
Algorithmica
https://doi.org/10.1007/s00453-024-01222-7

Embedding Arbitrary Boolean Circuits into Fungal
Automata

Augusto Modanese1 · Thomas Worsch2

Received: 24 February 2023 / Accepted: 23 February 2024
© The Author(s) 2024

Abstract
Fungal automata are a variation of the two-dimensional sandpile automaton of Bak
et al. (Phys Rev Lett 59(4):381–384, 1987. https://doi.org/10.1103/PhysRevLett.59.
381). In each step toppling cells emit grains only to some of their neighbors chosen
according to a specific update sequence. We show how to embed any Boolean circuit
into the initial configuration of a fungal automaton with update sequence HV . In
particular we give a constructor that, given the description B of a circuit, computes the
states of all cells in the finite support of the embedding configuration in O(log |B|)
space. As a consequence the prediction problem for fungal automata with update
sequence HV is P-complete. This solves an open problem of Goles et al. (Phys Lett
A 384(22):126541, 2020. https://doi.org/10.1016/j.physleta.2020.126541).

Keywords Fungal automata · Prediction problem · P-completeness ·
Two-dimensional cellular automata

1 Introduction

The two-dimensional sandpile automaton by Bak et al. [1] has been investigated from
different points of view. Because of the simple local rule, it is easily generalized to
the d-dimensional case for any integer d ≥ 1.

Several prediction problems for these cellular automata (CA) have been considered
in the literature. Their difficulty varies with the dimensionality. The recent survey by
Formenti and Perrot [2] gives a good overview. For one-dimensional sandpile CA the
problems are known to be easy (see, e.g., [3]). For d-dimensional sandpile CA where

B Augusto Modanese
augusto.modanese@aalto.fi

B Thomas Worsch
worsch@kit.edu

1 Aalto University, Espoo, Finland

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01222-7&domain=pdf
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1016/j.physleta.2020.126541

Algorithmica

d ≥ 3, they are known to be P-complete [4]. In the two-dimensional case the situation
is unclear; analogous results are not known.

Fungal automata (FA) as introduced by Goles et al. [5] are a variation of the two-
dimensional sandpile automaton where a toppling cell (i.e., a cell with state ≥ 4)
emits 2 excess grains of sand either to its two horizontal (“H”) or to its two vertical
neighbors (“V ”). These twomodes of operation may alternate depending on an update
sequence specifying in which steps grains are moved horizontally and in which steps
vertically.

The construction in [5] shows that some natural prediction problem is P-complete
for two-dimensional fungal automata with update sequence H4V 4 (i.e., grains are first
transferred horizontally for 4 steps and then vertically for 4 steps, alternatingly). The
paper leaves open whether the same holds for shorter update sequences. The shortest
non-trivial sequence is HV (and its complement V H); at the same time this appears to
be the most difficult to use. By a reduction from the well-known circuit value problem
(CVP), which is P-complete, we will show:

Theorem 1 The following prediction problem for FA with update sequence HV is
P-complete:

Given as inputs initial states for a finite rectangle R of cells, a cell index y (encoded
in binary), and an upper bound T (encoded in unary) on the number of steps of the
FA,

decide whether cell y is in a state �= 0 or not at some time t ≤ T when the FA is
started with R surounded by cells all in state 0.

Weassume readers are familiarwith cellular automata (seeSect. 2 for the definition).
Wealso assumeknowledgeof basic facts aboutBoolean circuits and complexity theory,
some of which we recall next.

This paper is an extended and revised version of a preliminary paper that previously
appeared in LATIN 2022 [6].

1.1 Boolean Circuits and the CVP

A Boolean circuit is a directed acyclic graph of gates: not gates (with one input),
and and or gates with two inputs, a number of input gates and one output gate.
The output of a gate may be used by an arbitrary number of other gates. Throughout
the paper n will always denote the number of inputs and m will denote the number of
gates.

Since a circuit is a dag and each gate obtains its inputs from gates in previous layers,
ultimately the output of each gate can be computed from a subset of the input gates in
a straightforward way.

It is straightforward to realize not, and, and or gates in terms of nand gates
with two inputs (with an only constant overhead in the number of gates). To simplify
the construction later on, we assume that circuits consist exclusively of nand gates.
Furthermore it is without loss of generality to assume that m ≥ n. If a circuit does not
satisfy this restriction it can be adapted by computing 0 = xi ∧ ¬xi from each input

123

Algorithmica

xi using constant size subcircuits ci and then extending the circuit by using the result
o of its original output gate and compute (· · · ((o ∨ c1) ∨ c2) · · · ∨ cn) = o.

Each gate of a circuit is described by a 4-tuple (g, t, g1, g2) where g is the number
of the gate, t describes the type of the gate, and g1 and g2 are the numbers of the gates
(called sources of g) which produce the inputs for gate g; all numbers are represented
in binary. If gate g has only one input, then g2 = g1 by convention. Without loss of
generality the input gates have numbers 1 to n and since their predecessors g1 and g2
will never be used, assume they are set to 0. All other gates have subsequent numbers
starting at n + 1 such that the input bits for gate g are coming from gates with strictly
smaller numbers. The nand gates with number n + i will occasionally be denoted as
Gi . Following Ruzzo [7] the description B of a complete circuit is the concatenation
of the descriptions of all of its gates, sorted by increasing gate numbers.

Problem instances of the circuit value problem (CVP) consist of the description B
of a Boolean circuit C with n inputs and a list x of n input bits. The task is to decide
whether C(x) = 1 holds or not. It is well known that the CVP is P-complete.

1.2 Challenges

Given an initial configuration for a rectangle of cells R of an FA, it is straightforward
to simulate the evolution of R with a polynomial-time Turing machine. Hence it is
clear that the prediction problem is in P and that the challenging aspect of Theorem
1 is obtaining the P-hardness of the problem. A standard strategy for showing the
P-hardness of a problem � that concerns predicting the behavior of a machine model
M is by a reduction from the CVP to�, which essentially amounts to describing how
to “embed” circuits in M. (This is the approach used in the previous work by Goles
et al. [5].)

Formallywhatweneed to show is that there is a constructor operating in logarithmic
space that, given an instance (C, x) of the CVP, constructs an instance (R, y, T) of
the prediction problem (such that one is a yes-instance if and only if the other is also a
yes-instance of the respective problem). From a practical aspect, the greater challenge
is showing how to implement basic circuit components (wires, gates, crossings, etc.)
and then connect these to realize C in the initial configuration R (in such a way that
can be constructed in logarithmic space). Once we have done so, we simply place the
input x in the cells in R that represent the input of C and identify y with the one that
represents the output of C . As for T , we choose a large enough value so that enough
time steps have elapsed for the output to be observed at y.

In our setting of fungal automata with update sequence HV , although realizing
wires and signals as in [5] is possible, there is no obvious implementation for negation
nor for a reliable wire crossing. Hence it seems one can only directly construct circuits
that are both planar and monotone. Although it is known that the CVP is P-complete
for either planar or monotone circuits [8], it is unlikely that one can achieve the same
under both constraints. This is because the CVP for circuits that are both monotone
and planar lies in NC2 (and is thus certainly not P-complete unless P ⊆ NC2) [9].

We are able to overcome this barrier by exploiting features that are present in fungal
automata but not in general circuits: time and space. Namely we deliberately retard

123

Algorithmica

signals in the circuits we implement by extending the length of the wires that carry
them. We show how this allows us to realize a primitive form of transistor. From this,
in turn, we are able to construct a nand gate, thus allowing both wire crossings and
negations to be implemented.

Our construction is not subject to the limitations that apply to the two-dimensional
case that were previously shown by Gajardo and Goles [10] since the FA starting
configuration is not a fixed point. The resulting construction is also significantly more
complex than that of [5].

1.3 Overview of the Construction

In the rest of the paper we describe how to embed any Boolean circuit with description
B and an assignment of values to the inputs into a configuration c of a fungal automaton
in such a way that the following holds:

• “Running” the FA for a sufficient number of steps results in the “evaluation” of
all simulated gates. In particular, after reaching a stable configuration, a specific
cell of the FA is in state 1 or 0 if and only if the output of the circuit is 1 or 0,
respectively.

• The initial configuration F of the FA is simple in the sense that, given the descrip-
tion of a circuit and an input to it, we can produce its embedding F using
O(log n + log |B|) space. Thus we have a log-space reduction from the CVP
to the prediction problem for FA.

The construction consists of several layers:

Layer 0: The underlying model of fungal automata.
Layer 1: As a first abstraction we subdivide the space into “blocks” of 2 × 2 cells

and always think of update “cycles” consisting of 4 steps of the CA, using
the update sequence (HV)2.

Layer 2: On top of thatwewill implement“polarized circuits” processing“polarized
signals” that run along “wires”.

Layer 3: Polarized circuitry is then used to implement “Boolean circuits with delay”:
“bits” are processed by “gates” connected by “cables” (we slightly deviate
from the standard terminology of Boolean circuits and reserve the term
“wire” for the more primitive wires defined in layer 2.)

Layer 4: Finally a given Boolean circuit (without delay) can be embedded in a fungal
automaton (as a circuit with delay) in a systematic fashion that needs only
logarithmic space to construct.

The rest of this paper has a simple organization: Each layer i will be described sepa-
rately in section i + 2.

2 Layer 0: The Fungal Automaton

Let N+ denote the set of positive integers and Z that of all integers. For d ∈ N+, a
d-dimensional CA is a tuple (S, N , δ) where:

123

Algorithmica

• S is a finite set of states
• N is a finite subset of Zd , called the neighborhood
• δ : SN → S is the local transition function

In the context of CA, the elements ofZd are referred to as cells. The function δ induces
a global transition function� : SZd → SZ

d
by applying δ to each cell simultaneously.

In the following, wewill be interested in the case d = 2 and the so-called vonNeumann
neighborhood N = {(a, b) ∈ Z

2 | |a| + |b| ≤ 1} of radius 1.
Except for the updating of cells the fungal automaton is just a two-dimensional CA

with the von Neumann neighborhood of radius 1 and S = {0, 1, . . . , 7} as the set of
states. For consistency, we use the same set of states as in [1]; however, the states 6 and
7 never occur in our construction, only the subset S′ = {0, 1, . . . , 5} will be needed.
A configuration is thus a mapping c : Z2 → S.

Depending on their states cells will be depicted as follows in diagrams:

• state 0 as
• state 1 as •

• state i ∈ S\{0, 1} as i

We will use colored background for cells in states 2, 3, and 4 since their presence
determines the behavior of the polarized circuit. The state 1 is only a “side effect” of
an empty cell receiving a grain of sand from some neighbors; hence it is represented
as a dot. Cells which are not included in a figure are always assumed to be in state 0.

For a logical predicate P denote by [P] the value 1 if P is true and the value 0 if
P is false. For i ∈ Z

2 denote by h(i) the two horizontal neighbors of cell i and by
v(i) its two vertical neighbors. Cells are updated according to 2 functions H and V
mapping from SZ

2
to SZ

2
where for each i ∈ Z

2 the following holds:

H(c)(i) = c(i) − 2 · [c(i) ≥ 4] +
∑

j∈h(i)

[c(j) ≥ 4];

V (c)(i) = c(i) − 2 · [c(i) ≥ 4] +
∑

j∈v(i)

[c(j) ≥ 4].

Note that in every time step either all cells will use H or all cells will use V . Therefore
the values computed by these will always be in the range {0, . . . , 7} again; and if
all cells in a neighborhood are in fact from the subset S′ = {0, . . . , 5} the new state
computed will be from S′ again.

The updates are similar to the sandpile model by Bak et al. [1], but toppling cells
only emit grains of sand either to their horizontal or their vertical neighbors. Therefore
whenever a cell is non-zero, it stays non-zero forever.

The composition of these functions applying first H and then V is denoted HV .
For the transitions of a fungal automaton with update sequence HV these functions
are applied alternatingly, resulting in a computation c, H(c), V (H(c)), H(V (H(c))),
V (H(V (H(c)))), and so on. In examples we will often skip three intermediate con-
figurations and only show c, HV HV (c), etc. Figure1 shows a simple first example.

123

Algorithmica

Fig. 1 Five transitions according to HV HV H

Fig. 2 Compact representation of two cycles

3 Layer 1: Coarse-Graining Space and Time

As a first abstraction from now on one should always think of the space as subdivided
into “blocks” of 2×2 cells. Furthermore we will look at update “cycles” consisting of
4 steps of the CA, thus using the update sequence HV HV which we will abbreviate
to Z . As an example Fig. 2 shows the same cycle as Fig. 1 and the following cycle in
a compact way. Block boundaries are indicated by thicker lines.

Cells outside the depicted area of a figure are assumed to be 0 initially and they
will never become critical and topple during the computation that is shown.

4 Layer 2: Polarized Components

We turn to the second lowest level of abstraction. Here we work with two types of
signals, which we refer to as “positive” (denoted�) and “negative” (denoted�). Both
types will have several representations as a block in the FA.

• A � signal is represented by the upper left corner of the block being a 4 and the
other cells being 2 or 3 .

• A � signal is represented by the lower left corner of the block being a 4 and the
other cells being 2 or 3 .

The rules of fungal automata allow us to perform a few basic operations on
these “polarized” signals (e.g., duplicating, merging, or crossing them under cer-
tain assumptions). The highlight here is that we can implement a (delay-sensitive)
form of transistor that works with polarized signals, which we refer to as a “switch”.

In this section as a convention we write x and y for the inputs of a component
and z, z1, and z2 for the outputs. Both input and output pins are shown as blue 2 × 2
blocks in pictures showing the structure of a component. (The reason for choosing this
representation will be made clear later in Sect. 4.5.) The initial states of the four cells

123

Algorithmica

Fig. 3 Valid representations of � and � signals

Fig. 4 A diagonal wire component with a � signal moving south east

of such a block are always 3 . All polarized components have their input pins always
at the left border and output pins on the right.

4.1 Polarized Signals andWires

Figure3 shows the most common occurrences of � and � signals. We will refer to a
block initially containing a � or � signal as a � or � “source”, respectively. (This
will be used, for instance, to set the inputs to the embedded CVP instance.)

Taking another look at Fig. 2, observe that it shows a � signal “moving from the
left to the right”. In general we will use “wires” to propagate signals. A wire is a
contiguous arrangement of 2 × 2 wire blocks of cells in state 3 that carries a signal
from a source or component to another component. (Wireswill also be used as building
blocks for certain components.) Using these wire blocks it is straightforward to route
signals in all four cardinal directions. Later in Sect. 4.5 we specify exactly how wires
are used to connect components with each other.

While one can use the same wire blocks for both types of signals, each block is
destroyed upon use and thus can only be used once. In particular, this means every
wire will be used either by a � or a � signal. For better organization, we assign each
wire a polarity that indicates which of the two it is intended to carry and then refer to
the wire as a � or � wire, accordingly.

For convenience we extend wires so that they may also run along a ±45◦ diagonal.
(Note that throughout the paper all such signals aremoving “from the left to the right”.)
The basic building block for this extension are two diagonally neighboring wire blocks
which have to be “glued together” by an additional 3 cell adjacent to both blocks.
For a � signal the glue cell has to be on the left hand side in the “direction of travel”,
and for a � signal on the right hand side. Figure4 shows the four steps realizing the
movement of a� signal to the south east. The case ofmovement to the north east works
analogously. For � signals one only needs to mirror the images along a horizontal line.

Stringing together several diagonal components with the same direction results in
diagonal wires along which a signal moves one block horizontally and vertically in
one cycle. By adding both types of glue, we can even use the same construction for
both � and � signals. Figure5 shows an example. Note that this only means that it can

123

Algorithmica

Fig. 5 A diagonal wire for �
and � signals

Fig. 6 A � signal moving along a bent wire. The second and third cycle realize a “turn left by 90 degrees”.
After moving up the next two cycles perform a U-turn to the right. Two full cycles later the signal arrives
at the endpoint

be used by both types of signals; as in all other cases it can only be used once, either
by a � or by a � signal.

By sticking together diagonals in an up and a down diagonal movement one can
implement “U-turns”. Figure6 shows an example where a � signal first makes a left
U-turn and then a rightU-turn. This basic layoutwill be used and extended for retarders
in Sect. 4.5.

123

Algorithmica

Fig. 7 Diode implementations (signals can pass from left to right)

Fig. 8 Diode operation on � wires

4.2 Diodes

Note that � and � signals do not encode any form of direction in them (regarding
their propagation along a wire). In fact, a signal propagates in any direction a wire is
placed in. In order for our components to operate correctly, it will be necessary to have
a means for preventing a signal from propagating along a wire in a certain direction.
To realize this, we use diodes.

A diode is an element on a horizontal wire that only allows a signal to flow from
left to right. A signal coming from right to left is not allowed through. As the other
components, the diode is intended to be used only once. For the implementation, refer
to Fig. 7. (Recall that x denotes the component’s input and z its output.)

Figure8 illustrates the operation of a diode for � signals. (The case of � signals
is similar.) Notice that, in the case where the signal comes from the left-hand side
(Fig. 8a), two � signals are momentarily created and then merged in the one cell of
the diode that has 2 as its starting state. In turn, when the signal comes from the
right-hand side (Fig. 8b), the same cell is responsible for “absorbing” the signal; that
is, the state 2 turns into a 3 , but the signal does not go any further.

For all the remaining elements described in this section, we implicitly add diodes to
their inputs and outputs. This ensures that the signals can only flow from left to right
(as intended) and, in addition, that every input or output of a component receives or

123

Algorithmica

Fig. 9 Duplicating and merging wires

emits a signal at most once. This is probably not necessary for all elements, but doing
so makes the construction simpler and also facilitates reasoning about its correctness;
the overhead is only a constant factor blowup in the size of the elements.

4.3 Duplicating, Merging, and CrossingWires

Wires of the same polarity can be duplicated or merged. By duplicating a wire we
mean we create two outputs z1 and z2 from a single input x in such a way that, if any
signal arrives at x , then this signal is duplicated and propagated on both z1 and z2.
(Equivalently, one might imagine that x = z1 and z2 copies x .) In turn, a wire merge
realizes in some sense the reverse operation: We have two wires x and y of the same
polarity and create a wire z such that, if any signal arrives from x or y (or both), then
a signal of the same polarity will emerge at z. (Hence one could say the wire merge
realizes a “polarized or” gate.) See Fig. 9 for the implementations.

As discussed in the introduction, there is no straightforward realization of a wire
crossing in fungal automata in the traditional sense. Nevertheless, it turns out we can
cross wires under the following constraints:

1. The two wires being crossed are a � and a � wire.
2. The crossing is used only once and by a single input wire; that is, once a signal

from either wire passes through the crossing, it is destroyed. (If two signals arrive
from both wires at the same time, then the crossing is destroyed without allowing
any signal to pass through.)

To elicit these limitations, we refer to such crossings as semicrossings.
We actually need two types of semicrossings, one for each choice of polarities for

the two input wires. The semicrossings are named according to the polarity of the top
input wire: A � semicrossing has a � wire as its top input (and a � wire as its bottom

123

Algorithmica

Fig. 10 Semicrossing implementations

Fig. 11 � signal traversing a � semicrossing

one) whereas a � semicrossing has a � wire at the top (and a � wire at the bottom).
For the implementations, see Fig. 10.

Figure11 shows an example of a � semicrossing being traversed by a � signal.
As one can see, the � signal not only destroys the semicrossing but also creates
an extraneous signal that is propagated in the direction of the � input gate of the
semicrossing. Fortunately (as mentioned in Sect. 4.2) we add diodes to the inputs of
all gates, which prevents this other signal from causing undesirable side-effects.

4.4 Switches

A switch is a rudimentary form of transistor. It has two inputs and one output. Adopting
the terminology of field-effect transistors (FETs), we will refer to the two inputs as
the source and gate and the output as the drain. In its initial state, the switch is open
and does not allow source signals to pass through. If a signal arrives from the gate,
then it turns the switch closed. A subsequent signal arriving from the source will then
be propagated on to the drain. This means that switches are delay-sensitive: A signal
arriving at the source only continues on to the drain if the gate signal arrives (at least
one time step) previously to the source.

Similar to semicrossings, our switches come in two flavors. In both cases the top
input is a � wire and the bottom one a �. The difference is that, in a � switch, the
source (and thus also the drain) is the � input and the gate is the � input. Conversely,
in a � switch the source and drain are � wires and the gate is a � wire. Refer to Fig. 12
for the implementation of the two types of switches.

Figure13 shows the behavior of the � switch. (As always, the � version is similar.)
In Fig. 13a a � signal arrives and closes the switch by turning the one 2 into a 3 .
Following this, in Fig. 13b we observe a � signal traverse the closed switch. Compare
this with Fig. 14, in which the � signal arrives before the � signal, and none of the
two signals go through.

123

Algorithmica

Fig. 12 Switch implementations. In the � switch x denotes the source and y the gate. In turn, in the �
switch these roles are reversed: y is the source and x the gate

Fig. 13 Behavior of the � switch when � signal arrives before � signal

4.5 Delays and Connecting Components

As mentioned in the introduction, the circuits we construct are sensitive to the time it
takes for a signal to flow from one point to the other. In the construction of the nand
gate there will be the need to know something about the order in which two signals
arrive (if at all) at the inputs of internally used switches. This will be ensured by

• knowing upper bounds on the delays of some signals to be processed, and
• having so-called retarders which are simply “sufficiently long” meandering wires
imposing long transition times on the other signals.

123

Algorithmica

Fig. 14 Behavior of the � switch when � signal arrives after � signal

Delays will be considered in this section; retarders are the topic of the following
Sect. 4.6.

All components described above (and also retarders) have at least one input and
at least one output pin which are initialized with four cells in state 3 . (The only
exception are � and � sources which we are initialized in the obvious way and which
we consider as only an output pin.) Each wire can also be viewed as having an input
and an output pin. Components and wires can be connected by superimposing the
output pin of one object with the input pin of another. Figure15 shows an example.

The reason for superpositioning instead of juxtapositioning is that it makes com-
putations easier. If t1 is the number of cycles a signal needs to travel from the input
pin to the output pin of a component, and similarly t2 for a second component, then
the total travel time is simply t1 + t2. These are called transition times.

If it takes a cycles of the whole fungal automaton (starting from the initial config-
uration) before a signal arrives at the single input pin of a component (with transition
time t), we call a the arrival time at the input. As a consequence the arrival time at
the output pin(s) is a + t .

For diodes and wire duplications, we have t = 3. For wires the transition time
depends on the length of the wire. This is defined as the number of blocks of the
shortest contiguous path along the wire according to the Moore neighborhood N =
{(a, b) ∈ Z

2 | max{|a| , |b|} ≤ 1}. This includes retarders as defined in the next

123

Algorithmica

Fig. 15 Example of two diodes and two wires to be connected (above) and their superimposition (below)

section. For example, in Fig. 16 the distance between x and z is 8. We note that all
horizontal and diagonal wires have the property that signals move from one block to
a next right neighboring block (according to the Moore neighborhood) in one cycle.

In the case of components with two inputs one has to distinguish two cases.

1. Semicrossings and wire merges Assume that the signals arrive at the input pins
at times a1 and a2, where ai = ∞ indicates that the signal does not arrive at all.
Then the arrival time at the output pin is min(a1, a2) + 3.

2. Switch Assume that the signals arrive at the gate input at time ag and at the source
input at time as (again ai = ∞ indicates that the signal does not arrive at all).

• If ag ≤ as then the arrival time at the output is as + 3;
• if ag > as then the arrival time at the output is ∞.

Now by definition the arrival time of sources is 0. Then for each (acyclic!) circuit
the above rules define the arrival time of signals at each pin if each input is either a
source or connected to a preceeding output.

4.6 Retarders

Retarders will be used to delay a signal on its travel from left to right. Therefore we
will use the term delay instead of transition time.

The basic “meander” used in retarders has already been shown in Fig. 6. Now
assume that one is given a square of 2L + 1 by 2L + 1 blocks, that the input pin is
at the middle of the left border, and the output pin at the middle of the right border.
Furthermore assume that the height of each such a meander is 2L + 1 blocks. Then
inside this square of fixed size one can place k connected meanders where k can be

123

Algorithmica

Fig. 16 Implementation of a
basic meander for a � signal
with transition time 8. Greater
transition times can be realized
by increasing (i) the height of
the meanders, (ii) the number of
up-down meanders, and (iii) the
positions of the input and output

Fig. 17 Representations of the elements from abstraction layer 2 as used in layer 3. The � and � signs at
input pins indicate which type of signals has to arrive; the signs at the output pins indicate which type of
signal will leave. For each component there is also a dual version with all � and � exchanged

any integer up to ((2L + 1) − 1)/4 = L/2 and from the last one a horizontal wire to
the output pin of the square. By varying k, the delay of a signal can be varied between
�(L) and �(L2) while retaining the same area of D = �(L2) cells.

In Sects. 5 and 6, we show how to construct the initial configuration for a fungal
automaton that corresponds to the evaluation of a given Boolean circuit and an input
to it. This will require many nand gates which will make use of retarders. In the
construction we describe, all retarders will have the same size—but the delays will
differ. For now we mention it is sufficient to choose L = �(m2) (allowing for delays
up to �(m4)) to ensure proper timing of the whole circuit. Using retarders of a single
size for any fixed circuit simplifies the layout significantly. (See in particular Sects. 6.3
and 6.4.)

5 Layer 3: Working with Bits

We will now draw the polarized elements from Sect. 4 in a more abstract way as
shown in Fig. 17, and use them to construct planar delay-sensitive Boolean circuits.
Our circuits will use nand gates as their basis.

We use four ingredients for the realization of Boolen circuits: a representation of
bits on cables, duplication of bits, nand gates, and the crossing of cables.

123

Algorithmica

Fig. 18 Example of a simple
cable with horizontal and
diagonal segments. The upper
wire is for the � signal
representing a 1, the lower for
the � signal representing a 0

5.1 Representation of Bits

For the representation of a bit, we use a pair consisting of a polarized � wire and a
polarized � wire. Such a pair of polarized wires is called a cable. For cables only
horizontal and diagonal, but never vertical, wires will be used. A signal on a cable’s
� wire represents a binary 1, and a signal on the � wire represents a binary 0. The
construction will ensure that never both signals are present on a wire. Both wires run
in parallel land are vertically separated by exactly two empty blocks everywhere; see
Fig. 18 for a simple example.

This way the transition time of a polarized signal from the left end of a cable to
its right end will always be the same, no matter whether it is a � or a � signal. By
convention the � wire will always be “above” the � wire of the same cable.

Different cables have to be separated vertically by at least 2 blocks. Polarized signals
representing bits on a cable will always advance by one block from left to right during
each cycle.

When referring to the inputs and outputs of a gate, we indicate the � and � com-
ponents of a cable with subscripts. For instance, for an input cable x , we write x+ for
its � and x− for its � component.

5.2 Bit Duplication

Toduplicate a cable,we use theBoolean branch depicted in Fig. 19. The circuit consists
of two wire duplications (one of each polarity) and a crossing. Obviously a Boolean
branch can be realized by in constant size, independently of the Boolen circuit in
which they are used.

When laying out a circuit in the plane it is in general necessary to have cables
crossing each other. We will use xor gates for this, and for the implementation of
these we will nand gates which are considered next.

123

Algorithmica

Fig. 19 Boolean branch

Fig. 20 nand gate

5.3 NAND Gates

Our nand gate is inspired by the implementation of such a gate in cmos technology.1

Refer to Fig. 20 for a sketch of the implementation.
Note that the four polarized inputs are connected to the gates of four switches. The

sources of the switches are fed from retarders (directly or indirectly).
The use of switches implies that a nand gate is delay-sensitive; it only operates

correctly (i.e., computes thenand function) if the retarders have delays that are strictly
greater the arrival times of signals at inputs x and y of the specific nand gate. Hence
for different nand gates in the circuit we will need to instantiate the same construction
plan using different delays of the retarders. Nevertheless the size of all retarders (and
hence of all nand gates) stays the same as mentioned in Sect. 4.5.

We stress that Fig. 20 is only a schematic. First of all, the sizes of the components
used are not to scale. On one hand all the switches, semicrossings and the wire merge
require only a constant number of blocks (independent of the circuit for which they are
used). On the other, as alreadymentioned in Sect. 4, the retarders are squares consisting
of �(L2) blocks where L = �(m2) and m is the number of gates of the circuit to be
simulated. (We defer the derivation of these dimensions to Sect. 6.3.) Nevertheless all
retarders used in the layout of one circuit are of the same size.

1 See, e.g., https://en.wikipedia.org/wiki/NAND_gate#/media/File:CMOS_NAND.svg.

123

https://en.wikipedia.org/wiki/NAND_gate#/media/File:CMOS_NAND.svg

Algorithmica

Secondly, as a consequence the size of nand gates used for different circuits also
have different sizes in general, but all nand gates used in the layout of one circuit
have the same size, which is �(L) × �(L) blocks.

Finally, we have claimed that the � and the � wire of a cable are separated by
exactly two empty blocks. But at least for the y+ and y− inputs this is not the case. To
fix this and to make the whole layout more uniform, we assume that for the complete
layout of a nand gate, the part shown in Fig. 20 is extended to the left and to the right
by appropriate numbers of block columns to achieve the following:

• The output pins z+ and z− for the output cable are exactly in the middle of the
right border of the full rectangle.

• The input pins x+ and x− for the first input cable are at the top of the left border
of the full rectangle.

• The input pins y+ and y− for the first input cable are at the bottom of the left
border of the full rectangle.

It should be clear that the extensions to both sides require at most as many additional
block columns as the nand is high. Thus a full nand gate requires �(L) × �(L)

blocks.
Since nand gates are the real core construct, we will now prove:
Claim If the retarders have larger delay than the arrival times at input cables x

and y, then the circuit in Figure 20 realizes a nand gate.

Proof Consider first the case where both x+ and y+ are set. Since x− is not set, X1
is consumed by x+, turning S4 on. In addition, since y+ is set, S2 is also turned on.
Hence, using the assumption on the delay of the inputs, the negative source flows
through S2, S4, and X2 on to z−. Since both the switches S1 and S3 remain open, the
z+ output is never set. Notice the crossings X1 and X2 are each used exactly once.

Let now x− or y− (or both) be set. Then either S2 or S4 is open, which means z− is
never set. As a result, X2 is used at most once (namely in case y− is set). If x− is set,
then S1 is closed, thus allowing the positive source to flow on to M . The same holds
if y− is set, in which case M receives the positive source arriving from S3. Hence, at
least one positive signal will flow to the M gate, causing z+ to be set eventually. �

5.4 Cable Crossings

There is a more or less well-known idea to cross two bits using three xor gates which
can for example be found in the paper by Goldschlager [8]. Figure21 shows the idea.
Each xor gate can be implemented using five nand gates and the layout of the whole
circuit can be made planar.

This construction can be used in FA. Because of the delays, there is not the crossing
gate, but a whole family of them.Depending on the position in thewhole circuit layout,
each crossing needs nand gates with specific builtin delays (which will be derived in
Sect. 6.3). But the sizes of both, xor gates and bit crossings, are the same everywhere
in the layout of one circuit and they can be realized using �(L) × �(L) blocks.

123

Algorithmica

Fig. 21 Implementation of cable crossings as in [8]

Fig. 22 Overview of the construction of F . The equal-sized tiles each realize one gate of the original circuit
C . The meaning of the green and blue areas is given in Sect. 6.2 (Color figure online)

6 Layer 4: Layout of aWhole Circuit

Finally we describe one possibility to construct a finite rectangle F of cells of a FA
containing the realization of a complete circuit, given its description B. The important
point here is that, in order to produce F from B, the constructor only needs logarith-
mic space. Therefore the simplicity of the layout has precedence over any form of
“optimization”.

6.1 Arranging the Circuit in Tiles

Let C be the circuit that is to be embedded as an FA configuration F . Letting n be
the number of input bits to C and m its number of gates, there is an upper bound of
m on the circuit depth of C . Without restriction, we may assume m ≥ n, which also
implies an upper bound of O(m) on the number of cables (and wires) of C (since all
gates have bounded fan-in). The logical gates of C are denoted by G1, . . . ,Gm and
we assume that Gi has number n + i in the description B of C (recall Sect. 1.1).

In the configuration F we have cables x1, . . . , xn originating from the input gates
as well as cables g1, . . . , gm coming from (the embedding of) the gates of C . The xi
and gi flow in and out of equal-sized tiles T1, . . . , Tm , where in the i-th tile Ti we
implement the i-th gate Gi of C . (See Fig. 22 for an illustration.) The inputs to Ti are
Ii = {x1, . . . , xn, g1, . . . , gi−1} and its outputs are Oi = Ii ∪ {gi }; hence Ii+1 = Oi .

123

Algorithmica

Fig. 23 Overview of the tile Ti .
The upper part of the tile has
green background, the lower
part has blue background (Color
figure online)

Recall that, unlike standard circuits, the behavior of our layer 3 circuits is subject to
spatial considerations, that is, to both gate placement and cable length. For the sake of
simplicity, each tile is shaped as a square and all tiles are of the same size. In addition,
the tiles are placed in ascending order from left to right and with no space in-between.
The only objects in F that lie outside the tiles are the inputs and output ofC itself. The
inputs are placed immediately next to corresponding cables that go into T1 whereas
the output is placed next to its corresponding cable gm at the outgoing end of Tm .

6.2 Layout for Tile i

As depicted in Fig. 23, each tile is subdivided into two areas. The upper part contains
the cables that pass through it, while the lower part implements the gate Gi proper.

We give a broad overview of the process for constructing Ti :

1. First determine the cables y1, y2 ∈ Ii that provide the inputs to Gi .
2. Duplicate the bits on cables y1 and y2 (as in Sect. 5.2) and cross the copies over

to the lower part of the tile. These crossings use multiple nand gates and require
setting adequate delays, which we will adress in the next section. (In case y1 = y2,
simply duplicate the cable twice and proceed as otherwise described.)

3. Instantiate Gi with a proper amount of delay (again, see the next section) and plug
in y1 and y2 as inputs into Gi .

4. Finally connect all inputs in Ii aswell as the output cable gi ofGi to their respective
outputs.

Notice the tile contains O(m) crossings and thus also O(m) nand gates in total.

6.3 Choosing Suitable Delays for All Gates

The two details that remain are setting the dimensions and the delays for the retarders
in all nand gates. This requires certain care since we may otherwise end up running
into a chicken-and-egg problem: The retarders’ dimensions are determined by the
required delays (in order to have enough space to realize them); in turn, the delays
depend on the aforementioned dimensions (since some input wires in the nand gates
must be laid so as to “go around” the retarders).

123

Algorithmica

The solution is to assume we already have an upper bound D on the maximum
delay in F . This allows us to fix the size of the components as follows:

• The retarders and nand gates have side length �nand = O(
√
D).

• Each tile has side length �T = O(m
√
D).

• The support of F fits into a square with side length O(m2
√
D).

With this in place, we determine upper bounds on the delays of the upper gates in a
tile (i.e., the gates in the upper part of the tile), then of the lower gates Gi , then of the
tiles themselves, and finally of the entire embedding of C . In the end we obtain an
upper bound for the maximum possible delay in F . Simply setting D to be this large
concludes the construction.

Upper gates In order to set the delays of a nand gate G in a tile Ti , we first need
an upper bound dinput on the delays of the two inputs to G. Suppose the origins O1
and O2 of these inputs (i.e., either a nand gate output or an input to Ti) have both
delay at most dorigin. Then certainly we have dinput ≤ dorigin +dwire, where dwire is the
maximum wire distance needed to connect the wires of either one of O1 and O2 and
the respective switches that we are connecting them to inside G.

Let us now sayG is in the j-th layer of Ti if any path from the inputs Ii to Ti leading
to G goes through at most j gates (and j is minimal with this property). (Hence if
O1 originates from a j1-th layer gate and O2 from a j2-th layer one, G will be in the
max(j1, j2)-th layer.) Now the key observation is that the layout of Ti together with
the fact that a nand gate has �nand = O(

√
D) side length gives us dwire = O(

√
D).

This is because, by using a sensible placement of the gates (as in, e.g., Fig. 21), we
can arrange the upper gates so that the distance between an upper gate in one layer
and its successors in the next layer is at most O(�nand) = O(

√
D). In other words,

each layer of nand gates incurs an O(
√
D) additional delay. Hence, if G is in the

j-th layer of Ti , then we may upper-bound its delay by di + O(j
√
D), where di is the

maximum over the delays of the inputs to Ti .
Lower gates Since there are O(m) cables inside a tile, there are O(m) cable

crossings and thus O(m) nand gates realizing these crossings. Recalling that �T =
O(m

√
D) is the side length of T (and also the maximum cable length needed to con-

nect the last of the upper gates with Gi), we conclude that the inputs to the gate Gi in
the lower part of Ti have delay at most

di + O(m) · dwire + O(�T) = di + O(m
√
D).

Tiles Clearly the greatest delay amongst the output cables of Ti is that of gi (since
every other cable originates from a straight path across Ti). As we have determined
in the last paragraph, at its output gi has delay di+1 ≤ di + O(m

√
D). Since the side

length of a tile is �T = O(m
√
D), this gives us an upper bound of i · O(m

√
D) on

the delays of the inputs of Ti .
Support of F Since there arem tiles in total, it suffices to choose a maximum delay

D that satisfies D ≥ cm2
√
D for some adequate constant c (that results from the

considerations above). In particular, thismeanswemay set D = �(m4) independently
of C .

123

Algorithmica

6.4 Constructor

In this final section we describe how to realize a logspace constructor R which, given
a CVP instance consisting of the description of a circuit C and an input x to it,
reduces it to an instance as in Theorem 1. Due to the structure of F , this is relatively
straightforward.

The constructor R outputs the description of F column for column. (Computing
the coordinates of an element or wire is clearly feasible in logspace.) In the first few
columns R sets the inputs to the embedded circuit according to x . Next R constructs
F tile for tile. To construct tile Ti , R determines which cables are the inputs to Gi

and constructs crossings accordingly. To estimate the delays of each wire, R uses the
upper bounds we have determined in Sect. 6.3, which clearly are all computable in
logspace. (Recall, in particular, that the maximum delay D = �(m4) is polynomial
in m.)

Finally R also needs to produce y and T as in the statement of Theorem 1. Let ci
be the cable of Tm that corresponds to the output of the embedded circuit C . Then we
let y be the index of the cell next to the � wire of ci at the output of Tm . (Hence y
assumes a non-zero state if and only if ci contains a 1, that is, C(x) = 1.) As for T ,
certainly setting it to the number of cells in F suffices (since a signal needs to visit
every cell in F at most once).

7 Summary

We have shown that, for fungal automata with update sequence HV , the prediction
problem is P-complete, solving an open problem of Goles et al. [5].

Acknowledgements Augusto Modanese is supported by the Helsinki Institute of Information Technology
(HIIT). Much of this work was done while he was affiliated with the Karlsruhe Institute of Technology
(KIT).

Author Contributions A.M. and T.W. wrote the main manuscript, prepared all figures and reviewed the
manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

References

1. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/ f noise. Phys.
Rev. Lett. 59(4), 381–384 (1987). https://doi.org/10.1103/PhysRevLett.59.381

2. Formenti, E., Perrot, K.: How hard is it to predict sandpiles on lattices? A survey. Fundam. Inform.
171(1–4), 189–219 (2020). https://doi.org/10.3233/FI-2020-1879

3. Miltersen, P.B.: The computational complexity of one-dimensional sandpiles. Theory Comput. Syst.
41(1), 119–125 (2007). https://doi.org/10.1007/s00224-006-1341-8

4. Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys. 96(1), 205–224
(1999)

5. Goles, E., Tsompanas, M.-A.I., Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Martínez, G.J.: Com-
putational universality of fungal sandpile automata. Phys. Lett. A 384(22), 126541 (2020). https://doi.
org/10.1016/j.physleta.2020.126541

6. Modanese, A., Worsch, T.: Embedding arbitrary boolean circuits into fungal automata. In: Castañeda,
A., Rodríguez-Henríquez, F. (eds.) LATIN 2022: Theoretical Informatics—15th Latin American Sym-
posium,Guanajuato,Mexico,November 7–11, 2022, Proceedings. LectureNotes inComputer Science,
vol. 13568, pp. 393–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20624-5_24

7. Ruzzo, W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22(3), 365–383 (1981). https://doi.
org/10.1016/0022-0000(81)90038-6

8. Goldschlager, L.M.: The monotone and planar circuit value problems are log space complete for P.
SIGACT News 9(2), 25–29 (1977). https://doi.org/10.1145/1008354.1008356

9. Dymond, P.W., Cook, S.A.: Hardware complexity and parallel computation (preliminary version). In:
21st Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13–15
October 1980, pp. 360–372. IEEE Computer Society, Syracuse (1980). https://doi.org/10.1109/SFCS.
1980.22

10. Gajardo,A.,Goles, E.: Crossing information in two-dimensional sandpiles. Theor. Comput. Sci. 369(1–
3), 463–469 (2006). https://doi.org/10.1016/j.tcs.2006.09.022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.3233/FI-2020-1879
https://doi.org/10.1007/s00224-006-1341-8
https://doi.org/10.1016/j.physleta.2020.126541
https://doi.org/10.1016/j.physleta.2020.126541
https://doi.org/10.1007/978-3-031-20624-5_24
https://doi.org/10.1016/0022-0000(81)90038-6
https://doi.org/10.1016/0022-0000(81)90038-6
https://doi.org/10.1145/1008354.1008356
https://doi.org/10.1109/SFCS.1980.22
https://doi.org/10.1109/SFCS.1980.22
https://doi.org/10.1016/j.tcs.2006.09.022

	Embedding Arbitrary Boolean Circuits into Fungal Automata
	Abstract
	1 Introduction
	1.1 Boolean Circuits and the CVP
	1.2 Challenges
	1.3 Overview of the Construction

	2 Layer 0: The Fungal Automaton
	3 Layer 1: Coarse-Graining Space and Time
	4 Layer 2: Polarized Components
	4.1 Polarized Signals and Wires
	4.2 Diodes
	4.3 Duplicating, Merging, and Crossing Wires
	4.4 Switches
	4.5 Delays and Connecting Components
	4.6 Retarders

	5 Layer 3: Working with Bits
	5.1 Representation of Bits
	5.2 Bit Duplication
	5.3 Nand Gates
	5.4 Cable Crossings

	6 Layer 4: Layout of a Whole Circuit
	6.1 Arranging the Circuit in Tiles
	6.2 Layout for Tile i
	6.3 Choosing Suitable Delays for All Gates
	6.4 Constructor

	7 Summary
	Acknowledgements
	References

