ I (s, f ). Since also f ∈ I (b, u), α1-metric
property implies d(s, u) ≥ d(s, b) + d( f , u) = d(s, c) + r − 1 = 2r − 1, which is
impossible. If now d(s, b) = d(s, c)+ 1, then c ∈ I (s, b). Since also b ∈ I (c, u), α1-
metric property implies d(s, u) ≥ d(s, c) + d(b, u) = 2r , which is impossible. The
last two contradictions show that d(s, f ) = d(s, c) + 1 is impossible, i.e., d(s, f ) =
d(s, c) must hold. By convexity of disk D(s, r), d(s, b) ≤ r holds for every b ∈
I ( f , c). We distinguish between two cases. In both cases we get contradictions.
Case 1: There is a common neighbor bof f and cwhich is at distance r−1 = d(s, c)−
1from s.

We have d(v, u) = r+1 = d(c, u) = d(u, f )+2 and d(v, s) = r+1 = d(a, s) =
d(s, b)+ 2. By Lemma 23, either d(u, s) = 2r − 1 (which is impossible) or there is a
vertex h which is adjacent to all vertices of C5 = (b, c, v, a, f ). The latter contradicts
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with our earlier claim that d(s, a) = d(s, v) for every a ∈ N (v)∩ N ( f ) (observe that
h ∈ N (v) ∩ N ( f ) and d(s, h) = d(s, b) + 1 = d(s, v) − 1).
Case 2: There is no common neighbor bof f and cwhich is at distance r − 1 =
d(s, c) − 1from s.

So, for every b ∈ I ( f , c), d(b, s) = r . By Lemma 20, there exists a vertex s′ at
distance 2 from c and f and at distance r − 2 from s. Consider a common neighbor
x of c and s′ and a common neighbor y of f and s′. We may assume that yc, x f /∈ E
(otherwise, we are in Case 1). We claim that d(y, v) = 2. Assume, d(y, v) = 3. If
also d(a, x) = 3, then a ∈ I (y, v) and v ∈ I (a, x) and α1-metric property implies
d(y, x) ≥ d(y, a)+d(v, x) = 4, which is impossible. So, d(a, x) = 2 must hold and
therefore, by convexity of disk D(a, 2), vertices x and y are adjacent (observe that
x, y ∈ D(a, 2) and s′ /∈ D(a, 2)). As y ∈ I ( f , x), y /∈ D(v, 2) and f , x ∈ D(v, 2),
we get a contradiction with convexity of disk D(v, 2). Thus, d(y, v) = 2 must hold.
By convexity of disk D(v, 2), vertices x and y must be adjacent.

Consider a common neighbor w of y and v. By convexity of disk D(s′, 2), vertices
w and c are adjacent. To avoid an induced cycle C4, w and x are also adjacent. If
d(w, u) = d(u, c) − 1 then, by the choice of c, there exists a vertex t ∈ F(w) \ F(c)
(recall that u ∈ F(c) \ F(w) as e(w) ≥ r + 1). So, α1-metric property applied to
c ∈ I (w, t) and w ∈ I (u, c), gives d(t, u) ≥ d(t, c) + d(w, u) ≥ 2r , which is
impossible. So, d(w, u) = d(u, c) = r + 1 must hold. In particular, vertices w and f
cannot be adjacent. Note also that d(a, y) = d(v, y) = 2 (as d(a, s) = d(v, s)) and
wa /∈ E (to avoid an induced C4). Hence, (v,w, y, f , a) induce a C5 in G.

Now, we have d(v, u) = r + 1 = d(w, u) = d( f , u) + 2 and d(v, s) = r + 1 =
d(a, s) = d(s, y)+2. By Lemma 23, either d(u, s) = 2r −1 (which is impossible) or
there is a vertex h which is adjacent to all vertices of C5 = (y, w, v, a, f ). The latter
contradicts with our earlier claim that d(s, a) = d(s, v) for every a ∈ N (v) ∩ N ( f )
(observe that h ∈ N (v) ∩ N ( f ) and d(s, h) = d(s, y) + 1 = d(s, v) − 1).

The contradictions obtained prove the lemma. ��
Now Theorem 6 follows from Lemma 8, Lemma 21, Lemma 22 and Lemma 24.

Here we formulate three interesting corollaries of Theorem 6.

Corollary 7 Let G be an α1-metric graph. Then,

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then every local
minimum of the eccentricity function on G is a global minimum.

(i i) if diam(G) ≥ 2rad(G)−1 then every local minimumof the eccentricity function
on G is a global minimum or is at distance 2 from a global minimum.

Corollary 8 For every α1-metric graph G and any vertex v, the following formula is
true:

d(v,C(G)) + rad(G) ≥ e(v) ≥ d(v,C(G)) + rad(G) − ε,

where ε ≤ 1, if diam(G) ≥ 2rad(G) − 1, and ε = 0, otherwise.

A path (v = v0, . . . , vk = x) of a graph G from a vertex v to a vertex x is
called strictly decreasing (with respect to the eccentricity function) if for every i
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(0 ≤ i ≤ k−1), e(vi ) > e(vi+1). It is called decreasing if for every i (0 ≤ i ≤ k−1),
e(vi ) ≥ e(vi+1). An edge ab ∈ E of a graph G is called horizontal (with respect to
the eccentricity function) if e(a) = e(b).

Corollary 9 Let G be an α1-metric graph and v be its arbitrary vertex. Then, there is
a shortest path P(v, x) from v to a closest vertex x in C(G) such that:

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then P(v, x) is
strictly decreasing;

(i i) if diam(G) ≥ 2rad(G) − 1 then P(v, x) is decreasing and can have only one
horizontal edge, with an end-vertex adjacent to x.

3.2 Diameters of Centers of˛1-Metric Graphs

Observe that the centerC(G) of a graphG = (V , E) can be represented as the intersec-
tion of all the disks of G of radius rad(G), i.e., C(G) = ⋂{D(v, rad(G)) : v ∈ V }.
Consequently, the center C(G) of an α1-metric graph G is convex (in particular,
it is connected), as the intersection of convex sets is always a convex set. In gen-
eral, any set C≤i (G) := {z ∈ V : ecc(z) ≤ rad(G) + i} is a convex set of G as
C≤i (G) = ⋂{D(v, rad(G) + i) : v ∈ V }.
Corollary 10 In an α1-metric graph G, all sets C≤i (G), i ∈ {0, . . . , diam(G) −
rad(G)}, are convex. In particular, the center C(G) of an α1-metric graph G is
convex.

In this section, we provide sharp bounds on the diameter and the radius of the center
of an α1-metric graph. Previously, it was known that the diameter (the radius) of the
center of a chordal graph is at most 3 (at most 2, respectively) [15]. To prove our result,
we will need a few technical lemmas.

Lemma 25 Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi ) = k for all i ∈ {1, . . . , 5}, there
exist vertices t, w, s such that d(t, u) = d(s, u) = k − 1, k − 2 ≤ d(w, u) ≤ k − 1,
and t is adjacent to x1, x2, w and s is adjacent to x4, x5, w.

Proof By Lemma 20, there is a vertex u′ that is at distance 2 from each xi (1 ≤ i ≤ 4)
and at distance k−2 from u. Assume that d(u′, x5) is greater than 2, i.e., d(u′, x5) = 3.
Consider a common neighbor a of u′ and x4. We have x4 ∈ I (x5, a) and a ∈ I (u, x4).
Then, by the α1-metric property, k = d(x5, u) ≥ 1 + k − 1 = k, and therefore, by
Lemma 17, there must exist vertices b and c such that bx5, cb, ca ∈ E and d(c, u) =
k − 2. As d(c, u) = d(u′, u) = k − 2 and d(u, a) = k − 1, by convexity of disk
D(u, k − 2), vertices u′ and c must be adjacent. If c is at distance 2 from x1 then, by
convexity of disk D(c, 2), each vertex xi (1 ≤ i ≤ 5) is at distance 2 from c, and we
can replace u′ with c (see the case when d(u′, x5) = 2 below). If c is at distance 3
from x1, then from u′ ∈ I (c, x1) and c ∈ I (u′, x5), by the α1-metric property, we get
4 = d(x1, x5) ≥ 2 + 2 = 4. Now, by Lemma 17, there must exist vertices t, w and s
such that sx5, sc, sw, tu′, t x1, tw ∈ E . Furthermore, since d(x5, t) = d(x5, x2) = 3
and d(x5, x1) = 4, by convexity of disk D(x5, 3), vertices t and x2 must also be
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Fig. 4 Illustration to Lemma 26

adjacent. Similarly, sx4 ∈ E . Necessarily, d(u, t) = d(u, s) = k − 1. By convexity
of disk D(u, k − 1), either d(u, w) = k − 1 or d(u, w) = k − 2. In the latter case, w
has all vertices xi , 1 ≤ i ≤ 5, at distance 2, by convexity of disk D(w, 2).

The remaining case, when d(u′, x5) = 2, can be handled in a similar (even simpler)
manner. Set w := u′, t is any common neighbor of u′ and x1 and s is any common
neighbor of u′ and x5. By convexity of disks D(x1, 3) and D(x5, 3), the existence of
edges t x2 and sx4 follows. ��

Lemma 26 Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi ) = k for all i ∈ {1, . . . , 5},
there exists a shortest path Q = (y1, y2, y3) such that d(u, yi ) = k − 1, for
each i ∈ {1, . . . , 3}, and N (y1) ∩ P = {x1, x2}, N (y2) ∩ P = {x2, x3, x4} and
N (y3) ∩ P = {x4, x5} (see Fig. 4).
Proof By Lemma 25, there exist vertices t, s such that d(t, u) = d(s, u) = k − 1, t is
adjacent to x1, x2 and s is adjacent to x4, x5. If d(x4, t) = 3, then x2 ∈ I (t, x4) and
t ∈ I (u, x2) and, by the α1-metric property, d(x4, u) ≥ 2 + k − 1 = k + 1, which is
impossible. Hence, d(x4, t) = 2must hold. Let v be a common neighbor of t and x4. If
d(v, u) = k, then again the α1-metric property applied to v ∈ I (t, x5) and t ∈ I (u, v)

gives d(x5, u) ≥ 2+ k − 1 = k + 1, which is impossible. Thus, d(v, u) = k − 1 must
hold. As d(v, u) = k − 1 = d(s, u) and d(u, x4) = k, by convexity of D(u, k − 1),
vertices v and s must be adjacent. Notice also that x3 cannot be adjacent to t or to
s. If, for example, x3s ∈ E (the case when t x3 ∈ E can be handled in a similar
way) then the α1-metric property applied to s ∈ I (u, x3) and x3 ∈ I (s, x1) will give
d(x1, u) ≥ 2+ k − 1 = k + 1, which is impossible. Now, convexity of disk D(x1, 2)
implies edge vx3 and convexity of disk D(x3, 1) implies edge vx2. Letting y1 := t ,
y2 := v and y3 := s, we get the required path Q. ��
Theorem 7 Let G be an α1-metric graph. For every pair of vertices s, t of G with
d(s, t) ≥ 4 there exists a vertex c ∈ I o(s, t) such that e(c) < max{e(s), e(t)}.
Proof It is sufficient to prove the statement for vertices s, t with d(s, t) = 4.

We know, by Corollary 5, that e(c) ≤ max{e(s), e(t)} for every c ∈ I (s, t).
Assume, by way of contradiction, that there is no vertex c ∈ I o(s, t) such that
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e(c) < max{e(s), e(t)}. Let, without loss of generality, e(s) ≤ e(t). Then, for every
c ∈ I o(s, t), e(c) = e(t). Consider a vertex c ∈ S1(s, t). If e(c) > e(s), then
e(c) = e(s) + 1. Consider a vertex z from F(c). Necessarily, z ∈ F(s). Applying
the α1-metric property to c ∈ I (s, t), s ∈ I (c, z), we get e(c) = e(t) ≥ d(t, z) ≥
d(c, t) + d(s, z) = 3+ e(s) = 2+ e(c), which is impossible. So, e(s) = e(c) = e(t)
for every c ∈ I o(s, t).

Consider an arbitrary shortest path P = (s = x1, x2, x3, x4, x5 = t) connecting
vertices s and t .

We claim that for any vertex u ∈ F(x3) all vertices of P are at distance k :=
d(u, x3) = e(x3) from u. As e(xi ) = e(x3), we know that d(u, xi ) ≤ k (1 ≤ i ≤ 5).
Assume d(u, xi ) = k − 1, d(u, xi+1) = k, and i ≤ 2. Then, the α1-metric property
applied to xi ∈ I (u, xi+1) and xi+1 ∈ I (xi , xi+3) gives d(xi+3, u) ≥ k−1+2 = k+1,
which is a contradiction with d(u, xi+3) ≤ k. So, d(u, x1) = d(u, x2) = k. By
symmetry, also d(u, x4) = d(u, x5) = k.

Hence, by Lemma 26, for the path P = (x1, x2, x3, x4, x5), there exists a shortest
path Q = (y1, y2, y3) such that d(u, yi ) = k − 1, for each i ∈ {1, . . . , 3}, and
N (y1) ∩ P = {x1, x2}, N (y2) ∩ P = {x2, x3, x4} and N (y3) ∩ P = {x4, x5} (see Fig.
4). As yi ∈ I o(x1, x5) = I o(s, t) for each i ∈ {1, . . . , 3}, we have e(yi ) = e(x3) = k.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t)
connecting vertices s and t . Now, assume that P is chosen in such a way that, among
all vertices in S2(s, t), the vertex x3 has the minimum number of furthest vertices, i.e.,
|F(x3)| is as small as possible. As y2 also belongs to S2(s, t) and has u at distance k−1,
by the choice of x3, there must exist a vertex u′ ∈ F(y2)which is at distance k−1 from
x3. Applying the previous arguments to the path P ′ := (s = x1, x2, y2, x4, x5 = t),
we will have d(xi , u′) = d(y2, u′) = k for i = 1, 2, 4, 5 and, by Lemma 26, get two
more vertices v and w at distance k − 1 from u′ such that vx1, vx2, wx4, wx5 ∈ E
and vy2, wy2 /∈ E (see Fig. 5). By convexity of disk D(u′, k − 1), also vx3, wx3 ∈ E .
Now consider the disk D(x2, 2). Since y3, w are in the disk and x5 is not, vertices
w and y3 must be adjacent. But then vertices y2, x3, w, y3 form a forbidden induced
cycle C4.

Thus, a vertex c ∈ I o(s, t) with e(c) < max{e(s), e(t)} must exist. ��
Corollary 11 Let G be anα1-metric graph. Then, diam(C(G)) ≤ 3 and rad(C(G)) ≤
2.

Proof Assume, by way of contradiction, that there are vertices s, t ∈ C(G) such
that d(s, t) ≥ 4. Then, by Theorem 7, there must exist a vertex c ∈ I o(s, t) such that
e(c) < max{e(s), e(t)}. The lattermeans that e(c) < rad(G), which is impossible. So,
diam(C(G)) ≤ 3must hold. AsC(G) is a convex set ofG, the subgraph ofG induced
by C(G) is also an α1-metric graph. According to [53], diam(G) ≥ 2rad(G) − 2
holds for every α1-metric graph G. Hence, for a graph induced by C(G), we have
3 ≥ diam(C(G)) ≥ 2rad(C(G)) − 2, i.e., rad(C(G)) ≤ 2. ��

See Fig. 6 for the sharpness of these bounds. As chordal graphs are α1-metric
graphs, we get also the following old result.

Corollary 12 ([15]) Let G be a chordal graph. Then, diam(C(G)) ≤ 3 and
rad(C(G)) ≤ 2.
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Fig. 5 Illustration to the proof of
Theorem 7

Fig. 6 Sharpness of results of Theorem 7 and Corollary 11. a A chordal graph with diam(C(G)) = 3 and
rad(C(G)) = 2. bAn α1-metric graph with a pair of vertices at distance 3 for which no vertex with smaller
eccentricity exists in a shortest path between them. The number next to each vertex indicates its eccentricity

3.3 Finding a Central Vertex of an˛1-Metric Graph

We present a local-search algorithm in order to compute a central vertex of an arbitrary
α1-metric graph in subquadratic time (Theorem 8). Our algorithm even achieves linear
runtime on an important subclass of α1-metric graphs, namely, (α1,Δ)-metric graphs
(Theorem 9), thus answering an open question from [32] where this subclass was
introduced. The (α1,Δ)-metric graphs are exactly the α1-metric graphs that further
satisfy the so-called triangle condition: for every vertices u, v, w such that u and v

are adjacent, and d(u, w) = d(v,w) = k, there must exist some common neighbour
x ∈ N (u)∩N (v) such that d(x, w) = k−1. Chordal graphs, and plane triangulations
with inner vertices of degree at least 7, are (α1,Δ)-metric graphs (see [14, 15, 32,
53]).
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3.3.1 Distance-k Gates

We first introduce the required new notations and terminology for this part. In what
follows, let proj(v, A) = {a ∈ A : d(v, a) = d(v, A)} denote the metric projection
of a vertex v to a vertex subset A. For every k such that 0 ≤ k ≤ d(v, A), we define
Sk(A, v) = ⋃{Sk(a, v) : a ∈ proj(v, A)}. A distance-k gate of v with respect to
A is a vertex v∗ such that v∗ ∈ ⋂{I (a, v) : a ∈ proj(v, A)} and d(v∗, A) ≤ k. If
k = 1, then following [16] we simply call it a gate. Note that every vertex v such that
d(v, A) ≤ k is its own distance-k gate. We study the existence of distance-k gates, for
some k ≤ 2, with respect to neighbour-sets and cliques. The latter are a cornerstone
of our main algorithms. They are also, we think, of independent interest.

Lemma 27 Let x and v be vertices in an α1-metric graph G such that d(x, v) ≥ 3.
For every vertices u, u′ ∈ S3(x, v), the metric projections proj(u, D(x, 1)) and
proj(u′, D(x, 1)) are comparable by inclusion.

Proof Suppose by contradiction that U = proj(u, D(x, 1)) and U ′ = proj(u′, D
(x, 1)) are incomparable by inclusion. Let a ∈ U \ U ′ and a′ ∈ U ′ \ U . Observe
that d(u, a) < d(u′, a) and similarly d(u′, a′) < d(u, a′). Furthermore, a, a′ ∈
N (x) ∩ I (x, v)(= D(x, 1) ∩ D(v, d(v, x) − 1)) must be adjacent because, according
to Theorem 5, every disk is convex, and the intersection of two convex sets is also
convex. As a result, applying α1-metric property to u, a, a′, u′, we get d(u, u′) ≥
d(u, a) + d(a′, u′) = 4. A contradiction arises because u, u′ ∈ S3(x, v) and, by
Lemma 2, the interval thinness of G is at most 2. ��
Lemma 28 Let x and u be vertices in an α1-metric graph G such that d(x, u) = 3.
For every verticesw,w′ ∈ N (u)∩ I (x, u), the metric projections proj(w, D(x, 1)),
proj(w′, D(x, 1)) are comparable by inclusion.

Proof Since w,w′ ∈ N (u) ∩ I (u, x), which is the intersection of two disks, and by
Theorem 5 every diskmust be convex, the verticesw andw′ must be adjacent. Suppose
by contradiction that proj(w, D(x, 1)),proj(w′, D(x, 1)) are not comparable by
inclusion. Let a, a′ ∈ N (x) be such that a ∈ N (w) \ N (w′) and a′ ∈ N (w′) \ N (w).
We prove similarly as above that a, a′ ∈ N (x) ∩ I (x, u) must be adjacent. But then,
vertices a, a′, w′, w induce a C4, which is impossible. ��
Corollary 13 Let x be an arbitrary vertex of an α1-metric graph G. Every vertex v of
G has a gate v∗ with respect to D(x, 1).

Proof If d(v, x) ≤ 2, then we can choose v∗ = v. From now on, d(x, v) ≥ 3.
Let u ∈ S3(x, v) be such that |proj(u, D(x, 1))| is maximized. By Lemma 27,
proj(v, D(x, 1)) = proj(u, D(x, 1)). Then, let v∗ ∈ N (u) ∩ I (u, x) be such
that |proj(v∗, D(x, 1))| is maximized. By Lemma 28, proj(v∗, D(x, 1)) =
proj(u, D(x, 1)) = proj(v, D(x, 1)). ��

We now turn our attention to cliques. A difference appears between general α1-
metric graphs and (α1,Δ)-metric graphs, which partly justifies the better runtime
achieved for computing a central vertex in the latter subclass.
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Lemma 29 ([32]) Let K be a clique in an (α1,Δ)-metric graph G. Every vertex v has
a gate v∗ with respect to K .

Lemma 29 does not hold for general α1-metric graphs. For example, if one takes
an edge in C5, then the vertex at distance two to both end-vertices has no gate with
respect to this edge. Nevertheless, we prove next the existence of distance-two gates.

Lemma 30 Let K be a clique in an α1-metric graph G. Every vertex v has a distance-
two gate v∗ with respect to K .

Proof We may assume, without loss of generality, d(v, K ) ≥ 3. Let v∗ ∈ S2(K , v)

be maximizing |proj(v∗, K )|. Suppose by contradiction that proj(v∗, K ) �=
proj(v, K ). Let x ∈ proj(v, K ) \ proj(v∗, K ) be arbitrary, and let w ∈ S2(x, v).
By maximality of |proj(v∗, K )|, there exists a y ∈ proj(v∗, K ) \ proj(w, K ).
Since G is an α1-metric graph, d(v∗, w) ≥ d(v∗, y) + d(x, w) = 4. We also have
d(v∗, w) < d(v∗, y)+1+d(x, w) = 5 because otherwise, the disk D(v, d(v, K )−2)
could not be convex, thus contradicting Theorem 5. Therefore, d(v∗, w) = 4. By
Lemma 17, there exist y′ ∈ N (y) ∩ N (v∗) and x ′ ∈ N (x) ∩ N (w) such that
d(x ′, y′) = 2. However, since we have x ′, y′ ∈ I (v∗, w) \ D(v, d(v, K ) − 2), the
latter still contradicts the convexity of disk D(v, d(v, K ) − 2). ��

3.3.2 Computation of Gates and Distance-two Gates

The problem of computing gates has already attracted some attention, e.g., see [16].
We use this routine in the design of our main algorithms.

Lemma 31 ([39]) Let A be an arbitrary subset of vertices in some graph G with m
edges. In total O(m) time, we can map every vertex v /∈ A to some vertex v∗ ∈
D(v, d(v, A)− 1)∩ N (A) such that |N (v∗)∩ A| is maximized. Furthermore, if v has
a gate with respect to A, then v∗ is a gate of v.

The efficient computation of distance-two gates is more challenging. We present a
subquadratic-time procedure that only works in our special setting.

Lemma 32 Let K be a clique in some α1-metric graph G with m edges. In total
O(m1.41) time, we can map every vertex v /∈ K to some distance-two gate v∗ with
respect to K . Furthermore, in doing so we can also map v∗ to some independent set
JK (v∗) ⊆ D(v∗, 1) such that proj(v∗, K ) is the disjoint union of neighbour-sets
N (w) ∩ K, for every w ∈ JK (v∗).

Proof For short, let us write pK (v) = |proj(v, K )| for every vertex v. If v ∈ N (K ),
then we can set v∗ = v, JK (v) = {v} and pK (v) = |N (v) ∩ K |. This can be done
in total O(m) time for every vertex of N (K ). Thus from now on we only consider
vertices v such that d(v, K ) ≥ 2.

We compute JK (u) for every vertex u such that d(u, K ) = 2. For that, we order the
vertices of N (u) ∩ N (K ) by nonincreasing pK -value. For every x ∈ N (u) ∩ N (K ),
if there is a triangle xyu for some y ∈ N (K ) ordered before x , then we claim that
N (x)∩K ⊆ N (y), and so we can ignore x . Indeed, since x, y are adjacent, N (x)∩K
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and N (y) ∩ K must be comparable by inclusion (otherwise, since K is a clique,
there would exist an induced C4 with x, y and arbitrary vertices of (N (x) \ N (y)) ∩
K , (N (y)\N (x))∩K ). Since y was ordered before x , pK (y) ≥ pK (x), which implies
as claimed N (x) ∩ K ⊆ N (y). Else, for any y ∈ N (K ) ∩ N (u) ordered before x , we
claim that N (x) ∩ K and N (y) ∩ K must be disjoint. Indeed, otherwise, there would
be an induced C4 with u, x, y and an arbitrary vertex of N (x) ∩ N (y) ∩ K . Then,
we put vertex x in JK (u). Overall, we are left solving a variation of the well-known
problem of deciding, for every edge in a graph, whether it is part of a triangle. This
problem can be solved in O(m1.41) time [2].

Finally, we consider all vertices v such that d(v, K ) ≥ 2 by nondecreasing distance
to K . If d(v, K ) = 2, then we set v∗ = v and pK (v) = ∑{pK (x) : x ∈ JK (v)}.
Otherwise, we pick some neighbour u ∈ N (v) such that d(u, K ) = d(v, K ) − 1
and pK (u) is maximized. Then, we set v∗ = u∗ and pK (v) = pK (u). This proce-
dure is correct assuming that a distance-two gate always exists, which follows from
Lemma 30. ��

3.3.3 Local-search Algorithms

Now that we proved the existence of gates and distance-two gates, and of efficient
algorithms in order to compute them, we turn our attention to the following subprob-
lem: being given a vertex x in an α1-metric graph G, either compute a neighbour
y such that e(y) < e(x), or assert that x is a local minimum for the eccentricity
function (but not necessarily a central vertex). Our analysis of the next algorithms
essentially follows from the results of Sect. 3.1. We first present the following special
case, of independent interest, and for which we obtain a better runtime than for the
more general Lemma 34.

Lemma 33 Let x be an arbitrary vertex in an α1-metric graph G with m edges. If
e(x) ≥ rad(G) + 2, then

⋂{N (x) ∩ I (x, z) : z ∈ F(x)} �= ∅, and every neighbour y
in this subset satisfies e(y) < e(x). In particular, there is an O(m)-time algorithm that
either outputs a y ∈ N (x) such that e(y) < e(x), or asserts that e(x) ≤ rad(G) + 1.

Proof If e(x) ≥ rad(G) + 2, then by Theorem 6, there exists a y ∈ N (x) such
that e(y) < e(x). In particular,

⋂{N (x) ∩ I (x, z) : z ∈ F(x)} �= ∅. Let y′ be
an arbitrary neighbour of x in this subset. Suppose by contradiction e(y′) ≥ e(x).
By Lemma 19, e(y′) ≤ e(x). Hence, e(x) = e(y′) ≥ rad(G) + 2. Furthermore,
F(x) ∩ F(y′) = ∅ because we assumed that y′ ∈ N (x) ∩ I (x, z) for every z ∈ F(x).
But then, let z ∈ F(x), z′ ∈ F(y′) be arbitrary. Since G is an α1-metric graph,
d(z, z′) ≥ d(z, y′) + d(x, z′) = e(y′) − 1+ e(x) − 1 ≥ 2(rad(G) + 1) > diam(G).
The latter is impossible.

Finally, we describe our O(m)-time algorithm for an arbitrary vertex x (of unknown
eccentricity). We assume without loss of generality e(x) ≥ 2. We compute gates z∗
with respect to D(x, 1) for every z ∈ F(x),whose existence follows fromCorollary 13.
By Lemma 31, this can be done in O(m) time. Then, we compute K = ⋂{N (x) ∩
I (x, z) : z ∈ F(x)}. Note that K = ⋂{N (x) ∩ N (z∗) : z ∈ F(x)}, and therefore, we
can also compute K in O(m) time. If K = ∅, then we can assert e(x) ≤ rad(G) + 1.
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Else, let y ∈ K be arbitrary. If e(x) ≤ e(y), then again we can assert that e(x) ≤
rad(G) + 1. Otherwise, we are done outputting y. ��

We can strengthen Lemma 33 as follows, at the expenses of a higher runtime.

Lemma 34 Let x be an arbitrary vertex in anα1-metric graph G withm edges. There is
an O(m1.41)-time algorithm that either outputs a y ∈ N (x) such that e(y) < e(x), or
asserts that x is a local minimum for the eccentricity function. If G is (α1,Δ)-metric,
then its runtime can be lowered down to O(m).

Proof If e(x) ≤ 2 then x is always a local minimum for the eccentricity function,
unless e(x) = 2 and x is adjacent to some universal vertex y. Therefore, we assume
for the remainder of the proof e(x) ≥ 3. First we compute K = ⋂{N (x) ∩ I (x, z) :
z ∈ F(x)}. This can be done in O(m) time by using the exact same approach as for
Lemma 33. If K = ∅, then clearly x is a local minimum for the eccentricity function.
Otherwise, we are left deciding whether there exists a vertex of K with eccentricity
smaller than e(x). For that, we claim that we only need to consider the vertices v

such that d(v, K ) ≥ e(x) − 1 ≥ 2. Indeed, by Theorem 5, the disks of G must
be convex, which implies that K is a clique. In particular, every vertex v such that
d(v, K ) ≤ e(x)−2 is at a distance at most e(x)−1 to every vertex of K . Therefore, the
claim is proved. Now, if d(v, K ) = e(x) for at least one vertex v, then every vertex of
K must have eccentricity at least e(x), hence we can assert that x is a local minimum
for the eccentricity function. Otherwise, let F(K ) = {v ∈ V : d(v, K ) = e(x) − 1}.
For every y ∈ K , in order to decide whether e(y) < e(x), it suffices to decide whether
y ∈ ⋂{proj(v, K ) : v ∈ F(K )}, or even more strongly to compute the number of
vertices v ∈ F(K ) such that y ∈ proj(v, K ).

For general α1-metric graphs, we compute distance-two gates v∗ for every v ∈
F(K ), whose existence follows from Lemma 30. By Lemma 32, this can be done in
O(m1.41) time. Being also given the independent sets JK (v∗) ⊆ N (v∗), for every
v ∈ F(K ), as in Lemma 32, we compute the following weight function α on N (K ):
α(w) = |{v ∈ F(K ) : w ∈ JK (v∗)}|. This can be done in O(m) time. Recall
that for every v ∈ F(K ), proj(v, K ) is the disjoint union of N (w) ∩ K for every
w ∈ JK (v∗). As a result, for every y ∈ K , the number of vertices v ∈ F(K ) such that
y ∈ proj(v, K ) is exactly

∑{α(w) : w ∈ N (y) \ K }, which can be calculated in
total O(m) time for every vertex of K .

Finally, assume for the remainder of the proof that G is (α1,Δ)-metric, and let
us modify this last part of the procedure as follows. We compute gates v∗ for every
v ∈ F(K ), whose existence follows from Lemma 29. By Lemma 31, this can be done
in O(m) time. For every w ∈ N (K ), let α(w) = |{v ∈ F(K ) : v∗ = w}|. As before,
for every y ∈ K , the number of vertices v ∈ F(K ) such that y ∈ proj(v, K ) is
exactly

∑{α(w) : w ∈ N (y) \ K }, which can still be calculated in total O(m) time
for every vertex of K . ��

3.3.4 The Main Procedures

We start presenting our algorithm for the general α1-metric graphs.
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Theorem 8 If G is an α1-metric graph with m edges, then a vertex x0 such that
e(x0) ≤ rad(G) + 1 can be computed in O(m) time. Furthermore, a central vertex
can be computed in O(m1.71) time.

Proof By Theorem 2, we can compute in O(m) time a vertex x0 such that e(x0) ≤
rad(G) + 3. We repeatedly apply Lemma 33 until we can further assert that e(x0) ≤
rad(G) + 1 (and, hence, by Theorem 6, d(x0,C(G)) ≤ 2). Since there are at most
two calls to this local-search procedure, the runtime is in O(m). Then, we apply the
following procedure, starting from x0 and X0 := V , until we can assert that the current
vertex xi (considered at the i th iteration) is central.

1. If deg(xi ) ≤ m.29, then we output a vertex of minimum eccentricity within
D(xi , 2), and then we stop. This is done by applying Lemma 34 to every ver-
tex of D(xi , 1). Otherwise (deg(xi ) > m.29), we go to Step 2.

2. Let zi ∈ F(xi ) be arbitrary. We set Xi+1 := Xi ∩ D(xi , 5) ∩ D(zi , e(xi ) − 1). If
Xi+1 = ∅, then we output xi . Otherwise, we pick an arbitrary vertex y ∈ Xi+1,
and then we go to Step 3.

3. We consider several cases in what follows.

(a) If e(y) < e(xi ), then we output y;
(b) Else, if e(y) = e(xi ), then we set xi+1 := y and we go back to Step 1;
(c) Else, there are three subcases. If

⋂{Xi+1 ∩ N (y)∩ I (y, w) : w ∈ F(y)} = ∅,
then we output xi . Otherwise, we pick an arbitrary neighbour y′ in this subset.
If e(y′) ≥ e(y), then we also output xi . Else, we set y := y′ and we repeat
Step 3.

We stress that at the i th iteration we ensure at Step 2 that xi ∈ Xi \ Xi+1. In particular,
X0 ⊃ X1 ⊃ . . . ⊃ Xi . It implies that our procedure eventually halts at some iteration
T because we always stop at Step 2 if Xi+1 = ∅. Suppose by contradiction that we
do not output a central vertex. For every i such that 0 ≤ i < T , we ensure at Step 3b
that e(xi+1) = e(xi ). Therefore, e(xT ) = e(xT−1) = . . . = e(x0) ≤ rad(G) + 1.
Since at the T th iteration, we output a vertex of eccentricity at most e(xT ), we must
have e(xT ) ≥ rad(G) + 1. It implies e(xi ) = rad(G) + 1 for every i such that
0 ≤ i ≤ T . Then, by Theorem 6, d(xi ,C(G)) ≤ 2 for every i such that 0 ≤ i ≤ T .
Let us now consider the last step executed during iteration T . It cannot be Step 1
because a minimum eccentricity vertex within D(xT , 2) must be central. Suppose
by contradiction that we halt at Step 2. Then, XT+1 = ∅. We prove by induction
that C(G) ⊆ Xi for every i with 0 ≤ i ≤ T + 1, obtaining a contradiction. This
is true for i = 0 because X0 = V . Assume now this is true for some i with 0 ≤
i ≤ T . Recall that d(xi ,C(G)) ≤ 2. By Corollary 11, diam(C(G)) ≤ 3. As a
result, C(G) ⊆ D(xi , 5). Furthermore, C(G) ⊆ D(zi , e(xi ) − 1) because we have
rad(G) = e(xi ) − 1. Hence, C(G) ⊆ Xi ∩ D(xi , 5) ∩ D(zi , e(xi ) − 1) = Xi+1.
We deduce from the above that we must halt at Step 3. Since we suppose that we
output a vertex of eccentricity e(xT ) = rad(G)+ 1, it implies that we halt at Step 3c.
In particular, we found a vertex y ∈ XT+1 such that e(y) ≥ e(xT ) + 1, and either⋂{XT+1 ∩ N (y) ∩ I (y, w) : w ∈ F(y)} = ∅, or e(y′) ≥ e(y) for some arbitrary
neighbour of y in this subset. However, by Corollary 9, there exists a shortest yC(G)-
path that is decreasing and such that the only horizontal edge, if any, must have one end
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that is adjacent to the end-vertex in proj(y,C(G)) (i.e., it must be the penultimate
edge of the path, starting from y). In particular, the neighbour y′′ of y on this shortest
path must satisfy e(y′′) < e(y). Since y ∈ XT+1, C(G) ⊆ XT+1 and according to
Theorem 5 the subset XT+1 must be convex (as intersection of convex disks), we get
that y′′ ∈ XT+1. Then,

⋂{XT+1 ∩ N (y) ∩ I (y, w) : w ∈ F(y)} �= ∅. Furthermore,
since we assume e(y) ≥ rad(G)+2, by Lemma 33, every neighbour y′ in this subset
must satisfy e(y′) < e(y). A contradiction occurs.

We end up analysing the runtime of the procedure. Recall that all vertices
x0, x1, . . . , xT are pairwise different. Since all such vertices, except maybe the last
one, have degreemore thanm.29, the number of iterations is in O(m/m.29) = O(m.71).
Let us consider an arbitrary iteration i , for some i such that 0 ≤ i ≤ T . During Step 1,
either we do nothing or (only if i = T ) we call Lemma 34 at most O(m.29) times
and then we stop. In the latter case, the runtime is in O(m1.7). Step 2 takes O(m)

time. Then, during Step 3, we only consider vertices y ∈ D(xi , 5). Since every such
vertex y satisfies e(y) ≤ e(xi ) + 5, we can execute Step 3c at most five times. For
every execution of Step 3c, we can slightly modify the algorithm of Lemma 33 in
order to perform all computations in O(m) time. Therefore, Step 3 also takes O(m)

time. Overall, the total runtime of any iteration is in O(m), except maybe for the last
iteration whose runtime can be O(m1.7). Since there are only O(m.71) iterations, the
final runtime is in O(m1.71). ��

To lower the runtime to O(m) for the (α1,Δ)-metric graphs, we use a different
approach that is based on the following additional properties of these graphs. Unfor-
tunately, these properties crucially depend on the triangle condition.

Lemma 35 ([32]) Let G be an (α1,Δ)-metric graph. Then, in every slice Sk(y, z),
there is a vertex w that is universal to that slice, i.e., Sk(y, z) ⊆ D(w, 1).

Lemma 36 Let x, y be adjacent vertices in an (α1,Δ)-metric graph G such that both
x, y are local minima for the eccentricity function and e(x) = e(y) = rad(G) + 1.
For every z ∈ proj(x,C(G)), there exists a u ∈ N (x) ∩ N (z) such that F(u) ⊆
F(x) ∩ F(y).

Proof First we prove that z ∈ proj(y,C(G)). Suppose by contradiction it is not the
case. By Theorem 6, d(x,C(G)) = d(y,C(G)) = 2. Therefore, d(y, z) = 3 and
x ∈ N (y) ∩ I (y, z). Let w ∈ N (x) ∩ N (z) be arbitrary. Note that e(w) ≤ e(z) + 1 =
e(x). It implies e(w) = e(x) = rad(G) + 1 because x is assumed to be a local
minimum for the eccentricity function. Then, let v ∈ F(w) be arbitrary. Since G is
α1-metric, d(v, y) ≥ d(v, z) + d(w, y) = rad(G) + 2. The latter is in contradiction
with e(y) = rad(G) + 1.

Since x, y are adjacent and d(x, z) = d(y, z) = 2, the triangle condition implies
the existence of some common neighbour u ∈ N (x) ∩ N (y) ∩ N (z). Recall that
e(u) = e(x) = e(y) = rad(G) + 1. Suppose by contradiction that there exists a
v ∈ F(u) \ F(x). Since G is an α1-metric graph, d(z, v) ≥ d(z, u) + d(x, v) =
1+ rad(G), which is impossible for z ∈ C(G). As a result, F(u) ⊆ F(x). We prove
similarly that F(u) ⊆ F(y), and so F(u) ⊆ F(x) ∩ F(y). ��
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Theorem 9 If G is an (α1,Δ)-metric graph with m edges, then a central vertex can
be computed in O(m) time.

Proof The algorithm starts from a vertex x which is a local minimum for the eccentric-
ity function of G. To compute such a vertex in O(m) time, we first apply Theorem 2
in order to compute a vertex of eccentricity at most rad(G) + 3. Then, we apply
Lemma 34 at most three times.

We run a core procedure which either outputs two adjacent vertices u, v ∈ D(x, 1)
such that e(u) = e(v) = e(x) and F(u), F(v) are not comparable by inclusion, or
outputs a central vertex. In the former case, let y ∈ F(u)\F(v) and z ∈ F(v)\F(u) be
arbitrary. Since G is an α1-metric graph, d(y, z) ≥ d(y, v) + d(u, z) = 2e(x) − 2. If
d(y, z) ≥ 2e(x)−1, then rad(G) > e(x)−1, and therefore x is a central vertex. From
now on, we assume that d(y, z) = 2e(x)−2. Then, any vertex of eccentricity e(x)−1
must be contained in Se(x)−1(y, z). Let w be such that Se(x)−1(y, z) ⊆ D(w, 1),
whose existence follows from Lemma 35. We apply Lemma 34 in order to compute a
minimum eccentricity vertex x ′ within D(w, 1). Finally, we output any of x, x ′ that has
minimum eccentricity. To complete the description of our algorithm, we now present
the core procedure.

1. We compute gates z∗ with respect to D(x, 1) for every z ∈ F(x), whose existence
follows from Corollary 13. By Lemma 31, this can be done in O(m) time. Then,
for every y ∈ N (x), we compute fx (y) = |{z ∈ F(x) : y ∈ N (x) ∩ I (x, z)}|.
This can also be done in O(m) time by enumerating the gates z∗ in N (y) for every
y ∈ N (x).

2. We choose a neighbour y1 such that fx (y1) is maximized. There are three cases.

(a) If e(y1) > e(x) then, by Lemma 19, we can assert that x is a central vertex.
From now on, e(y1) ≤ e(x). Since x is a local minimum for the eccentricity
function, e(x) = e(y1).

(b) If y1 is not a local minimum for the eccentricity function of G, then by
Lemma 34 we can compute a central vertex within N (y1) in O(m) time.
From now on both x, y1 are local minima for the eccentricity function.

(c) If F(y1) \ F(x) �= ∅, then we can output u = x, v = y1. Indeed, we also
have F(x) \ F(y1) �= ∅ because y1 ∈ N (x) ∩ I (x, z) for some z ∈ F(x). In
what follows, we assume that F(x), F(y1) are comparable by inclusion, and
so, F(y1) ⊂ F(x).

3. Let z1 ∈ F(y1) be arbitrary. We choose some neighbour y2 within N (x)∩ I (x, z1)
which maximizes fx (y2). Note that in order to compute N (x) ∩ I (x, z1), and so
y2, in O(m) time, it suffices to only consider the vertices of N (x) ∩ N (z∗1). There
are two cases.

(a) If e(y2) > e(x) then, by Lemma 19, we can assert that x is a central vertex.
From now on we assume e(y2) = e(x).

(b) If y2 is not a local minimum for the eccentricity function of G, then by
Lemma 34 we can compute a central vertex within N (y2) in O(m) time.
From now on vertices x, y1, y2 are local minima for the eccentricity function.
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4. Due to the maximality of fx (y1) and the existence of a z1 ∈ F(x) ∩ F(y1), we
have fx (y2) ≤ fx (y1) < |F(x)|. Furthermore, both F(x) \ F(y1), F(x) \ F(y2)
are nonempty. For each i ∈ {1, 2}, we compute Bi = ⋂{N (x) ∩ I (x, z) : z ∈
F(x) \ F(yi )}. Since Bi = ⋂{N (x) ∩ N (z∗) : z ∈ F(x) \ F(yi )}, it can be done
in O(m) time. There are now two cases.

(a) Assume the existence of an edge uv where u ∈ B1, v ∈ B2. If
max{e(u), e(v)} > e(x) then, by Lemma 19, we can assert that x is a cen-
tral vertex. Otherwise, we prove next that F(u), F(v) are not comparable by
inclusion, and therefore we can output u, v. Indeed, F(y1), F(x) ∩ F(y2) are
not comparable by inclusion because

|F(x) ∩ F(y2)| = |F(x)| − fx (y2) ≥ |F(x)| − fx (y1) = |F(y1)|

and z1 ∈ F(y1)\ F(y2). Furthermore, F(x)∩ F(u) ⊆ F(y1) (F(x)∩ F(v) ⊆
F(y2), respectively) because u ∈ B1 (v ∈ B2, respectively). Then, F(u) ∩
F(x) = F(y1) and F(v) ∩ F(x) = F(y2) ∩ F(x), because otherwise this
would contradict the maximality of either fx (y1) or fx (y2).

(b) Finally, assume that every vertex of B1 is nonadjacent to every vertex of B2.We
claim that x is a central vertex. Suppose by contradiction e(x) = rad(G)+1.
Let z ∈ proj(x,C(G)) be arbitrary. By Lemma 36, there exist vertices
u, v ∈ N (x) ∩ N (z) such that F(u) ⊆ F(x) ∩ F(y1) = F(y1), F(v) ⊆
F(x) ∩ F(y2). Note that max{e(u), e(v)} ≤ e(z) + 1 = rad(G) + 1. Since
x is a local minimum for the eccentricity function, we obtain e(u) = e(v) =
rad(G) + 1. Then, u ∈ B1, v ∈ B2. In particular, u, v must be nonadjacent,
thus contradicting the convexity of D(x, 1) ∩ D(z, 1), and so, Theorem 5.

��
We leave as an open question whether there exists a linear-time algorithm for

computing a central vertex in an α1-metric graph.

3.4 Approximating all Eccentricities in˛1-Metric Graphs

It follows from the results of Sects. 3.3 and 2.2 that a vertex with eccentricity at most
rad(G) + 1 and a vertex with eccentricity at least diam(G) − 5 can be found in
linear time for every α1-metric graph G. Furthermore, all vertex eccentricities with an
additive one-sided error at most 5 in an α1-metric graph can be computed in total linear
time (see Sect. 2.3). Here, we present two immediate consequences of the results of
Sect. 3, hereby answering some open questions from [25, 32].

Theorem 10 Every α1-metric graph G admits an eccentricity 3-approximating span-
ning tree. Furthermore, an additive 4-approximation of all vertex eccentricities in G
can be computed in subquadratic total time.

Proof It is sufficient to show that any breadth-first-search tree T ofG rooted at a vertex
c ∈ C(G) is an eccentricity 4-approximating spanning tree ofG and any breadth-first-
search tree T ofG rooted at a vertex c ∈ C(C(G)) (i.e., a central vertex of the subgraph
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of G that is induced by C(G)) is an eccentricity 3-approximating spanning tree of G.
We do not know how to find efficiently a vertex c ∈ C(C(G)) but, by Theorem 8, a
central vertex c of G with m edges can be computed in O(m1.71) time.

Consider an arbitrary vertex v in G and let v′ be a vertex of C(G) closest to v. By
Corollary 8, e(v) ≥ d(v, v′) + rad(G) − ε, where ε ≤ 1. Since T is a shortest path
tree and c is a central vertex of G, eT (v) ≤ dT (v, c) + eT (c) = dG(v, c) + eG(c) =
dG(v, c) + rad(G). Hence, by the triangle inequality, eT (v) − eG(v) ≤ dG(v, c) +
rad(G) − dG(v, v′) − rad(G) + ε ≤ dG(c, v′) + ε ≤ dG(c, v′) + 1.

By Corollary 11, we know diam(C(G)) ≤ 3 and rad(C(G)) ≤ 2. Hence, if
c ∈ C(G) then dG(c, v′) ≤ 3, and if c ∈ C(C(G)) then dG(c, v′) ≤ 2. ��

For (α1,Δ)-metric graphs this result can be strengthened further.

Theorem 11 Every (α1,Δ)-metric graph G admits an eccentricity 2-approximating
spanning tree. Furthermore, an additive 3-approximation of all vertex eccentricities
in G with m edges can be computed in total O(m) time.

Proof Let T be a BFS(c)-tree, where c is a central vertex of G. We can follow the
proof of Theorem 10 and get eT (v) − eG(v) ≤ dG(c, v′) + ε, where v′ is a vertex
of C(G) closest to v. In an (α1,Δ)-metric graph G, we have ε ≤ 1, if diam(G) =
2rad(G), and ε = 0, otherwise [32]. Furthermore, when diam(G) = 2rad(G),
diam(C(G)) ≤ 2 and rad(C(G)) ≤ 1 must hold [32]. Thus, if c ∈ C(G) then
eT (v) − eG(v) ≤ dG(c, v′) + ε ≤ diam(C(G)) + ε ≤ 3 (i.e., ≤ 3 + 0 or ≤ 2 + 1),
and if c ∈ C(C(G)) then eT (v)− eG(v) ≤ dG(c, v′)+ ε ≤ rad(C(G))+ ε ≤ 2 (i.e.,
≤ 2+ 0 or ≤ 1+ 1). Note also that a central vertex of an (α1,Δ)-metric graph can be
computed in linear time (Theorem 9). ��

The existence of an eccentricity 2-approximating spanning tree in an (α1,Δ)-metric
graph is known already from [32]. The second part of Theorem 11 provides an answer
to an open question from [25].

4 Concluding Remarks

We conclude the paper with some immediate questions building off our results.

1. Can our (approximation) bounds on eccentricities in general αi -metric graphs be
improved? In particular,

(i) is our bound on the eccentricity of a middle vertex of a shortest path between
two mutually distant vertices best possible?

(ii) is our bound on the eccentricity of a vertex furthest from an arbitrary vertex
sharp?

(iii) can our bound 3i + 2 on the diameter of the center be improved to 2i + 1?

2. What best approximations of the radius and of the diameter of an α1-metric graph
G can be achieved in linear time? In particular,

(iv) does there exist a linear-time algorithm for finding a central vertex (and,
hence, the exact radius) of an α1-metric graph?
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(v) is it possible to show that the eccentricity of a vertex furthest from an arbitrary
vertex is at least diam(G) − 2?

(vi) can a vertex with eccentricity at least diam(G) − 1 be found in linear time?

Recall that in chordal graphs (a subclass of α1-metric graphs) a central vertex can be
found in linear time and the eccentricity of a vertex furthest from an arbitrary vertex is
at least diam(G)−2 [16]. Furthermore, a vertexwith eccentricity at least diam(G)−1
can be found in linear time by a LexBFS [34]. On the other hand, computing the exact
diameter of a chordal graph in subquadratic time is impossible unless the well known
Strong Exponential Time Hypothesis (SETH) is false [6].
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