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Abstract
Our work concerns algorithms for a variant of Maximum Flow in unweighted graphs.
In the All-Pairs Connectivity (APC) problem, we are given a graph G on n vertices and
m edges, and are tasked with computing the maximum number of edge-disjoint paths
from s to t (equivalently, the size of a minimum (s, t)-cut) inG, for all pairs of vertices
(s, t). Significant algorithmic breakthroughs have recently shown that over undirected
graphs,APC can be solved in n2+o(1) time, which is essentially optimal. In contrast, the
true time complexity of APC over directed graphs remains open: this problem can be
solved in Õ(mω) time, where ω ∈ [2, 2.373) is the exponent of matrix multiplication,
but no matching conditional lower bound is known. Following [Abboud et al. In: 46th
International colloquium on automata, languages, and programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2019], we study a bounded version of APC called the k-Bounded All Pairs Connec-
tivity (k-APC) problem. In this variant of APC, we are given an integer k in addition to
the graph G, and are now tasked with reporting the size of a minimum (s, t)-cut only
for pairs (s, t) of vertices with min-cut value less than k (if the minimum (s, t)-cut has
size at least k, we can just report it is “large” instead of computing the exact value).
Our main result is an Õ((kn)ω) time algorithm solving k-APC in directed graphs. This
is the first algorithm which solves k-APC faster than simply solving the more general
APC problem exactly, for all k ≥ 3. This runtime is Õ(nω) for all k ≤ poly(log n),
which essentially matches the optimal runtime for the k = 1 case of k-APC, under
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popular conjectures from fine-grained complexity. Previously, this runtime was only
achieved for k ≤ 2 in general directed graphs [Georgiadis et al. In: 44th interna-
tional colloquium on automata, languages, and programming (ICALP 2017), volume
80 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017], and for k ≤ o(

√
log n) in the special case of

directed acyclic graphs [Abboud et al. In: 46th international colloquium on automata,
languages, and programming, ICALP 2019, July 9–12, 2019, Patras, Greece, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2019]. Our result employs the same alge-
braic framework used in previous work, introduced by [Cheung et al. In: FOCS, 2011].
A direct implementation of this framework involves inverting a large random matrix.
Our new algorithm is based off the insight that for solving k-APC, it suffices to invert
a low-rank random matrix instead of a generic random matrix. We also obtain a new
algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity (k-
APVC) problem, where we are now tasked with reporting, for every pair of vertices
(s, t), the maximum number of internally vertex-disjoint (rather than edge-disjoint)
paths from s to t if this number is less than k, and otherwise reporting that there are
at least k internally vertex-disjoint paths from s to t . Our second result is an Õ(k2nω)

time algorithm solving k-APVC in directed graphs. Previous work showed how to solve
an easier version of the k-APVC problem (where answers only need to be returned for
pairs of vertices (s, t) which are not edges in the graph) in Õ((kn)ω) time [Abboud
et al. In: 46th International colloquium on automata, languages, and programming,
ICALP 2019, July 9–12, 2019, Patras, Greece, Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2019]. In comparison, our algorithm solves the full k-APVC problem, and
is faster if ω > 2.

Keywords Maximum flow · All-pairs · Connectivity · Matrix rank

Mathematics Subject Classification Mathematics of computing · Graph algorithms

1 Introduction

Computing maximum flows is a classic problem which has been extensively studied
in graph theory and computer science. In unweighted graphs, this task specializes to
computing connectivities, an interesting computational problem in its own right. Given
a graph G on n vertices and m edges, for any vertices s and t in G, the connectivity
λ(s, t) from s to t is defined to be the maximum number of edge-disjoint paths1 from
s to t . Since maximum flow can be computed in almost-linear time, we can compute
λ(s, t) for any given vertices s and t in m1+o(1) time [4].

What if instead of merely returning the value of a single connectivity, our goal is to
compute all connectivities in the graph? This brings us to the All-Pairs Connectivity
(APC) problem: in this problem, we are given a graph G as above, and are tasked with
computing λ(s, t) for all pairs of vertices (s, t) in G. In undirected graphs, APC can

1 By Menger’s theorem, λ(s, t) is also equal to the minimum number of edges that must be deleted from
the graph G to produce a graph with no s to t path.
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be solved in n2+o(1) time [2], so that this “all-pairs” problem is essentially no harder
than outputting a single connectivity in dense graphs.

In directed graphs, APC appears to be much harder, with various conditional lower
bounds (discussed in Sect. 1.2) suggesting it is unlikely this problem can be solved
in quadratic time. Naively computing the connectivity separately for each pair yields
an n2m1+o(1) time algorithm for this problem. Using the flow vector framework (dis-
cussed in Sect. 3), it is possible to solve APC in directed graphs in Õ(mω) time2

[6], where ω is the exponent of matrix multiplication. Known algorithms imply that
ω < 2.37286 [3], so the Õ(mω) time algorithm is faster than the naive algorithm
whenever the input graph is not too dense.

Our work focuses on a bounded version of the APC problem, which we formally
state as the k-Bounded All-Pairs Connectivity (k-APC) problem: in this problem, we
are given a directed graph G as above, and are tasked with computing min(k, λ(s, t))
for all pairs of vertices (s, t) in G. Intuitively, this is a relaxation of the APC problem,
where our goal is to compute the exact values of λ(s, t) only for pairs (s, t)with small
connectivity. For all other pairs, it suffices to report that the connectivity is large, where
k is our threshold for distinguishing between small and large connectivity values.

When k = 1, the k-APC problem is equivalent to computing the transitive closure
of the input graph (in this problem, for each pair of vertices (s, t), we are tasked with
determining if G contains a path from s to t), which can be done in Õ(nω) time [7].
Similarly, for the special case of k = 2, it is known that k-APC can be solved in Õ(nω)

time, by a divide-and-conquer algorithm employing a cleverly tailored matrix product
[9]. As we discuss in Sect. 1.2, there is evidence that these runtimes for k-APC when
k ≤ 2 are essentially optimal.

Already for k = 3 however, it is open whether k-APC can be solved faster than
computing the exact values of λ(s, t) for all pairs (s, t) of vertices! Roughly speaking,
this is because the known Õ(mω) time algorithm for APC involves encoding the
connectivity information in the inverse of an m × m matrix, and inverting an m × m
matrix takes O(mω) time in general. This encoding step appears to be necessary for
k-APC as well. For k = 2, clever combinatorial observations about the structure of
strongly connected graphs allow one to skip this computation, but for k ≥ 3 it is not
clear at all from previous work how to avoid this bottleneck. Moreover, it is consistent
with existing hardness results that k-APC could be solved in O(nω) time for any
constant k.

Open Problem 1 Can k-APC be solved in faster than Õ(mω) time for k = 3?

Due to this lack of knowledge about the complexity of k-APC, researchers have also
studied easier versions of this problem. Given vertices s and t in the graphG, we define
the vertex connectivity ν(s, t) from s to t to be the maximum number of internally
vertex-disjoint paths from s to t . We can consider vertex connectivity analogues of
the APC and k-APC problems. In the All-Pairs Vertex Connectivity (APVC) problem,
we are given a graph G on n vertices and m edges, and are tasked with computing the
value of ν(s, t) for all pairs of vertices (s, t) in G. In the k-Bounded All-Pairs Vertex

2 Given a function f , we write Õ( f ) to denote f · poly(log f ).
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Connectivity (k-APVC) problem, we are given the same input G as above, but are now
tasked with only computing min(k, ν(s, t)) for all pairs of vertices (s, t) in G.

The k-APVC problem does not face the O(mω) barrier which existing algorithmic
techniques for k-APC seem to encounter, intuitively because it is possible to encode
all the vertex-connectivity information of a graph in the inverse of an n × n matrix
instead of an m × m matrix. As a consequence, [1] was able to present an Õ((kn)ω)

time algorithm which computes min(k, ν(s, t)) for all pairs of vertices (s, t) such that
(s, t) is not an edge. Given this result, it is natural to ask whether the more general
k-APVC and k-APC problems can also be solved in this same running time.

Open Problem 2 Can k-APVC be solved in Õ((kn)ω) time?

Open Problem 3 Can k-APC be solved in Õ((kn)ω) time?

1.1 Our Contribution

We resolve all three open problems raised in the previous section.
First, we present a faster algorithm for k-APC, whose time complexity matches the

runtime given by previous work for solving an easier version of k-APVC.

Theorem 4 For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

This is the first algorithm which solves k-APC faster than simply solving APC exactly
using the Õ(mω) time algorithm of [6], for all constant k ≥ 3.

Second, we present an algorithm for k-APVC, which is faster than the Õ((kn)ω)

time algorithm from [1] (which only solves a restricted version of k-APVC) if ω > 2.

Theorem 5 For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

1.2 Comparison to Previous Results

Conditional Lower Bounds

The field of fine-grained complexity contains many popular conjectures (which
hypothesize lower bounds on the complexity of certain computational tasks) which are
used as the basis of conditional hardness results for problems in computer science. In
this section, we review known hardness results for APC and its variants. The definitions
of the problems and conjectures used in this section are stated in Appendix A.

Assuming that Boolean Matrix Multiplication (BMM) requires nω−o(1) time, it is
known that k-APC and k-APVC require nω−o(1) time to solve, even for k = 1 [7]. In
particular, this hypothesis implies our algorithms for k-APC and k-APVC are optimal
for constant k.

Assuming the Strong Exponential Time Hypothesis (SETH), previous work shows
that APC requires (mn)1−o(1) time [11, Theorem 1.8], APVC requires m3/2−o(1) time

[14, Theorem 1.7], and k-APC requires
(
kn2

)1−o(1)
time [11, Theorem 4.3].

Let ω(1, 2, 1) be the smallest real number3 such that we can compute the product
of an n × n2 matrix and n2 × n matrix in nω(1,2,1)+o(1) time. Assuming the 4-Clique

3 Known fast matrix multiplication algorithms imply that ω(1, 2, 1) < 3.25669 [8, Table 2].
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Conjecture, the k-APVC problem over directed graphs (and thus the k-APC problem

as well) requires
(
k2nω(1,2,1)−2

)1−o(1)
time [1]. The 4-Clique Conjecture also implies

that solving APVC in undirected graphs requires nω(1,2,1)−o(1) time [10].

Algorithms for Restricted Graph Classes

As mentioned previously, no nontrivial algorithms for k-APC over general directed
graphs were known for k ≥ 3, prior to our work. However, faster algorithms were
already known for k-APC over directed acyclic graphs (DAGs). In particular, [1]
presented two algorithms to solve k-APC in DAGs, running in 2O(k2)mn time and
(k log n)4

k+o(k)nω time respectively.
In comparison, our algorithm from Theorem 4 solves k-APC in general directed

graphs, is faster than the former algorithm whenever m ≥ nω−1 or k ≥ ω(
√
log n)

(for example), is always faster than the latter algorithm, and is significantly simpler
from a technical perspective than these earlier arguments. However, these algorithms
for k-APC on DAGs also return cuts witnessing the connectivity values, while our
algorithm does not.

In the special case of undirected graphs, APVC can be solved in m2+o(1) time [14,
Theorem1.8], which is faster than the aforementioned Õ(mω) time algorithm ifω > 2.
Over undirected graphs, k-APVC can be solved in k3m1+o(1) + n2 poly(log n) time.
In comparison, our algorithm from Theorem 5 can handle k-APVC in both undirected
and directed graphs, and is faster for large enough values of k in dense graphs.

In directed planar graphs with maximum degree d, [6, Theorem 1.5] proves that
APC can be solved in O

(
dω−2nω/2+1

)
time.

Additional RelatedWork

In [15], the authors consider a symmetric variant of k-APC. Here, the input is a directed
graph G on n vertices and m edges, and the goal is to compute for all pairs of ver-
tices (s, t), the value of min(k, λ(s, t), λ(t, s)). This easier problem can be solved in
O(kmn) time [15].

1.3 Organization

The rest of this paper is devoted to proving Theorems 4 and 5. In Sect. 2 we introduce
notation, some useful definitions, and results on matrix computation which will be
useful in proving correctness of our algorithms. In Sect. 3 we provide an intuitive
overview of our algorithms for k-APC and k-APVC. In Sect. 4 we describe a framework
of “flowvectors” for capturing connectivity values, and in Sect. 5 use this framework to
prove Theorem 4. In Sect. 6 we present helpful results about vertex-connectivity, and
in Sect. 7 use these results to prove Theorem 5. We conclude in Sect. 8, highlighting
some interesting open problems suggested by our work.

In Appendix A, we include definitions of problems and conjectures mentioned in
Sect. 1.2. In Appendix B, we discuss how the treatment of k-APVC in [1] differs from
our own, and present the proof details for one of the results stated in Sect. 6.
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2 Preliminaries

Graph Assumptions Throughout, we let G denote a directed graph on n vertices and
m edges. Without loss of generality, we assume that the underlying undirected graph
of G is connected, i.e., G is weakly connected (since, if not, we could simply run
our algorithms separately on each weakly connected component of G), so we have
m ≥ n − 1. We assume G has no self-loops, since these do not affect the connectivity
or vertex-connectivity values between distinct vertices.

In Sects. 4 and 5 we focus on the k-APC problem, and so allow G to have parallel
edges between vertices (i.e., G can be a multigraph). We assume however, without
loss of generality, that for any distinct vertices s and t , there are at most k edges from
s to t (since if there were more than k parallel edges from s to t , we could delete
some and bring the count of parallel edges down to k without changing the value of
min(k, λ(s, t))). In Sects. 6 and 7 we focus on the k-APVC problem, and so assume
that G is a simple graph with no parallel edges, since parallel edges from u to v cannot
affect the value of a vertex connectivity ν(s, t), unless u = s and v = t , in which
case the value of ν(s, t) is simply increased by the number of additional parallel edges
from s to t .

Graph Terminology and Notation Given an edge e from u to v in G, we write
e = (u, v). We call u the tail of e and v the head of e. Vertices which are tails of
edges entering a vertex v are called in-neighbors of v. Similarly, vertices which are
heads of edges exiting v are called out-neighbors of v. Given a vertex u in G, we
let Ein(u) denote the set of edges entering u, and Eout(u) denote the set of edges
exiting u. Similarly, Vin(u) denotes the set of in-neighbors of u, and Vout(u) denotes
the set of out-neighbors of u. Furthermore, we define Vin[u] = Vin(u) ∪ {u} and
Vout[u] = Vout(u) ∪ {u}. Finally, let degin(u) = |Ein(u)| and degout(u) = |Eout(u)|
denote the indegree and outdegree of u respectively.

Given vertices s and t , an (s, t)-cut is a set C of edges, such that deleting the edges
inC produces a graph with no s to t path. ByMenger’s theorem, the size of a minimum
(s, t)-cut is equal to the connectivity λ(s, t) from s to t . Similarly, an (s, t)-vertex cut
is a set of C ′ of vertices with s, t /∈ C ′, such that deleting C ′ produces a graph with no
s to t path. Clearly, a vertex cut exists if and only if (s, t) is not an edge. When (s, t)
is not an edge, Menger’s theorem implies that the size of a minimum (s, t)-vertex cut
is equal to the vertex connectivity ν(s, t) from s to t .

MatrixNotation Let A be amatrix. For indices i and j , we let A[i, j] denote the (i, j)
entry of A. More generally, if S is a set of row indices and T a set of column indices,
we let A[S, T ] denote the submatrix of A restricted to rows from S and columns from
T . Similarly, A[S, ∗] denotes A restricted to rows from S, and A[∗, T ] denotes A
restricted to columns from T . We let A	 denote the transpose of A. If A is a square
matrix, then we let adj(A) denote the adjugate of A. If A is invertible, we let A−1

denote its inverse. If a theorem, lemma, or proposition statement refers to A−1, it is
generally asserting that A−1 exists (or if A is a randommatrix, asserting that A−1 exists
with some probability) as part of the statement. We let I denote the identity matrix
(the dimensions of this matrix will always be clear from context). Given a vector 
v,
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for any index i we let 
v[i] denote the i th entry in 
v. We let 
0 denote the zero vector (the
dimensions of this vector will always be clear from context). Given a positive integer
k, we let [k] = {1, . . . , k} denote the set of the first k positive integers.

Matrix and Polynomial Computation Given a prime p, we let Fp denote the finite
field on p elements. Arithmetic operations over elements of Fp can be performed in
Õ(log p) time.

We now recall some well-known results about computation with matrices and poly-
nomials, which will be useful for our algorithms.

Proposition 6 Let A be an a × b matrix, and B be a b × a matrix. If (I − BA) is
invertible, then the matrix (I − AB) is also invertible, with inverse

(I − AB)−1 = I + A(I − BA)−1B.

Proof It suffices to verify that the product of (I − AB) with the right hand side of the
above equation yields the identity matrix. Indeed, we have

(I − AB)
(
I + A(I − BA)−1B

)

= I + A(I − BA)−1B − AB − ABA(I − BA)−1B

= I + A(I − BA)−1B − AB − A
(
I − (I − BA)

)
(I − BA)−1B

= I + A(I − BA)−1B − AB − A(I − BA)−1B + AB,

which simplifies to I , as desired. ��
Proposition 7 Let A be an a × a matrix over Fp. We can compute the inverse A−1 (if
it exists) in O(aω) field operations.

Proposition 8 ([5, Theorem 1.1]) Let A be an a × b matrix over Fp. Then for any
positive integer k, we can compute min(k, rank A) in O(ab + kω) field operations.

Proposition 9 (Schwartz-Zippel Lemma [12, Theorem 7.2]) Let f ∈ Fp[x1, . . . , xr ]
be a degree d, nonzero polynomial. Let 
a be a uniform random point in Frp. Then f (
a)

is nonzero with probability at least 1 − d/p.

3 Proof Overview

3.1 FlowVector Encodings

Previous algorithms for APC [6] and its variants work in two steps:

Step 1: Encode
In this step, we prepare a matrix M which implicitly encodes the connectivity
information of the input graph.
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Step 2: Decode
In this step, we iterate over all pairs (s, t) of vertices in the graph, and for each pair
run a small computation on a submatrix of M to compute the desired connectivity
value.

The construction in the encode step is based off the framework of flow vectors, intro-
duced in [6] as a generalization of classical techniques from network-coding. We give
a high-level overview of how this method has been previously applied in the APC
problem.4

Given the input graph G, we fix a source vertex s. Let d = degout(s), and let F be
some ground field.5 Our end goal is to assign to each edge e in the graph a special
vector 
e ∈ F

d which we call a flow vector.
First, for each edge e ∈ Eout(s), we introduce a d-dimensional vector 
ve. These

vectors intuitively correspond to some starting flow that is pumping out of s. It is
important that these vectors are linearly independent (and previous applications have
always picked these vectors to be distinct d-dimensional unit vectors). We then push
this flow through the rest of the graph, by having each edge get assigned a vector which
is a random linear combination of the flow vectors assigned to the edges entering its
tail. That is, given an edge e = (u, v) with u 
= s, the final flow vector 
e will be
a random linear combination of the flow vectors for the edges entering u. If instead
the edge e = (s, v) is in Eout(s), the final flow vector 
e will be a random linear
combination of the flow vectors for the edges entering s, added to the initial flow 
ve.

The point of this random linear combination is to (with high probability) preserve
linear independence. In this setup, for any vertex v and integer �, if some subset of
� flow vectors assigned to edges in Ein(v) is independent, then we expect that every
subset of at most � flow vectors assigned to edges in Eout(v) is also independent.
This sort of behavior turns out to generalize to preserving linear independence of flow
vectors across cuts, which implies that (with high probability) for any vertex t , the
rank of the flow vectors assigned to edges in Ein(t) equals λ(s, t).

Intuitively, this is because the flowvectors assigned to edges in Ein(t)will be a linear
combination of the λ(s, t) flow vectors assigned to edges in a minimum (s, t)-cut, and
the flow vectors assigned to edges in this cut should be independent.

Collecting all the flow vectors as column vectors in a matrix allows us to produce
a single matrix Ms , such that computing the rank of Ms[∗, Ein(t)] yields the desired
connectivity value λ(s, t) (computing these ranks constitutes the decode step men-
tioned previously). Previous work [1, 6] set the initial pumped 
ve to be distinct unit
vectors. It turns out that for this choice of starting vectors, it is possible to construct
a single matrix M (independent of a fixed choice of s), such that rank queries to sub-
matrices of M correspond to the answers we wish to output in the APC problem and
its variants.

In Sect. 3.2 we describe how we employ the flow vector framework to prove
Theorem 4. Then in Sect. 3.3, we describe how we modify these methods to prove
Theorem 5.

4 For the APVC problem we employ a different, but analogous, framework described in Sect. 3.3.
5 In our applications, we will pick F to be a finite field of size poly(m).
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3.2 All-Pairs Connectivity

Our starting point is the Õ(mω) time algorithm for APC presented in [6], which uses
the flow vector encoding scheme outlined in Sect. 3.1.

Let K be an m × m matrix, whose rows and columns are indexed by edges in the
input graph. For each pair (e, f ) of edges, if the head of e coincides with the tail of f ,
we set K [e, f ] to be a uniform random field element in F. Otherwise, K [e, f ] = 0.
These field elements correspond precisely to the coefficients used in the random linear
combinations of the flow vector framework. Define the matrix

M = (I − K )−1. (1)

Then [6] proves that with high probability, for any pair (s, t) of vertices, we have

rank M[Eout(s), Ein(t)] = λ(s, t). (2)

With this setup, the algorithm for APC is simple: first compute M (the encode step),
and then for each pair of vertices (s, t), return the value of rank M[Eout(s), Ein(t)] as
the connectivity from s to t (the decode step).

By Eq. (1), we can complete the encode step in Õ(mω) time, simply by inverting
an m × m matrix with entries from F. It turns out we can also complete the decode
step in the same time bound. So this gives an Õ(mω) time algorithm for APC.

Suppose now we want to solve the k-APC problem. A simple trick (observed in
the proof of [1, Theorem 5.2] for example) in this setting can allow us to speed
up the runtime of the decode step. However, it is not at all obvious how to speed
up the encode step. To implement the flow vector scheme of Sect. 3.1 as written, it
seems almost inherent that one needs to invert an m × m matrix. Indeed, an inability
to overcome this bottleneck is stated explicitly as part of the motivation in [1] for
focusing on the k-APVC problem instead.

Our Improvement

The main idea behind our new algorithm for k-APC is to work with a low-rank version
of the matrix K used in Eq. (1) for the encode step.

Specifically, we construct certain random sparse matrices L and R with dimensions
m × kn and kn × m respectively. We then set K = LR, and argue that with high
probability, the matrix M defined in Eq. (1) for this choice of K satisfies

rank M[Eout(s), Ein(t)] = min(k, λ(s, t)). (3)

This equation is just a k-bounded version of Eq. (2). By Proposition 6, we have

M = (I − K )−1 = (I − LR)−1 = I + L(I − RL)−1R.

Note that (I − RL) is a kn × kn matrix. So, to compute M (and thus complete the
encode step) we no longer need to invert an m × m matrix! Instead we just need to
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invert a matrix of size kn × kn. This is essentially where the Õ ((kn)ω) runtime in
Theorem 4 comes from.

Conceptually, this argument corresponds to assigning flow vectors through the
graph by replacing random linear combinations with random “low-rank combina-
tions.” That is, for an edge e ∈ Eout(u) exiting a vertex u, we define the flow vector
at e to be


e =
k∑

i=1

⎛

⎝
∑

f ∈Ein(u)

Li [ f , u] 
f
⎞

⎠ · Ri [u, e],

where the inner summation is over all edges f entering u, 
f denotes the flow vector
assigned to edge f , and the Li [ f , u] and Ri [u, e] terms correspond to random field
elements uniquely determined by the index i and some (edge, vertex) pair.

Here, unlike in the method described in Sect. 3.1, the coefficient in front of 
f in its
contribution to 
e is not uniquely determined by the pair of edges f and e. Rather, if
edge f enters node u, then it has the same set of “weights” Li [ f , u] it contributes to
every flow vector exiting u. However, since we use k distinct weights, this restricted
rule for propagating flow vectors still suffices to compute min(k, λ(s, t)).

A good way to think about the effect of this alternate approach is that now for
any vertex v and any integer � ≤ k, if some subset of � flow vectors assigned to
edges in Ein(v) is independent, then we expect that every subset of at most � flow
vectors assigned to edges in Eout(v) is also independent. In the previous framework,
this result held even for � > k. By relaxing the method used to determine flow vectors,
we achieve a weaker condition, but this is still enough to solve k-APC.

This modification makes the encode step more complicated (it now consists of two
parts: one where we invert a matrix, and one where we multiply that inverse with
other matrices), but speeds it up overall. To speed up the decode step, we use a variant
of an observation from the proof of [1, Theorem 5.2] to argue that we can assume
every vertex in our graph has indegree and outdegree k. By Proposition 8 and Eq. (3),
this means we can compute min(k, λ(s, t)) for all pairs (s, t) of vertices in Õ(kωn2)
time. So the bottleneck in our algorithm comes from the encode step, which yields
the Õ ((kn)ω) runtime.

3.3 All-Pairs Vertex Connectivity

Our startingpoint is the Õ ((kn)ω) time algorithm in [1],which computesmin(k, ν(s, t))
for all pairs of vertices (s, t)which are not edges. That algorithm is based off a variant
of the flow vector encoding scheme outlined Sect. 3.1. Rather than assign vectors to
edges, we instead assign flow vectors to vertices (intuitively this is fine because we are
working with vertex connectivities in the k-APVC problem). The rest of the construc-
tion is similar: we imagine pumping some initial vectors to s and its out-neighbors,
and then we propagate the flow through the graph so that at the end, for any vertex v,
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the flow vector assigned to v is a random linear combination of flow vectors assigned
to in-neighbors of v.6

Let K be an n × n matrix, whose rows and columns are indexed by vertices in the
input graph. For each pair (u, v) of vertices, if there is an edge from u to v, we set
K [u, v] to be a uniform random element in F. Otherwise, K [u, v] = 0. These entries
correspond precisely to coefficients used in the random linear combinations of the
flow vector framework.

Now define the matrix

M = (I − K )−1. (4)

Then we argue that for any pair (s, t) of vertices, we have

rank M[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise.
(5)

Previously, [1, Proof of Lemma 5.1] sketched a different argument, which shows
that rank M[Vout(s), Vin(t)] = ν(s, t) when (s, t) is not an edge. As we discuss in
Appendix B.1, this claim does not necessarily hold when (s, t) is an edge.

We use Eq. (5) to solve k-APVC. For the encode step, we compute M . By Eq. (4),
we can do this by inverting an n × n matrix, which takes Õ(nω) time. For the decode
step, by Eq. (5) and Proposition 8, we can compute min(k, ν(s, t)) for all pairs (s, t)
of vertices in asymptotically

∑

s,t

(
degout(s) degin(t) + kω

) = m2 + kωn2

time, where the sum is over all vertices s and t in the graph. The runtime bound we get
here for the decode step is far too high – naively computing the ranks of submatrices
is too slow if the graph has many high-degree vertices.

To avoid this slowdown, [1] employs a simple trick to reduce degrees in the graph:
we can add layers of k new nodes to block off the ingoing and outgoing edges from
each vertex in the original graph. That is, for each vertex s in G, we add a set S of k
new nodes, replace the edges in Eout(s) with edges from s to all the nodes in S, and
add edges from every node in S to every vertex originally in Vout(s). Similarly, for
each vertex t in G, we add a set T of k new nodes, replace the edges in Ein(t) with
edges from all the nodes in T to t , and add edges from every vertex originally in Vin(t)
to every node in T .

It is easy to check that this transformation preserves the value of min(k, ν(s, t)) for
all pairs (s, t) of vertices in the original graph where (s, t) is not an edge. Moreover,
all vertices in the original graph have indegree and outdegree exactly k in the new
graph. Consequently, the decode step can now be implemented to run in Õ(kωn2)
time. Unfortunately, this construction increases the number of vertices in the graph

6 Actually, this behavior only holds for vertices v /∈ Vout[s]. The rule for flow vectors assigned to vertices
in Vout[s] is a little more complicated, and depends on the values of the initial pumped vectors.
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from n to (2k + 1)n. As a consequence, in the encode step, the matrix K we work
with is no longer n × n, but instead is of size (2k + 1)n × (2k + 1)n. Now inverting
I − K to compute M requires Õ ((kn)ω) time, which is why [1] obtains this runtime
for their algorithm.

Our Improvement

Intuitively, the modification used by [1] to reduce degrees in the graph feels very
inefficient. This transformation makes the graph larger in order to “lose information”
about connectivity values greater than k. Rather than modify the graph in this way, can
we modify the flow vector scheme itself to speed up the decode step? Our algorithm
does this, essentially modifying the matrix of flow vectors to simulate the effect of the
previously described transformation, without ever explicitly adding new nodes to the
graph.

Instead of working directly with the matrix M from Eq. (4), for each pair (s, t) of
vertices we define a (k + 1) × (k + 1) matrix

Ms,t = Bs (M[Vout[s], Vin[t]])Ct

which is obtained from multiplying a submatrix of M on the left and right by small
random matrices Bs and Ct , with k + 1 rows and columns respectively. Since Bs has
k + 1 rows and Ct has k + 1 columns, we can argue that with high probability, Eq. (5)
implies that

rank Ms,t =
{
min(k + 1, ν(s, t) + 1) if (s, t) is an edge

min(k + 1, ν(s, t)) otherwise.

So we can compute min(k, ν(s, t)) from the value of rank Ms,t . This idea is similar to
the preconditioning method used in algorithms for computing matrix rank efficiently
(see [5] and the references therein). Conceptually, we can view this approach as a
modification of the flow vector framework. Let d = degout(s). As noted in Sect. 3.1,
previous work

1. starts by pumping out distinct d-dimensional unit vectors to nodes in Vout(s), and
then

2. computes the rank of all flow vectors of vertices in Vin(t).

In our work, we instead

1. start by pumping out (d + 1) random (k + 1)-dimensional vectors to nodes in
Vout[s], and then

2. compute the rank of (k+1) random linear combinations of flow vectors for vertices
in Vin[t].

This alternate approach suffices for solving the k-APVC problem, while avoiding the
slow Õ((kn)ω) encode step of previous work.
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So, in the decode step of our algorithm, we compute min(k, ν(s, t)) for each pair
(s, t) of vertices by computing the rank of the (k+1)×(k+1)matrixMs,t , in Õ(kωn2)
time overall.

Our encode step is more complicated than previous work, because not only do we
need to compute the inverse (I − K )−1, we also have to construct the Ms,t matrices.
Naively computing each Ms,t matrix separately is too slow, so we end up using an
indirect approach to compute all entries of the Ms,t matrices simultaneously, with
just O(k2) multiplications of n × n matrices. This takes Õ(k2nω) time, which is the
bottleneck for our algorithm.

4 Flow Vector Encoding

The arguments in this section are similar to the arguments from [6, Section 2], but
involve more complicated proofs because we work with low-rank random matrices as
opposed to generic random matrices.

Fix a source vertex s in the input graph G. Let d = degout(s) denote the number of
edges leaving s. Let e1, . . . , ed ∈ Eout(s) be the outgoing edges from s.

Take a prime p = �(m5). Let 
u1, . . . , 
ud be distinct unit vectors in Fd
p.

Eventually, we will assign each edge e in G a vector 
e ∈ F
d
p, which we call a flow

vector. These flow vectors will be determined by a certain system of vector equations.
To describe these equations, we first introduce some symbolic matrices.

For each index i ∈ [k], we define an m × n matrix Xi , whose rows are indexed
by edges of G and columns are indexed by vertices of G, such that for each edge
e = (u, v), entry Xi [e, v] = xi,ev is an indeterminate. All entries in Xi not of this
type are zero.

Similarly, we define n × m matrices Yi , with rows indexed by vertices of G and
columns indexed by edges of G, such that for every edge f = (u, v), the entry
Yi [u, f ] = yi,u f is an indeterminate. All entries in Yi not of this type are zero.

Let X be the m × kn matrix formed by horizontally concatenating the Xi matrices.
Similarly, letY be the kn×mmatrix formedbyvertically concatenating theYi matrices.
Then we define the matrix

Z = XY = X1Y1 + · · · + XkYk . (6)

By construction, Z is an m × m matrix, with rows and columns indexed by edges of
G, such that for any edges e = (u, v) and f = (v,w), we have

Z [e, f ] =
k∑

i=1

xi,ev yi,v f (7)

and all other entries of Z are set to zero.
Consider the following procedure. We assign independent, uniform random values

from Fp to each variable xi,ev and yi,u f . Let Li , L, Ri , R, and K be the matrices over
Fp resulting from this assignment to Xi , X ,Yi ,Y , and Z respectively. In particular,
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we have

K = LR. (8)

Now, to each edge e, we assign aflowvector 
e ∈ F
d
p, satisfying the following equalities:

1. Recall that e1, . . . , ed are all the edges exiting s, and 
u1, . . . , 
ud are distinct unit
vectors in Fd

p. For each edge ei ∈ Eout(s), we require its flow vector satisfy


ei =
⎛

⎝
∑

f ∈Ein(s)


f · K [ f , ei ]
⎞

⎠ + 
ui . (9)

2. For each edge e = (u, v) with u 
= s, we require its flow vector satisfy


e =
∑

f ∈Ein(u)


f · K [ f , e]. (10)

A priori it is not obvious that flow vectors satisfying the above two conditions exist,
but we show below that they do (with high probability). Let Hs be the d × m matrix
whose columns are indexed by edges in G, such that the column associated with ei is

ui for each index i , and the rest of the columns are zero vectors. Let F be the d × m
matrix, with columns indexed by edges in G, whose columns F[∗, e] = 
e are flow
vectors for the corresponding edges. Then Eqs. (9) and (10) are encapsulated by the
simple matrix equation

F = FK + Hs . (11)

The following lemma shows we can solve for F in the above equation, with high
probability.

Lemma 10 We have det(I − K ) 
= 0, with probability at least 1 − 1/m3.

Proof Since the input graph has no self-loops, by Eq. (7) and the discussion imme-
diately following it, we know that the diagonal entries of the m × m matrix Z are
zero. By Eq. (7), each entry of Z is a polynomial of degree at most two, with constant
term set to zero. Hence, det(I − Z) is a polynomial over Fp with degree at most 2m,
and constant term equal to 1. In particular, this polynomial is nonzero. Then by the
Schwartz-Zippel Lemma (Proposition 9), det(I − K ) is nonzero with probability at
least

1 − 2m/p ≥ 1 − 1/m3

by setting p ≥ 2m4. ��
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Suppose from now on that det(I − K ) 
= 0 (by Lemma 10, this occurs with high
probability). Then with this assumption, we can solve for F in Eq. (11) to get

F = Hs(I − K )−1 = Hs (adj(I − K ))

det(I − K )
. (12)

This equation will allow us to relate ranks of collections of flow vectors to connectivity
values in the input graph.

Lemma 11 For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F[∗, Ein(t)] ≤ λ(s, t).

Proof Abbreviate λ = λ(s, t). Conceptually, this proof works by arguing that the flow
vectors assigned to all edges entering t are linear combinations of the flow vectors
assigned to edges in a minimum (s, t)-cut of G.

Let C be a minimum (s, t)-cut. By Menger’s theorem, |C | = λ.
Let T be the set of nodes which can reach t without using an edge in C . Let S be

set of nodes in G not in T . Let E ′ be the set of edges e = (u, v) in G with v ∈ T .
Let E ′ be the set of edges e = (u, v) with v ∈ T .
Set K ′ = K [E ′, E ′] and F ′ = F[∗, E ′]. Finally, let H ′ be a matrix whose columns

are indexed by edges in E ′, such that the column associated with an edge e ∈ C is 
e,
and all other columns are equal to 
0.

Then by Eqs. (9) and (10), we have

F ′ = F ′K ′ + H ′.

Indeed, for any edge e = (u, v) ∈ E ′, if u ∈ S then e ∈ C so H ′[∗, e] = 
e, and
there can be no edge f ∈ E ′ entering u, so (F ′K ′)[∗, e] = 
0. If instead u ∈ T ,
then H ′[∗, e] = 
0, but every edge f entering u is in E ′, so by Eq. (10), we have
(F ′K ′)[∗, e] = F ′[∗, e] as desired.

Using similar reasoning to the proof of Lemma 10, we have det(I − K ′) 
= 0 with
probability at least 1− 1/m3. If this event occurs, we can solve for F ′ in the previous
equation to get

F ′ = H ′(I − K ′)−1.

Since H ′ has at most λ nonzero columns, rank H ≤ λ. So by the above equation,
rank F ′ ≤ λ. By definition, Ein(t) ⊆ E ′. Thus F[∗, Ein(t)] is a submatrix of F ′.
Combining thiswith the previous results, we see that rank F[∗, Ein(t)] ≤ λ, as desired.
The claimed probability bound follows by a union bound over the events that I − K
and I − K ′ are both invertible. ��
Lemma 12 For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F[∗, Ein(t)] ≥ min(k, λ(s, t)).
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Proof Abbreviate λ = min(k, λ(s, t)). Intuitively, our proof argues that the presence
of edge-disjoint paths from s to t leads to certain edges in Ein(t) being assigned linearly
independent flow vectors (with high probability), which then implies the desired lower
bound.

By Menger’s theorem, G contains λ edge-disjoint paths P1, . . . , Pλ from s to t .
Consider the following assignment to the variables of the symbolic matrices Xi and

Yi . For each index i ≤ λ and edge e = (u, v), we set variable xi,ev = 1 if e is an edge
in Pi . Similarly, for each index i ≤ λ and edge f = (u, v), we set variable yi,u f = 1
if f is an edge in Pi . All other variables are set to zero. In particular, if i > λ, then
Xi and Yi have all their entries set to zero. With respect to this assignment, the matrix
XiYi (whose rows and columns are indexed by edges in the graph) has the property
that (XiYi )[e, f ] = 1 if f is the edge following e on path Pi , and all other entries are
set to zero.

Then by Eq. (6), we see that under this assignment, Z [e, f ] = 1 if e and f are
consecutive edges in some path Pi , and all other entries of Z are set to zero. For this
particular assignment, because the Pi are edge-disjoint paths, Equations (9) and (10)
imply that the last edge of each path Pi is assigned a distinct d-dimensional unit vector.
These vectors are independent, so, rank F[∗, Ein(t)] = λ in this case.

With respect to this assignment, this means that F[∗, Ein(t)] contains a λ × λ full-
rank submatrix. Let F ′ be a submatrix of F[∗, Ein(t)] with this property. Since F ′ has
full rank, we have det F ′ 
= 0 for the assignment described above.

Now, before assigning values to variables, each entry of adj(I − Z) is a polynomial
of degree at most 2m. So by Eq. (12), det F ′ is equal to some polynomial P of degree
at most 2λm, divided by (det(I − Z))λ. We know P is a nonzero polynomial, because
we saw above that det F ′ is nonzero for some assignment of values to the variables
(and if P were the zero polynomial, then det F ′ would evaluate to zero under every
assignment).

By Lemma 10, with probability at least 1 − 1/m3, a random evaluation to the
variables will have det(I−Z) evaluate to a nonzero value. Assuming this event occurs,
by Schwartz-Zippel Lemma (Proposition 9), a random evaluation to the variables in
Z will have det F ′ 
= 0 with probability at least 1 − (2λm)/p ≥ 1 − 1/m3 by setting
p ≥ 2m5.

So by union bound, a particular λ × λ submatrix of F[∗, Ein(t)] will be full rank
with probability at least 1 − 2/m3. This proves the desired result. ��
Lemma 13 Fix vertices s and t. Define λ = rank (I − K )−1[Eout(s), Ein(t)]. With
probability at least 1 − 4/m3, we have min(k, λ) = min(k, λ(s, t)).

Proof The definition of Hs together with Eq. (12) implies that

F[∗, Ein(t)] = (I − K )−1[Eout(s), Ein(t)]. (13)

By union bound over Lemmas 12 and 11, with probability at least 1 − 4/m3 the
inequalities

λ = rank (I − K )−1[Eout(s), Ein(t)] = rank F[∗, Ein(t)] ≤ λ(s, t)
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and

λ = rank (I − K )−1[Eout(s), Ein(t)] = rank F[∗, Ein(t)] ≥ min(k, λ(s, t))

simultaneously hold. The desired result follows. ��

5 Connectivity Algorithm

In this section, we present our algorithm for k-APC.

Graph Transformation We begin by modifying the input graph G as follows. For
every vertex v in G, we introduce two new nodes vout and vin. We replace each edge
(u, v) originally in G is by the edge (uout, vin). We add k parallel edges from v to vout,
and k parallel edges from vin to v, for all u and v. We call vertices present in the graph
before modification the original vertices.

Suppose G originally had n nodes and m edges. Then the modified graph has
nnew = 3n nodes and mnew = m + 2kn edges. For any original vertices s and t , edge-
disjoint paths from s to t in the new graph correspond to edge disjoint paths from s to t
in the original graph. Moreover, for any integer � ≤ k, if the original graph contained
� edge-disjoint paths from s to t , then the new graph contains � edge-disjoint paths
from s to t as well.

Thus, for any original vertices s and t , the value of min(k, λ(s, t)) remains the same
in the old graph and the new graph. So, it suffices to solve k-APC on the new graph.
In this new graph, the indegrees and outdegrees of every original vertex are equal to
k. Moreover, sets Eout(s) and Ein(t) are pairwise disjoint, over all original vertices s
and t .

Additional Definitions We make use of the matrices defined in Sect. 4, except now
these matrices are defined with respect to the modified graph. In particular, K , L , and
R are now matrices with dimensions mnew ×mnew, mnew × knnew, and knnew ×mnew
respectively.

Moreover, we work over a field Fp for some prime p = �(m5
new).

Define L̃ to be the kn × knnew matrix obtained by vertically concatenating
L[Eout(s), ∗] over all original vertices s. Similarly, define R̃ to be the knnew × kn
matrix obtained by horizontally concatenating R[∗, Ein(t)] over all original vertices
t .

The Algorithm Using the above definitions, we present our approach for solving
k-APC in Algorithm 1.

Theorem 14 With probability at least 1 − 5/(mnew), Algorithm 1 correctly solves
k-APC.

Proof By Lemma 10 with probability at least 1 − 1/(mnew)4 the matrix I − K is
invertible (note that here we are using our choice of field size p = �(m5

new)).
Going forward, we assume that I − K is invertible.
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Algorithm 1 Our algorithm for solving k-APC.
1: Compute the nnew × nnew matrix (I − RL)−1.
2: Compute the knnew × knnew matrix M = L̃(I − RL)−1 R̃.
3: For each pair (s, t) of original vertices, compute

rank M[Eout(s), Ein(t)]

and output this as the value for min(k, λ(s, t)).

By Lemma 13, with probability at least 1 − 4/(mnew)3, we have

rank(I − K )−1[Eout(s), Ein(t)] = min(k, λ(s, t)) (14)

for any given original vertices s and t . By union bound over all n2 ≤ (mnew)2 pairs of
original vertices (s, t), we see that Eq. (14) holds for all original vertices s and t with
probability at least 1 − 4/(mnew).

Since I − K is invertible, by Eq. (8) and Proposition 6 we have

(I − K )−1 = (I − LR)−1 = I + L(I − RL)−1R.

Using the above equation in Eq. (14) shows that for original vertices s and t , the
quantity min(k, λ(s, t)) is equal to the rank of

(I + L(I − RL)−1R)[Eout(s), Ein(t)] = L[Eout(s), ∗](I − RL)−1R[∗, Ein(t)]

where we use the fact that I [Eout(s), Ein(t)] is the all zeroes matrix, since in the
modified graph, Eout(s) and Ein(t) are disjoint sets for all pairs of original vertices
(s, t).

Then by definition of L̃ and R̃, the above equation and discussion imply that

min(k, λ(s, t)) = rank (L̃(I − RL)−1 R̃)[Eout(s), Ein(t)] = rank M[Eout(s), Ein(t)]

which proves that Algorithm 1 outputs the correct answers.
A union bound over the events that I − K is invertible and that Eq. (14) holds for

all (s, t), shows that Algorithm 1 is correct with probability at least 1 − 5/(mnew). ��
We are now ready to prove our main result.

Theorem 4 For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

Proof ByTheorem14,Algorithm1 correctly solves the k-APC problem.We now argue
that Algorithm 1 can be implemented to run in Õ((kn)ω) time.

In step 1 of Algorithm 1, we need to compute (I − RL)−1.
From the definitions of R and L , we see that to compute RL , it suffices to compute

the products Ri L j for eachpair of indices (i, j) ∈ [k]2. Thematrix Ri L j isnnew×nnew,
and its rows and columns are indexed by vertices in the graph. Given vertices u and
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v, let E(u, v) denote the set of parallel edges from u to v. From the definitions of the
Ri and L j matrices, we see that for any vertices u and v, we have

(Ri L j )[u, v] =
∑

e∈E(u,v)

Ri [u, e]L j [e, v]. (15)

As noted in Sect. 2, for all vertices u and v we may assume that |E(u, v)| ≤ k.
For each vertex u, define the k × degout(u) matrix R′

u , with rows indexed by [k]
and columns indexed by edges exiting u, by setting

R′
u[i, e] = Ri [u, e]

for all i ∈ [k] and e ∈ Eout(u).
Similarly, for each vertex v, define the degin(v) × k matrix L ′

v by setting

L ′
v[e, j] = L j [e, v]

for all e ∈ Ein(v) and j ∈ [k].
Finally, for each pair (u, v) of vertices, define R′

uv = R′
u[∗, E(u, v)] and L ′

uv =
L ′

v[E(u, v), ∗]. Then by Eq. (15), we have

(Ri L j )[u, v] = R′
uvL

′
uv[i, j].

Thus, to compute the Ri L j products, it suffices to build the R′
u and L ′

v matrices in
O (kmnew) time, and then compute the R′

uvL
′
uv products.We can do this by computing

(nnew)2 products of pairs of k × k matrices. Since for every pair of vertices (u, v),
there are at most k parallel edges from u to v, kmnew ≤ k2n2, we can compute all the
Ri L j products, and hence the entire matrix RL , in Õ(n2kω) time.

We can then compute I − RL by modifying O(kn) entries of RL . Finally, by
Proposition 7 we can compute (I − RL)−1 in Õ((kn)ω) time.

So overall, step 1 of Algorithm 1 takes Õ((kn)ω) time.
In step 2 of Algorithm 1, we need to compute M = L̃(I − RL)−1 R̃.
Recall that L̃ is a kn × knnew matrix. By definition, each row of L̃ has k nonzero

entries. Similarly, R̃ is an knnew × kn matrix, with k nonzero entries in each column.
Thus we can compute M , and complete step 2 of Algorithm 1 in Õ((kn)ω) time.
Finally, in step 3 of Algorithm 1, we need to compute

rank M[Eout(s), Ein(t)] (16)

for each pair of original vertices (s, t) in the graph. In themodified graph, each original
vertex has indegree and outdegree k, so each M[Eout(s), Ein(t)] is a k × k matrix. For
any fixed (s, t), by Proposition 8 we can compute the rank of M[Eout(s), Ein(t)] in
Õ(kω) time.

So we can compute the ranks from Eq. (16) for all n2 pairs of original vertices (s, t)
and complete step 3 of Algorithm 1 in Õ(kωn2) time.

Thus we can solve k-APC in Õ((kn)ω) time overall, as claimed. ��
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6 Encoding Vertex Connectivities

Take a prime p = �̃(n5). Let K be an n × n matrix, whose rows and columns are
indexed by vertices of G. For each pair (u, v) of vertices, if (u, v) is an edge in G, we
set K [u, v] to be a uniform random element of Fp. Otherwise, K [u, v] = 0.

Recall from Sect. 2 that given a vertex v in G, we let Vin[v] = Vin(v) ∪ {v} be the
set consisting of v and all in-neighbors of v, and Vout[v] = Vout(v) ∪ {v} be the set
consisting of v and all out-neighbors of v. The following proposition7 is based off
ideas from [6, Section 2] and [1, Section 5]. We present a complete proof of this result
in Appendix B.2.

Proposition 15 For any vertices s and t in G, with probability at least 1 − 3/n3, the
matrix (I − K ) is invertible and we have

rank (I − K )−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise.

Proposition 15 shows that we can compute vertex connectivities in G simply by
computing ranks of certain submatrices of (I − K )−1. However, these submatrices
could potentially be quite large, which is bad if we want to compute the vertex connec-
tivities quickly. To overcome this issue, we show how to decrease the size of (I−K )−1

while still preserving relevant information about the value of ν(s, t).

Lemma 16 Let M be an a × b matrix over Fp. Let � be a (k + 1) × a matrix with
uniform random entries from Fp. Then with probability at least 1 − (k + 1)/p, we
have

rank �M = min(k + 1, rank M).

Proof Since �M has k + 1 rows, rank(�M) ≤ k + 1.
Similarly, since �M has M as a factor, rank(�M) ≤ rank M . Thus

rank �M ≤ min(k + 1, rank M). (17)

So, it suffices to show that �M has rank at least min(k + 1, rank M).
Set r = min(k + 1, rank M). Then there exist subsets S and T of row and column

indices respectively, such that |S| = |T | = r and M[S, T ] has rank r . Now, let U be
an arbitrary set of r rows in �. Consider the matrix M ′ = (�M)[U , T ].

We can view each entry of M ′ as a polynomial of degree at most 1 in the entries
of �. This means that det M ′ is a polynomial of degree at most r in the entries of
�. Moreover, if the submatrix �[U , T ] = I happens to be the identity matrix, then
M ′ = M[S, T ]. This implies that det M ′ is a nonzero polynomial in the entries of �,
because for some assignment of values to the entries of�, this polynomial has nonzero
evaluation det M[S, T ] 
= 0 (where we are using the fact that M[S, T ] has full rank).
7 The result stated here differs from a similar claim used in [1, Section 5] We discuss this difference, and
related subtleties, in Appendix B.1.
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So by the Schwartz-Zippel Lemma (Proposition 9), the matrix �M has rank at least
r , with probability at least 1 − r/p.

Together with Eq. (17), this implies the desired result. ��
Now, to each vertex u in the graph, we assign a (k + 1)-dimensional column vector


bu and a (k + 1)-dimensional row vector 
cu .
Let B be the (k + 1) × n matrix formed by concatenating all of the 
bu vectors

horizontally, and let C be the n× (k +1) matrix formed by concatenating all of the 
cu
vectors vertically. For each pair of distinct vertices (s, t), define the (k + 1) × (k + 1)
matrix

Ms,t = B[∗, Vout[s]]
(
(I − K )−1[Vout[s], Vin[t]]

)
C[Vin[t], ∗]. (18)

The following result is the basis of our algorithm for k-APVC.

Lemma 17 For any vertices s and t in G, with probability at least 1− 5/n3, we have

rank Ms,t =
{
min(k + 1, ν(s, t) + 1) if (s, t) is an edge

min(k + 1, ν(s, t)) otherwise.

Proof Fix vertices s and t . Then, by Proposition 15, we have

rank (I − K )−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise

with probability at least 1 − 3/n3. Assume the above equation holds.
Then, by setting � = B[∗, Vout[s]] and M = (I − K )−1[Vout[s], Vin[t]] in

Lemma 16, we see that with probability at least 1 − 1/n3 we have

rank B[∗, Vout[s]](I − K )−1[Vout[s], Vin(t)] =
{
min(k + 1, ν(s, t) + 1) if (s, t) is an edge

min(k + 1, ν(s, t)) otherwise.
.

Assume the above equation holds.
Finally, by setting � = C	[∗, Vin(t)] and M = (B[∗, Vout[s]](I − K )−1[Vout[s],

Vin(t)])	 in Lemma 16 and transposition, we see that with probability at least 1−1/n3

we have

rank B[∗, Vout[s]]
(
(I − K )−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t) + 1)

if there is an edge from s to t , and

rank B[∗, Vout[s]]
(
(I − K )−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t))

otherwise. So byunion bound, the desired result holdswith probability at least 1−5/n3.
��
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7 Vertex Connectivity Algorithm

Let A be the adjacency matrix of the graph G with self-loops. That is, A is the n × n
matrix whose rows and columns are indexed by vertices ofG, and for every pair (u, v)

of vertices, A[u, v] = 1 if v ∈ Vout[u] (equivalently, u ∈ Vin[v]), and A[u, v] = 0
otherwise.

Recall the definitions of the 
bu and 
cu vectors, and the K , B,C and Ms,t matrices
from Sect. 6. For each i ∈ [k + 1], let Pi be the n × n diagonal matrix, with rows and
columns indexed by vertices of G, such that Pi [u, u] = 
bu[i]. Similarly, let Qi be the
n × n diagonal matrix, with rows and columns indexed by vertices of G, such that
Qi [u, u] = 
cu[i].

With these definitions, we present our approach for solving k-APVC in Algorithm 2.

Algorithm 2 Our algorithm for solving k-APVC.
1: Compute the n × n matrix (I − K )−1.
2: For each pair (i, j) ∈ [k + 1]2 of indices, compute the n × n matrix

Di j = APi (I − K )−1Q j A
	.

3: For each pair (s, t) of vertices, let Fs,t be the (k + 1) × (k + 1) matrix whose (i, j) entry is equal to
Di j [s, t]. If (s, t) is an edge, output (rank Fs,t ) − 1 as the value for min(k, ν(s, t)). Otherwise, output
min(k, rank Fs,t ) as the value for min(k, ν(s, t)).

The main idea of Algorithm 2 is to use Lemma 17 to reduce computing
min(k, ν(s, t)) for a given pair of vertices (s, t) to computing the rank of a corre-
sponding (k+1)× (k+1) matrix, Ms,t . To make this approach efficient, we compute
the entries of all Ms,t matrices simultaneously, using a somewhat indirect argument.

Theorem 18 With probability at least 1 − 5/n, Algorithm 2 correctly solves k-APVC.

Proof We prove correctness of Algorithm 2 using the following claim.

Claim 19 For all pairs of indices (i, j) ∈ [k + 1]2 and all pairs of vertices (s, t), we
have

Ms,t [i, j] = Di j [s, t],

where Di j is the matrix computed in step 2 of Algorithm 2.

Proof By expanding out the expression for Di j from step 2 of Algorithm 2, we have

Di j [s, t] =
∑

u,v

A[s, u]Pi [u, u]
(
(I − K )−1[u, v]

)
Q j [v, v]A[v, t],

where the sum is over all vertices u, v in the graph (here, we use the fact that Pi and
Q j are diagonal matrices). By the definitions of A, the Pi , and the Q j matrices, we
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have

Di j [s, t] =
∑

u∈Vout[s]
v∈Vin[t]


bu[i]
(
(I − K )−1[u, v]

)

cv[ j]. (19)

On the other hand, the definition of Ms,t from Eq. (18) implies that

Ms,t [i, j] =
∑

u∈Vout[s]
v∈Vin[t]

B[i, u]
(
(I − K )−1[u, v]

)
C[v, j].

Since B[i, u] = 
bu[i] and C[v, j] = 
cv[ j], the above equation and Eq. (19) imply
that

Ms,t [i, j] = Di j [s, t]

for all (i, j) and (s, t), as desired. ��
By Claim 19, the matrix Fs,t computed in step 3 of Algorithm 2 is equal to Ms,t .

So by Lemma 17, for any fixed pair (s, t) of vertices we have

rank Fs,t =
{
min(k + 1, ν(s, t) + 1) if (s, t) is an edge

min(k + 1, ν(s, t)) otherwise.
(20)

with probability at least 1 − 5/n3. Then by a union bound over all pairs of vertices
(s, t), we see that Eq. (20) holds for all pairs (s, t), with probability at least 1 − 5/n.

Assume this event occurs. Then if (s, t) is an edge, by Eq. (20) we correctly return

(rank Fs,t ) − 1 = min(k + 1, ν(s, t) + 1) − 1 = min(k, ν(s, t))

as our answer for this pair.
Similarly, if (s, t) is not an edge, by Eq. (20) we correctly return

min(k, rank Fs,t ) = min(k, k + 1, ν(s, t)) = min(k, ν(s, t))

as our answer for this pair. This proves the desired result. ��
With Theorem 18 established, we can prove our result for vertex connectivities.

Theorem 5 For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

Proof By Theorem 18, Algorithm 2 correctly solves the k-APVC problem. We now
argue that Algorithm 2 can be implemented to run in Õ(k2nω) time.

In step 1 of Algorithm 2, we need to compute (I − K )−1. Since K is an n × n
matrix, by Proposition 7 we can complete this step in Õ(nω) time.
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In step 2 of Algorithm 2, we need to compute Di j for each pair (i, j) ∈ [k + 1]2.
For each fixed pair (i, j), the Di j matrix is defined as a product of five n × n matrices
whose entries we know, so this step takes Õ(k2nω) time overall.

In step 3 of Algorithm 2, we need to construct each Fst matrix, and compute its
rank. Since each Fst matrix has dimensions (k + 1) × (k + 1) and its entries can be
filled in simply by reading entries of the Di j matrices we have already computed, by
Propostion 8 this step can be completed in Õ(kωn2) time.

By adding up the runtimes for each of the steps and noting that k ≤ n, we see that
Algorithm 2 solves k-APVC in Õ(k2nω) time, as claimed. ��

8 Conclusion

In this paper, we presented algorithms solving k-APC and k-APVC in Õ((kn)ω) and
Õ(k2nω) time respectively. Many open problems remain concerning the exact time
complexity of these problems. We highlight some open questions we find particularly
interesting:

1. The most relevant question to our work: can we solve k-APC or k-APVC faster? Is
it possible to solve k-APC in Õ(k2nω) time, as fast as our algorithm for k-APVC?
Could there be some moderately large parameter values k ≥ n�(1) for which these
problems can be solved in Õ(nω) time, matching the runtime for constant k?

2. Can we get better conditional lower bounds for k-APC and k-APVC? Currently,
no conditional lower bound rules out the possibility that these problems could,
for example, be solved in Õ(knω) time. For the APC and APVC problems, can the
known nω(1,2,1)−o(1) conditional lower bounds be improved8 to n4−o(1) conditional
lower bounds?

3. Recently, [14] showed that there is a nondeterministic verifier for the APVC prob-
lem, running in O(nω(1,2,1)) time. Is there a nondeterministic verifier for APCwith
the same runtime? Are there nondeterministic verifiers for the k-APC and k-APVC
problems, which run faster than the algorithms from Theorems 4 and 5?
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A Conjectures in Fine-Grained Complexity

In the Boolean Matrix Multiplication (BMM) problem, we are given n × n matrices
A and B with entries in {0, 1}, and are tasked with computing, for each pair (i, j) ∈
[n]2, whether there exists an index k such that A[i, k] = B[k, j] = 1. Using matrix
multiplication, we can solve BMM in O(nω) time.

The BMM hypothesis9 posits that this is essentially optimal, and asserts that there
is no constant δ > 0 such that BMM can be solved in O(nω−δ) time.

Let k be a positive integer. In the kSAT problem, we are given a k-CNF (a Boolean
formula which can be written as a conjunction of clauses, where each clause is the
disjunction of at most k Boolean literals) over n variables, and taskedwith determining
if there is some assignment of values to the variables which satisfies the k-CNF.

The Strong Exponential Time Hypothesis (SETH) conjectures that for any con-
stant δ > 0, there exists some positive integer k such that kSAT cannot be solved in
2(1−δ)n poly(n) time.

In the 4-Clique problem, we are given a graph G, and tasked with determining if
it contains a clique on four vertices (i.e., four distinct vertices which are mutually
adjacent).

Let ω(1, 2, 1) be the smallest positive real such that we can multiply an n × n2

matrix with an n2 × n matrix in nω(1,2,1)+o(1) time. It is known that 4-Clique can be
solved in O

(
nω(1,2,1)

)
time. The 4-Clique Conjecture10 asserts that this runtime is

essentially optimal, in the sense that for any constant δ > 0, the 4-Clique problem
cannot be solved in O

(
nω(1,2,1)−δ

)
time.

B Vertex Connectivity Encoding Scheme

In Appendix B.1, we describe the result that [1] obtains for computing vertex cuts, and
explain how the claims in [1] differ from the arguments in this work. In Appendix B.2,
we present a proof of Proposition 15.

B.1 Discussion of Previous Vertex Cuts Algorithm

In [1], the authors present an Õ((kn)ω) time algorithm for the k-Bounded All-Pairs
Minimum Vertex Cut problem. In this problem, we are given a directed graph G on
n vertices, and are tasked with returning, for every pair of vertices (s, t), the size of a

9 The literature also refers to the Combinatorial BMM hypothesis, an informal conjecture that no “combi-
natorial” algorithm for BMM runs in O(n3−δ) time, for any constant δ > 0.
10 This conjecture also has informal counterpart in the literature, which states that no “combinatorial”
algorithm for 4-Clique runs in O(n4−δ) time, for any constant δ > 0.
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minimum (s, t)-vertex cut, if this size is less than k. For pairs (s, t) where the size of
a minimum (s, t)-vertex cut is at least k, we simply need to return the value k.

When (s, t) is not an edge, Menger’s theorem implies that the size of a minimum
(s, t)-vertex cut is equal to the maximum number of internally vertex-disjoint paths
from s to t . So, for such pairs (s, t), the k-Bounded All-Pairs Minimum Vertex Cut
problem simply requires we compute the value of min(k, ν(s, t)), as in the k-APVC
problem.

However, when (s, t) is an edge, as discussed in Sect. 2, no (s, t)-vertex cut can
exist. This is because nomatterwhich vertices outside of s and t wedelete, the resulting
graph will always have a path of length one from s to t .

In this case, it may be reasonable to define the “size of a minimum (s, t)-vertex
cut” to be ∞. With this convention, for pairs of vertices (s, t) which are edges, we
simply need to return the value of k in the k-Bounded All-Pairs Minimum Vertex Cut
problem. This is precisely what the algorithm of [1] does.

In more detail, the argument sketched in [1, Proof of Lemma 5.1] argues that

rank (I − K )−1[Vout(s), Vin(t)] (21)

is equal to the size of a minimum (s, t)-vertex cut, for all pairs of vertices (s, t) which
are not edges, with high probability (where K is defined as in Sect. 3.3).

The algorithm from [1, Proof of Theorem 5.2] first modifies the graph, and then
computes the value of Eq. (21) for every pair of original vertices (s, t) with respect to
the new graph, to compute the answers to the k-Bounded All-Pairs Minimum Vertex
Cut problem.

As described in Sect. 3.3, the graph is transformed by introducing for each vertex s
a set S of k new nodes, adding edges from s to each node in S, adding edges from all
nodes in S to all out-neighbors of s in the original graph, and erasing all edges from
s to its original out-neighbors. Similarly, the transformation also introduces for each
vertex t a set T of k new nodes, adds edges from all in-neighbors of t to the nodes in
T , adds edges from all nodes in T to t , and erases all edges entering t from its original
in-neighbors.

If (s, t) was not an edge in the original graph, then (s, t) is still not an edge in
the new graph. In this scenario, the vertex connectivity from s to t in the new graph
turns out to be min(k, ν(s, t)). Since (s, t) is not an edge, the value ν(s, t) coincides
with the size of a minimum (s, t)-vertex cut. So in this case, returning the value of
Eq. (21) produces the correct answer for the k-Bounded All-Pairs Minimum Vertex
Cut problem.

Suppose now that (s, t) is an edge in the original graph. Then (s, t) will not be an
edge in the new graph, since the new out-neighbors of s are all distinct from the new
in-neighbors of t . However, the transformation ensures that in the new graph there are
k internally vertex-disjoint paths from s to t , because each of the k new out-neighbors
of s has an edge to each of the k new in-neighbors of t . Then in this case, returning
the value of Eq. (21) just amounts to returning the value k.

So the algorithm of [1, Proof of Theorem 5.2] produces the correct answer for the
k-Bounded All-Pairs Minimum Vertex Cut problem when (s, t) is an edge, using the
convention that the size of a minimum (s, t)-vertex cut is ∞ when (s, t) is an edge.

123



Algorithmica (2024) 86:1623–1656 1649

In summary: the algorithm from [1] runs in Õ((kn)ω) time and computes
min(k, ν(s, t)) for all pairs of vertices (s, t) such that (s, t) is not an edge, but for
pairs where (s, t) is an edge, does not return any information about the value of
ν(s, t).

Solving k-APVC provides strictly more information than solving k-Bounded All-
Pairs Minimum Vertex Cut, and for that reason appears to be the more meaningful
analogue of k-APC for vertex connectivity, hence our interest in the former rather than
the latter problem. Although vertex connectivity has been defined both in terms of
vertex cuts and vertex disjoint paths in the literature, the most recent papers in the area
concerning algorithms for vertex connectivity (for example, [10, 13]) generally define
ν(s, t) in terms of the number of internally vertex-disjoint paths from s to t , and our
definition of k-APVC is consistent with that choice.

Moving From Vertex Cuts to Vertex Connectivities The quantity in Eq. (21) differs
from the expression we use Proposition 15, where we index the rows and columns by
Vout[s] and Vin[t], instead of Vout(s) and Vin(t) respectively. For the purpose of solving
k-APVC, we need to work with a different submatrix from the one used in Eq. (21),
because when (s, t) is an edge, the expression in Eq. (21) is not necessarily equal to
ν(s, t).

For example, suppose G is a graph where degin(s) = 0, degout(t) = 1, there is an
edge from s to t , and ν(s, t) = 1. Then the proof sketch in [1, Proof of Lemma 5.1]
(using the terminology of Sect. 3.3) suggests pumping unit vectors to nodes in Vout(s),
using these initial vectors to determine flow vectors for all nodes, and then computing
the rank of the flow vectors assigned to nodes in Vin(t). In this example, since s has
indegree zero and no initial vector is pumped to it, it is assigned the flow vector 
s = 
0.
Since Vin(t) = {s} in this example, the rank of flow vectors in Vin(t) is just zero, even
though ν(s, t) = 1.

This issue arises more generally in the proof suggested by [1, Proof of Lemma
5.1] whenever (s, t) is an edge of the graph. Intuitively, this is because a maximum
collection of internally vertex-disjoint paths from s to t will always include a path
consisting of a single edge from s to t , but if we do not pump out a vector at s, this
path will not contribute to the rank of the flow vectors entering t .

To overcome this issue and correctly compute for vertex connectivities for all pairs,
we modify the expression from Eq. (21) appropriately (by pumping out an initial
vector at the source s, and allowing the flow vector assigned to t to contribute to teh
rank), which is why our statement of Proposition 15 involves computing the rank of a
different submatrix.

The issue described above does not appear when dealing with edge connectivity,
essentially because in that case there is always a set of edges whose removal destroys
all s to t paths.

B.2 Proof of Vertex Connectivity Encoding

In this section, we provide a proof of Proposition 15, whose statement we recall below.
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Proposition 15 For any vertices s and t in G, with probability at least 1 − 3/n3, the
matrix (I − K ) is invertible and we have

rank (I − K )−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise.

Our proof of Proposition 15 is similar to the outline in [1, Section 5] and is based
off ideas from [6, Section 2], but involves several modifications needed to address
issues which arise when dealing with vertex connectivities.

Fix a source node s and target node t in the input graph G. Write v0 = s. Suppose
s has outdegree d = degout(s). Let v1, . . . , vd be the out-neighbors of s from Vout(s).

Take a prime p = �(n5) (this is the same prime p from Sect. 6). Let 
u0, . . . , 
ud
denote distinct unit vectors in Fd+1

p .
Eventually, we will assign each vertex v in G a vector 
v ∈ F

d+1
p , which we call a

flow vector. These flow vectors are determined by a system of vector equations. To
describe these equations, we first need to introduce some symbolic matrices.

Let Z be an n × n matrix, whose rows and columns are indexed by vertices in G.
If (u, v) is an edge, we set Z [u, v] = zuv to be an indeterminate, and otherwise

Z [u, v] = 0.
Consider the following procedure. We assign independent, uniform random values

from the field Fp to each variable zuv . Let K be the n × n matrix resulting from this
assignment to the variables in Z (this agrees with the definition of K in Sect. 6).

Now, to each vertex v, we assign a flow vector 
v, satisfying the following equalities:
1. Recall that Vout[s] = {v0, . . . , vd}. For each vertex vi , we require its flow vector

satisfy


vi =
⎛

⎝
∑

u∈Vin(vi )

u · K [u, vi ]

⎞

⎠ + 
ui . (22)

2. For each vertex v /∈ Vout[s], we require its flow vector satisfy


v =
∑

u∈Vin(v)


u · K [u, v]. (23)

It is not obvious that such flow vectors exist, but we show below that they do (with
high probability over the random assignment to the zuv variables). Let Hs denote the
(d + 1)× n matrix whose columns are indexed by vertices in G, such that the column
associated with vi is 
vi for each index 0 ≤ i ≤ d, and the rest of the columns are zero
vectors. Let F be the (d + 1)× n matrix, with columns indexed by vertices in G, such
that the column associated with a vertex v is the corresponding flow vector 
v.

Then Eq. (22)and (23) are captured by the matrix equation

F = FK + Hs . (24)
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We will prove that flow vectors 
v satisfying the above conditions exist, by showing
that we can solve for F in Eq. (24). To do this, we use the following lemma.

Lemma 20 We have det(I − K ) 
= 0, with probability at least 1 − 1/n3.

Proof Each entry of Z is a polynomial of degree at most one with constant term zero.
Since the input graph has no self-loops, the diagonal entries of Z are all zeros.

Thus, det(I − Z) is a polynomial of degree at most n and constant term 1 (which
means this polynomial is nonzero). So by the Schwartz-Zippel Lemma (Proposition 9),
det(I − K ) is nonzero with probability at least 1 − n/p ≥ 1/n4 (by taking p ≥ n5)
as claimed. ��
Suppose from now on that det(I − K ) 
= 0 (by Lemma 20, this occurs with high
probability). In this case, the flow vectors are well-defined, and by Eq. (24) occur as
columns of

F = Hs(I − K )−1 = Hs (adj(I − K ))

det(I − K )
. (25)

Lemma 21 For any vertex t in G, with probability at least 1 − 1/n3, we have

rank F[∗, Vin[t]] ≤
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise.

Proof Abbreviate ν = ν(s, t). Conceptually, this proof works by arguing that the flow
vectors assigned to all in-neighbors of t are linear combinations of the flow vectors
assigned to nodes in a minimum (s, t)-vertex cut of the graph G with edge (s, t)
removed.

Let G ′ be the graph G with edge (s, t) removed (if (s, t) is not an edge, then
G ′ = G). Let C ′ be a minimum (s, t)-vertex cut of G ′. This means that C ′ is a
minimum size set of nodes (where s, t /∈ C ′) such that deleting C ′ from G ′ produces
a graph with no s to t path. After removing the nodes in C ′ from G ′, let S be the set
of vertices reachable from s, and T be the set of vertices which can reach t .

If (s, t) is an edge, set C = C ′ ∪ {s, t}. Otherwise, set C = C ′.
By Menger’s theorem, |C | = ν if (s, t) is not an edge in G, and otherwise |C | =

ν + 1. This is because in addition to the edge (s, t), we can find |C ′| internally-vertex
disjoint paths from s to t , so ν(s, t) = |C ′| + 1 = |C | − 1.

Let V ′ be the set of vertices which are in T , or have an edge to a vertex in T . Then
set K ′ = K [V ′, V ′] and F ′ = F[∗, V ′]. Now define the matrix H ′ = F ′ − F ′K ′. By
definition, the columns of H ′ are indexed by vertices in V ′.

Claim 22 For all v ∈ V ′ \ C , we have H ′[∗, v] = 
0.
Proof Take v ∈ V ′ \ C .

Note that v 
= s. Indeed, if (s, t) is an edge, then s ∈ C , so v 
= s is forced since
v /∈ C . If (s, t) is not an edge, then by definition of a vertex cut, s can have no edge
to T and s is not in T , which means that s /∈ V ′, again forcing v 
= s.
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We first handle the case where v 
= t .
Case 1: v 
= t
In this case, by definition of a vertex cut, v ∈ T . Thus, the in-neighbors of v are all

members of V ′. By the discussion at the beginning of this proof, v 
= s.
We claim that v /∈ Vout(s). Indeed, suppose to the contrary that v ∈ Vout(s). By

the case assumption, v 
= t . By definition, v /∈ C and v has an edge to T . This means
there is a path of length two from s to a vertex in T , not using any vertices in C . This
contradicts the definition of an (s, t)-vertex cut. So it must be the case that v /∈ Vout(s)
as claimed.

So in this case, we have shown that for v ∈ V ′ \ C , we have Vin(v) ⊆ V ′ and
v /∈ Vout(s). It follows from Eq. (23) and the definitions of F ′ and K ′ that

(F ′K ′)[∗, v] =
∑

u∈Vin(v)∩V ′

u · K ′[u, v] =

∑

u∈Vin(v)


u · K [u, v] = F[∗, v] = F ′[∗, v]

(26)

which proves that

H ′[∗, v] = F ′[∗, v] − (F ′K ′)[∗, v] = 
0

as desired. It remains to handle the case where v ∈ V ′ \ C has v = t .
Case 2: v = t
In this case, by definition of C , there must be no edge from s to t .
Hence t /∈ Vout(s). Of course we have Vin(t) ⊆ V ′ by definition. So the calculation

from Eq. (26) applies to v = t as well, which means that H ′[∗, t] = 
0.
Thus for all v ∈ V ′ \ C , we have H ′[∗, v] = 
0 as desired. ��
By Claim 22, H ′ has at most |C | nonzero columns. Thus, rank H ′ ≤ |C |.
Similar reasoning to the proof of Lemma 20, shows that matrix I −K ′ is invertible,

with probability at least 1 − 1/n3. So we can solve for F ′ in the equation H ′ =
F ′ − F ′K ′ to get

F ′ = H ′(I − K ′)−1.

Since rank H ′ ≤ |C |, the above equation implies that rank F ′ ≤ |C | as well.
By definition, Vin[t] ⊆ V ′, so F[∗, Vin[t]] is a submatrix of F ′. It follows that

rank F[∗, Vin[t]] ≤ |C |.

Since |C | = ν + 1 if (s, t) is an edge, and otherwise |C | = ν, the desired result
follows. ��
Lemma 23 For any vertex t in G, with probability at least 1 − 2/n3, we have

rank F[∗, Vin[t]] ≥
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise.
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Proof Abbreviate ν = ν(s, t). Intuitively, our proof will argue that the presence of
internally vertex-disjoint paths from s to t will lead to certain nodes in Vin[t] being
assigned linearly independent flow vectors (with high probability), which then implies
the desired lower bound.

By definition, G contains ν internally-vertex disjoint paths P1, . . . , Pν from s to t .
Consider the following assignment to the zuv variables of the matrix Z . For each

(u, v), we set zuv = 1 if (u, v) is an edge on one of the Pi paths. Otherwise, we set
zuv = 0. For each vertex v, let 
v denote the flow vector for v with respect to this
assignment. To show the desired rank lower bound, it will help to first identify the
values of some of these flow vectors.

Let 
u0 denote the unit vector initially pumped out at vertex s (as in Eq. (22)).
Take an arbitrary Pi path.
First, suppose that Pi is a path of length at least two. In this case, let ai denote the

second vertex in Pi , and bi denote the penultimate vertex in Pi (note that if Pi has
length exactly two, then ai = bi ). By definition, ai ∈ Vout(s). Let 
ui be the unit vector
initially pumped at node ai (as in Eq. (22)). Then from our choice of assignment to
the zuv variables, by Eq. (22) we have


ai = 
u0 + 
ui .

Then by applying Eq. (23) repeatedly to the vertices on the path from ai to bi on Pi ,
we find that


bi = 
u0 + 
ui (27)

as well. The above equation characterizes the flow vectors for the penultimate vertices
of Pi paths of length at least two. It remains to consider the case where Pi has length
one. If Pi has length one, it consists of a single edge from s to t . Then by Eq. (22) we
have


s = 
u0. (28)

We are now ready to show that the flow vectors for nodes in Vin[t] together achieve
the desired rank lower bound, for this particular assignment of values to the zuv vari-
ables.

Claim 24 With respect to the assignment where zuv = 1 if (u, v) is an edge in a Pi
path, and zuv = 0 otherwise, the rank of the flow vectors in Vin[t] is at least ν + 1 if
(s, t) is an edge, and at least ν otherwise.

Proof We perform casework on whether (s, t) is an edge or not.
Case 1: (s, t) is not an edge
Suppose that (s, t) is not an edge. Then every path Pi has length at least two.

Equation (27) shows that the flow vectors in Vin(t) include 
u0+ 
u1, 
u0+ 
u2, . . . , 
u0+

uν . Since the 
ui are distinct unit vectors, these flow vectors have rank at least ν as
desired.
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Case 2: (s, t) is an edge
Suppose instead that (s, t) is an edge. Then one of the paths in our maximum

collection of vertex-disjoint paths must be a direct edge from s to t . Without loss of
generality, let Pν be this path of length one (so that Pi is a path of length two for all
1 ≤ i ≤ ν − 1).

In this case, t ∈ Vout(s). Let 
uν denote the unit vector pumped out at 
t .
By substituting Eq.s (27) and (28) into Eq. (22), we get that


t = 
s +
(

ν−1∑

i=1


bi
)

+ 
uν = ν · 
u0 +
(

ν−1∑

i=1


ui
)

+ 
uν .

By combining the above equation with Eqs. (27) and (28), we see that flow vectors
assigned to nodes in Vin[t], which include 
b1, . . . , 
bν−1, 
s, and 
t , span the space
containing distinct unit vectors 
u0, 
u1, . . . , 
uν , and hence have rank at least ν + 1 as
desired.

For convenience, in the remainder of this proof, we let ν̃ denote ν̃ = ν + 1 if (s, t)
is an edge, and set ν̃ = ν otherwise.

By Claim 24, rank F[∗, Vin(t)] = ν̃. So, F[∗, Vin(t)] contains a full rank ν̃ × ν̃

submatrix.
Let F ′ be such a submatrix.
Now, before assigning values to the zuv variables, each entry of adj(I − Z) is a

polynomial of degree at most n. So by Eq. (25), det F ′ is equal to some polynomial P
of degree at most nν̃, divided by the polynomial (det(I − Z))ν̃ . Note that det(I − Z)

is nonzero polynomial, since it has constant term equal to 1.
By the definition of F ′, we know that under the assignment of values to the variables

from the statement of Claim 24, we have det(F ′) 
= 0. Since as a polynomial

det(F ′) = P/ (det(I − Z))ν̃ , (29)

it must be the case that P is a nonzero polynomial (because if P was the zero polyno-
mial, then det(F ′) would evaluate to zero under every possible assignment).

By Lemma 20, with probability at least 1− 1/n3, the determinant det(I − Z) 
= 0
will be nonzero under a uniform random assignment to the zuv variables. Assuming
this event occurs, by the Schwartz-Zippel Lemma (Proposition 9), a uniform random
evaluation to the variables will additionally have P 
= 0 with probability at least

1 − (2ν̃n)/p ≥ 1 − 1/n3

by setting p ≥ 2n5.
So by union bound, a uniform random assignment of values from Fp to the zuv

variables will make P and det(I − Z) nonzero simultaneously with probability at
least 1 − 2/n3.

If this happens, by Eq. (29), we have det(F ′) 
= 0. This means a particular ν̃ × ν̃

submatrix of F[∗, Vin(t)] will be full rank with the claimed probability, which proves
the desired result. ��
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With these lemmas established, we can immediately prove the main result of this
section.

Proof of Proposition 15 Fix a pair of distinct vertices (s, t).
Substituting the definition of Hs into Eq. (25) implies that

F[∗, Vin[t]] = (I − K )−1[Vout[s], Vin[t]].

By union bound over Lemmas 21 and 23, we see that

rank (I − K )−1[Vout[s], Vin[t]] = rank F[∗, Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge

ν(s, t) otherwise

with probability at least 1 − 3/n3. ��
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Wolleb-Graf, D.: Faster algorithms for all-pairs bounded min-cuts. In: 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019, Patras, Greece, vol. 132
of LIPIcs, pp. 7:1–7:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.7

2. Abboud, A., Krauthgamer, R., Trabelsi, O.: APMF < APSP? Gomory–Hu tree for unweighted graphs
in almost-quadratic time. In: 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7–10, 2022, pp. 1135–1146. IEEE (2021). https://doi.org/
10.1109/FOCS52979.2021.00112

3. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10–13, 2021, pp. 522–539. SIAM (2021). https://doi.org/10.1137/1.9781611976465.32

4. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum flow and minimum-
cost flow in almost-linear time. In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 612–623 (2022). https://doi.org/10.1109/FOCS54457.2022.00064

5. Cheung, H.Y., Kwok, T.C., Lau, L.C.: Fast matrix rank algorithms and applications. J. ACM 60(5),
1–25 (2013). https://doi.org/10.1145/2528404

6. Cheung, H.Y., Lau, L.C., Leung, K.M.: Graph connectivities, network coding, and expander graphs.
SIAM J. Comput. 42(3), 733–751 (2013). https://doi.org/10.1137/110844970

7. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure. In: 12th Annual
Symposium on Switching and Automata Theory (SWAT 1971) IEEE (1971). https://doi.org/10.1109/
swat.1971.4

8. Gall, F., Urrutia, F.: Improved rectangular matrix multiplication using powers of the Coppersmith-
Winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’18, pp. 1029–1046. Society for Industrial and Applied Mathematics, USA (2018)

9. Georgiadis, L., Graf, D., Italiano, G.F., Parotsidis, N., Uznański, P.: All-pairs 2-reachability in
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