
Algorithmica (2024) 86:1210–1245
https://doi.org/10.1007/s00453-023-01189-x

Server Cloud Scheduling

Marten Maack1 · Friedhelm Meyer auf der Heide1 · Simon Pukrop1

Received: 17 November 2022 / Accepted: 6 November 2023 / Published online: 10 December 2023
© The Author(s) 2023

Abstract
Consider a set of jobs connected to a directed acyclic task graph with a fixed source
and sink. The edges of this graph model precedence constraints and the jobs have to
be scheduled with respect to those.We introduce the server cloud scheduling problem,
in which the jobs have to be processed either on a single local machine or on one of
infinitely many cloud machines. For each job, processing times both on the server and
in the cloud are given. Furthermore, for each edge in the task graph, a communication
delay is included in the input and has to be taken into account if one of the two
jobs is scheduled on the server and the other in the cloud. The server processes jobs
sequentially, whereas the cloud can serve as many as needed in parallel, but induces
costs. We consider both makespan and cost minimization. The main results are an
FPTAS for the makespan objective for graphs with a constant source and sink dividing
cut and strong hardness for the case with unit processing times and delays.

Keywords Scheduling · Cloud · Precedence constraints · Communication delays ·
Approximation · NP-hardness

1 Introduction

Scheduling with precedence constraints with the goal of makespan minimization is
widely considered a fundamental problem. It has already been studied in the 1960s

This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Centre “On-The-Fly Computing” under the Project Number 160364472—SFB 901/3.

B Simon Pukrop
simonjp@mail.upb.de

Marten Maack
martenm@mail.upb.de

Friedhelm Meyer auf der Heide
fmadh@mail.upb.de

1 Department of Computer Science, Heinz Nixdorf Institute, Paderborn University, Paderborn,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01189-x&domain=pdf
http://orcid.org/0000-0001-7918-6642
http://orcid.org/0000-0002-4473-5215

Algorithmica (2024) 86:1210–1245 1211

by Graham [1] and receives a lot of research attention up to this day (see e.g. [2–
4]). One problem variant that has received particular attention recently, is the variant
with communication delays (e.g. [4–6]). Another, more contemporary topic concerns
scheduling using external resources like, for instance, machines from the cloud and
several models in this context have been considered of late (e.g. [7–9]). In this paper,
we introduce and study a model closely connected to both settings, where jobs with
precedence constraints may either be processed on a single server machine or on
one of many cloud machines. Here, communication delays may occur only if the
computational setting is changed. The server and cloud machines may behave het-
erogeneously, i.e., jobs may have different processing times on the server and in the
cloud, and scheduling in the cloud incurs costs proportional to the computational load
performed in this context. Both makespan and cost minimization is considered. We
believe that the present model provides a useful link between scheduling with prece-
dence constraints and communication delays on the one hand and cloud scheduling on
the other. There is a shorter published conference version [10] of this paper; Sects. 3,
7 and 8 are new content exclusive to this version.

1.1 Problem

We consider a scheduling problem SCS in which a task graph G = (J , E) has to
be scheduled on a combination of a local machine (server) and a limitless number of
remote machines (cloud). The task graph is a directed, acyclic graph with exactly one
source S ∈ J and exactly one sink T ∈ J . Each job j ∈ J has a processing time
on the server ps(j) and on the cloud pc(j). We consider ps(S) = ps(T) = 0 and
pc(S) = pc(T) = ∞. For every other job the values of ps and pc can be arbitrary
in N0, meaning that the server and the cloud are unrelated machines in our default
model. An edge e = (i, j) denotes precedence, i.e., job i has to be fully processed
before job j can start. Furthermore an edge e = (i, j) has a communication delay of
c(i, j) ∈ N0, which means that after job i finished, j has to wait an additional c(i, j)
time steps before it can start, if i and j are not both scheduled on the same type of
machine (server or cloud).

A schedule π is given as a tuple (J s,J c,C). J s and J c are a proper partition
of J : J s ∩ J c = ∅ and J s ∪ J c = J . The sets J s and J c denote jobs that are
processed on the server or cloud in π , respectively. Lastly, C : J �→ N0 maps jobs to
their completion time.

We introduce some notation before we formally define the validity of a schedule.
Let pπ (j) be equal to ps(j) iff j ∈ J s , and pc(j) iff j ∈ J s . The value pπ (j)
denotes the actual processing time of job j in π . Let E∗ := {(i, j) ∈ E | (i ∈
J s ∧ j ∈ J c) ∨ (i ∈ J c ∧ j ∈ J s)} be the set of edges between jobs on different
computational contexts (server or cloud). Intuitively, for all the edges in E∗ we have
to take the communication delays into consideration, for all edges in E \ E∗ we only
care about the precedence.

We call a schedule π valid if and only if the following conditions are met:

(a) There is always at most one job processing on the server:
∀i∈J s ∀ j∈J s\{i} : (C(i) ≤ C(j) − pπ (j)) ∨ (C(i) − pπ (i) ≥ C(j))

123

1212 Algorithmica (2024) 86:1210–1245

(b) Tasks are not started before the preceding tasks have been finished and the required
communication is done:
∀(i, j)∈E\E∗ : (C(i) ≤ C(j) − pπ (j))
∀(i, j)∈E∗ : (C(i) + c(i, j) ≤ C(j) − pπ (j))

The makespan (mspan) of a schedule is given by the completion time of the sink
C(T). The cost (cost) of a schedule is given by the time it spends processing tasks
on the cloud:

∑
i∈J c pπ (i). Note here, that by requiring ps(S) = ps(T) = 0 and

pc(S) = pc(T) = ∞, we assume every job to start and end on the server. This is
done only for convenience as it defines a clear start and end state for each schedule.

Naturally two different optimization problems arise from the definition. First, given
a deadline d, find a schedule with lowest cost andmspan = C(T) ≤ d. Second, given
a cost budget b, find a schedulewith smallestmakespan and cost = ∑

i∈J c pπ (i) ≤ b.
In both instances the d, respectively the b, is strict. The natural decision variant is:
given both d and b find a schedule that adheres to both, if one exists.

Remark 1 Instances of SCS might contain schedules with a makespan (and there-
fore cost) of 0. We can check for those in polynomial time: First, remove all
edges with communication delay 0, we get a set of connected components K . Iff
∀k∈K

(∀ j∈k ps(j) = 0
) ∨ (∀ j∈k pc(j) = 0

)
, then there is a schedule with makespan

of 0. For the rest of the paper wewill assume that our algorithms check that beforehand
and are only interested in schedules with mspan > 0.

1.2 Results

We start by establishing (weak) NP-hardness already for the case without communica-
tion delays and very simple task graphs. More precisely, for the case in which the task
graph forms one chain starting with the source and ending with the sink and the case in
which the graph is fully parallel, i.e., each job j ∈ J \ {S, T } is only preceded by the
source and succeeded by the sink. On the other hand, we establish FPTAS results for
both the chain and fully parallel case with arbitrary communication delays and with
respect to both objective functions. Furthermore, we present a 2-approximation for the
case without delays and identical server and cloud machines (pc = ps) but arbitrary
task graph and the makespan objective and show that the respective algorithm can
also be used to solve the problem optimally with respect to both objectives in the case
of unit processing times. These results are all relatively simple and are discussed in
Sect. 2. In Sect. 3 we generalize the previous two task graph models (chain and fully
parallel) into one, called extended chain graphs. We present a (2 + ε)-approximation
for the budget restrained makespan minimization for this class of task graphs. Fur-
thermore, we discuss some small assumptions on the problem instance, which allow
us to achieve FPTAS results instead. We end the section by giving a reduction from
the strongly NP-hard 1 | r j | ∑

w jU j problem [11]. In Sect. 4 we aim to gener-
alize the previous FPTAS results regarding the makespan as much as possible. We
are able to show that an FPTAS can be achieved as long as the maximum cardinality
source and sink dividing cut ψ is constant. Intuitively, this parameter upper bounds

123

Algorithmica (2024) 86:1210–1245 1213

the number of edges that have to be considered together in a dynamic program and
in many relevant problem variants it can be bounded or replaced by the longest anti-
chain length. We provide a formal definition in Sect. 4. Next, we turn our attention to
strong NP-hardness results in Sect. 5. We are able to show, that a classical reduction
due to Lenstra and Rinnooy Kan [12] can be adapted to prove NP-hardness already
for the variant of SCS without communication delays and processing times equal to
one or two. Now, in the case of unit processing times without communication delays
this can be trivially solved in polynomial time, and hence we are interested in the
case with unit processing times and communication delays. We design an intricate
reduction to show that this very basic case is NP-hard as well. Note that in this setting
the server and cloud machines are implicitly identical. Furthermore, we are able to
show that a slight variation of this reduction implies that no constant approximation
with respect to the cost objective can be achieved regarding the general problem. In
Sect. 6, we consider approximation algorithms for the case with unit processing times
and delays. We show that a relatively simple approach yields a 1+ε

2ε -approximation
for ε ∈ (0, 1] regarding the cost objective if we allow a makespan of (1 + ε)d. In
Sect. 7, we establish some natural generalizations on the model and sketch how those
can be solved by slight adaptations of our algorithms for extended chain and constant
φ graphs. Lastly, in Sect. 8 we show how to give an α-approximation, for any chosen
α > 0, on the pareto front of a problem with a task graph with constant φ, when
we look at the problem as a multi objective optimization problem. This means, that
for any point in the actual pareto front, we give a nearby feasible point that is only
worse by a factor of 1 + α in both dimensions. In Table1 we give an overview over
the important results.

1.3 RelatedWork

Probably the closest related model to the one considered in this paper was studied by
Aba et al. [7]. In this paper the input is very similar, however, in both computational
settings an unbounded number of machines may be used and the goal is makespan
minimization. The authors show NP-hardness on the one hand, and identify cases that
can be solved in polynomial time on the other. In the conclusion of this paper a model
very similar to the one studied in this work is mentioned as an interesting research
direction. For a detailed discussion of related models, we refer to the preprint version
of the above work [7].

The present model is closely related to the classical problem of makespan mini-
mization on parallel machines with precedence constraints, where a set of jobs with
processing times, a precedence relation on the jobs (or a task graph), and a set of m
machines are given. The goal is to assign the jobs to starting times and machines such
that the precedence constraints are met and the last job finishes as soon as possible.
In the 1960s, Graham [1] introduced the list scheduling heuristic for this problem
and proved it to be a (2 − 1

m)-approximation. Interestingly, to date, this is essen-
tially the best result for the general problem. On the other hand, Lenstra and Rinnooy
Kan [12] showed that no better than 4

3 -approximation can be achieved for the prob-
lem with unit processing times, unless P=NP. In more recent days, there has been

123

1214 Algorithmica (2024) 86:1210–1245

Table 1 An overview of the results of this paper

Algorithmic results

Fully parallel or chain task graph FPTAS w.r.t. cost and makespan

Extended chain task graph (2 + ε)-approximation w.r.t. makespan

Extended chain + additional assumptions FPTAS w.r.t. makespan

Extended chain task graph + generalizations (4 + ε)-approximation w.r.t. makespan

Task graph with constant ψ FPTAS w.r.t. makespan

Task graph with constant ψ α-approximation of Pareto front, for any
α > 0

Task graph with constant ψ + generalizations FPTAS w.r.t. makespan

c = 0, pc = ps (no delays, identical machines) 2-approximation w.r.t. makespan

c = 0, pc = ps = 1 Polynomial w.r.t. makespan and cost

c = pc = ps = 1 (unit delays, unit sizes) 1+ε
2ε -approximation w.r.t. cost with
makespan at most (1 + ε)d

Hardness results

Fully parallel or chain task graph, c = 0 (weakly) NP-hard

Extended chain task graph (strongly) NP-hard

∀ j ∈ J : c(j) = 0, pc(j), ps (j) ∈ {1, 2} (strongly) NP-hard

c = pc = ps = 1 (unit delays, unit sizes) (strongly) NP-hard

General problem No constant approximation w.r.t. cost

a series of exciting new results for this problem starting with a paper by Svensson
[13] who showed that no better than 2-approximation can be hoped for assuming a
variant of the unique games conjecture. Furthermore, Levey and Rothvoss [2] pre-
sented an approximation scheme with nearly quasi-polynomial running time for the
variant with unit processing times and a constant number of machines, and Garg [3]
improved the running time to quasi-polynomial shortly thereafter. These results uti-
lized so called LP-hierarchies to strengthen linear programming relaxations of the
problems. This basic approach has been further explored in a series of subsequent
works (e.g. [4–6]), which in particular also investigate the problem variant where a
communication delay is incurred for pairs of precedence-constrained jobs running
on different machines. The latter problem variant is closely related to our setting as
well.

Lastly, there is at least a conceptual relationship to problems where jobs are to be
executed in the cloud. For example, a problem was considered by Saha [8] in which
cloud machines have to be rented in fixed time blocks in order to schedule a set of
jobs with release dates and deadlines minimizing the costs which are proportional
to the rented time blocks. Another example is a work by Mäcker et al. [9] in which
machines of different types can be rented from the cloud and machine dependent
setup times have to be payed before they can be used. Jobs arrive in an online fashion
and the goal is again cost minimization. Both papers reference further work in this
context.

123

Algorithmica (2024) 86:1210–1245 1215

2 Preliminary Results: Chains and Fully Parallel

In this section we collect some results that can be considered low hanging fruits and
give a first overview concerning the complexity and approximability of our problem. In
particular, we show weak NP-hardness already for cases with very simple task graphs
and without communication delays. Furthermore, we discuss complementing FPTAS
results and a 2-approximation for the case with identical cloud and server machines
and without communication delays.

2.1 Hardness

We show that SCS is NP-hard even for two very simple types of taskgraphs and in
a case where every communication time is 0. For both of these reductions we use
the decision variant of the problem: given both a deadline d and a budget b, find a
schedule that satisfies both. Naturally this will show the hardness of both the cost
minimization as well as the makespan minimization problem. We start by reducing
the decision version of knapsack to SCS with a chain graph as its task graph. The
knapsack problem is given as a capacity C , a value threshold V and a set of items
{1, . . . , n} with weights wi and values vi .

The question is, if there exist is a subset of items S such that
∑

i∈S wi ≤ C and∑
i∈S vi ≥ V . We create the respective SCS problem as follows. For every item

i ∈ {1, . . . , n} create a task with ps(i) = wi + vi and pc(i) = vi . Consider a
task graph with those tasks as a chain (in an arbitrary order) and each resulting edge
(i, j) has c(i, j) = 0. We set the deadline to d = ∑

1≤i≤n vi + C and the budget to
b = ∑

1≤i≤n vi −V . It is left to show, that there is a solution to the knapsack problem
if and only if there is a schedule to our transformed problem. Basically we show that
there is a one to one relation between our schedules and knapsack solutions. Assume
there is some feasible solution (subset of items S) for the knapsack problem with
value V ′. For each i ∈ S we put the respective task in J s and the rest in J c. Since
the task graph is a chain we can compute a minimal makespan from this partition:∑

1≤i≤n vi +∑
i∈S wi which is smaller or equal to d if and only if

∑
i∈S wi ≤ C . The

cost for the schedule is equal to
∑

1≤i≤n vi − V ′. Therefore, the cost for the schedule
is smaller or equal to b exactly when V ′ ≥ V . It is easy to see that we can construct a
knapsack solution from a schedule in a similar vein, therefore we conclude:

Theorem 1 The SCS problem is weakly NP-hard for chain graphs and without com-
munication delays.

Secondly we look at problems with fully parallel task graphs, which means that
every job j besides S and T has exactly two edges: (S, j) and (j, T). Here we do a
simple partition reduction. Given a set S of natural numbers, the question is, if there
is a partition into sets S1 and S2 such that

∑
i∈S1 i = ∑

i∈S2 i? For every element i

in S we create a task with ps(j) = pc(j) = i , set d = b = 1
2

∑
i∈S1 i . We arrange

the tasks into a fully parallel task graph where each edge (i, j) has c(i, j) = 0.
Imagine a solution S1, S2 for the partition problem. We schedule every task related
to an integer in S1 on the server and every other task on the cloud. Since everything

123

1216 Algorithmica (2024) 86:1210–1245

is fully parallel and there are no communication delays we can conclude a makespan
of max{∑i∈S1 i,maxi∈S2 i} and costs of

∑
i∈S2 . This is a correct solution for the

scheduling problem if and only if
∑

i∈S1 i = ∑
i∈S2 i . Again it is easy to see that an

equivalent argument can be made for the other direction.

Theorem 2 The SCS problem is weakly NP-hard for fully parallel graphs and without
communication delays.

2.2 Algorithms

In the following, we present complementing FPTAS results for the variants of SCS
with fully parallel and chain task graphs. Furthermore, in both of the above reductions
we did have no communication delays and in one of them the jobs had the same
processing time on the server and the cloud. Hence, we take a closer look at this case
as well and present a simple 2-approximation even for arbitrary task graphs and with
respect to the makespan objective.

2.2.1 Fully Parallel Case

We show that the variant of SCS with fully parallel task graph can be dealt with using
straight-forward applications of well-known results and techniques. In particular, we
can design two simple dynamic programs for the search version of the problem that
consider for each job the two possibilities of scheduling them on the cloud or on
the server and compute for each possible budget or deadline the lowest makespan or
cost, respectively, that can be achieved with the jobs considered so far. These dynamic
programs can then be combined with suitable rounding procedures that reduce the
number of considered states and search procedures for approximate values for the
optimal cost or makespan, respectively, yielding:

Theorem 3 There is an FPTAS for SCS with fully parallel task graph with respect to
both the cost and the makespan objective.

Proof We start by designing the dynamic programs for the search version of the
problem with budget b and deadline d. Without loss of generality, we assume
J = {0, 1, . . . , n, n + 1} with S = 0, T = n + 1 and set c(j) = c(S, j) + c(j, T).

For each deadline d ′ ∈ {0, 1, . . . , d} and j ∈ J , we want to compute the
smallest cost C[j, d ′] of all the schedules of the jobs 0, 1, . . . , j adhering to the
deadline d ′ on the server (j = 0 denotes the trivial case that no job after the
source has been scheduled). We initialize C[0, d ′] = 0 for each d ′. For all other
jobs j we consider the two possibilities of scheduling it on the cloud or server.
In particular, let C1[j, d ′] = C[j − 1, d ′] + pc(j) if pc(j) + c(j) ≤ d and
C1[j, d ′] = ∞ otherwise, and, furthermore, C2[j, d ′] = C[j − 1, d ′ − ps(j)]
if ps(j) ≤ d ′ and C2[j, d ′] = ∞ otherwise. Then, we may set C[j, d ′] =
min{C1(j, d ′),C2(j, d ′)}. Now, if C[n + 1, d] > b, we know that there is no feasi-
ble solution for the search version, and otherwise we can use backtracking starting
from C[n + 1, d] to find one. The time and space complexity is polynomial in d and
n.

123

Algorithmica (2024) 86:1210–1245 1217

In the second dynamic program, we compute the smallest makespan M[j, b′] of
all the schedules of the jobs 0, 1, . . . , j adhering to the budget b′, for each budget
b′ ∈ {0, 1, . . . , b} and j ∈ J . Again, we set M[0, b′] = 0 for each b′ and consider the
two possibilities of scheduling job j on the cloud or server. To that end, letM1[j, b′] =
max{M[j − 1, b′ − pc(j)], pc(j) + c(j)} if pc(j) + c(j) ≤ d and b′ − pc(j) ≥ 0.
Otherwise, set M1[j, b′] = ∞, furthermore, M2[j, b′] = M[j−1, b′]+ ps(j). Then,
we may set M[j, b′] = min{M1(j, b′), M2(j, b′)}. Again, if M[n + 1, b] > d, we
know that there is no feasible solution for the search version, and otherwise we can use
backtracking starting from M[n + 1, b] to find one. The time and space complexity is
polynomial in b and n.

For both programs, we can use rounding and scaling approaches to trade the com-
plexity dependence in d or b with a dependence in poly(n, 1

ε
) incurring a loss of a

factor (1 + O(ε)) in the makespan or cost, respectively, if a solution is found. This
can then be combined with a suitable search procedure for approximate values of the
optimal makespan or cost. For details, we refer to Sect. 4, where such techniques are
used and described in more detail. In addition to the techniques mentioned there, the
possibility of a cost zero solution has to be considered which can easily be done in
this case. ��

2.2.2 Chain Graph Case

We present FPTAS results for the variant of SCS with chain task graph. The basic
approach is very similar to the fully parallel case.

Theorem 4 There is an FPTAS for SCS with chain task graph with respect to both the
cost and the makespan objective.

Proof We again start by designing dynamic programs for the search version of the
problem with budget b and deadline d. Without loss of generality, we assume J =
{0, 1, . . . , n + 1} with S = 0, T = n + 1, and j ∈ {0, 1, . . . , n + 1} being the j-th
job in the chain.

For each deadline d ′ ∈ {0, 1, . . . , d}, job j ∈ {0, 1, . . . , n + 1}, and location
loc ∈ {s, c} (referring to the server and cloud) we want to compute the smallest cost
C[d ′, j, loc] of all the schedules of the jobs 1, . . . , j adhering to the deadline d ′ and
with the job j being scheduled on loc. To that end,we setC[d ′, 0, s] = 0,C[d ′, 0, c] =
∞, and with slight abuse of notation use the convention C[z, j, loc] = ∞ for z < 0.
Further values can be computed via the following recurrence relations:

C[d ′, j, s] = min{C[d ′ − ps(j) − c(j − 1, j), c],C[d ′ − ps(j), s]}
C[d ′, j, c] = min{C[d ′ − pc(j), c] + pc(j),C[d ′ − pc(j) − c(j − 1, j), s] + pc(j)}

IfC[d, n+1, s] > b, we know that there is no feasible solution for the search version,
and otherwise we can use backtracking starting from C[d, n + 1, s] to find one. The
time and space complexity is polynomial in d and n.

In the second dynamic program, we compute the smallest makespan M[j, b′, loc]
of all the schedules of the jobs 0, . . . , j adhering to the budget b′ and with job j placed
on location loc, for each b′ ∈ {0, 1, . . . , b}, j ∈ {0, 1, . . . , n + 1} and loc ∈ {s, c}.

123

1218 Algorithmica (2024) 86:1210–1245

We set M[b′, 0, s] = 0, M[b′, 0, c] = ∞, use the convention M[z, j, loc] = ∞ for
z < 0, and the recurrence relations:

M[b′, j, s] = min{M[b′, c] + ps(j) + c(j − 1, j), M[b′, s] + ps(j)}
M[b′, j, c] = min{M[b′ − pc(j), c] + pc(j), M[b′ − pc(j), s] + pc(j) + c(j − 1, j)}

If M[b, n+1, s] > d, we know that there is no feasible solution for the search version,
and otherwise we can use backtracking starting from M[b, n + 1, s] to find one. The
time and space complexity is polynomial in b and n.

Like in the fully parallel case, we can use rounding and scaling approaches to trade
the complexity dependence in d or b with a dependence in poly(n, 1

ε
) incurring a loss

of a factor (1+O(ε)) in the makespan or cost, respectively, if a solution is found. This
can then be combined with a suitable search procedure for approximate values of the
optimal makespan or cost. For details, we refer to Sect. 4, where such techniques are
used and described in more detail. In addition to the techniques mentioned there, the
possibility of a cost zero solution has to be considered which can easily be done in
this case as well. ��

3 The Extended ChainModel

As a first step towards more general models we introduce the extended chain model.
The main idea here is to find a unifying generalization for the chain and fully parallel
case. Informally one can imagine an extended chain as a chain graphwhere any number
of edges were replaced with fully parallel graphs. After giving a formal definition of
these graphs we introduce a (2+ε)-approximation for the budget restrained makespan
minimization. That algorithm uses reductions to single machine weighted number
of tardy jobs scheduling to solve some intermediate parts via known procedures.
Therefore, we briefly discuss this problem here before actually giving our algorithm.
We finish the constructive side by exploring some assumptions on problem instances
that allow us to achieve FPTAS results with our approach. Lastly, we give a reduction
to show that this problem is strongly NP-hard.

3.1 Single MachineWeighted Number of Tardy Jobs

As mentioned before this section reduces some intermediate steps in the algorithm to
the single machine weighted tardiness problems, for which we will reuse an already
established algorithm.

The single machine weighted number of tardy jobs (WNTJ) problem, or 1 | |∑
w jU j in three field notation [14], can be defined as follows: On a single machine,

where only one job at a time can be processed, are n jobs to be scheduled. Each job
has an integer processing time p j , weight w j and due date d j . A job is called ‘late’
if it is scheduled completion time C j > d j and ‘early’ if C j ≤ d j . The goal is to
find a schedule which minimizes the sum over the weights of the tardy (late) jobs.
Pseudo polynomial dynamic programs with runtime in O(nmin{∑ j p j ,max j d j })

123

Algorithmica (2024) 86:1210–1245 1219

Fig. 1 An example extended chain with two parallel parts

and O(nmin{∑ j p j ,
∑

j w j ,max j d j }), respectively, were given by Lawler and
Moore [15] and later Sahni [16]. Denote the former by wTardyJobs. For a more
comprehensive survey on this (and related) problems, we refer to [17].

3.2 Model

We give a constructive description of extended chain graphs. Let G = (J , E) with
S ∈ J and T ∈ J be a chain graph. For any number of edges e = (j − 1, j) ∈ E
we may remove the edge e and introduce a set of jobs J j and for every j ′ ∈ J j

two edges, namely (j − 1, j ′) and (j ′, j). The resulting graph G ′ = (J ′, E ′) is an
extended chain graph. We denote by N the total number of jobs (nodes) in the graph.
Denote the SCS problem on extended chains by SCSe. For an example we refer to
Fig. 1. Note here, that the introduced subgraphs are fully parallel graphs as described
earlier and consequently fully parallel graphs, as well as chain graphs, are a subset of
extended chain graphs. This also directly infers that SCSe is at least weakly NP-hard
as shown in Theorems 1 and 2.

3.3 A (2+ ")-Approximation for MakespanMinimization on the Extended Chain

Theorem 5 There is a (2 + ε)-approximation algorithm for the budget restrained
makespan minimization problem on extended chains.

We design a pseudo polynomial algorithm, that given a feasible makespan
estimate T (T ≥ mspanOPT) calculates a schedule with makespan at most
min{2T , 2mspanOPT }. Otherwise (T < mspanOPT) the algorithm calculates a
schedule with makespan at most min{2T , 2mspanOPT } or no schedule at all. We
can use a binary search to find T ≈ OPT , beginning with the trivial upperbound
T = ∑

j∈J ′ ps(j) ≥ mspanOPT

We first introduce notation that follows the constructive description of extended
chains above. We assume J = {0, 1, . . . , n + 1} with S = 0, T = n + 1, and

123

1220 Algorithmica (2024) 86:1210–1245

j ∈ {1, . . . , n} being the j-th job in the original chain. If there is a parallel subgraph
between some jobs j − 1 and j we denote the jobs in it by J j = {0 j , 1 j , . . . ,m j }.

We reuse the state description from Theorem 4, but this time we iteratively create
all reachable states by going over the jobs {0, 1, . . . , n + 1}. A state is a combination
of timestamp t ∈ {0, 1, . . . , T }, job j ∈ {0, 1, . . . , n + 1}, and location loc ∈ {s, c}
(referring to server and cloud respectively). The value of a state is the smallest cost of all
the schedules of the jobs 0, 1, . . . , j finishing processing during or before timestamp
t , with j being scheduled on loc, denoted by [t, j, loc] = cost . Note, that we have
not mentioned the parallel subgraphs in the description above. We start with the trivial
start state [0, 0(= S), s] = 0

Let StateList j−1 be the list of states for some job of the chain j − 1. We
create StateList j in the following way: First we create a set of state extensions
Extensions j , each of form [�t, loc j−1 → loc j] = cost . Then we form every (fit-

ting) combination of a state fromStateList j−1 with an extension fromExtensions j ,
which forms StateList j . Lastly we cull all dominated states from StateList j and
continue with j + 1.

Calculate Extensions j :

1. If there is no parallel subgraph between j − 1 and j we can simply enumerate all
state extensions:

(a) j − 1 on server, j on server: [ps(j), s → s] = 0
(b) j − 1 on server, j on cloud: [pc(j) + c(j − 1, j), s → c] = pc(j)
(c) j − 1 on cloud, j on server: [ps(j) + c(j − 1, j), c → s] = 0
(d) j − 1 on cloud, j on cloud: [pc(j), c → c] = pc(j)

2. Otherwise, there is a parallel subgraph between j − 1 and j with jobs J j =
{0 j , 1 j , . . . ,m j }.
(a) j − 1 on server, j on server:

Set �max = min{∑ j ′∈J j
ps(j ′), T }, for every �i in {0, . . . ,�max }, do the

following: Set J s = ∅ and J c = ∅. For every j ′ ∈ J j check:
• ps(j ′) > �i and c(j − 1, j ′) + pc(j ′) + c(j ′, j) > �i :
break and go to next �i (state extension [�i , s → s] not feasible)

• ps(j ′) > �i and c(j − 1, j ′) + pc(j ′) + c(j ′, j) ≤ �i :
add j ′ to J c (j ′ has to be put on the cloud)

• ps(j ′) ≤ �i and c(j − 1, j ′) + pc(j ′) + c(j ′, j) > �i :
add j ′ to J s (j ′ has to be put on the server)

If
∑

j ′∈J s ps(j ′) > �i break and go to next �i . Create a WNTJ instance as
follows: For every job j ′ ∈ J j \(J s ∪J c) create a job j ′′ with processing time
p j ′ = ps(j ′), deadline d j ′′ = �i − ∑

j ′∈J s ps(j ′) and weight w j ′′ = pc(j ′).
Solve this problem with wTardyJobs, let V be the cost of the solution. Add
[�i , s → s] = ∑

j ′∈J c pc(j ′) + V to Extensions j . (Remark: This could
also be solved as a knapsack problem, but we need WNTJ later either way.)

(b) j − 1 on server, j on cloud:

123

Algorithmica (2024) 86:1210–1245 1221

Set �max = min{∑ j ′∈J j
ps(j ′) + max j ′∈J j c(j

′, j), T }, for every �i in

{0, . . . ,�max }, do the following: Set J s = ∅ and J c = ∅. For every j ′ ∈ J j

check:
• ps(j ′) + c(j ′, j) > �i and c(j − 1, j ′) + pc(j ′) > �i :
break and go to next �i (state extension [�i , s → c] not feasible)

• ps(j ′) + c(j ′, j) > �i and c(j − 1, j ′) + pc(j ′) ≤ �i :
add j ′ to J c (j ′ has to be put on the cloud)

• ps(j ′) + c(j ′, j) ≤ �i and c(j − 1, j ′) + pc(j ′) > �i :
add j ′ to J s (j ′ has to be put on the server)

Create a WNTJ instance as follows: For every job j ′ ∈ J j\J c create a job
j ′′ with processing time p(j ′′) = ps(j ′), deadline d j ′′ = �i − c(j ′, j) and
weightw j ′′ = pc(j ′) if j ′ /∈ J s ,w j ′′ = ∞ otherwise. Solve this problem with
wTardyJobs, let V be the cost of the solution, if V = ∞ break. Otherwise,
add [�i , s → c] = ∑

j ′∈J c pc(j ′) + V to Extensions j .
(c) j − 1 on cloud, j on server:

This works analogously to the previous case. Simply replace each instance
of c(j ′, j) by c(j − 1, j ′) and vice versa. Add the resulting extensions to
Extensions j . Note, that for the reduction there is no computational difference
between common release date and different deadlines and different release
dates but common deadline.

(d) j − 1 on cloud, j on cloud:
We 2-approximates the resulting extensions, by precisely handling the commu-
nication to the server, but upperbounding the communication from the server.
Repeat case 2b with the two following changes:
For the checks before the problemconversion use c(j−1, j ′)+ps(j ′)+c(j ′, j)
and pc(j ′) instead of ps(j ′) + c(j ′, j) and c(j − 1, j ′) + pc(j ′), respectively.
Let J s′ ⊆ J j be the set of jobs actually put on the server in this step. Add
[�i + max j ′∈J s′ c(j − 1, j ′), c → c] = ∑

j ′∈J c pc(j ′) + V instead of

[�i , c → c] = ∑
j ′∈J c pc(j ′) + V to Extensions j . We wait for the biggest

communication delay to pass until we schedule the first job on the server. Note,
that �i + max j ′∈J s′ c(j ′, j) ≤ 2�i by construction.

For every pair of a state ([t, j − 1, loc] = cost) ∈ StateList j−1 and
([�t, loc j−1 → loc j] = cost ′) ∈ Extensions j with loc = loc j−1 add

[t + �t, j, loc j] = cost + cost ′ to StateList j . After that process, for every

triple t, j, loc that has multiple states in StateList j keep only the state with
the lowest cost. We can also discard states with cost > b and timestamp t >

2T . Repeat this process with j → j + 1 until we computed StateListn+1,
simply move through that list and select the state with lowest timestamp t . If
there is no such state, there exist no schedule with makespan smaller or equal to
T .

Lemma 1 Given a feasible T , the described procedure calculates a 2-approximation
on the optimal makespan in time poly(N , T)

123

1222 Algorithmica (2024) 86:1210–1245

Proof We start by showing the approximation factor. Assume that we added [�i , c →
c] = ∑

j ′∈J c pc(j ′) + V instead of [�i + max j ′∈J s′ c(j ′, j), c → c] =
∑

j ′∈J c pc(j ′) + V in step 2d above. That hypothetical algorithm would calculate

a (possibly infeasible) solution with makespan mspanhypoALG ≤ mspanOPT , since
step 2d underestimates the needed time, and everything else is calculated precisely.
The actual algorithm has makespan mspanALG ≤ 2mspanhypoALG and therefore also
mspanALG ≤ 2mspanOPT .

We show the runtime of the algorithm by bounding the time needed for each
iteration of: (1) constructing state extensions Extensions j , (2) combining the exten-
sions with the previous StateList j−1 and (3) culling duplicates from the resulting
StateList j .

1. For directly connected jobs j − 1 and j we can trivially calculate the 4 options
in constant time. Therefore, we are interested in the runtime of steps 2a, 2b, 2c
and 2d for some parallel subgraph with jobs J j . The steps get repeated for �i in
{0, . . . ,�max }, where �max < T . The preprocessing in each iteration of all four
steps, needs time linear in the size of J j . Using wTardyJobs in the steps needs
time in O(|J j |min{∑ j ′∈J j\J c ps(j ′),max j ′∈J j\J c d j ′′ }) ≤ O(T · N 2). Overall

we need time in poly(T , N) to calculate Extensions j , with |Extensions j | ≤
O(T)

2. StateList j−1 contains at most 2T · (n + 2) · 2 (timestamp, job, location) dif-
ferent states (after the previous culling). We may simply bruteforce all possible
combinations from StateList j−1 × Extensions j . Since both of these sets have
at most poly(T , N) elements, the resulting set StateList j also has polynomial
size.

3. By culling states from StateList j we reduce it back to size at most 2T · (n +
2) · 2. It should be obvious, that we can identify duplicate states in polynomial
time.

Note that we iterate the above steps for each job j ∈ {1, . . . , n + 1}. Therefore
we have a polynomial repetition of steps needing polynomial time. Note that we
prevent exponential build-up in the state lists, by culling duplicates after each iteration.

��
Now we have to scale our instance, such that our pseudo polynomial algorithm

runs in proper polynomial time. For that, we scale T and all pc, ps and c by Nε′
T and

round down to the next integer. Then, we run our algorithm with the scaled values, but
still use the unscaled pc to calculate the value (cost) of states, as those calculations
only factor logarithmically in the runtime, a pc exponential in the input size is fine.
The algorithm now needs time in poly(N , � T ·Nε′

T �) ≤ poly(N , ε′) and finds a 2
approximation for the scaled instance (given a feasible T). After scaling back up each
job and communication delay might need up to T

Nε′ additional time, delaying our
whole schedule by at most 3N · T

Nε′ ≤ 3ε′T . For ε = 3ε′ and T = mspanOPT

our resulting schedule has a makespan of mspanALG ≤ 2mspanOPT + εT = (2 +
ε)mspanOPT . Via a binary search we can find such a T by repeating our procedure
at most log

∑
j∈J ′ ps(j) times. This concludes the proof of Theorem 5.

123

Algorithmica (2024) 86:1210–1245 1223

Corollary 1 There is a polynomial algorithm for the deadline restrained cost mini-
mization problem on extended chains, that finds a schedule with at most optimal cost,
but a makespan of (2 + ε)d.

3.4 Cases with FPTAS

We reconsider the approximation result for three assumptions on the model which
allow us to improve the result. Looking back at Theorem 5, we build an algorithm that
would be an FPTAS if it were not for case 2d where we needed to double our time
frame �i to fit the unaccounted communication delay. In the following part we will
only describe how to approach that case, since everything else can stay as it was.

First we assume locally small delays in the parallel subgraphs, meaning that the
smallest processing time in the subgraph is at least as big as the largest communication
delay. More precisely, for every Je with e = (j − 1, j) it holds that

min
j ′∈Je

min{ps(j ′), pc(j ′)} ≥ max
j ′∈Je

max{c((j − 1, j ′)), c((j ′, j))}.

In this case only the first jα , and the last job jω to be processed on the server are
actually affected by their communication delay, since all other delays fit in the time
frame, where jα and jω are processed. After the preprocessing of a given �i , for each
pair of jobs jα, jω ∈ J j\J c with jα �= jω fo the following: Assume jα, jω are the
first and last job to be processed on the server, respectively. Add jα and jω toJ s . Now
create theWNTJ instance as follows: For every job j ′ ∈ J j\(J s ∪J c) create a job j ′′
with processing time p j ′ = ps(j ′), deadline d j ′′ = �i − (c(j − 1, jα) + c(jω, j)) −∑

j ′∈J s ps(j ′) and weight w j ′′ = pc(j ′). Solve this problem with wTardyJobs,

let V be the cost of the solution and note [�i , c → c] jαjω = ∑
j ′∈J c pc(j ′) + V .

After all (O(N 2)) combinations have been tested, add the smallest [�i , c → c] jαjω to

Extensions j .
Secondly, we assume a constant upper bound cmax on the communication delays

inside parallel subgraphs.More precisely, for everyJe with e = (j−1, j) it holds that

cmax ≥ c(j − 1, j ′) and cmax ≥ c(j ′, j).

Instead of brute forcing only a first and last job, we brute force the first and last cmax

time steps. Trivially, jobs with ps = 0 can be put on the server, and therefore there
are at most O(Nc

max · Nc
max) combinations we have to work through. The remaining

part works analogously to the first case.
Lastly, we assume that each job produces some output, that has to be send to all of

its direct successors in full, meaning that all outgoing communication delays of a job
are equivalent. More precisely, for every Je with e = (j − 1, j) it holds that

∀ j ′, j ′′ ∈ Je : c(j − 1, j ′) = c(j − 1, j ′′).

123

1224 Algorithmica (2024) 86:1210–1245

Here we can simply reuse the result from step 2b, but subtract c(j −1, j ′) from the�i

used in theWNTJ problem. Since all c(j −1, j ′) are equal, no job could be processed
on the server in the first c(j − 1, j ′) time steps, and all jobs are available after those
c(j − 1, j ′) time steps.

All these, in combination with the previously described scaling approach, lead to
FPTAS results:

Theorem 6 There is an FPTAS for the budget restrainedmakespanminimization prob-
lemon extended chains, if at least one of the followingholds for every parallel subgraph
Je with e = (j − 1, j):

1. min j ′∈Je min{ps(j ′), pc(j ′)} ≥ max j ′∈Je max{c((j − 1, j ′)), c((j ′, j))}
2. cmax ≥ c(j − 1, j ′) and cmax ≥ c(j ′, j)
3. ∀ j ′, j ′′ ∈ Je : c(j − 1, j ′) = c(j − 1, j ′′)

3.5 Strong NP-Hardness of Scheduling Extended Chains

As already noted, this problem is at least weakly NP-hard, following from Theorem
1 as well as Theorem 2. We show that this problem is actually strongly NP-hard, by
giving a reduction from the strongly NP-hard 1 | r j | ∑

w jU j problem [11]. As in
Sect. 2.1 we use decision variants of the considered problems, resulting in results for
both deadline restrained cost reduction and budget restrained makespan minimization.

Theorem 7 The SCSe problem is strongly NP-hard.

Proof 1 | r j | ∑
w jU j is defined as follows: Given a set of jobs J = {1, . . . , n},

each with processing time p j , release date r j , deadline d j and weight w j , schedule
the jobs (without preemption) on a single machine, such that the sum of weights of
late jobs is smaller or equal to a given b (

∑
w jU j ≤ b). A job j is late (Uj = 1) if it

finishes processing after d j , Uj = 0 otherwise.
Given an instance of 1 | r j | ∑

w jU j , create the following decision version
of SCSe. Note that we will substitute “an edge (j, j ′) with communication delay
c(j, j ′) = k” simply by “an edge c(j, j ′) = k” to keep this readable. As per defini-
tion create S and T with ps(S) = ps(T) = 0 and pc(S) = pc(T) = ∞. Create jobs
j pre and j post with ps(j pre) = ps(j post) = ∞ and pc(j pre) = pc(j post) = 0
and edges c(S, j pre) = 0 and c(j post , T) = 0. Set wmax = max j∈J w j and
dmax = max j∈J d j . For every j ∈ J create a job j ′ with ps(j ′) = p j , pc(j ′) = w j

and edges c(j pre, j ′) = r j , c(j ′, j post) = wmax + dmax − d j . Set the deadline to
d ′ = wmax + dmax and the budget b′ = b. Trivially, in all schedules S and T are
scheduled on the server, j pre and j post on the cloud. Note that neither of these jobs
contributes processing time to the resulting schedule. For better comprehension we
give an example of the structure in Fig. 2.

It remains to show, that there is a schedule with
∑

w jU j ≤ b for the original
1 | r j | ∑

w jU j problem, iff there is a schedule with cost ≤ b′ and makespan ≤ d ′
for the SCSe problem.

Assume that there is a schedule with
∑

w jU j ≤ b. We can partition the jobs into
two sets J early and J late, which contain all jobs that are on time or late, respectively.

123

Algorithmica (2024) 86:1210–1245 1225

Fig. 2 Schematic example of resulting SCSe problem for 5 jobs, squiggly arrows represent communication
delays and model release dates and deadlines

Place all jobs that correspond to a job from J late on the cloud and start them imme-
diately. All of them finish before d ′ = wmax + dmax , since wmax ≥ pc(j ′). Place
all remaining jobs (J early) on the server and let them start at the same time as in the
original schedule. Since no job starts before its release date no communication delay is
violated in the new schedule. Since all jobs from J early end before their deadline, no
communication delay hinders us from scheduling j post and T at d ′ = �max + dmax .
The cost of that schedule is equal to the value of

∑
w jU j in the original schedule and

therefore ≤ b. One can confirm that the other direction works analogously by keeping
the schedule of jobs on the cloud intact, and simply processing all jobs from the cloud
after that schedule in any order. ��

With argumentation similar to the reduction above, one can show that the 1 |
r j | ∑

w jU j problem is embedded in step 2d of this chapter’s algorithm. This
leads to the observation, that we might be able to use approximation results for
1 | r j | ∑

w jU j to improve our handling of that case. Sadly, to the best of our
knowledge, no approximation algorithms with a provable approximation factor are
known for this problem. There are however practical algorithms, which have been
tested empirically. Used approaches contain mixed integer programming [18], genetic
algorithms [19] andbranch-and-bound algorithms [20]. Formore informationwe again
refer to [17].

123

1226 Algorithmica (2024) 86:1210–1245

S j0 T

j1

j2

Fig. 3 Example state of a running schedule, open edges are orange, loc ji and f ji kept for j0, j1 and j2

4 Constant Cardinality Source and Sink Dividing Cut

We introduce the concept of a maximum cardinality source and sink dividing cut. For
G = (J , E), let JS be a subset of jobs, such that JS includes S and there are no
edges (j, k) with j ∈ J \JS and k ∈ JS . In other words, in a running schedule
JS and J \JS , could represent already processed jobs and still to be processed jobs
respectively. Denote by J G

S the set of all such sets JS . We define

ψ := max
JS∈J G

S
| {(j, k) ∈ E | j ∈ JS ∧ k ∈ J \ JS} |,

themaximumnumber of edges between any setJS andJ \JS inG. In a series–parallel
task graph ψ is equal to the maximum anti-chain size of the graph.

In this chapter we discuss how to solve or approximate SCS problems with a
constant size ψ , but otherwise arbitrary task graphs. We first consider the deadline
confined cost minimization, in Theorem 9 we show how to adapt this to the budget
confined makespan minimization. We give a dynamic program to optimally solve
instances of SCS with arbitrary task graphs. At first we will not confine the algorithm
to polynomial time. Consider a given problem instance with G = (J , E), its source S
and sink T , processing times ps(j) and pc(j) for each j ∈ J , communication delays
c(i, j) for each (i, j) ∈ E and a deadline d.

We define intermediate states of a (running) schedule, as the states of our dynamic
program (see Fig. 3). Such a state contains two types of variables. First we have two
global variables, the timestamp t and the number of time steps the server has been
unused fs . In other words, the server has not finished processing a job since t − fs .
The second type is defined per open edge. An open edge is a e = (j, k) where
j has already been processed, but k has not. For each such edge add the variables
e = (j, k) (the edge itself), loc j ∈ {s, c} denoting if j was processed on the server
(s) or the cloud (c) and f j denoting the number of time steps that have passed since
j finished processing. If a job j is contained in multiple open edges, loc j and f j are
still only included once. Write the state as [t, fs, e1 = (j1, k1), loc j1 , f j1 , . . . , e

m =
(jm, km), loc jm , f jm], where e1, . . . , em denote all open edges. Note here, that there is

123

Algorithmica (2024) 86:1210–1245 1227

information that we purposefully drop from a state: the completion time and location
of every processed job without open edges, as those are not important for future
decisions anymore. There might be multiple ways to reach a specific state, but we
only care about the minimum possible cost to achieve that state, which is the value of
the state.

We iteratively calculate the value of every reachable state with t = 0, 1, 2,
We start with the trivial state [t = 0, fs = 0, e1, . . . , em, locS = s, fS = 0] = 0,
where e1, . . . , em ∈ E with ei = (S, j). This state forms the beginning of our
(sorted) state list. We keep this list sorted in an ascending order of state values
(costs) at all times. We exhaustively calculate every state that is reachable during
a specific time step, given the set of states reachable during the previous time step.
Intuitively, we try every possible way to “fill up” the still undefined time windows fs
and f j .

Finally, we give the actual dynamic program in Algorithm 1. After the dynamic
program finished, we iterate through the state list one last time and take the first state
[t = d, fs]. The value of that state is the minimum cost possible to schedule G in time
d. One can easily adapt this procedure to also yield such a schedule, by keeping a list
of all processed jobs per state containing their location and completion time.

Lemma 2 DPfGG’s runtime is bounded in O(d2ψ+3 · n2ψ+1).

Proof At any point there are a maximum ofO(d · (d · n)ψ) states in the state list. For
every t we look at every state. Since we never insert a state in front of the state we are
currently inspecting (costs can only increase), this traverses the list exactly once. For
each of those states we calculate every possible successor, of which there areO(ψ) and
traverse the state list an additional time to correctly insert or update the state.We iterate
from t = 0 to d and therefore get a runtime of:O(d ·((d ·(d ·n)ψ) ·ψ ·(d ·(d ·n)ψ))) =
O(d3 · n · (d · n)2ψ) ≤ O(d2ψ+3 · n2ψ+1). ��

123

1228 Algorithmica (2024) 86:1210–1245

Algorithm 1 DPfGG: Dynamic Program for General Graphs
1: initialize state list SL with start state (as defined above)
2: for all state ∈ SL do
3: let J state be the set of all jobs that are endpoints in open edges from state
4: for all j ∈ J state do
5: if ∀(k, j) ∈ E : (k, j) also open edge in state then
6: can j be processed on the server?
7: if fs ≥ ps (j) then
8: j Fi ts ← T RUE
9: for all (k, j) ∈ E do
10: if lock = s ∧ fk < ps (j) or lock = c ∧ fk < ps (j) + c(k, j) then
11: j Fi ts ← FALSE
12: end if
13: end for
14: if j Fi ts = T RUE then
15: calculate resulting state state′, value equal to state
16: for all (k, j) ∈ E do
17: remove (k, j) from state′
18: if j is last open successor of k then
19: remove fk and lock from state′
20: end if
21: add f j = 0, loc j = s and all new open edges to state′
22: end for
23: if state′ ∈ SL then
24: update value of state′ in SL if new value lower
25: then move state′ to correct position in SL
26: else
27: add state′ to correct position in SL (always after state)
28: end if
29: end if
30: end if
31: can j be processed on the cloud?
32: analogously to the previous case, cost value of state′ increased by pc(j)
33: end if
34: end for
35: end for
36: check end condition
37: if a state [t = d, fs] ∈ SL then
38: return lowest value of such states
39: end if
40: if t < d then
41: move from t to t + 1
42: for all each state ∈ SL do
43: increase t , fs and each f j in state by 1
44: end for
45: Back to step 2
46: end if

4.1 Rounding the Dynamic Program

Weuse a rounding approachonDPfGG to get a program that is polynomial inn =| J |,
given that ψ is constant. We scale d, c, pc, and ps by a factor ς := ε·d

2n . Denote by

d̂ := � d
ς
� ≤ 2n

ε
+ 1, p̂s(j) := � ps (j)

ς
�, p̂c(j) := � pc(j)

ς
� and ĉ(x) := � c(x)

ς
�. Note

123

Algorithmica (2024) 86:1210–1245 1229

here, that we round up d but everything else down. We run the dynamic program with
the rounded values, but still calculate the cost of a state with the original unscaled
values.

We transform the output π ′ to the unscaled instance, by trying to start every job j
at the same (scaled back up) point in time as in the scaled schedule. Since we rounded
down, there might now be points in the schedule where a job j can not start at the time
it is supposed to. This might be due to the server not being free, a parent node of j
that has not been fully processed or an unfinished communication delay. We look at
the first time this happens and call the mandatory delay on j � and increase the start
time of every remaining job by �. Repeat this process until all jobs are scheduled.
We introduce no new conflicts with this procedure, since we always move everything
together as a block. Call this new schedule π .

Theorem 8 Assuming a constant number ψ DPfGG combined with the scaling tech-
nique finds a schedule π with at most optimal cost and a makespan ≤ (1 + ε) · d in
time poly(n, 1

ε
), for any ε > 0.

Proof We start by proving the runtime of our algorithm. We can scale the instance in
polynomial time, this holds for both scaling down and scaling back up. The dynamic
program now takes time inO(d̂2ψ+3 · n2ψ+1), where d̂ ≤ 2n

ε
+ 1. Since ψ is constant

this results in an dynamic program runtime in poly(n, 1
ε
). In the end we transform the

schedule as described above, for that we go trough the schedule once and delay every
job no more than n times. Trivially, this can be done in polynomial time as well.

Secondly we show that themakespan ofπ is at most (1+ε)·d. Every valid schedule
for the unscaled problem is also valid in the scaled problem, meaning that there is no
possible schedule we overlook due to the scaling. In the other direction this might not
hold. First, while scaling everything down we rounded the deadline up. This means,
that scaled back we might actually work with a deadline of up to d + ς . Secondly, we
had to delay the start of jobs to make sure that we only start jobs when it is actually
possible. In the worst case we delay the sink T a total of n − 2 times, once for every
job other than S and T . Each time we delay all remaining jobs we can bound the
respective � < 2 · ς . This is due to the fact that each of the delaying options can not
delay by more than ς (as that is the maximum timespan not regarded in the scaled
problem) and only a direct predecessor job and the communication from it needing
longer can coincide to a non-parallel delay. Taking both of these into account, a valid
schedule for the scaled problem might use time up to

d + ς + (n − 2) · (2ς) ≤ d + 2nς = (1 + ε) · d
in the unscaled instance.

Lastly, we take a look at the cost of π . While rounding, we did not change the
calculation of a states value, and with every valid schedule of the unscaled instance
being still valid in the scaled instance we can conclude that the cost of π is smaller or
equal to an optimal solution of the original problem. ��
Theorem 9 DPfGG combined with the scaling technique and a binary search over
the deadline yields an FPTAS for the cost budget makespan problem, for graphs with
a constant number ψ .

123

1230 Algorithmica (2024) 86:1210–1245

Proof Theorem 8 can be adapted to solve this, assuming that we know a reasonable
makespan estimate of an optimal solution to use in our scaling factor. During the
algorithm discard any state with costs bigger than the budget and terminate when the
first state [t, fs] is reached. The t gives us the makespan.

Using a makespan estimate that is too big will lead to a rounding error that is not
bounded by ε · mspanOPT , a too small estimate might not find a solution. To solve
this, we start with an estimate that is purposefully large. Let dmax = ∑

j∈J ps(j)
be the sum over all processing times on the server. There is always a schedule with 0
costs and makespan dmax . We run our algorithm with the scaling factor ς0 := ε·dmax

4n .
Iteratively repeat this process with scaling factor ς i = 1

2i
ς0 for increasing i starting

with 1. At the same time half the original deadline estimate in each step, which leads to
d̂, and therefore the runtime, to stay the same in each iteration. End the process when
the algorithm does not find a solution for the current i and deadline estimation. This
infers that there is no schedule with the wanted cost budget and a makespan smaller
or equal to 1

2i
dmax (in the unscaled instance), therefore 1

2i
dmax < mspanOPT . We

look at the result of the previous run i − 1: The scaled result was optimal, therefore
the unscaled version has a makespan of at most

mspanALG ≤ mspanOPT + 2n · ς i−1 (1)

= mspanOPT + 2n · 1

2i−1 · ε · dmax

4n
(2)

= mspanOPT + ε · 1

2i
dmax ≤ (1 + ε)mspanOPT . (3)

It should be easy to infer from Lemma 2 that each iteration of this process has
polynomial runtime. Combined with the fact that we iterate at most log dmax times
we get a runtime that is in poly(n, 1

ε
). ��

Remark 2 The results of this chapter work, as written, for a constant ψ . Note here,
that for series parallel digraphs, this is equivalent to a constant anti-chain size. The
algorithms can also be adapted to work on any graph with constant anti-chain size, if
the communication delays are bounded by some constant or are locally small. Delays
are locally small, if for every (j, k) ∈ E , c(j, k) is smaller or equal than every pc(k′),
ps(k′), pc(j ′) and ps(j ′), where k′ is every direct successor of j and j ′ every direct
predecessor of k [21].

5 Strong NP-Hardness

In this section, we consider more involved reductions then in Sect. 2 in order to gain a
better understanding for the complexity of the problem. First, we show that a classical
result due to Lenstra and Rinnooy Kan [12] can be adapted to prove that already the
variant of SCS without communication delays and processing times equal to one or
two is NP-hard. This already implies strongNP-hardness. Remember that we did show
in Sect. 2 that SCS without communication delays and with unit processing times can
be solved in polynomial time. Hence, it seems natural to consider the problem variant

123

Algorithmica (2024) 86:1210–1245 1231

with unit processing times and communication delays. We prove this problem to be
NP-hard as well via an intricate reduction from 3SAT that can be considered the main
result of this section. Lastly, we show that the latter reduction can be easily modified
to get a strong inapproximability result regarding the general variant of SCS and the
cost objective.

5.1 No Delays and Two Sizes

We show strong hardness for the case without communication delays and pc(j), ps(j)
∈ {1, 2} for each job j . The reduction is based on a classical result due to Lenstra and
Rinnooy Kan [12].

Let G = (V , E), k be a clique instance with | E |> (k
2

)
, and let n =| V |

and m =| E |. We construct an instance of the cloud server problem in which the
communication delays all equal zero and both the deadline and the cost bound is
2n+ 3m. There is one vertex job J (v) for each node v ∈ V and one edge job J (e) for
each edge e ∈ E and J ({u, v}) is preceded by J (u) and J (v). The vertex jobs have
size 1 and the edge jobs size 2 both on the server and on the cloud.

Furthermore there is a dummy structure. First, there is a chain of 2n + 3m many
jobs called the anchor chain. The i-th job of the anchor chain is denoted A(i) for
each i ∈ {0, . . . 2n + 3m − 1} and has size 1 on the cloud and size 2 on the server.
Next, there are gap jobs each of which has size 1 both on the server and the cloud. Let
k∗ = (k

2

)
and v ≺ w indicate that an edge from v to w is included in the task graph.

There are four types of gap jobs, namely G(1, i) for i ∈ {0, . . . k − 1} with edges
A(2i) ≺ G(1, i) ≺ A(2(i +1)), G(2, i) for i ∈ {0, . . . k∗ −1} with A(2k+3i +1) ≺
G(2, i) ≺ A(2k+3(i+1)),G(3, i) for i ∈ {0, . . . (n−k)−1}with A(2k+3k∗+2i) ≺
G(3, i) ≺ A(2k + 3k∗ + 2(i + 1)), and G(4, i) for i ∈ {0, . . . (m − k∗) − 1} with
A(2n + 3k∗ + 3i + 1) ≺ G(4, i) ≺ A(2n + 3k∗ + 3(i + 1)) for i < (m − k∗) − 1
and A(2n + 3m − 2) ≺ G(4, (m − k∗) − 1). Lastly, there are the source and the sink
which precedes or succeeds all of the above jobs, respectively.

Lemma 3 There is a k-clique, if and only if there is a schedule with length and cost at
most 2n + 3m.

Proof First note that in a schedule with deadline 2n + 3m + 1 the anchor chain has
to be scheduled completely on the cloud. If the schedule additionally satisfies the cost
bound, all the other jobs have to be scheduled on the server. Furthermore, for the
gap and anchor chain jobs there is only one possible time slot due to the deadline. In
particular, A(i) starts at time i , G(1, i) at time 2i + 1, G(2, i) at time 2k + 3i + 2,
G(3, i) at time 2k+3k∗ +2i +1, and G(4, i) at time 2n+3k∗ +3i +2. Hence, there
are k length 1 slots positioned directly before the G(1, i) jobs left on the server, as
well as, k∗ length 2 slots directly before the G(2, i) jobs, n − k length 1 slots directly
before the G(3, i) jobs, and m − k∗ length 2 slots directly before the G(2, i) jobs (see
also Sect. 4). The m edge jobs have to be scheduled in the length 2 slots, and hence
the vertex jobs have to be scheduled in the length 1 slots (Fig. 4).

�⇒ : Given a k-clique, we can position the k clique vertices in the first k length 1
slots, the corresponding k∗ edges in the first length 2 slots, the remaining vertex jobs

123

1232 Algorithmica (2024) 86:1210–1245

Cloud:

Server:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0 2k 2k + 3k∗ 2n+ 3k∗ 2n+ 3m

k size 1 slots k∗ size 2 slots n− k size 1 slotsm− k∗ size 2 slots

Fig. 4 The dummy structure for the reduction from the clique problem to a special case of SCS. Time flows
from left to right, the anchor chain jobs are positioned on the cloud, and the gap jobs on the server

in the remaining length 1 slots, and the remaining edge jobs in the remaining length 2
slots.

⇐�: Given a feasible schedule, the vertices corresponding to the first length 1 slots
have to form a clique. This is the case, because there have to be k∗ edge jobs in the
first length 2 slots and all of their predecessors are positioned in the first length 1 slots.
This is only possible if these edges are the edges of a k-clique. ��
Hence, we have:

Theorem 10 The SCS problem with job sizes 1 and 2 and without communication
delays is strongly NP-hard.

In the above reduction the server and the cloud machines are unrelated relative to each
other due to different sizes of the anchor chain jobs. However, it is easy to see that the
reduction can be modified to a uniform setting where the cloud machines have speed
2 and the server speed 1. If we allow communication delays, even identical machines
can be achieved.

5.2 Unit Size and Unit Delay

We consider a unit time variant of our model in which all pc = ps = 1 and all c = 1.
Note here, that this also implies that the server and the cloud are identical machines
(the cloud still produces costs, while the server does not). As usual for reductions we
look at the decision variant of the problem: Is there a schedule with cost smaller or
equal to b while adhering to the deadline d.

Theorem 11 The SCS1 problem is strongly NP-hard.

We give a reduction 3SAT ≤p SCS1. Let φ be any boolean formula in 3-
CNF, denote the variables in φ by X = {x1, x2, . . . , xm} an the clauses by C =
{Cφ

1 ,Cφ
2 , . . . ,Cφ

n }. Before we define the reduction formula we want to give an intu-
ition and a few core ideas used in the reduction.

The main idea is that we ensure that nearly everything has to be processed on the
cloud, there are only a few select jobs that can be handled by the server. For each
variable there will be two jobs, of which one can be processed on the server, the
selection will represent an assignment. For each clause there will be a job per literal in
that clause, only one of which can be processed on the server, and only if the respective
variable job is ‘true’. Only if for each variable and for each clause one job is handled
by the server the schedule will adhere to both the cost and the time limits.

123

Algorithmica (2024) 86:1210–1245 1233

Fig. 5 Schematic representation of an anchor chain

A core technique of the reduction is the usage of an anchor chain. An anchor chain
of length l consists of two chains of the same length l := d − 2, where we interlock
the chains by inserting (ai , bi+1) and (bi , ai+1) for two parallel edges (ai , ai+1) and
(bi , bi+1). The source S is connected to the two start nodes of the anchor chain, the
two nodes at the end of the chain are connected to T (Fig. 5).

Lemma 4 If the task graph of a SCS1 problem contains an anchor chain, every valid
schedule has to schedule all but one of a1,b1 and one of al ,bl on the cloud. For every
job ai , bi 1 < i < l the time step in which it will finish processing on the cloud in
every valid schedule is i + 1.

Finally we give the reduction function f (φ) = G, d, b, where G = (J , E). Set
d = 12 + m + n and b =| J | −(2 + m + n). We define G by constructively giving
which jobs and edges are created by f . Create an anchor chain of length d − 2, this
will be used to limit parts of a schedule to certain time frames. Note that by Lemma
4 we know that every valid schedule of G = (J , E), d,k has every node pair of the
anchor chain (besides the first and last) on the cloud at a specific fixed timestamp.
More specifically, the completion time of ai and ai+ j differ by exactly j time units.
For each variable xi ∈ X create two jobs jxi and jx̄i and edges (a1+i , jxi), (a1+i , jx̄i)

and (jxi , a5+i), (jx̄i , a5+i). For each clause Cφ
p create a clause job j

Cφ
p
and edges

(a7+m+p, jCφ
p
) and (j

Cφ
p
, a9+m+p). Let L

p
1 , L p

2 , L p
3 be the literals in Cφ

p . Create jobs

jL p
1
, jL p

2
, jL p

3
and edges (jL p

1
,Cφ

p), (jL p
2
,Cφ

p), (jL p
3
,Cφ

p) for these literals. For every
literal job jL p

1
connect it to the corresponding variable job jxi or jx̄i by a chain of

length 1+ (m − i)+ p. Also create an edge from a3+i to the start of the created chain
and an edge from the end of the chain to a6+m+p (Fig. 6).

It remains to show that there is a schedule of length at most d with costs at most b
in f (φ) = G, d, b if and only if there is a satisfying assignment for φ.

Lemma 5 In a deadline adhering schedule for f (φ) = G, d, b every job in the anchor
chain (except on at the front and one at the end), every job in the variable and clause
literal connecting chains and every clause job has to be scheduled on the cloud.

Proof By Lemma 4 we already know that every node in the anchor chain except one
of v1,w1 and one of vl ,wl has to be scheduled on the cloud. We also know, that the
jobs in the anchor chain have fixed time steps in which they have to be processed. We
look at some chain and its connection to the anchor chain. The start of the chain of

123

1234 Algorithmica (2024) 86:1210–1245

ai+1 ai+2 ai+3 ai+4 ai+5 a6+m+p a7+m+p a8+m+p a9+m+p

connection chain

jCφ
p

jxi

jx̄i

Lp
1

Lp
2

Lp
3

Fig. 6 Schematic representation of the variable and clause gadgets and their connection

length 1 + (m − i) + p is connected to a3+i , the end to a6+m+p. Between the end of
a3+i and the start of a6+m+p are 6 + m + p − 1 − (3 + i) = 2 + m + p − i time
steps. So with the processing time required to schedule all 1 + (m − i) + p jobs of
the chain, there is only one free time step, but we would need at least 2 free time steps
to cover the communication cost to and from the server. (Recall here that both a3+i

and a6+m+p have to be processed on the cloud). The same simple argument fixes each
clause job to a specific time step on the server. ��
Lemma 6 In a deadline adhering schedule for f (φ) = G, d, b only one of jxi and
jx̄i can be processed on the server for every variable xi ∈ X . The same is true for

jL p
1
, jL p

2
, jL p

3
of clause Cφ

p .

Proof jxi and jx̄i are both fixed to the same time interval via the edges (a1+i , jxi),
(a1+i , jx̄i) and (jxi , a5+i), (jx̄i , a5+i). Since a1+i and a5+i will be processed on the
cloud and keeping communication delays in mind, only the middle of the three time
steps in between can be used to schedule jxi or jx̄i on the server. Since the server
is only a single machine only on of them can be processed on the server. Note here
that the other job can be scheduled a time step earlier which we will later use. The
argument for jL p

1
, jL p

2
, jL p

3
works analogously to the statement above.

��
Lemma 7 There is a deadline adhering schedule for f (φ) = G, d, b with costs of
| J | −(2 +m + n) if and only if there is a satisfying assignment for φ. The variable
jobs processed on the cloud represent this satisfying assignment

Proof From Lemmas4, 5 and 6 we can infer that a schedule with costs of | J |
−(2 + m + n) has two jobs of the anchor chain, one job for each pair of variable
jobs and one job per clause on the server. Two jobs of the anchor chain can always be
placed on the server, the choice of variable jobs is also free. It remains to show, that
we can only schedule a literal job per clause on the server if and only if the respective
clause is fulfilled by the assignment inferred by the variable jobs.

The clause job j
Cφ
p
of Cφ

p has to be processed in time step 9 + m + p (between

a7+m+p and a9+m+p). Therefore, jL p
1
has to be processed no later than 8+m + p or

7+m + p if it is processed on the cloud or server respectively. Let jxi be the variable
job connected to jL p

1
via a connection chain.

123

Algorithmica (2024) 86:1210–1245 1235

If jxi is true (scheduled on the cloud), it canfinish processing at time step 3+i , which
does not delay the start of the connection chain (which is connected to a3+i , finishing in
time step 4+i). Thismeans that the chain can finish in time step 4+i+1+(m−i)+p =
5+m + p, the time step 6+m + p can be used for communication, allowing jL p

1
to

be processed by the server in 7 + m + p.
If jxi is false (scheduled on the server), it finishes processing at time step 4 + i ,

which, combined with the induced communication delay, delays the start of the chain
by 1. Therefore, the chain only finishes in time step 6 + m + p, and jL p

1
has to be

processed on the cloud, since there is not enough time for the communication back
and forth.

Trivially, the same argument holds true for jL p
2
and jL p

3
.

��
It should be easy to see that the reduction function f is computable in polynomial

time. Combined with Lemma7 this concludes the proof of our reduction 3SAT ≤p

SCS1. The correctness of Theorem 11 trivially follows from that.

5.2.1 The General Case

Adapting the previous reduction we can show an even stronger result for the general
case of SCS. Basically we are able to degenerate the reduction output in a way, that a
satisfying assignment results in a schedule with cost 0, while every other assignment
(schedule) has costs of at least 1. It should be obvious, that this also means that there is
no approximation algorithm for this problem with a fixed multiplicative performance
guarantee, if P �= NP.

This reduction uses processing times and communication delays of 0,∞ and values
in between. Note that ∞ can simply be replaced by d + 1. To keep the following part
readable we again substitute “an edge (j, j ′)with communication delay c(j, j ′) = k”
simply by “an edge c(j, j ′) = k”

We follow the same general structure (an anchor chain, variable-, clause- and con-
nection gadgets). The anchor chain now looks as follows: For every time step create
two jobs ai and a′

i with ps(ai) = 0, pc(ai) = ∞, ps(a′
i) = ∞, pc(a′

i) = 0 and an
edge c(ai , a′

i) = 0. These chain links are than connected by an edge c(a′
i , ai+1) = 1.

Finally we create c(S, a1) = 1 and c(ad , T) = 0. It should be easy to see, that every
schedule will process ai and a′

i in time step i on the server and the cloud respectively.
This gives us anchors to the server and to the cloud for every time step, without induc-
ing congestion or costs. Since the anchor jobs themselves have processing time of 0,
the “usable” time interval between some ai and ai+1 is one full time step.

For each variable xi ∈ X create two jobs jxi , jx̄i with ps(jxi) = ps(jx̄i) = 1 and
pc(jxi) = pc(jx̄i) = 0. Create edges c(ai , jxi) = 1, c(ai , jx̄i) = 1 and c(jxi , ai+1) =
0, c(jx̄i , ai+1) = 0. In short, only one of them can be processed on the server, the
other on the cloud. Both will finish in time step i + 1, the one processed on the server
is true, therefore processing both on the cloud is possible, but not helpful.

For each clause Cφ
p create a clause job j

Cφ
p
with ps(jCφ

p
) = ∞, pc(jCφ

p
) = 0

and edges c(a′
5+m+3p, jCφ

p
) = ∞ and c(j

Cφ
p
, a′

6+m+3p) = ∞. This means, that j
Cφ
p

123

1236 Algorithmica (2024) 86:1210–1245

has to finish processing by time step 6 + m + 3p. Let L p
1 , L p

2 , L p
3 be the literals in

Cφ
p . Create jobs jL p

1
, jL p

2
, jL p

3
each with pc = ps = 1 and edges c(jL p

1
,Cφ

p) = 0,

c(jL p
2
,Cφ

p) = 0, c(jL p
3
,Cφ

p) = 0 for these literals. Create edges c(a3+m+3p, jL p
1
) =

0, c(a3 +m + 3p, jL p
2
) = 0 and c(a3 +m + 3p, jL p

3
) = 0, so that, in theory, all three

of the literal jobs can be processed on the server, finishing in time steps 4 + m + 3p,
5+m + 3p and 6+m + 3p respectively. Lastly, for every literal job jL p

1
connect it to

the corresponding variable job jxi (or jx̄i) by a an edge with communication delay of
m − i + 3p + 3. Since jxi (or jx̄i) finish processing in time step i + 1, this means that
jL p

1
can start no earlier thanm+3p+4 (and therefore finish processing in 5+m+3p),

if jxi (or jx̄i) were processed on the cloud.
Recall here, that a variable job being scheduled on the server denotes that it is

true. So only a literal job that evaluates to true, can be scheduled so that it finishes
processing in time step 4 + m + 3p on the cloud.

It follows directly, that a schedule for this construction will have costs of 0 if and
only if the assignment derived from the placement of the variable jobs fulfills every
clause.

Theorem 12 There is no approximation algorithm for SCS that has a fixed perfor-
mance guarantee, assuming that P �= N P.

6 Unit Size and Unit Delay—And No Delay

As the last step of this paper we explore simple algorithms on unit size instances with
arbitrary task graphs. Recall that we proved these to be strongly NP-hard. We use
resource augmentation and ask: given a SCS1 problem instance with deadline d, find
a schedule in poly. time that has a makespan of at most (1 + ε) · d that approximates
the optimal cost in regards to the actual deadline d.

If there is a chain of length d or d − 1, that chain has to be scheduled on the server,
since there is no time for the communication delay. For instances with a chain of size
d that is trivially optimal, for those with d − 1 we can check in polynomial time if
any other job also fits on the server, again, finding an optimal solution. From now we
assume that there is no chain of length more than d − 2.

First, construct a schedule which places every job on the cloud, as fast as possible.
The resulting schedule from time step (ts) 1 to (1 + ε) · d looks as follows: one
ts of communication, at most d − 2 ts of processing on the server, another ts for
communication followed by at least εd empty ts. Now pull (one of) the last job(s)
that is processed on the cloud to the last empty ts and process it on the server instead.
Repeat this process until the last job can not be moved to the server anymore. Do the
whole procedure again, but this time starting with the cloud schedule in the end of
the schedule, and each time pulling the first job to the beginning. Keep the result with
lower costs. Note that one can always fill the ts being used solely for communicating
from the server to the cloud with processing one job on the server, that otherwise
would be one of the first jobs being processed on the cloud (the same holds for the
other direction).

123

Algorithmica (2024) 86:1210–1245 1237

Theorem 13 The described algorithm yields a schedule with approximation factor of
1+ε
2ε while having a makespan of at most (1 + ε) · d.
Proof Case n ≤ (1 + ε)d: The algorithm places all jobs on the server, the cost is 0
and therefore optimal.
Case (1 + ε)d < n < (1 + 2ε)d: Assume that the preliminary cloud-only schedule
needs d − 2 ts on the cloud, if that is not the case, we stretch the schedule to that
length. There are n jobs distributed onto d − 2 ts. Therefore, either from the front
or from the end, there is an interval of length d

2 − 1 with at least d
2 − 1 and at most

n
2 <

(1+2ε)d
2 = d

2 + εd many jobs. It should be easy to see, that the algorithm will
schedule those at most d

2 + εd − 1 jobs to the d
2 − 1 plus the free εd many time slots.

If the interval included less than d
2 + εd − 1 jobs, it will simply continue until the

d
2 − 1 + εd ts are filled with jobs being processed on the server. With the one job we
can process on the server during the communication ts we process d

2 + εd jobs on the
server and have costs of n − (d2 + εd). An optimal solution has costs of at least n − d.
For ε ≥ 0.5 it holds that: costALG = n − (d2 + εd) ≤ n − d ≤ costOPT , otherwise:

costALG
costOPT

≤ n − (d
2 + εd

)

n − d
≤ (1 + ε)d − (d

2 + εd
)

(1 + ε)d − d
≤ 0.5d

εd
= 1

2ε

Case (1+2ε)d ≤ n: In this casewe simply observe that our algorithmplaces at least εd
many jobs on the server. For ε ≥ 1 it holds that: costALG = n−εd ≤ n−d ≤ costOPT ,
otherwise:

costALG
costOPT

≤ n − εd

n − d
≤ (1 + 2ε)d − εd

(1 + 2ε)d − d
= d + εd

2εd
= 1 + ε

2ε

��

6.1 No Delays and Identical Machines

We design a simple heuristic for the case in which the server and the cloud machines
behave the same, that is, pc(j) = ps(j) for each job j (except for the source and
sink), and the communication delays all equal zero. In this case, we may define the
length of a chain in the task graph as the sum of the processing times of the jobs in the
chain. The first step in the algorithm is to identify a longest chain in the task graph,
which can be done in polynomial time. The jobs of the longest chain are scheduled
on the server and the remaining jobs on the cloud each as early as possible. Now, the
makespan of the resulting schedule is the length of a longest chain, which is optimal
(or better) and there are no idle times on the server. However, the schedule may not be
feasible since the budget may be exceeded. Hence, we repeatedly do the following:
If the budget is still exceeded, we pick a job scheduled on the cloud with maximal
starting time and move it on to the server right before its first successor (which may
be the sink). Some jobs on the server may be delayed by this but we can do so without
causing idle times. If all the processing times are equal this procedure produces an

123

1238 Algorithmica (2024) 86:1210–1245

optimal solution and otherwise there may be an additive error of up to the maximal
job size. Hence, we have:

Theorem 14 There is a 2-approximation for SCS without communication delays and
identical server and cloud machines.

It is easy to see, that the analysis is tight considering an instance with three jobs: One
with size b, one with size b + ε, and one with size 2ε. The first jobs precedes the last
one. Our algorithm will place everything on the server, while the first job is placed on
the cloud in the optimal solution.

Note that we can take a similar approach to find a solution with respect to the cost
objective by placing more and more jobs on the server as long as the deadline is still
adhered to. However, an error of one job can result in an unbounded multiplicative
error in the objective in this case. On the other hand, it is easy to see that in the case
with unit processing times, there will be no error at all in both procedures yielding:

Corollary 2 The variant of SCS without communication delays and unit processing
times can be solved in polynomial time with respect to both the makespan and the cost
objective.

7 Generalizations of Server Cloud Scheduling

In this chapter we introduce some generalizations to the SCS. We consider different
aspects from multiple clouds and server machines to direction specific delays. We
sketch how to adapt our algorithms for SCSe and SCSψ to cover those new general-
izations.

7.1 Changes in the Definitions

We shortly define the changes to the model that we explore in this section.

7.1.1 Machine Model

So farwe imagined a single servermachine andone homogeneous cloud in our problem
definition. Now, instead of a single server machine there can be any (constant) number
of identical server machines: server = {s1, . . . , sz}. Instead of one homogeneous
cloud there can be any number of different cloud contexts: clouds = {c1, . . . , ck}.
Each cloud context still consists of an unlimited number of parallel machines.

7.1.2 Jobs

Jobs are still given as a task graphG = (J , E). A job j ∈ J has processing time ps(j)
on any servermachine and processing time pci (j) on amachine of cloud context ci . An
edge e = (i, j) andmachine contextsm1,m2 ∈ {s, c1, . . . , ck} have a communication
delay of cm1�m2(i, j) ∈ N0, which means, that after job i finished on a machine of
type m1, j has to wait an additional cm1�m2(i, j) time steps before it can start on a

123

Algorithmica (2024) 86:1210–1245 1239

machine of type m2. For m1 = m2 we set cm1�m2(i, j) = 0. Note that this function
does not need to be symmetric, e.g. cm1�m2(i, j) and cm2�m1(i, j) may be unequal.

7.1.3 Costs and Schedules

Previously we defined cost simply by “time spend on the cloud”. While considering
multiple clouds, that is not sensible anymore. A faster cloud will not be universally
cheaper than a slower one. We define a cost function based on the cloud context and
job, cost : J × clouds �→ N0. A schedule still consists of C : J �→ N0 (maps
jobs to their completion time), but instead of a partition we give a mapping function
η : J �→ {s1, . . . , sz}∪{c1, . . . , ck}. Note that si refers to one specific server machine,
while ci refers to a cloud context, consisting of infinitely many machines.

We call a schedule π = (C, η) valid if and only if the following conditions are met:

(a) There is always at most one job processing on each server:

∀i, j∈J ,i �= j :η(i)=η(j)∈server : (C(i) ≤ C(j) − ps(j)) ∨ (C(i) − ps(i) ≥ C(j))

(b) Tasks are not started before the previous tasks has been finished/ the required
communication is done:

∀(i, j)∈E : (C(i) + cη(i)�η(j)(i, j) ≤ C(j) − pη(j) j)

The makespan (mspan) of a schedule is still given by the completion time of the sink
T : C(T). The cost (cost) of a schedule is given by:

∑

j∈ jobs:η(j)∈clouds
cost(j, η(j)).

7.2 Revisiting SCSe

We briefly sketch how to adapt the algorithm from Sect. 3 to incorporate the previously
defined changes on the model. We will use the observations, that multiple server
machines only affect the scheduling of parallel parts and that we can always calculate
an optimal cloud location for a job in a given situation (part of the schedule, time
frame and location of predecessor and successor).

Theorem 15 There is a (4 + ε)-approximation algorithm for the budget restrained
makespan minimization problem on extended chains, even when there are z server
machines, k different cloud contexts, the communication delays are directionally
dependent on the machine context, and costs are given as an arbitrary cost function
cost : J × clouds �→ N0.

Proof We adapt the pseudo polynomial algorithm from Sect. 3 that given a feasible
makespan estimate T (T ≥ mspanOPT) calculates a schedule with makespan of at
most min{2T , 2mspanOPT }, such that it incorporates the changes to the model and

123

1240 Algorithmica (2024) 86:1210–1245

calculates a schedule with makespan of at most min{4T + ε′, 4mspanOPT + ε′}. The
only change in the state description is that loc ∈ {s, c1, . . . , ck} instead of loc ∈ {s, c}.
As the state description is used for the chain parts of the extended chain, we do
not differentiate the server machines here. The creation of the state extension list
Extensions j (each of form [�t, loc j−1 → loc j] = cost), has the following changes:

• Instead of the four combinations s → s, s → c, c → s, c → c, we consider all
combinations from {s, c1, . . . , ck} × {s, c1, . . . , ck}.

• Substitute the corresponding values, for example [pc(j)+ c(j − 1, j), s → c] =
pc(j) becomes [pci (j) + cs�ci (j − 1, j), s → ci] = cost(j, ci).

• If there is a parallel subgraph between j − 1 and j we adapt the calculation in the
following way:

– Calculate�max as before (the sum over all processing times on the server plus
the biggest relevant in- and outgoing communication delays)

– Iterate over �i in {0, . . . ,�max }:
∗ As before, check for each job if it fits: (1) only on the servers, (2) not on

the servers but on at least one cloud context, (3) on both, (4) on none. If
at least one job falls into (4) break.

∗ Calculate for each job j in (2) or (3) the cheapest fitting option to schedule
that job on some available cloud in time frame �i . Use that cost c j for j
for the remainder of the iteration.

∗ Greedily put jobs in (1) onto server machines (1 to k) until the current
server has load ≥ �i , proceed with the next machine and so on. If not
all jobs in (1) can be placed this way break, as there is not enough space
to place jobs on the server that do not fit on the cloud in the given time
frame.

∗ Sort the jobs in (3) by their ratio of cost c j to processing time on the server
(highest to lowest cost per time). Continue by greedily placing those on
the server machines as before. When all jobs in (3) are placed, or all
server machines have load ≥ �i , put all remaing jobs from (3) on their
corresponding cheapest cloud context.

∗ Put all jobs from (2) on their corresponding cheapest cloud context.
∗ insert time in the front and back corresponding to the biggest communi-

cation delay invoked by the (sub-)schedule for the parallel part

The rest of the algorithm behaves as before. The changes to state extensions span-
ning a parallel subgraph calculate solutions that have at most optimal cost for a time
frame of �i , while using a time frame of 4�i . The 4 times correspond to: at most 2�i

time for all in- and outgoing communication delays since the communication delays
have to fit into �i to be considered, at most 2�i time for our greedy packing of the
server machines since we can add a job of size �i to a machine currently having load
�i − ε. It should be easy to see that the greedy packing of “highest cost jobs”, with
what is essentially resource augmentation of a multiple knapsack problem, gives at
most optimal cost. Note that we could also utilize a PTAS for multiple knapsack here
to stay in a time frame of 3�i , but we want to find a solution with optimal cost (or
lower), to remain strictly budget adhering.

123

Algorithmica (2024) 86:1210–1245 1241

It remains to simply use the same scaling technique used in Sect. 3 to get the 4+ ε-
approximation.

��
If the communication delays are constant the result can be easily adapted to yield a
2 + ε-approximation, by getting rid of the added time for communication delays.

7.3 Revisiting SCSÃ

In a similar vein as the previous subsection we briefly sketch how to adapt the results
fromSect. 4 to includemost of the previously definedmodel generalizations.Naturally,
we still require themaximum cardinality source and sink dividing cut to be bounded by
a constant. In contrast to the previous result we require the number of server machines
to be a constant.

Theorem 16 There is an FPTAS for the budget restrained makespan minimization
problem for graphs with a constantmaximum cardinality source and sink dividing cut,
even when there are a constant number of server machines, k different cloud contexts,
the communication delays are directionally dependent on the machine context, and
costs are given as an arbitrary cost function cost : J × clouds �→ N0.

Proof We make the following two changes to the state definition: We consider loc j ∈
{s, c1, . . . , ck} instead of loc j ∈ {s, c}, we track the unused time of every server
machine individually so instead of a single fs the state contains fs1 , . . . , fsz . The
dynamic program needs only minor tweaks. When iterating through the jobs that are
open (and of which all predecessors have been processed) use the server si with the
smallest fitting fsi and set fsi = 0. Instead of checking if the job fits on “the cloud” we
simply go through all clouds, and add corresponding states for each fitting location.
While calculating the value of a state use the new cost function cost instead of pc,
while checking if a job fits we use the directional communication delays. After a full
iteration increase each fsi by one (instead of only increasing the singular fs). It should
be easy to see, that these adaptations do not change the correctness of the algorithm.
The runtime (after the rounding technique) naturally increases to poly(nz, k, 1

ε
), which

is polynomial, iff z (the number of server machines) is a constant.
��

8 Approximating the Pareto Front

The problem variants we describe and analyze in this paper aremulti-criteria optimiza-
tion problems. To simultaneously handle the two criteria cost and makespan, we either
looked at decision variants “is there a schedule with makespan ≤ d and cost ≤ b”
or we used one of them as a constraint and asked “given a budget of b, minimize the
makespan” (or vice versa). Naturally, one might be interested in finding an assortment
of different efficient solutions, without giving a specific budget or deadline. A solution
is called efficient, or Pareto optimal, if we can not improve one of the criteria, without
worsening the other. The set of all Pareto optimal solutions is called the Pareto front.

123

1242 Algorithmica (2024) 86:1210–1245

1

3

5

7

9
cost

1 3 5 7 9 mspan

Fig. 7 Reported solutions by our algorithm, filled circles and empty circles represent reported points and
best possible solutions due to the approximation factor, respectively. Dotted region is infeasible, striped
region is feasible but dominated

In the following, we will use the term point to refer to the makespan and cost of a
feasible solution of a given SCS problem.

For our NP-hard problems, we will not be able to efficiently calculate the exact
Pareto front, but we can find a set of points that is close to the optimum. In the
literature, one can find slightly different definitions for such approximations. In [22],
the authors scale each criteria to an interval from 0 to 1. A set of points is an α-
approximation, if for each point in the actual Pareto front, there is a point where each
dimension is offset by at most an additional ±α. We follow the definition of Pareto
front approximations given in [23] (adapted to our case with exactly 2 objectives):

Definition 1 A set of points S is an α-approximation of a Pareto front, if for each point
p = (mspanp, cost p) there is a point p′ = (mspanp′

, cost p
′
) in S with mspanp′ ≤

(1 + α)mspanp and cost p
′ ≤ (1 + α)cost p.

The dynamic programming algorithms established in this paper can be used to find
such an approximation. We use the results from Sect. 4 to show how this is done, but
note that a similar approach can be used for other results of this paper.

Intuitively our dynamic programs calculate a collection of possible results but only
report a single one, where the “best” is selected based on the current objective. Imagine
that one of our deadline restrained algorithmswith approximation factor (1+ε) reports
every non dominated solution it finds instead. The result for d = 10 and ε = 0.1 could
look like Fig. 7. For every reported point (mspan, cost) we can infer a lower bound
on the makespan of mspan − ε · d any schedule with a given cost has, due to the
approximation factor of the algorithm. Note that gap is in relation to a given d, and
therefore results with a smaller makespan are less precise. We will circumvent that by
repeating the algorithm with smaller values for d.

Theorem 17 Using DPfGG (Algorithm 1) one can α-approximate the Pareto front of
a SCS problem with constant ψ in polynomial time, for any α > 0.

123

Algorithmica (2024) 86:1210–1245 1243

Proof Given some SCS problem with constant ψ run DPfGG (with the round-
ing approach) with d = ∑

j∈J ps(j). Normally the algorithm found the first state

[d̂, fs] = cost . Now, instead let the algorithm find the first state [t, fs] = cost for
every t ∈ (0.5d̂, d̂]. For each of those states calculate an upper bound on themakespan
for the respective schedule in the unscaled instance. Following the argumentation in the
proof for Theorem8,weknow that themakespan is≤ t+ς+(n−2)2ς = (t+2n−4)ς .
Report the point (mspan = (t + 2n − 4)ς, cost) and add it to S. After that full algo-
rithm iteration, set d := 0.5d and repeat the process. Do this until d = 1. Finally,
return the reported point set S.

We want to show that for every point p = (mspanp, cost p) of a Pareto front,
there is a reported point p′ = (mspanp′

, cost p
′
) with mspanp′ ≤ (1 + α)mspanp

and cost p
′ ≤ (1 + α)cost p. Given some point p = (mspanp, cost p), look at the

iteration where 0.5d < mspanp ≤ d. Since there is a feasible schedule with mspanp

and cost p at some point during that iteration we found a feasible scaled schedule
with t = �mspan p

ς
� and cost ≤ cost p. The calculated upper bound for that schedule

in unscaled is then (�mspan p

ς
� + 2n − 4)ς ≤ mspanp + (2n − 4)ς = mspanp +

(2n − 4) ε·d
2n ≤ mspanp + εd ≤ (1 + 2ε)mspanp (recall: ς := ε·d

2n). Therefore, a

point p′ = (mspanp′
, cost p

′
) withmspanp′ ≤ (1+ 2ε)mspanp and cost p

′ ≤ cost p

got reported. Setting ε = 0.5α and noting that we repeat the process no more than
log(

∑
j∈J ps(j)) times concludes the proof. ��

9 FutureWork

We give a small overview over the future research directions that emerge from our
work. SCSe: If good approximations for 1 | r j | ∑

w jU j become established, the
algorithm given in Sect. 3 for the extended chain could probably be improved. One
could model the incoming communication delay with release dates and get an equiva-
lent subproblem to solve, instead of the approximate subproblem currently used. SCS:
Sect. 5 gives a strong inapproximability result for the general case with regards to the
cost function. For two easy cases (chain and fully parallel graphs) we could establish
FPTAS results, for graphs with a constant ψ we have an algorithm that finds optimal
solutions with a (1 + ε) deadline augmentation. Here one could explore if there are
FPTAS results for different assumptions, are there approximation algorithms without
resource augmentation for constant ψ instances, and lastly are there approximation
algorithmswith resource augmentation for the general case. For themakespan function
we already have a FPTAS for graphs with a constant ψ . It remains to explore approx-
imation algorithms or inapproximability results for the general case of this problem.
SCS1: We show strong NP-hardness even for this simplified problem. Since this is a
special case of the general problem all constructive results still hold, additionally we
were able to give a first simple algorithm for cost optimization in general graphs. Here

123

1244 Algorithmica (2024) 86:1210–1245

it would be interesting to look into more involved approximation algorithms that give
better performance guarantees, maybe without resource augmentation.

Author Contributions SP wrote the main manuscript text and all figures except Fig. 4. MM co-wrote
the introduction, Sect. 5.1 and prepared Fig. 4. FMadH supervised the project, all authors reviewed the
manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflicts of interest The authors are not aware of any conflict of interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581
(1966). https://doi.org/10.1002/j.1538-7305.1966.tb01709.x

2. Levey, E., Rothvoss, T.: A (1+epsilon)-approximation for makespan scheduling with precedence con-
straints using LP hierarchies. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18–21,
2016, pp. 168–177 (2016). https://doi.org/10.1145/2897518.2897532

3. Garg, S.: Quasi-PTAS for scheduling with precedences using LP hierarchies. In: Chatzigiannakis, I.,
Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium onAutomata, Languages,
and Programming, ICALP 2018, July 9–13, 2018, Prague, Czech Republic. LIPIcs, vol. 107, pp. 59–
15913 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.59

4. Kulkarni, J., Li, S., Tarnawski, J., Ye, M.: Hierarchy-based algorithms for minimizing makespan under
precedence and communication constraints. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5–8, 2020, pp.
2770–2789 (2020). https://doi.org/10.1137/1.9781611975994.169

5. Davies, S., Kulkarni, J., Rothvoss, T., Tarnawski, J., Zhang, Y.: Scheduling with communication delays
via LP hierarchies and clustering. In: 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16–19, 2020, pp. 822–833 (2020). https://doi.
org/10.1109/FOCS46700.2020.00081

6. Davies, S., Kulkarni, J., Rothvoss, T., Tarnawski, J., Zhang, Y.: Scheduling with communication delays
via LP hierarchies and clustering II: weighted completion times on related machines. In: Marx, D.
(ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10–13, 2021, pp. 2958–2977 (2021). https://doi.org/10.1137/1.9781611976465.
176

7. Aba, M.A., Kordon, A.M., Pallez, G.: Scheduling on two unbounded resources with communication
costs. In: Yahyapour, R. (ed.) Euro-Par 2019: Parallel Processing—25th International Conference on
Parallel and Distributed Computing, Göttingen, Germany, August 26–30, 2019, Proceedings. Lec-
ture Notes in Computer Science, vol. 11725, pp. 117–128 (2019). https://doi.org/10.1007/978-3-030-
29400-7_9

8. Saha, B.: Renting a cloud. In: Seth, A., Vishnoi, N.K. (eds.) IARCSAnnual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12–14, 2013,

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.4230/LIPIcs.ICALP.2018.59
https://doi.org/10.1137/1.9781611975994.169
https://doi.org/10.1109/FOCS46700.2020.00081
https://doi.org/10.1109/FOCS46700.2020.00081
https://doi.org/10.1137/1.9781611976465.176
https://doi.org/10.1137/1.9781611976465.176
https://doi.org/10.1007/978-3-030-29400-7_9
https://doi.org/10.1007/978-3-030-29400-7_9

Algorithmica (2024) 86:1210–1245 1245

Guwahati, India. LIPIcs, vol. 24, pp. 437–448 (2013). https://doi.org/10.4230/LIPIcs.FSTTCS.2013.
437

9. Mäcker, A., Malatyali, M., auf der Heide, F.M., Riechers, S.: Cost-efficient scheduling on machines
from the cloud. J. Comb. Optim. 36(4), 1168–1194 (2018). https://doi.org/10.1007/s10878-017-0198-
x

10. Maack, M., auf der Heide, F.M., Pukrop, S.: Server cloud scheduling. In: Könemann, J., Peis, B. (eds.)
Approximation andOnlineAlgorithms—19th InternationalWorkshop,WAOA2021, Lisbon, Portugal,
September 6–10, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol. 12982, pp.
144–164 (2021). https://doi.org/10.1007/978-3-030-92702-8_10

11. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete
Math. 1, 343–362 (1977). https://doi.org/10.1016/S0167-5060(08)70743-X

12. Lenstra, J.K., Kan, A.H.G.R.: Complexity of scheduling under precedence constraints. Oper. Res.
26(1), 22–35 (1978). https://doi.org/10.1287/opre.26.1.22

13. Svensson, O.: Hardness of precedence constrained scheduling on identical machines. SIAM J. Comput.
40(5), 1258–1274 (2011). https://doi.org/10.1137/100810502

14. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979). https://doi.org/10.1016/
S0167-5060(08)70356-X

15. Lawler, E.L.,Moore, J.M.: A functional equation and its application to resource allocation and sequenc-
ing problems. Manag. Sci. 16(1), 77–84 (1969). https://doi.org/10.1287/mnsc.16.1.77

16. Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127 (1976). https://doi.
org/10.1145/321921.321934

17. Adamu, M.O., Adewumi, A.O.: A survey of single machine scheduling to minimize weighted number
of tardy jobs. J. Ind. Manag. Optim. 10(1), 219 (2014). https://doi.org/10.3934/jimo.2014.10.219

18. Detienne, B.: A mixed integer linear programming approach to minimize the number of late jobs with
and without machine availability constraints. Eur. J. Oper. Res. 235(3), 540–552 (2014). https://doi.
org/10.1016/j.ejor.2013.10.052

19. Sevaux, M., Dauzère-Pérès, S.: Genetic algorithms to minimize the weighted number of late jobs
on a single machine. Eur. J. Oper. Res. 151(2), 296–306 (2003). https://doi.org/10.1016/S0377-
2217(02)00827-5

20. M’Hallah, R., Bulfin, R.L.: Minimizing the weighted number of tardy jobs on a single machine with
release dates. Eur. J. Oper. Res. 176(2), 727–744 (2007). https://doi.org/10.1016/j.ejor.2005.08.013

21. Möhring, R.H., Schäffter, M.W., Schulz, A.S.: Scheduling jobs with communication delays: Using
infeasible solutions for approximation (extended abstract). In: Díaz, J., Serna,M.J. (eds.) Algorithms—
ESA ’96, Fourth Annual European Symposium, Barcelona, Spain, September 25–27, 1996, Proceed-
ings. Lecture Notes in Computer Science, vol. 1136, pp. 76–90 (1996). https://doi.org/10.1007/3-540-
61680-2_48

22. Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the pareto front of multi-criteria
optimization problems. In: Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20–28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6015, pp. 69–83 (2010). https://
doi.org/10.1007/978-3-642-12002-2_6

23. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of
web sources. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12–14
November 2000, Redondo Beach, California, USA, pp. 86–92 (2000). https://doi.org/10.1109/SFCS.
2000.892068

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.FSTTCS.2013.437
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.437
https://doi.org/10.1007/s10878-017-0198-x
https://doi.org/10.1007/s10878-017-0198-x
https://doi.org/10.1007/978-3-030-92702-8_10
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1287/opre.26.1.22
https://doi.org/10.1137/100810502
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1287/mnsc.16.1.77
https://doi.org/10.1145/321921.321934
https://doi.org/10.1145/321921.321934
https://doi.org/10.3934/jimo.2014.10.219
https://doi.org/10.1016/j.ejor.2013.10.052
https://doi.org/10.1016/j.ejor.2013.10.052
https://doi.org/10.1016/S0377-2217(02)00827-5
https://doi.org/10.1016/S0377-2217(02)00827-5
https://doi.org/10.1016/j.ejor.2005.08.013
https://doi.org/10.1007/3-540-61680-2_48
https://doi.org/10.1007/3-540-61680-2_48
https://doi.org/10.1007/978-3-642-12002-2_6
https://doi.org/10.1007/978-3-642-12002-2_6
https://doi.org/10.1109/SFCS.2000.892068
https://doi.org/10.1109/SFCS.2000.892068

	Server Cloud Scheduling
	Abstract
	1 Introduction
	1.1 Problem
	1.2 Results
	1.3 Related Work

	2 Preliminary Results: Chains and Fully Parallel
	2.1 Hardness
	2.2 Algorithms
	2.2.1 Fully Parallel Case
	2.2.2 Chain Graph Case

	3 The Extended Chain Model
	3.1 Single Machine Weighted Number of Tardy Jobs
	3.2 Model
	3.3 A (2+ε)-Approximation for Makespan Minimization on the Extended Chain
	3.4 Cases with FPTAS
	3.5 Strong NP-Hardness of Scheduling Extended Chains

	4 Constant Cardinality Source and Sink Dividing Cut
	4.1 Rounding the Dynamic Program

	5 Strong NP-Hardness
	5.1 No Delays and Two Sizes
	5.2 Unit Size and Unit Delay
	5.2.1 The General Case

	6 Unit Size and Unit Delay—And No Delay
	6.1 No Delays and Identical Machines

	7 Generalizations of Server Cloud Scheduling
	7.1 Changes in the Definitions
	7.1.1 Machine Model
	7.1.2 Jobs
	7.1.3 Costs and Schedules

	7.2 Revisiting SCS e
	7.3 Revisiting SCS ψ

	8 Approximating the Pareto Front
	9 Future Work
	References

