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Abstract
We initiate the study of the Diverse Pair of (Maximum/ Perfect) Matchings
problems which given a graph G and an integer k, ask whether G has two (maxi-
mum/perfect) matchings whose symmetric difference is at least k. Diverse Pair of
Matchings (asking for two not necessarily maximum or perfect matchings) is NP-
complete on general graphs if k is part of the input, and we consider two restricted
variants. First, we show that on bipartite graphs, the problem is polynomial-time
solvable, and second we show that Diverse Pair of Maximum Matchings is
FPT parameterized by k. We round off the work by showing that Diverse Pair of
Matchings has a kernel on O(k2) vertices.
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1 Introduction

Matching is one of the most fundamental notions in graph theory whose study can be
traced back to the classical theorems of Kőnig [20] and Hall [14]. The first chapter of
the book of Lovász and Plummer [22] devoted to matching contains a nice historical
overview on the development of the matching problem. The problem of finding a max-
imum size or a perfect matching are the classical algorithmic problems; an incomplete
list of references covering the history of algorithmic improvements on these problems
is [8, 17, 19, 21, 23, 24, 28, 32], see also the book of Schrijver [29] for a historical
overview of matching algorithms.

In this paper we initiate the algorithmic study of the diverse matching problem. In
this problem, we are to find a pair of matchings which are different from each other
as much as possible. More formally, we want the size of their symmetric difference to
be large. Recall that the symmetric difference of two sets X ,Y is defined as

X � Y = (X \ Y ) ∪ (Y \ X).

Input: Graph G, integer k
Question: DoesG contain two (maximum/perfect)matchingsM1,M2 such

that |M1 � M2| ≥ k?

Diverse Pair of (Maximum/Perfect) Matchings

Diversity-enhancing is one of the key goals in developing professional social match-
ing systems [26]. For example, consider the problem of assigning agents to perform
various tasks (say, bus drivers to bus routes or cleaners to different locations). To avoid
monotony, which is one of the declared enemies of happiness at work, the practice is to
reassign agents to new tasks. In this case, we would be very much interested in design-
ing a schedule with diverse assignments. To give another illustration, assume that a
teacher should give a series of assignments to students that are expected to work in
pairs. From one side, the teacher wishes to follow the preferences of the students given
by a graph, but from the other side, it is preferable to facilitate collaboration between
different students. This leads to the problem of finding diverse perfect matchings in
the preference graph.

We now briefly motivate why finding a diverse set of maximum/perfect matchings
in a graph would be of interest. From a graph-theoretic point of view, in the simplest
model, onemaximum/perfectmatching is as good as the other. But in a practical setting
this is rarely the case since there is a large amount of side information that determines
how an assignment (for instance agents to tasks) is received. Some side information
is modeled by maximum weight matchings, or via notions from social choice theory
such as stable or envy free matchings [4]. Nevertheless, this approach has its natural
limitations; some side information may complicate the model, rendering it intractable,
while some side information may even be impossible to include in a model.

For instance, if we allow agents to have incomplete preference lists or ties, then
the corresponding maximum stable matching problem is NP-hard, even in severely
restricted cases [27]. Other side information may be a priori unknown, and only once
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presented with a number of alternatives, we may be able to decide which assignment
is the most desirable. In that case it is key that the presented alternatives are diverse,
otherwise the insight we gain is comparable to that of having a single fixed assignment
and is therefore negligible. Similar motivations for finding diverse solution sets in
combinatorial problems can be found in [2, 3].

Our Results andMethods While a perfect or a maximummatching in a graph can be
found inpolynomial time, this is not true anymore for the diverse variant of the problem,
even in graphs of maximum degree three. Matching problems are often considered
on bipartite graphs, and we show that Diverse Pair of Maximum Matchings
remains polynomial-time solvable in this case.

The intractability of the problem in the general case also suggests to look at it from
the perspective of parameterized complexity [5, 7] and kernelization [12]. We show
that the problem is FPT parameterized by k, by giving a randomized 4k · nO(1) time
algorithm, and we give a derandomized version of this algorithm that runs in time
4kkO(log k) · nO(1). Finally, we show that the problem asking for a diverse pair of (not
necessarily maximum) matchings admits a kernel on O(k2) vertices.

The randomized algorithm for Diverse Pair of Maximum Matchings is
obtained via a combination of color-coding [1] and the polynomial-solvability of
finding a minimum cost maximum matching in a graph [13]. We derandomize this
algorithm via universal sets [25]. The kernelization algorithm for Diverse Pair of
Matchings first finds a maximal matching M in the graph. If M is large enough,
then we can conclude that we are dealing with a Yes-instance by splitting M into
two matchings. Otherwise, the endpoints of M form a vertex cover of the input graph
which allows us to shrink the graph without changing the answer to the problem.

Related Work A well-studied generalization of matchings in graphs is that of a b-
matching, where b is an integer; see for instance [22]. Given a graph G and an integer
b, a b-matching is an assignment of an integer μ(e) to each edge e of G, such that for
each vertex v, the sum over all its incident edges ev of μ(ev) is bounded by b. The
size of a b-matching is the sum over all edges e in G of μ(e). The 1-matchings of a
graph precisely correspond its matchings (via the edges e with μ(e) = 1). However,
a 2-matching is not always the union of two matchings: take for instance a triangle.
Then, assigning a value of 1 to all its edges gives a 2-matching; while anymatching can
have at most one edge from a triangle. Therefore, finding diverse pairs of matchings
is not the same as finding 2-matchings.

Finding q pairwise disjoint matchings of large total size corresponds to finding
large subgraphs that can be q-edge colored, each matching constitutes a color class.
The Maximum q-Edge Colorable Subgraph problem asks for the largest edge-
subgraph that can be properly colored with q colors. This problem is known to be hard
to approximate [9].

LetG be a graphwith edge set E andmaximumdegree�. Any proper edge coloring
requires at least � colors. On the other hand, Vizing’s Theorem [33] asserts that every
graph can be properly edge-colored with �+1 colors. A consequence of this result is
that (any) graphG contains a�-colorable subgraph with at least �

�+1 |E | edges; which
is tight when � is even as witnessed by the complete graph K�+1. This motivated
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research in improving the lower bound when � is odd, or when � is even and K�+1
is excluded. Kamiński and Kowalik [18] gave several improved lower bounds for the
cases when � ≤ 7.

The differencewithMaximum 2-Edge Colorable Subgraph is that inDiverse
Pair of Maximum Matchings, we require matchings (or: color classes) to be of
maximum size, while in the former problem, we only want to maximize the total
number of edges in the two color classes.

A recent manuscript due to Fellows [10] initiated the study of finding diverse sets
of solutions to NP-hard combinatorial problems from the viewpoint of parameterized
complexity [2, 3]. Concretely, Baste et al. [2] showed that a large class of vertex subset
problems that are FPT parameterized by treewidth have FPT algorithms in their diverse
variant, parameterized by treewidth plus the number of requested solutions. Moreover,
Baste et al. [3] showed analogous results for hitting set problems parameterized by
solution size plus number of requested solutions. Our work contrasts this in that the
classical variant of the problem we consider is polynomial-time solvable, while its
diverse variant becomes NP-hard, even when asking for only two solutions.

Very recently, Hanaka et al. [15] gave efficient algorithms for finding diverse sets
of solutions to several other combinatorial problems. This includes an FPT-algorithm
for finding diverse sets of matchings in a graph. However, their result is different
from ours. We give an FPT-algorithm for finding a diverse pair of maximum or perfect
matchings, and our parameter is the size of the symmetric difference between the
matchings, in other words, the diversity measure. In [15], the parameter is the size
of the matchings plus the number of requested solutions, and the matchings do not
need to be of maximum cardinality. Note that in this setting, the maximum possible
diversity is bounded in terms of the parameter as well. In the case that we drop the
maximum cardinality requirement on the matchings, we even obtained a polynomial
kernel for finding a diverse pair of matchings. By the same arguments given in the
proof of Theorem 7, we can derive that the problem of finding a diverse set of r
matchings of size k parameterized by k + r considered in [15] is not only FPT but has
a polynomial kernel.

Fomin et al. [11] considered the Diverse Perfect Matchings problem, asking
for q perfect matchings such that each pair has Hamming distance at least k. Thus,
Diverse Pair of Perfect Matchings is a special case of Diverse Perfect
Matchings for q = 2. They showed that the problem is FPT parameterized by q+k by
giving a randomized algorithm running in 22

O(qk)
nO(1) time. This generalizes our FPT-

result for Diverse Pair of Perfect Matchings (but not for Diverse Pair of
Maximum Matchings), albeit with a slower run time, and without derandomization.

2 Preliminaries

We assume the reader to be familiar with basic notions in graph theory and param-
eterized complexity and refer to [6] and [5, 7, 12], respectively, for the necessary
background.
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All graphs considered in this work are finite, undirected, simple, and without self-
loops. For a graph G we denote by V (G) its set of vertices and by E(G) its set of
edges. For an edge uv ∈ E(G), we call u and v its endpoints. For a vertex v of a graph
G, NG(v) ..= {w ∈ V (G) | vw ∈ E(G)} is the set of neighbors of v in G, and the
degree of v is degG(v) ..= |NG(v)|.

The subgraph induced by X , denoted by G[X ], is the graph (X , {uv ∈ E(G) |
u, v ∈ X}). For a set of edges F ⊆ E(G), we let G − F ..= (V (G), E(G)\F).

A graph G is called empty if E(G) = ∅. A set of vertices S ⊆ V (G) is an
independent set if G[S] is empty. A set S ⊆ V (G) is a vertex cover if V (G)\S is an
independent set. A graph G is bipartite if its vertex set can be partitioned into two
nonempty independent sets.

NP-Completeness We briefly argue the NP-completeness of Diverse Pair of
Maximum/Perfect Matchings on 3-regular graphs which was observed in [30].
Membership inNP is clear. To showNP-hardness, we reduce from 3-Edge Coloring
on 3-regular graphs which is known to be NP-complete [16]. Let G be a 3-regular
graph on n vertices (note that this implies that n is even), and consider (G, n) as an
instance of Diverse Pair of Matchings. Suppose that G has a proper 3-edge
coloring. Since G is 3-regular, all three colors appear on an incident edge of each
vertex. Therefore, a color class is a perfect matching of G, and we can take two color
classes as our solution to (G, n). Conversely, a solution (M1, M2) to (G, n) forms two
disjoint matchings of size n/2 each. This implies that both M1 and M2 are perfect, and
therefore maximum matchings. Since each vertex in G has degree three, this means
that M3

..= E(G) \ (M1 ∪ M2) also forms a perfect matching in G, and therefore
(M1, M2, M3) is a proper 3-edge coloring of G.

Observation 1 ([30]) Diverse Pair of (Maximum/Perfect) Matchings is NP-
complete on 3-regular graphs.

3 A Polynomial-Time Algorithm for Bipartite Graphs

In this section we show that Diverse Pair of Maximum Matchings is solvable
in polynomial time on bipartite graphs via a reduction to the 2-Factor problem.

Theorem 2 Diverse Pair of Maximum Matchings is polynomial-time solvable
on bipartite graphs.

Proof Let (G, k) be a given instance of Diverse Pair of Maximum Matchings,
where G is bipartite. We show how to reduce this instance to an equivalent instance of
the problem of finding maximum-weight 2-factor of a larger graph G ′. A 2-factor of
G ′ is a subgraph ofG ′ in which the degree of each vertex is equal to 2. Equivalently, 2-
factor ofG ′ is a vertex-disjoint cycle cover ofG ′. The problem of finding a maximum-
weight factor of a graph is well-known to be solvable in polynomial time using the
Tutte’s reduction to the problem of finding a maximum-weight perfect matching [22,
31]. Our graph G ′ is an edge-weighted graph with parallel edges. We note that the
algorithm of finding a maximum-weight factor works fine with such graphs.
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We also assume that the two parts ofG are of equal size. If that is not true, introduce
isolated vertices to the smaller part of G. This does not change the matching structure
in G, so the obtained instance is equivalent to the initial one. Denote the number of
vertices in each part of G by n, so |V (G)| = 2n.

We now show how to construct G ′ given G. The graph G ′ is defined on the same
vertex set as G is, i.e. V (G ′) = V (G). For each edge uv of G, G ′ has two parallel
edges between u and v. One of these edges is assigned weight 1, and the other is
assigned weight 0. In other words, edges of G are doubled in G ′. Additionally, for
each pair of vertices u, v from distinct parts ofG that are not adjacent inG,G ′ has two
parallel edges of weight −n between u and v. Thus, G ′ is a complete bipartite graph
with doubled edges, and weights of these edges depend on what edges are present in
G. This finishes the construction of G ′.

Calim 2.1 Let M1 and M2 be a pair of maximum matchings in G that maximize the
value of |M1 ∪M2|. Then the maximum weight of a 2-factor of G ′ equals |M1 ∪M2|−
2n · (n − |M1|).
Proof Wefirst show thatG ′ has a 2-factor of weight at least |M1∪M2|−2n ·(n−|M1|).
Denote this 2-factor by F . It is constructed as follows. For each edge of M1 take the
corresponding edge of weight 1 in G ′ into F . Then, for each edge in M2 \ M1 take
the corresponding edge of weight 1 into F . For each edge in M1 ∩ M2, take the
corresponding edge of weight 0 in G ′ into F . Clearly, F is now of weight |M1 ∪ M2|,
but it is not yet a 2-factor of G ′, unless M1 and M2 are perfect matchings.

There are n−|M1| vertices in each part ofG that are not saturated byM1. Take these
2(n − |M1|) vertices and take an arbitrary matching between them in G ′. All edges of
this matching are of weight −n, otherwise M1 is not maximum in G. Add the edges
of this matching into F . Repeat the same for M2, i.e. take an arbitrary matching in G ′
between vertices that are not saturated by M2 and add all its edges into F . The edges of
weight −n of the matchings for M1 and M2 may coincide. If an edge of weight −n is
presented in bothmatchings, take both its parallel copies into F . It is easy to see that F is
now a 2-factor ofG ′, as it consists of edges of two perfectmatchings between two parts.
Theweight of F is |M1∪M2|−n(n−|M1|)−n(n−|M2|) = |M1∪M2|−2n·(n−|M1|).

It is left to show that F is indeed a maximum-weight 2-factor of G ′. To see this,
take a maximum-weight factor F ′ of G ′ and assume that the weight of F ′ is greater
than the weight of F . Note that F ′ consists of 2n edges. As discussed above, F ′ forms
a disjoint union of simple cycles on the vertices of G ′, where each vertex belongs to
exactly one cycle. Note that some of these cycles may consist of two parallel edges.
Since G ′ is bipartite, all of these cycles have even length. Color the edges of F ′ with
two colors so that no two consecutive edges have the same color on a cycle. Then the
edges of the same color form a perfect matching in G ′. Denote these matchings by F ′

1
and F ′

2. Let M
′
1 be the set of original edges of G which copies are present in F ′

1. Let
M ′

2 be the set of edges of G obtained analogously from F ′
2. Copies of edges in M ′

1
and M ′

2 have weights 0 or 1 in G ′. All other edges in F ′
1 and F ′

2 are of weight −n.
Observe that if an edge of G is present in both M ′

1 and M ′
2, then one of its copies

in F ′ has weight 0, and the other has weight 1. Thus, the total weight of 0- and 1-
weighted edges in F ′ is at most |M ′

1 ∪ M ′
2|. The number of edges of weight (−n) in
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F ′ is 2n − |M ′
1| − |M ′

2|. Thus, the total weight of F ′ is at most |M ′
1 ∪ M ′

2| − n(2n −
(|M ′

1| + |M ′
2|)).

We assumed that the weight of F ′ is greater than the weight of F . From this we get
that (|M ′

1 ∪ M ′
2| − |M1 ∪ M2|) − n(2|M1| − (|M ′

1| + |M ′
2|)) > 0 holds; equivalently,

that

(|M ′
1 ∪ M ′

2| − |M1 ∪ M2|) > n(2|M1| − (|M ′
1| + |M ′

2|)). (1)

Recall that M ′
1 and M ′

2 are matchings in G. Suppose M ′
1 and M ′

2 are maximum
matchings in G. Then the right hand side of Eq.1 evaluates to zero, and—by the
definition of M1 and M2—the left hand side is at most zero. Hence Eq.1 does not
hold, a contradiction. So at least one of M ′

1 and M ′
2 is not a maximummatching. Thus

we get that

|M ′
1| + |M ′

2| < 2|M1| (2)

holds; equivalently, that |M ′
1| + |M ′

2| − |M1| < |M1| holds. By construction we have
that the size of any matching in G is at most n. In particular |M1| ≤ n, and so we have
that

|M ′
1| + |M ′

2| − |M1| < n (3)

holds.
Equation2 can be restated as 2|M1| − (|M ′

1| + |M ′
2|) > 0. Now,

2|M1| − (|M ′
1| + |M ′

2|) ≥ 1 (4)

holds. Substituting Eq.4 in Eq.1 we get that

(|M ′
1 ∪ M ′

2| − |M1 ∪ M2|) > n (5)

holds. Observe now that |M ′
1| + |M ′

2| ≥ |M ′
1 ∪ M ′

2| and |M1| ≤ |M1 ∪ M2| hold.
Substituting these in Eq.5 we get that ((|M ′

1| + |M ′
2|) − |M1|) > n holds, which

contradicts Eq.3.

Now let M1, M2 be two arbitrary maximum matchings of G, and let μ(G) denote
the size of a maximum matching of G. Thus |M1| = |M1| = μ(G). By the definition
of symmetric difference we have that |M1 � M2| = |M1\(M1 ∩ M2)| + |M2\(M1 ∩
M2)| = |M1| − |M1 ∩ M2| + |M2| − |(M1 ∩ M2)| = 2μ(G) − 2|M1 ∩ M2|. And
since |(M1 ∩ M2)| = |M1| + |M2| − |M1 ∪ M2| = 2μ(G) − |M1 ∪ M2| we get that
|M1 � M2| = 2μ(G) − 2(2μ(G) − |M1 ∪ M2|) = 2(|M1 ∪ M2| − μ(G)). Since
μ(G) is an invariant of graph G this means that the maximum value of |M1 � M2|
is attained by exactly those pairs of maximum matchings M1, M2 which maximize
the value |M1 ∪ M2|. Further, let M�

1 , M
�
2 be a pair of maximum matchings such that

|M�
1 ∪ M�

2 | is the maximum among all pairs of maximum matchings. Then we have
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that the maximum value of |M1 � M2|, over all pairs of maximum matchings, equals
2(|M�

1 ∪ M�
2 | − μ(G)).

From 2.1 we get that we can compute the value |M�
1 ∪ M�

2 |—though not the
matchings M�

1 and M�
2—in polynomial time, by computing the weight of a maxi-

mum 2-factor in a derived graph. We can find the maximum matching size μ(G) of
G in polynomial time as well. So we can compute the number 2(|M�

1 ∪ M�
2 | − μ(G))

in polynomial time. By the arguments in the previous paragraph, checking whether
2(|M�

1 ∪ M�
2 | − μ(G)) ≥ k suffices to solve the bipartite instance (G, k) of Diverse

Pair of Maximum Matchings. ��

4 FPT-Algorithm for DIVERSE PAIR OF MAXIMUM MATCHINGS

In this section we give an FPT-algorithm for Diverse Pair of Maximum Match-
ings parameterized by k. We first give a randomized algorithm based on the
color-coding technique of Alon, Yuster and Zwick [1] in Theorem 3, and then deran-
domize this algorithm at the cost of a slightly slower runtime in Corollary 6.

Theorem 3 Diverse Pair of Maximum Matchings parameterized by k is FPT.
More precisely, there is a randomized algorithm that in time 4k ·nO(1) finds a solution
with constant probability, if it exists, and correctly concludes that there is no solution
otherwise, where n denotes the number of vertices of the input graph.

Proof LetG be the graphof the given instance. First,we compute amaximummatching
M in G in polynomial time [8, 13, 24].

We check if there is a solution using M as one of the two matchings.

Calim 3.1 Let G be a graph and M a maximum matching of G. One can determine in
polynomial time whether G has a maximum matching M ′ such that |M � M ′| ≥ k,
and construct such a matching if it exists.

Proof The algorithm is as follows. Let c : E(G) → {0, 1} be a cost function of the
edges of G, defined as

c(e) ..=
{
1, if e ∈ M
0, otherwise

∀e ∈ E(G)

Let M ′ be a minimum cost maximum matching in G using the cost function c.
Such a matching M ′ can be found in polynomial time [13]. Due to the cost function
c, a minimum cost maximum matching in G is one that minimizes the number of
edges from M . Therefore, M ′ maximizes the symmetric difference with M , over all
maximum matchings of G. We verify whether |M � M ′| ≥ k, and if so, return M ′.
Otherwise, we correctly conclude that there is no matching satisfying the conditions
of the claim.

Due to Claim 3.1, we may now assume that for each maximum matching M ′ of G,
|M ′ � M | ≤ k. We will exploit this property to give an algorithm using color coding
(see e.g. [5, Chapter 5]).
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We color the edges of G uniformly at random with colors red and blue. For ease
of exposition, we also use the notation ‘red’ and ‘blue’ to denote the set of edges that
received color red and blue, respectively.

Suppose that there is a solution (M1, M2). We say that a coloring as above is
good for (M1, M2), if the edges in M1 \ M2 and M2 \ M1 are colored red and blue,
respectively. We call an edge coloring good, if it is good for some solution. To be able
to show that trying 4k colorings to achieve constant success probability suffices, we
bound the size of these sets.

By Claim 3.1, we know that |M � Mr | ≤ k for all r ∈ {1, 2}. Since |M1 � M2| is
the Hamming distance between sets, by the triangle inequality,

|M1 � M2| ≤ |M1 � M | + |M � M2| ≤ 2k

and |M1 \ M2| + |M2 \ M1| ≤ 2k. This leads to the following observation.

Observation 3.2 Let G be a graph, let M be a maximum matching of G, and suppose
that for all maximum matchings M ′ of G, |M � M ′| ≤ k.

Suppose the edges of G are colored uniformly at random with colors red and blue.
Suppose there is a solution (M1, M2). Then, with probability at least 2−2k , the edge

coloring is good for (M1, M2).

Suppose that our instance is a Yes-instance, and that the edges of G are colored
with a good coloring. We show how to obtain the solution in polynomial time from
the edge-colored graph.

Calim 3.3 Let G be a graph, M a maximummatching of G, and suppose that the edges
of G are colored uniformly at random with colors red and blue. There is an algorithm
that runs in polynomial time, and if the edge-coloring is good, finds two maximum
matchings M1 and M2 in G such that |M1 � M2| ≥ k, and reports No otherwise.

Proof The idea is similar to the one given in the algorithm of Claim 3.1. To find M1,
we define the following cost function c1 : E(G) → {0, 1}:

c1(e) ..=
{
1, if e ∈ blue
0, if e ∈ red

∀e ∈ E(G).

Then, we find a minimum-cost maximummatching M1 of G with the cost function
c1 in polynomial time [22].

Next, to find M2, we consider the cost function c2 : E(G) → {0, 1}, where

c2(e) ..=
{
1, if e ∈ red
0, if e ∈ blue

∀e ∈ E(G),

and find a minimum-cost maximum matching M2 of G with cost function c2 in poly-
nomial time [22].

Now, if |M1 � M2| ≥ k, then we return (M1, M2), and we say No, otherwise.
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We now argue the correctness of the algorithm in the case that the edge-coloring of
G was good. In this case, there is a solution (M∗

1 , M∗
2 ) such that the edges of M∗

1 \M∗
2

are red and the edges of M∗
2 \ M∗

1 are blue, and |M∗
1 � M∗

2 | ≥ k. We claim that
|M1 � M2| ≥ |M∗

1 � M∗
2 |.

To obtain a contradiction, assume that |M1 � M2| < |M∗
1 � M∗

2 |.
Since M1, M2, M∗

1 , and M∗
2 are maximum matchings of G, they have the same

size. Therefore, we have that

|M1 � M2|+2|M1∩M2|=|M1|+|M2|=|M∗
1 |+|M∗

2 |=
|M∗

1 � M∗
2 | + 2|M1∩M2|.

Since |M1 � M2| < |M∗
1 � M∗

2 |, we obtain that

|M1 ∩ M2| > |M∗
1 ∩ M∗

2 |. (6)

Because M∗
1 \ M∗

2 ⊆ red, c1(M∗
1 ) = |M∗

1 ∩ blue| = |(M∗
1 ∩ M∗

2 ) ∩ blue| by the
definition of the cost function c1. Symmetrically, c2(M∗

2 ) = |(M∗
1 ∩ M∗

2 ) ∩ red|.
Hence,

c1(M
∗
1 ) + c2(M

∗
2 ) = |(M∗

1 ∩ M∗
2 ) ∩ blue| + |(M∗

1 ∩ M∗
2 ) ∩ red| = |M∗

1 ∩ M∗
2 |.

(7)

Notice that c1(M1) = |M1 ∩ blue| ≥ |(M1 ∩ M2)∩ blue| and c2(M2) = |M2 ∩ red| ≥
|(M1 ∩ M2) ∩ red|. Therefore,

c1(M1) + c(M2) ≥ |(M1 ∩ M2) ∩ blue| + |(M1 ∩ M2) ∩ red| = |M1 ∩ M2|. (8)

Combining (6)–(8), we obtain that

c1(M1) + c2(M2) ≥ |M1 ∩ M2| > |M∗
1 ∩ M∗

2 | = c1(M
∗
1 ) + c2(M

∗
2 ). (9)

However, c1(M1) ≤ c1(M∗
1 ) and c2(M2) ≤ c2(M∗

2 ) by the definition of these match-
ings and

c1(M1) + c2(M2) ≤ c1(M
∗
1 ) + c2(M

∗
2 )

contradicting (9). We conclude that |M1 � M2| ≥ |M∗
1 � M∗

2 |.
The outline of the procedure is given in Algorithm 1. It is well-known that a max-

imum matching of a graph can be found in polynomial time, therefore line 1 takes
polynomial time. By Claims 3.1 and 3.3, lines 1 and 1, respectively, take polynomial
time. Moreover, by Observation 3.2, if there is a solution, then with probability at least
2−2k an edge-coloring as constructed in line 1 is good, in which case the algorithm
finds the solution by Claim 3.3. It is clear that repeating this step 22k times yields a
constant success probability. ��
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Input : Graph G, integer k
Output: If exists, with constant probability, a pair M1, M2 of maximum matchings of G such that

|M1 � M2| ≥ k, No otherwise.
Compute a maximum matching M of G;
if there is a maximum matching M ′ in G such that |M � M ′| ≥ k then

return (M, M ′);
end
else

repeat 22k times
Color the edges of G uniformly at random with colors red and blue;
run the algorithm of Claim 3.3;
if the algorithm returned (M1, M2) then return (M1, M2)

return No;
end

Algorithm 1: The algorithm of Theorem 3.

The algorithm of Theorem 3 can be derandomized by standard tools (see, e.g., [5,
Chapter 5]). To do so, we use the following notion of (�, k)-universal sets, which will
replace the random coloring step in the above algorithm by deterministic choices of
colorings.

Definition 4 ((�, k)-universal set) Let � be a set and k be a positive integer with
k ≤ |�|. An (�, k)-universal set is a family U of subsets of � such that for any size-k
set S ⊆ �, the family US

..= {A ∩ S : A ∈ U} contains all subsets of S.
We will use the following construction of a small universal set due to Naor et al.

[25].

Theorem 5 ([25], see also Theorem 5.20 in [5]) For any set � and integer k ≤
|�|, one can construct an (�, k)-universal set of size 2kkO(log k) log(|�|) in time
2kkO(log k)|�| log(|�|).
This immediately gives the following corollary.

Corollary 6 There is a deterministic 4kkO(log k) · nO(1) time algorithm that solves
Diverse Pair of Maximum Matchings, where n denotes the number of vertices
in the input graph.

5 Polynomial kernel for DIVERSE PAIR OF MATCHINGS

We now show that the Diverse Pair of Matchings problem, asking for a pair
of not necessarily maximum matchings has a kernel on O(k2) vertices. Note that the
NP-completeness of this problem is captured in Observation 1 as well. Moreover, we
would like to remark that this variant of the problem is only interesting in the casewhen
the input graph has no matching of size k or more: otherwise, a maximum matching
(which can be found in polynomial time) forms a trivial solution together with an
empty matching.

Theorem 7 Diverse Pair of Matchings parameterized by k has a kernel onO(k2)
vertices.
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Fig. 1 Illustration of the
situation in the proof of Claim
7.1. The existence of v implies
that |Xu | ≥ 2k, and since V (M)

is a vertex cover of G, the
vertices in Xu are pairwise
non-adjacent

Proof Let (G, k) be an instance of Diverse Pair of Matchings. We provide a
procedure that either correctly concludes that (G, k) is a Yes-instance, or marks a set
of O(k2) vertices X ⊆ V (G) such that (G[X ], k) is equivalent to (G, k).

First, let M be a maximal matching of G. If |M | ≥ k, then for any 2-partition
(M1, M2) of M , we have that |M1 � M2| = |M | ≥ k, and therefore (G, k) is a
Yes-instance.

Suppose that |M | < k and therefore, |V (M)| < 2k. Since M is maximal, V (M) is
a vertex cover of G, and therefore, E(G − V (M)) = ∅. This motivates the following
procedure that produces a set of marked vertices X ⊆ V (G), to which we can restrict
the instance without changing the answer.

1. Initialize X ..= V (M).
2. For each v ∈ V (M), add a maximal subset of NG(v) \ V (M) of size at most 2k to

X .

Let X denote the set constructed according to the two previous steps. We show that
(G[X ], k) is equivalent to (G, k).

Calim 7.1 Let G, k, M, and X be as above. Then, (G, k) is aYes-instance of Diverse
Pair of Matchings if and only if (G[X ], k) is a Yes-instance of Diverse Pair
of Matchings.

Proof Since G[X ] is a subgraph of G, it is clear that if (G[X ], k) is a Yes-instance,
then so is (G, k).

Now suppose that (G, k) is a Yes-instance and let (M1, M2) with |M1 � M2| ≥ k
be a solution. If M1 ∪ M2 ⊆ E(G[X ]), then (M1, M2) is also a solution to (G[X ], k),
so suppose that for some r ∈ {1, 2}, there is an edge uv ∈ Mr such that v ∈ V (G)\X .
Since V (M) ⊆ X and V (M) is a vertex cover of G, we may assume that u ∈ V (M).

Since v is a neighbor of u in V (G) \ X , the above marking algorithm added a set
of 2k neighbors of u in V (G)\V (M) to X , denote that set by Xu . For an illustration
see Fig. 1.

Now, since Xu ⊆ V (G) \ V (M), and since V (M) is a vertex cover of G, we have
that E(G[Xu]) = ∅. This means in particular that each edge in M1 ∪ M2 has at most
one endpoint in Xu . Therefore, if all vertices in Xu are the endpoint of some edge in
either M1 or in M2, then |M1 ∪ M2| ≥ 2k, which implies that at least one of M1 and
M2 contains at least k edges that are incident with a vertex from Xu ; denote that set
by M ′. Since each vertex in M ′ has an endpoint in Xu , and since V (M) is a vertex
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cover of G, we conclude that the endpoints of the edges in M ′ other than those in Xu

are in V (M), and so M ′ ⊆ E(G[X ]).
As above, any 2-partition (M ′

1, M
′
2) of M

′ is such that |M ′
1 � M ′

2| = |M ′| ≥ k,
therefore (M ′

1, M
′
2) is a solution to (G[X ], k). Otherwise, there is a vertex x ∈ Xu

that is not the endpoint of any edge in M1 ∪ M2. We obtain M�
r by removing uv and

adding ux . Then, (M�
r , M3−r ) is still a solution to (G, k), and it uses one more edge

in G[X ]. Repeatedly applying this argument shows that (G[X ], k) is a Yes-instance.

The previous claim asserts the correctness of the procedure. Since |V (M)| < 2k,
and for each vertex in V (M), we added at most 2k more vertices to X , we have that
|X | = O(k2). A maximal matching can be found greedily, and it is clear that the
marking procedure runs in polynomial time. This yields the result. ��

6 Conclusion

In this work, we initiated the study of algorithmic problems asking for diverse pairs
of (maximum/perfect) matchings, where diverse means that their symmetric differ-
ence has to be at least some value k. These problems are NP-complete on 3-regular
graphs, and we showed that on bipartite graphs, they become polynomial-time solv-
able; while parameterized by k, they are FPT, and the problem asking for two diverse
(not necessarily maximum) matchings admits a polynomial kernel.

The notion of diverse matchings opens up many natural further research directions.
In this work, we considered the complexity of finding pairs of diverse matchings.
What happens when we ask for a larger number of matchings? In [2, 3], the measure
of diversity of a set of solutions is the sum over all pairs of their symmetric difference. In
this setting, we can obtain an FPT-algorithm parameterized by the number of requested
matchings plus the ‘diversity target’ using the same approach as in our FPT-algorithm
for Diverse Pair of Maximum Matchings. However, we may ask for a set of
matchings M such that for each pair M1, M2 ∈ M, |M1 � M2| ≥ k. For the case
of perfect matchings, Fomin et al. [11] recently gave an FPT-algorithm parameterized
by the number q of matchings plus k. What about diverse sets of maximum, not
necessarily perfect, matchings? Moreover, the algorithm of [11] is randomized, and
its run time has a double-exponential dependence on qk, while we have a deterministic
single-exponential time algorithm for the more restrictive case of two matchings. Can
the algorithm from [11] be improved to a single-exponential dependence on qk and
can it be derandomized?

While the symmetric difference is a natural measure of diversity of two matchings,
one might consider other measures as well. The diversity measure at hand may affect
the complexity of the problem, so it would be interesting to see if there is an (easily
computable) diversity measure under which Diverse Pair of Maximum/Perfect
Matchings becomes W[1]-hard.
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