
Algorithmica (2024) 86:1263–1292
https://doi.org/10.1007/s00453-023-01188-y

Partial and Simultaneous Transitive Orientations via
Modular Decompositions

Miriam Münch1 · Ignaz Rutter1 · Peter Stumpf1

Received: 7 November 2022 / Accepted: 6 November 2023 / Published online: 14 December 2023
© The Author(s) 2023

Abstract
A natural generalization of the recognition problem for a geometric graph class is the
problem of extending a representation of a subgraph to a representation of the whole
graph. A related problem is to find representations for multiple input graphs that coin-
cide on subgraphs shared by the input graphs. A common restriction is the sunflower
case where the shared graph is the same for each pair of input graphs. These problems
translate to the setting of comparability graphswhere the representations correspond to
transitive orientations of their edges. We use modular decompositions to improve the
runtime for the orientation extension problem and the sunflower orientation problem
to linear time. We apply these results to improve the runtime for the partial represen-
tation problem and the sunflower case of the simultaneous representation problem for
permutation graphs to linear time. We also give the first efficient algorithms for these
problems on circular permutation graphs.

Keywords Representation extension · Simultaneous representation · Comparability
graph · Permutation graph · Circular permutation graph · Modular decomposition

1 Introduction

Representations and drawings of graphs have been considered since graphs have been
studied [1]. A geometric intersection representation of a graph G = (V , E) with
regards to a class of geometric objects C, is a map R : V → C that assigns objects of C
to the vertices ofG such thatG contains an edgeuv if and only if the intersection R(u)∩

B Miriam Münch
muenchm@fim.uni-passau.de

Ignaz Rutter
rutter@fim.uni-passau.de

Peter Stumpf
stumpf@fim.uni-passau.de

1 Faculty of Computer Science and Mathematics, University of Passau, Passau, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01188-y&domain=pdf

1264 Algorithmica (2024) 86:1263–1292

Fig. 1 a A graph G with b a permutation diagram and c a circular permutation diagram

R(v) is non-empty. In this way, the class C gives rise to a class of graphs, namely
the graphs that admit such a representation. As an example, consider permutation
diagramswhereC consists of segments connecting two parallel lines �1, �2, see Fig. 1b,
which defines the class Perm of permutation graphs. Similarly, the class CPerm of
circular permutation graphs is obtained by replacing �1, �2 with concentric circles
and the geometric objects with curves from �1 to �2 that pairwise intersect at most
once; see Fig. 1c.

A key problem in this context is the recognition problem, which asks whether a
given graph admits such a representation for a fixed class C. Klavík et al. introduced the
partial representation extension problem (RepExt(C)) for intersection graphs where
a representation R′ is given for a subset of vertices W ⊆ V and the question is
whether R′ can be extended to a representation R of G, in the sense that R|W=R′ [1].
They showed that RepExt can be solved in linear time for interval graphs. The
problem has further been studied for proper/unit interval graphs [2], function and
permutation graphs (Perm) [3], circle graphs [4], chordal graphs [5], and trapezoid
graphs [6]. Related extension problemshave also been considered, e.g., for planar topo-
logical [7, 8] and straight-line [9] drawings, for 1-planar drawings [10], for contact
representations [11], and for rectangular duals [12].

A related problem is the simultaneous representation problem (SimRep(C)) where
input graphs G1 . . . ,Gr that may share subgraphs are given and the question is
whether they have representations R1, . . . , Rr such that for i, j ∈ {1, . . . , r} the shared
graph H = Gi∩G j has the same representation in Ri and R j , i.e., Ri |V (H) = R j |V (H).
If more than two input graphs are allowed, usually the sunflower case (SimRep�(C))
is considered, where the shared graph H = Gi ∩ G j is the same for any i �= j ∈
{1, . . . , r}. I.e., here the question is whether H has a representation that can be simul-
taneously extended to G1, . . . ,Gr . Simultaneous representations were first studied in
the context of planar drawings [13, 14], where the goal is to embed each input graph
without edge crossings while shared subgraphs have the same induced embedding.
Unsurprisingly, many variants are NP-complete [15–18].

Motivated by applications in visualization of temporal relationships, and for over-
lapping social networks or schedules, DNA fragments of similar organisms and
adjacent layers on a computer chip, Jampani and Lubiw introduced the problem Sim-

Rep for intersection graphs [19]. They provided polynomial-time algorithms for two
chordal graphs and for SimRep�(Perm). They also showed that in general SimRep
is NP-complete for three or more chordal graphs. The problem was also studied for

123

Algorithmica (2024) 86:1263–1292 1265

Table 1 Known runtimes on the left and new runtimes on the right. For SimRep� we set n = ∑r
i=1 |V (Gi)|

and m = ∑r
i=1 |E(Gi)|

RepExt SimRep�

Comp O((n + m)Δ) [3] O(nm) [19]
Perm O(n3) [3] O(n3) [19]
CPerm open open

RepExt SimRep�

Comp O(n + m) O(n + m)
Perm O(n + m) O(n + m)
CPerm O(n + m) O(n2)

We use RepExt(Comp) and SimRep
�(Comp) to refer to OrientExt and SimOrient

�, respectively, in a
slight abuse of notation

interval graphs [20–22], proper/unit interval graphs [23], circular-arc graphs [22] and
circle graphs [4].

Many of the considered graph classes are related to the class Comp of com-
parability graphs [24]. An orientation O of a graph G = (V , E) assigns to
each edge of G a direction. The orientation O is transitive if uv, vw ∈ O
implies uw ∈ O . A comparability graph is a graph for which there is a transi-
tive orientation. A partial orientation is an orientation of a (not necessariliy induced)
subgraph of G. Similar to RepExt, SimRep�and SimRep, the problems Orien-

tExt, SimOrient� and SimOrient for comparability graphs ask for a transitive
orientation of a graph that extends a given partial orientation and for transitive ori-
entations that coincide on the shared graph, respectively. The key ingredient for
the O(n3) algorithm solving RepExt(Perm) by Klavík et al. [3] is a polynomial-
time solution for OrientExt based on the transitive orientation algorithm by
Gilmore and Hoffman [25]. Likewise, the O(n3) algorithm solving SimRep

�(Perm)

by Jampani and Lubiw [19] is based on a polynomial-time algorithm for
SimOrient

� based on the transitive orientation algorithm by Golumbic [24].

Contribution and Outline. In Sect. 2, we introduce modular decompositions which
can be used to describe certain subsets of the set of all transitive orientations of a graph,
e.g., those that extend a given partial representation. Based on this, we give a simple
linear-time algorithm for OrientExt in Sect. 3. Afterwards, in Sect. 4, we develop
an algorithm for intersecting subsets of transitive orientations represented by modular
decompositions and use this to give a linear-time algorithm for SimOrient�. In Sect. 5
we give linear-time algorithms for RepExt(Perm) and SimRep

�(Perm), improving
over the O(n3)-algorithms of Klavík et al. and Jampani and Lubiw, respectively. We
also give the first efficient algorithms for RepExt(CPerm) and SimRep�(CPerm) in
Sect. 6. Table 1 gives an overview of the state of the art and our results. In Sect. 7 we
show that the simultaneous orientation problem and the simultaneous representation
problem for permutation graphs are both NP-complete in the non-sunflower case.

123

1266 Algorithmica (2024) 86:1263–1292

Fig. 2 a A graph G. b The canonical modular decomposition of G with L(μ) = {1, 2, 3, 5, 6}

2 Modular Decompositions

Let G = (V , E) be an undirected graph. We write G[U] for the subgraph induced by
a vertex set U ⊆ V . For a rooted tree T and a node μ of T , we write T [μ] for the
subtree of T with root μ and L(μ) for the leaf-set of T [μ].

A module of G is a non-empty set of vertices M ⊆ V such that every vertex u ∈
V \M is either adjacent to all vertices in M or to none of them. The singleton subsets
and V itself are called the trivial modules. A module M � V is maximal, if there
exists no module M ′ such that M � M ′ � V . If G has at least three vertices and
no non-trivial modules, then it is called prime. We call a rooted tree T with root ρ

and L(ρ) = V a (general) modular decomposition for G if for every node μ of T the
set L(μ) is a module; see Fig. 2.

Observe that for any two nodes μ1, μ2 ∈ T such that neither of them is an ancestor
of the other, G contains either all edges with one endpoint in L(μ1) and one endpoint
in L(μ2) or none of them. For two vertices u, v ∈ V we denote the lowest common
ancestor of their corresponding leaves in T by lcaT (u, v). For a set of leaves L , we
denote the lowest common ancestor by lcaT (L).

With each inner node μ of T we associate a quotient graph G[μ] that is obtained
from G[L(μ)] by contracting L(ν) into a single vertex for each child ν of μ; see
Fig. 2. In the rest of this paper we identify the vertices of G[μ]with the corresponding
children of μ. Every edge uv ∈ E is represented by exactly one edge repT (uv) in one
of the quotient graphs of T , namely in the quotient graph G[μ] of the lowest common
ancestor μ of u and v. More precisely, if ν and λ are the children of μ with u ∈ L(ν)

and v ∈ L(λ), then repT (uv) = νλ. For an oriented edge uv, repT (uv) is also oriented
towards its endpoint ν with v ∈ L(ν). If T is clear from the context, the subscript can
be omitted. Let μ be a node in T . For a vertex u ∈ L(μ) we denote the child λ of μ

with u ∈ L(λ) by repμ(u).
A node μ in a modular decomposition T is called empty, complete or prime if the

quotient graph G[μ] is empty, complete or prime, respectively. By K (T), P(T) we
denote the set of all complete and prime nodes in T , respectively. For every graph G

123

Algorithmica (2024) 86:1263–1292 1267

there exists a uniquely defined modular decomposition, that we call the canonical
modular decomposition of G, introduced by Gallai [26], such that each quotient graph
is either prime, complete or empty and, additionally, no two adjacent nodes are both
complete or are both empty; see Fig. 2. Note that in the literature, these are referred to
as modular decompositions, whereas we use that term for general modular decompo-
sitions. For a prime node μ in the canonical modular decomposition of G, for every
child ν of μ, L(ν) is a maximal module in G[L(μ)] and for every maximal mod-
ule M in G[L(μ)] there exists a child ν of μ with L(ν) = M . McConnell and Spinrad
showed that the canonical modular decomposition can be computed in O(|V | + |E |)
time [27]. Let μ be a node in a modular decomposition for G. A μ-set U is a subset
of L(μ) that contains for each child λ of μ at most one leaf in L(λ). IfU contains for
every child λ of μ a vertex in L(λ), we call it maximal.

Lemma 1 Let T be a modular decomposition of a graph G. After a linear-time pre-
processing we can assume that each node of T is annotated with its quotient graph.
Moreover, the following queries can be answered in O(1) time:

1. Given a non-root node ν of T , find the vertex of the quotient graph of ν’s parent
that corresponds to ν.

2. Given a vertex v in a quotient graph G[μ], find the child of μ that corresponds
to v.

3. Given an edge e of G, determine rep(e), the quotient graph that contains rep(e),
and which endpoint of rep(e) corresponds to which endpoint of e.

Additionally, given a node μ in T one can find a maximal μ-set U in O(|U |) time.
Proof We focus on constructing the quotient graphs. The queries can be answered by
suitably storing pointers during the construction.

For every node μ in T we initiate the quotient graph with one vertex for each child
of μ and equip the children of μ and their corresponding vertices with pointers so that
queries 1) and 2) can be answered in O(1) time.

Next, we compute the edges of the quotient graphs. The difficulty here is to find
for each edge uv in a quotient graph G[μ] the children λu , λv of μ with u ∈ L(λu)

and v ∈ L(λv).
For each node μ of T we compute a list Lμ that contains all edges uv of G

with lcaT (u, v) = μ. Namely, we use the lowest-common-ancestor data structure
for static trees of Harel and Tarjan [28], to compute lcaT (u, v) for each edge uv and
add uv to L lca(u,v). Afterwards, we perform a bottom-up traversal of the inner nodes
of T that maintains for each leaf v of T the processed root r(v) = μ, where μ is the
highest already-processed node of T with v ∈ L(μ).

Initially, we set r(v) = v for all leaves of T , and we mark all leaves as processed.
When processing a node μ, we determine the edges of G[μ] as follows. We traverse
the list Lμ and for each edge uv ∈ Lμ, we determine the children r(u) and r(v) of μ.
From this, we determine the corresponding vertices of G[μ] and add an edge with a
pointer to uv between them. This may create multi-edges. We find those by sorting the
incidence list of each vertex by the number of the other incident node in linear time
using radix sort [29] and an arbitrary enumeration of V (G[μ]). We then replace all
parallel edges between two vertices with a single edge and annotate it with all pointers

123

1268 Algorithmica (2024) 86:1263–1292

of themerged edges. For each pointer from an edge e inG[μ] to a represented edge uv,
we then annotate uv with a pointer to e.

Afterwards, we update r(v) for all v ∈ L(μ) to μ and mark μ as processed. To
maintain the processed roots of all leaves, we employ a union-find data structure,
which initially contains one singleton set for each leaf and when a node μ has been
processed, we equip it with a maximal μ-set containing an arbitrarily chosen vertex
from every set associated with a child of μ and afterwards unite the sets associated
with its children. Since the union-find tree is known in advance (it corresponds to T),
the union-find operations can be performed in amortized O(1) time [30].

We observe that the total size of all lists Lμ is O(m) and moreover T has at
most 2n − 1 nodes. Therefore the whole preprocessing runs in linear time. �	

Let μ be a node in a modular decomposition T of G and let μ1μ2 be an edge
in G[μ]. Let
T [G] denote an assignment of directions to all edges in G[μ] for every
node μ in T . Such a
T [G] is transitive if it is transitive on every G[μ]. We obtain
an orientation of G from an orientation
T [G] of the quotient graphs of T as follows.
Every undirected edge uv in E with rep(uv) = μ1μ2 ∈
T [G], is directed from u to v.
We say that T represents an orientation O of G, if there exists an orientation
T [G] of
the quotient graphs of T that gives us O . We denote the set of all transitive orientations
ofG represented by T by to(T). We get an orientation of the quotient graphs of T from
an orientation of G, if for each oriented edge μ1μ2, all edges represented by μ1μ2 are
oriented from L(μ1) to L(μ2). Let T now be the canonical modular decomposition
of G. Then T represents exactly the transitive orientations of G [26]. It follows that G
is a comparability graph if and only if T can be oriented transitively.

If G is a comparability graph, every prime quotient graph G[μ] = (Vμ, Eμ) has
exactly two transitive orientations, one the reverse of the other [24], and with the
algorithm by McConnell and Spinrad [27] we can compute one of them in O(|Vμ| +
|Eμ|) time. Hence the time to compute the canonical modular decomposition in which
every prime node is labeledwith a corresponding transitive orientation is O(|V |+|E |).

3 Transitive Orientation Extension

The partial orientation extension problem for comparability graphs OrientExt is to
decide for a comparability graph G with a partial orientation W , i.e. an orientation of
some of its edges, whether there exists a transitive orientation O of G with W ⊆ O .
The notion of partial orientations and extensions extends to modular decompositions.
We get a partial orientation of the quotient graphs of T from W such that exactly the
edges that represent at least one edge in W are oriented and all edges in W that are
represented by the same oriented edge μ1μ2, are directed from L(μ1) to L(μ2).

Lemma 2 Let T be the canonical modular decomposition of a comparability graph G
and let W be a partial orientation of G that gives us a partial orientation P of the
quotient graphs of T . Then W extends to a transitive orientation of G if and only if P
extends to a transitive orientation of the quotient graphs of T .

Proof Let O be a transitive orientation of G that extends W . Let μ1μ2 be an oriented
edge in P . Then μ1μ2 represents an oriented edge uv in W . Then uv is an oriented

123

Algorithmica (2024) 86:1263–1292 1269

edge in O and μ1μ2 is in the transitive orientation
T [G] of the quotient graphs of T
we get from O . Hence,
T [G] extends P .

Conversely, let
T [G] be a transitive orientation of the quotient graphs of T that
extends P . Let uv be an oriented edge in W . Then uv is represented by an oriented
edge μ1μ2 in P . Then μ1μ2 is an oriented edge in
T [G] and uv is in the transitive
orientation O of G we get from
T [G]. Hence,O extends W . �	

To solveOrientExt efficientlywe confirm that the partial orientation actually gives
us a partial orientation P of the quotient graphs of the canonical modular decompo-
sition T . Otherwise we can reject. By Lemma 2 we now just need to check for each
node μ of T whether P can be extended to G[μ]. To this end, we use that μ is empty,
complete or prime. Since transitive orientations of cliques are total orders and prime
graphs have at most two transitive orientations, the existence of an extension can easily
be decided in each case.

Theorem 1 OrientExt can be solved in linear time.

Proof Let W be the given partial orientation of a comparability graph G = (V , E).
After the linear-time preprocessing of Lemma 1, we can compute the partial orienta-
tion P of the quotient graphs of T we get fromW in linear time by determining rep(uv)

for every edge uv ∈ W . If P does not exist, then there is an edge μ1μ2 in a quo-
tient graph that represents an edge e1 ∈ W oriented from L(μ1) to L(μ2) and an
edge e2 ∈ W oriented from L(μ2) to L(μ1). Then W can not be extended to a tran-
sitive orientation of G since in any orientation represented by T the edges e1,e2 are
both oriented in the same direction between L(μ1) and L(μ2). Hence, we can reject
in this case.

Otherwise, to solve OrientExt for G, it suffices to solve OrientExt for every
quotient graph in the canonical modular decomposition T of G with the partial orien-
tation from P by Lemma 2. Let μ be a node in T . We distinguish cases based on the
type of μ. If μ is empty, nothing needs to be done. If μ is complete, the problem of
extending the partial orientation of G[μ] is equivalent to the problem of finding a total
order of the nodes of G[μ] that respects P . This can be done via topological sorting
in linear time. If μ is prime, G[μ] has exactly two transitive orientations, where one
is the reverse of the other. Therefore we check in linear time whether one of these
orientations of G[μ] is an extension of the partial orientation of G[μ]. Otherwise, no
transitive extension exists.

Since we can compute T in O(|V | + |E |) time, in total we can decide whether the
partial orientationW is extendible in the same time. we get a corresponding transitive
orientation of G by the extension of P and can also be computed in the same time. �	

4 Sunflower Orientations

The idea to solve SimOrient�is to obtain for each input graph Gi a restricted modular
decomposition of the shared graph H that represents exactly those transitive orien-
tations of H that can be extended to Gi . The restricted modular decompositions can
be expressed by constraints for the canonical modular decomposition of H . These

123

1270 Algorithmica (2024) 86:1263–1292

(a) (b)

prime

empty
(c)

µµ′

Fig. 3 a A graph G with an induced subgraph H (blue square vertices). b A modular decomposition T
of G with a transitive orientation. c The restricted modular decomposition (T |H , D) of H derived from the
transitive orientation in (b). Note that H [μ] is a clique but μ is labeled prime (Color figure online)

constraints are then combined to represent all transitive orientations of H that can be
extended to each input graph Gi . With this the solution is straightforward.

Let H be a comparability graph. Then we define a restricted modular decompo-
sition (T , D) of H to be a tuple where T is a modular decomposition of H where
every node is labeled as complete, empty or prime, such that for every node μ labeled
as complete or empty, H [μ] is complete or empty, respectively, and D is a func-
tion that assigns to each prime labeled node μ a transitive orientation Dμ, called
default orientation. In the following, when referring to the type of a node μ in a
restricted modular decomposition, we mean the type that μ is labeled with. A transi-
tive orientation of (T , D), is a transitive orientation of the quotient graphs of T where
every prime node μ has orientation Dμ or its reversal D−1

μ . Let to(T , D) denote the
set of transitive orientations of H we get from transitive orientations of (T , D). We
say (T , D) represents these transitive orientations. Note that for the canonical modular
decomposition B of H we have to(T , D) ⊆ to(B).

Let G be a comparability graph with an induced subgraph H . A modular decompo-
sition T of G gives us a restricted modular decomposition (T |H , D) of H as follows;
see Fig. 3.

We obtain T |H from T by (i) removing all leaves that do not correspond to a
vertex of H and then (ii) iteratively contracting all inner nodes of degree at most 2.
With a bottom-up traversal we can compute T |H in time linear in the size of T . A
node μ in T |H stems from lcaT (L(μ)). Every node μ ∈ T |H that stems from a
prime node μ′ ∈ T we label as prime and set Dμ to a transitive orientation of G[μ′]
restricted to the edges of H . The remaining nodes are labeled according to the type of
their quotient graph. Note that H [μ] is isomorphic to an induced subgraph of G[μ′].
Lemma 3 Let T be a modular decomposition of a graph G with an induced sub-
graph H. Then to(T |H , D) is the set of orientations of H extendable to transitive
orientations of G.

Proof Let OH be a transitive orientation of H that can be extended to a transitive
orientation OG of G. Then OG gives us a transitive orientation
T [G] of the quotient
graphs of T that in turn gives us a transitive orientation
T |H of (T |H , D). Since OG is
an extension of OH and
T [G] contains
TH [H], OH is the transitive orientation of H
we get from
TH [H]. Hence (T |H , D) represents OH .

123

Algorithmica (2024) 86:1263–1292 1271

Conversely, let
TH [H] be a transitive orientation of (TH , D). For any node μ

in T |H let μ′ = lcaT (L(μ)). Recall that H [μ] is isomorphic to an induced subgraph
of G[μ′]. We already know that G[μ′] is either empty, complete or prime. If G[μ′] is
empty, H [μ] and the corresponding transitive orientation are also empty. If G[μ′] is
complete, then H [μ] is also complete and any transitive orientation of H [μ] can be
extended to a transitive orientation ofG[μ′]. IfG[μ′] is prime, by construction H [μ] is
also labeled as primewith a default orientation Dμ given by a transitive orientation Dμ′

of G[μ′]. Hence
TH [H] either contains Dμ′ ∩ E(H [μ]) = Dμ or D−1
μ′ ∩ E(H [μ]) =

D−1
μ . Thus
TH [H] can bemapped to T and be extended to a transitive orientation
T [G]

of the quotient graphs of T . Then
T [G]gives us a transitive orientationOG ofG since T
represents exactly the transitive orientations ofG. Let OH be OG restricted to H . Then
by construction OH equals the orientation of H we get from
TH [H]. Thus
TH [H]
gives us a transitive orientation of H . �	

Consider the canonical modular decompositions T 1, . . . , T r of the input
graphs G1, . . . ,Gr , and let (T 1|H , D1), . . . , (T r |H , Dr) be the corresponding
restricted modular decompositions. Then we are interested in the intersec-
tion to(G1, . . . ,Gr) = ⋂r

i=1 to(T
i |H , Di) since it contains all transitive orientations

of H that can be extended to all input graphs. However, the trees T 1|H , . . . , T r |H
have different shapes, which makes it difficult to compute a representation
of to(G1, . . . ,Gr) directly. Instead, we describe the sets of transitive orienta-
tions to(T 1|H , D1), . . . , to(T r |H , Dr) (whose intersection is simple to compute) with
constraints on the canonical modular decomposition B of H .

Let (T , D) be a restricted modular decomposition of H and let B be the canonical
modular decomposition of H . We collect constraints on the orientations of individual
nodes μ of B that are imposed by to(T , D). Afterwards we show that the established
constraints are sufficient to describe to(T , D). If μ is empty, then H [μ] is empty and
has a unique transitive orientation, which requires no constraints. The other types ofμ
are discussed in the following two sections.

4.1 Constraints for Prime Nodes

In this section we observe that prime nodes in B correspond to prime nodes in (T , D)

and that the dependencies between their orientations can be described with 2-SAT for-
mulas. Recall that the transitive orientation of a prime comparability graph is unique
up to reversal. We consider each prime node μ ∈ B equipped with a transitive ori-
entation Dμ, also called a default orientation. All default orientations for B can be
computed in linear time [27].

Lemma 4 Letμ ∈ B be prime. Thenμ′ = lcaT (L(μ)) is prime, everyμ-set is aμ′-set,
and for any edge uv with repB(uv) ∈ H [μ] we have repT (uv) ∈ H [μ′].
Proof We first show that every μ-set is also a μ′-set. Assume there is a μ-setU that is
not a μ′-set. Since U ⊆ L(μ) ⊆ L(μ′), there exist two vertices u �= v ∈ U with λ =
repμ′(u) = repμ′(v). From L(λ) being a module of H [L(μ′)] and L(μ) ⊆ L(μ′) it
follows that X = L(λ) ∩ L(μ) is a module of H [L(μ)]. By the definition of μ′, we

123

1272 Algorithmica (2024) 86:1263–1292

have X � L(μ). Since μ is prime, there is a child ν of μ with u, v ∈ X ⊆ L(ν)

contradicting U being a μ-set.
As a direct consequence of μ-sets being μ′-sets, we also have for any edge uv

with repB(uv) ∈ H [μ] that repT (uv) ∈ H [μ′] since {u, v} is a μ-set. Now let U
be a maximal μ-set. Then H [U] is isomorphic to H [μ] and thus prime. Since U is
also a μ′-set and the subgraph of H [μ′] induced by the vertices representing U is
isomorphic to H [U], μ′ is neither empty, nor complete and thus prime. �	

For a modular decomposition T ′ of H with a node λ and O ∈ to(T ′) let O↓λ denote
the orientation of the quotient graph H [λ] we get from O . Note that for a transitive
orientation Dλ of H [λ] and a λ-set U each orientation O ∈ to(T ′) with O↓λ =
Dλ gives us the same orientation on H [U]. We say that Dλ induces this orientation
on H [U].

Let μ ∈ B be prime, let μ′ = lcaT (L(μ)) and let U be a maximal μ-set (and by
Lemma4 aμ′-set).We set Dδ

μ′ = Dμ′ if Dμ, Dμ′ induce the same transitive orientation

on the prime graph H [U] and we set Dδ
μ′ = D−1

μ′ if the induced orientations are the

reversal of each other. Note that Dδ
μ′ does not depend on the choice of U . From

the definition of Dδ
μ′ and the observation that O↓μ, O↓μ′ are both determined by O

restricted to H [U] we directly get the following lemma.

Lemma 5 For O ∈ to(T , D) we have O↓μ = Dμ ⇔ O↓μ′ = Dδ
μ′ .

We express the choice of a transitive orientation for a prime node μ by a Boolean
variable xμ that is true for the default orientation and false for the reversed
orientation.

According to Lemma 5 we set ψμ to be xμ ↔ xμ′ if Dδ
μ′ = Dμ′ and xμ � xμ′

if Dδ
μ′ = D−1

μ′ . Note that for a prime nodeμ′ ∈ T there may exist more than one prime
nodeμ in B such thatμ′ = lcaT (L(μ)), and wemay hence have multiple prime nodes
that are synchronized by these constraints. We describe these dependencies with the
formula ψ = ∧

μ∈P(B) ψμ. With the above meaning of variables, any choice of
orientations for the prime nodes of B that can be induced by T necessarily satisfiesψ .
With Lemma 1 we can compute ψ efficiently.

Lemma 6 We can compute ψ in O(|V (H)| + |E(H)|) time.

Proof Let μ be a prime node in B and let μ′ = lcaT (L(μ)). By Lemma 1 we can
compute a maximal μ-set U in constant time after a linear-time preprocessing. By
Lemma 4 we have for every edge uv with repB(uv) ∈ H [μ] that repT (uv) ∈ H [μ′].
Hence we can find μ′ in T by determining repT (uv) for an arbitrary edge uv with
u, v ∈ U , which by Lemma 1 takes constant time. For an arbitrary oriented edge e ∈ O
we check in constant time whether e ∈ Dμ or e ∈ D−1

μ and add the clause xμ ↔ xμ′
or xμ � xμ′ , respectively. Doing this for every prime node in total takes time linear
in the size of T . �	

123

Algorithmica (2024) 86:1263–1292 1273

Fig. 4 a Two equivalent
PQ-trees T , T ′
with f r(T) = abcde f g
and f r(T ′) = dcbage f . b The
Q-node q ′ in T1 ∩ T2 contains q1
forwards and q2 backwards

(b) T1 T2

1

4 3 2

q2

T1 ∩ T2

4

1 2 3

q1

1 2 3 4

q′

(a)

d

T ′

g e fb

d

a c e f g

T

bc a

4.2 Constraints for Complete Nodes

Next we consider the case where μ is complete. The edges represented in H [μ] may
be represented by edges in more than one quotient graph in T , each of which can be
complete or prime. Depending on the type of the involved quotient graphs in T we get
new constraints for the orientation of H [μ].

Note that choosing a transitive orientation of H [μ] is equivalent to choosing a linear
order of the vertices of H [μ]. As we will see, each node ν of T that represents an edge
of H [μ] imposes a consecutivity constraint on a subset of the vertices of H [μ]. There-
fore, the possible orders can be represented by a PQ-tree that allows us to represent all
permissible permutations of the elements of a set U in which certain subsets S ⊆ U
appear consecutively.

PQ-trees were first introduced by Booth and Lueker [31, 32]. A PQ-tree T over a
finite set U is a rooted tree whose leaves are the elements of U and whose internal
nodes are labeled as P- or Q-nodes. A P-node is depicted as a circle, a Q-node as a
rectangle; see Fig. 4. Two PQ-trees T and T ′ are equivalent, if T can be transformed
into T ′ by arbitrarily permuting the children of arbitrarilymany P-nodes and reversing
the order of arbitrarily many Q-nodes; see Fig. 4a. A transformation that transforms T
into an equivalent tree T ′ is called an equivalence transformation. The frontier fr(T)

of a PQ-tree T is the order of its leaves from left to right. The tree T represents the
frontiers of all equivalent PQ-trees. The PQ-tree that does not have any nodes is called
the null tree.

Let T1, T2 be two PQ-trees over a setU . Their intersection T = T1∩T2 is a PQ-tree
that represents exactly the linear orders of U represented by both T1 and T2. It can be
computed in O(|U |) time [31].

For every Q-node q in T1 node q ′ = lcaT (L(q)) is also a Q-node. We say that q ′
contains q forwards, if T1[q] can be transformed by an equivalence transformation
that does not reverse q into a PQ-tree T ′ such that fr(T [q]) contains fr(T [q ′]); see
Fig. 4b. Else q ′ contains q backwards. Similarly every Q-node in T2 is contained in
exactly one Q-node in T (either forwards or backwards). Haeupler et al. [33] showed
that one can modify Booth’s algorithm such that given two PQ-trees T1, T2 it not only

123

1274 Algorithmica (2024) 86:1263–1292

1 2

3

4
5

6
7

1

2 3 4 5 6 7

μ

μ1 μ2 μ3

1

2 3
4 5 6 7

ν′
1

ν′
2 μ1

μ2 μ3

(a) (b) (c) (d)

Fig. 5 a A graph H . b The canonical modular decomposition B of H . c A restricted modular decomposi-
tions T of H . d The PQ-tree Sμ. The active nodes of T with regard to the μ-set {2, 4, 6} are ν′

1, ν
′
2, 2, 4

and 6

outputs T1 ∩ T2 but also for every Q-node in T1, T2 which Q-node in T contains it
and in which direction.

Lemma 7 Let T1, . . . , Tk be PQ-trees over a set U. Then we can compute their inter-
section T = ⋂k

i=1 Ti and determine for every Q-node q in T1, . . . , Tk the Q-node in T
that contains q and in which direction in O(k · |U |) time.
Proof Let S1 = T1 and for every j ∈ {2, . . . , k} let S j := S j−1∩Ti . To compute T =
Sk we stepwise compute S j = S j−1 ∩ Tj for every j . During the computation of T
we construct a DAG D whose vertices are the Q-nodes of T1, . . . , Tk and S2, . . . , Sk .
Initially D contains no edges. For every j we add a directed edge from every Q-node q
in Tj and S j−1 to the Q-node q ′ in S j that contains q. We label the edge with 1 if q ′
contains q forwards, and with -1 otherwise. By the result of Haeupler et al. this can
be done in O(k · |U |) time [33]. Note that by construction every vertex has at most
one outgoing edge and for every Q-node q in T1, . . . , Tk there is a unique path to the
Q-node q ′ in Sk that contains it. The product of the edge labels along this path is 1
and -1 if q ′ contains q forwards and backwards, respectively.

To determine for every Q-node q in T1, . . . , Tk which Q-node in T contains it
and in which direction, we start at the sinks in D and backward propagate for every
vertex in D the information which unique sink q ′ can be reached from it and what is
the product of edge labels along the path to q ′. This needs O(k · |U |) time since D
has O(k · |U |) vertices and edges. �	

Letμ′ = lcaT (L(μ)) for the rest of this section and letU ⊆ V be a maximalμ-set.
We call a node of T active if it is either a leaf in U or if at least two of its subtrees
contain leaves inU . Denote by A the set of active nodes in T and observe that A can be
turned into a tree Sμ by connecting each node ν′ ∈ A\{μ′} to its lowest active ancestor;
see Fig. 5. Let now
B[H] be an orientation of the quotient graphs of B induced by an
orientation
T [G] ∈ to(T , D) and consider a node ν′ �= μ′ of Sμ. Let X = U ∩ L(ν′)
and let Y = U\L(ν′). Since U is a μ-set of a complete node, any pair of vertices
in X ×Y is adjacent. Moreover, for each y ∈ Y , the edges from y to X are all oriented
towards X , or they are all oriented towards y, since every node of T that determines
the orientation of such an edge contains all vertices of X in a single child. This implies
that in the order of the μ-set given by the order of H [μ], the set L(ν′) is consecutive.
Moreover, if ν′ is prime, its default orientation Dν′ induces a total order on the active
children of ν′ that is fixed up to reversal. Hence we turn Sμ into a PQ-tree by first

123

Algorithmica (2024) 86:1263–1292 1275

Fig. 6 a A subtree of B with
root μ. b A subtree of T with
root ν′

μ

μ2μ1

w u v

ν′

λ′
κ′

w u v

(a) (b)

turning all complete nodes into P-nodes and all prime nodes into Q-nodes with the
children ordered according to the linear order determined by the default orientation
which we call the initial order of the Q-node. Finally, we replace each leaf v ∈ U
by the corresponding vertex repμ(v) of H [μ]; see Fig. 5. As argued above, the linear
order of H [μ] is necessarily represented by Sμ.

We show that tree Sμ is independent from the choice of the maximal μ-set U . We
use that any node of T has a laminar relation to the children of μ. More precisely,
for every node κ ′ in T , either all leaves shared by L(κ ′) and L(μ) are descendants of
the same child of μ, or for every child μ1 of μ with L(κ ′) ∩ L(μ1) �= ∅ we have
that L(μ1) is completely contained in L(κ ′).
Lemma 8 For any child μ1 of μ and any node κ ′ of V (T) with L(κ ′) ∩ L(μ1) �= ∅
we have L(μ1) ⊆ L(κ ′) ∩ L(μ) or L(κ ′) ∩ L(μ) ⊆ L(μ1).

Proof If L(κ ′) contains only leaves of at most one child μ1 of μ, we have L(κ ′) ∩
L(μ) ⊆ L(μ1) and L(μ2) ∩ L(κ ′) = ∅ for each remaining child μ2 of μ. Other-
wise, let μ1,μ2 be children of μ with leaves u ∈ L(κ ′) ∩ L(μ1), v ∈ L(κ ′) ∩ L(μ2)

and let λ′ = lcaT (u, v); see Fig. 6. Note that λ′ is a descendant of κ ′ or λ′ = κ ′.
Assume that there exists a vertex w ∈ L(μ1)\L(κ ′) and let ν′ = lcaT (u, w).
Then κ ′ is a descendant of ν′ since u ∈ L(ν′) ∩ L(κ ′) and w ∈ L(ν′)\L(κ ′).
Note that repT (vw) = repT (uw) ∈ H [ν′] and repT (uv) ∈ H [λ′]. Hence, T rep-
resents a transitive orientation of H with uv and vw. This contradicts B representing
all transitive orientations of H since we have repB(uv) = repB(wv). It follows
that L(μ1)\L(κ ′) = ∅ and analogously L(μ2)\L(κ ′) = ∅. This concludes the proof.

�	
Lemma 9 Let S1μ, S

2
μ be the PQ-trees for two maximal μ-sets U1,U2, respectively.

Then S1μ = S2μ.

Proof Let ν′ be a non-leaf node in T that is active with regard to U1. Then there exist
two vertices u1, v1 ∈ U1 and two distinct children ν′

1, ν
′
2 of ν′ such that u1 ∈ L(ν′

1)

and v1 ∈ L(ν′
2). Let μ1 = repμ(u1), μ2 = repμ(v1) and let u2,v2 be the vertices

in U2 with repμ(u2) = μ1, repμ(v2) = μ2. We prove the following:

1. u2, v2 ∈ L(ν′)
2. repν′(u2) �= repν′(v2)
3. repν′(u1v1) ∈ Dν′ ⇔ repν′(u2v2) ∈ Dν′ .

For Statement 1 observe that u1 ∈ L(ν′)∩ L(μ1) �= ∅ and v1 ∈ L(ν′)∩ L(μ)\L(μ1).
Hence L(ν′) ∩ L(μ) � L(μ1) and thus by Lemma 8 u2 ∈ L(μ1) ⊆ L(ν′) ∩ L(μ).
Analogously we get v2 ∈ L(μ2) ⊆ L(ν′) ∩ L(μ).

123

1276 Algorithmica (2024) 86:1263–1292

For Statement 2 assume ν′′ = repν′(u2) = repν′(v2). Then we have u2 ∈ L(ν′′) ∩
L(μ1) and v2 ∈ L(ν′′) ∩ L(μ)\L(μ1). By Lemma 8 we get u1 ∈ L(μ1) ⊆ L(ν′′) ∩
L(μ), i.e., ν′′ = ν′

1 and similarly ν′′ = ν′
2 in contradiction to ν′

1 �= ν′
2.

For Statement 3 note that u1v1 and u2v2 are indeed represented in ν′ by Statement 2
and they are both represented by μ1μ2 in H [μ].

It follows that the active inner nodes are the same for U1,U2 and after replacing
the leaves with the children of μ we obtain the same trees. Statement 3 then provides
that the ordering of the children of Q-nodes is also the same and S1μ, S

2
μ are indeed

the same PQ-tree. �	
By construction, each Q-node q of Sμ stems from a prime node ν′ in T , and the

orientation of T [ν′] determines the orientation of q, namely q is reversed if and only
if T [ν′] is oriented as D−1

ν′ . Since a single prime node ν′ of T may give rise to Q-nodes
in several PQ-trees Sμ, we need to ensure that the orientations of these Q-nodes are
either all consistent with the default orientation of T [ν′] or they are all consistent with
its reversal. To model this, we introduce a Boolean variable xq for each Q-node q
in one of the PQ-trees with the interpretation that xq = true if and only if q has
its initial order. We require xq to be equal to the variable that orients the prime node
corresponding to q. More precisely, for every prime node ν′ in T [μ′] that gives rise
to q we add the constraint (xν′ ↔ xq) to χμ, where the variable xν′ is the variable
that encodes the orientation of the prime node ν′. We construct a Boolean formula by
setting χ = ∧

μ∈K (B) χμ.

Lemma 10 We can compute all PQ-trees Sμ and the formula χ in O(n + m) time.

Proof As a preprocessing we run a DFS on T starting at the root and store for every
node ν its discovery-time ν.d, i.e., the timestamp when ν is first discovered, and its
finish-time ν. f , i.e., the timestamp after all its neighbors have been examined. We
also employ the preprocessing from Lemma 1. We construct all PQ-trees and χ with
the following steps.

1. Take a maximal μ-set Uμ for every μ ∈ K (B).
2. For every μ ∈ K (B) compute the set of active nodes and for every active node

compute its parent in Sμ.
3. For every μ ∈ K (B) determine for each inner node of Sμ whether it is a P- or a

Q-node. If it is a Q-node, determine the linear order of its children, and construct
the formula χμ.

Step 1 can be done in O(n) time by Lemma 1.
For Step 2, note that each active node is a least common ancestor of two leaves

in Uμ. While it is easy to get all active nodes as least common ancestors, getting the
edges of Sμ requires more work. Observe that the DFS on T visits the nodes of Sμ in
the same order as a DFS on Sμ. Consider Sμ embedded such that the children of each
node are ordered from left to right by their discovery-times. This also orders the leaves
from left to right by their discovery-times. Let λ be an inner node of Sμ. Let λ1,λ2 be
two neighboring children of λ with λ1 to the left of λ2. Then λ is the least common
ancestor of the rightmost leaf in L(λ1) and the leftmost leaf in L(λ2). Hence, each
node of Sμ is a least common ancestor for a consecutive pair of leaves.

123

Algorithmica (2024) 86:1263–1292 1277

We add for every node u in a set Uμ a tuple (μ, u.d) to an initially empty list L .
We then sort the tuples in L in linear time using radix sort [29]. In the sorted list,
for every μ ∈ K (B) all tuples (μ, u.d) are consecutive and the consecutive sublist is
sorted by discovery time.

For μ ∈ K (B) let Lμ be a list containing the vertices in Uμ ordered by their
discovery time which we get directly from the consecutive sublist of L containing the
tuples corresponding to μ. For every pair u, v ∈ Uμ adjacent in Lμ we compute λ =
lcaT (u, v) using the lowest-common-ancestor data structure for static trees by Harel
and Tarjan [28] and insert λ into Lμ between u and v. For a vertex u ∈ Uμ its parent
in Sμ is the neighbor in Lμ that has a lower position in T . Note that u is a descendent
in T of all its neighbors in Lμ. Hence if u has two neighbors in Lμ one of them is
a descendent of the other. Thus the parent of u in Sμ is the neighbor with the higher
discovery time. Now we remove all vertices in Uμ and possible duplicates of the
remaining nodes from Lμ. Note that still every λ is a descendent in T of its neighbors
in Lμ. Hence we iteratively choose a node λ in Lμ whose discovery time is higher
than the discovery time of its neighbors, compute its parent in Sμ by comparing the
discovery times of its neighbors with each other and remove λ from Lμ.

In Step 3, we turn each active node that stems from a complete node into a P-node
and each active node that stems from a prime node into a Q-node. For a Q-node q that
stems from a prime node ν, we determine the linear order of its children as follows.
Take the set X of vertices of H [ν] that correspond to children of μ in Sμ, determine
the orientation of the complete graph on X induced by Dν and sort it topologically. In
total this take O(n+m) time for all active nodes in all PQ-trees. Using the information
computed up to this point, it is straightforward to output the formula χ . �	

Finally, we combine the constraints from the complete nodes with the constraints
from the prime nodes by setting ϕT = ψ ∧ χ . The formula ϕT allows us to describe
a restricted set of transitive orientations of G. We define ST = {Sμ|μ ∈ K (B)}.
The canonical modular decomposition (B, ST , ϕT) of H where every complete node
is labeled with the corresponding PQ-tree together with ϕT we call a constrained
modular decomposition.

We say that a transitive orientation O of H induces a variable assignment satisfy-
ing ϕT if it induces an assignments of the variables corresponding to prime nodes in B
and Q-nodes such that ϕT is satisfied for an appropriate assignment for the variables
corresponding to prime nodes in T . Let to(B, ST , ϕT) denote the set containing all
transitive orientations O ∈ to(B)where for every complete nodeμ ∈ B the order O↓μ

corresponds to a total order represented by Sμ and that induces a variable assignment
that satisfies ϕT .

4.3 Correctness

We now show that to(B, ST , ϕT) = to(T , D). To this end we use that Lemma 4
allows to find for an edge uv that is represented in a prime node μ of B the prime
node μ′ = lcaT (L(μ)) of T where it is represented. This allows us to establish the
identity of certain nodes. The following lemma does something similar for complete
nodes.

123

1278 Algorithmica (2024) 86:1263–1292

Lemma 11 Let uv, wx be edges of H represented in complete nodes μ, ν of B and by
the same edge in a complete node of T . Then μ = ν.

Proof Let μ be the node in B such that repB(uv) ∈ H [μ] and let ν be the node
in B such that repB(wx) ∈ H [ν]. Let ω′ be the node in T with repT (uv) ∈ H [ω′]
and repT (wx) ∈ H [ω′]. Assume μ �= ν. Then one of them is the ancestor of the other
or they are both distinct from λ = lcaB(μ, ν). First consider the case that μ is an
ancestor of ν. Then μ has a child μ1 such that L(ν) ⊆ L(μ1). Note that repμ(u) �=
repμ(v), hence we have repμ(u) �= μ1 or repμ(v) �= μ1. Without loss of generality
assume repμ(u) �= μ1.

Since {w, x} ⊆ L(ω′) ∩ L(μ1) and u ∈ L(ω′) ∩ L(μ)\L(μ1) we have L(μ1) ⊆
L(ω′) by Lemma 8 and analogously it follows that L(repμ(u)) ⊆ L(ω′).
Since repT (wx) = repT (uv) ∈ H [ω′] it is ω′ = lcaT (L(μ1)).

Assume that μ1 is prime. Then by Lemma 4, ω′ is prime which is a contradiction
to the assumption that ω′ is complete. Hence μ1 must be complete but as B is the
modular decomposition of H , no two adjacent nodes in B are complete. Thus μ is not
an ancestor of ν and analogously we get that ν is not an ancestor of μ.

It remains to consider the case that ν �= λ �= μ. Let λ1 be the child of λ such
that L(μ) ⊆ L(λ1) and let λ2 be the child of λ such that L(ν) ⊆ L(λ2). Again λ has to
be complete since otherwise by Lemma 4 ω′ would be prime which is a contradiction.
By Lemma 8 we have that L(λ1) ∪ L(λ2) ⊆ L(ω′).

Assume that λ1 is prime. Then by Lemma 4, ω′ is prime which leads to a contradic-
tion. Hence λ1 must be complete but again as B is the modular decomposition of H ,
no two adjacent nodes in B are complete. �	
Theorem 2 Let B be the canonical modular decomposition for a graph H and let T
be a restricted modular decomposition for H. Then to(B, ST , ϕT) = to(T , D)

and to(B, ST , ϕT) can be computed in time that is linear in the size of H.

Proof Let OH ∈ to(T , D) and let
B[H] be the orientation of the quotient graphs
of B inducing OH . Then we have already seen that it is necessary that every complete
node μ in B is oriented according to a total order represented by Sμ and that OH

induces a variable assignment that satisfies ϕT . Hence OH ∈ to(B, ST , ϕT).
Conversely, let OH ∈ to(B, ST , ϕT) and assume OH /∈ to(T , D). Then OH is

either not represented by T or does not induce D. I.e., OH contains two directed
edges uv, wx with repT (uv) and repT (wx) in the same quotient graph H [ω′], such
that repT (uv) = repT (xw), or ω′ is prime and repT (uv) ∈ Dω′ but repT (wx) ∈
D−1

ω′ . Note that if ω′ is prime, then the first case implies the second one. Let μ =
lcaB(u, v) and ν = lcaB(w, x). We distinguish cases based on the types of μ and ν.
Letμ′ = lcaT (L(μ)), ν′ = lcaT (L(ν)) and let
B[H] be the orientation of the quotient
graphs of B that induces OH . Without loss of generality, assume repB(uv) ∈ Dμ

and repB(wx) ∈ Dν .
Case 1: μ and ν are both prime. By Lemma 4 we have that μ′ = ω′ = ν′ is prime.
By construction, ϕT enforces that uv, wx are either represented in Dω′ or in D−1

ω′ .
Hence, this case does not occur.
Case 2: μ is prime and ν is complete. By Lemma 4 we have that μ′ = ω′ is prime.
LetU be a ν-set containing w and x . Since repT (wx) ∈ H [ω′], node ω′ is active with
respect to U . Hence the PQ-tree Sν contains a Q-node q that stems from ω′.

123

Algorithmica (2024) 86:1263–1292 1279

By construction ϕT contains the constraints (xω′ ↔ xq) and (xω′ ↔ xμ) but
B[H]
induces xμ = true, xq = false. Hence the variable assignment induced by
B[H]
does not satisfy ϕT and thus OH /∈ to(B, ST , ϕT).
Case 3: μ is complete and ν is prime. Similar to Case 2.
Case 4: μ, ν are both complete.Here we further distinguish two subcases depending
on the type of ω′. First assume that ω′ is prime. Let V ′

1 be a μ-set containing u, v and
let V ′

2 be a ν-set containing w, x . Since repT (uv) and repT (wx) are edges in H [ω′],
nodeω′ is activewith respect to both V ′

1, V
′
2. Hence Sμ, Sν containQ-nodesq1, q2 stem-

ming from ω′. By construction ϕT contains the constraints (xω′ ↔ xq1) and (xω′ ↔
xq2), but
B[H] induces xq1 = true, xq2 = false. Hence the variable assignment
induced by OH does not satisfy ϕT and thus OH /∈ to(B, ST , ϕT).

It remains to consider the case that ω′ is complete. By Lemma 11 we have μ = ν.
Since ω′ is not prime, we must have repT (uv) = repT (xw) by assumption. Let U be
a μ-set. Since repT (uv) = repT (xw) ∈ H [ω′], node ω′ is active with respect to U
and repω′(u) = repω′(x), repω′(v) = repω′(w). Hence Sμ contains a P-node that stems
from ω′ and demands a total order of the children of μ where repμ(u), repμ(x) are
either both smaller than both repμ(v),repμ(w), or both repμ(u),repμ(x) are greater

than both repμ(v), repμ(w). Since
B[H] induces repμ(u) < repμ(v) but repμ(x) >

repμ(w), H [μ] is not oriented according to a total order represented by Sμ and
thus OH /∈ to(B, ST , ϕT).

By Lemmas 6 and 10 the formula ϕT = ψ ∧ χ and ST can be computed in linear
time. �	

Let T be amodular decomposition of a graphG with an induced subgraph H . Let B
be the canonical modular decomposition of H and let T |H be the restricted modular
decomposition for H we get from T . From Lemma 3 and Theorem 2 we directly get
the following corollary.

Corollary 1 The set to(B, ST |H , ϕT |H) contains exactly those transitive orientations
of H that can be extended to a transitive orientation of G.

Let (B, S1, ϕ1), . . . , (B, Sr , ϕr) be constrained modular decompositions for H .
Let Sμ = ⋂r

i=1 S
i
μ and S = {Sμ|μ ∈ K (B)}. The intersection (B, S, ϕ)

of (B, S1, ϕ1), . . . , (B, Sr , ϕr) is the constrained modular decomposition of H where
every complete node μ is labeled with the PQ-tree Sμ equipped with the 2-Sat-
formula ϕ = (

∧r
i=1 ϕi) ∧ ϕ′ where ϕ′ synchronizes the Q-nodes in the Sμ’s with

the Q-nodes in the Siμ’s as follows. Recall that for every Q-node q in a tree Siμ there
exists a unique Q-node q ′ in Sμ that contains q; either forward or backward. For
every i ∈ {1, . . . , r}, every μ ∈ K (B) and every Q-node q in Siμ we determine the
Q-node q ′ in Sμ that contains q and add the clause (xq ↔ xq ′) if q has its forward
orientation in q ′ and (xq � xq ′) otherwise.

Lemma 12 It is to(B, S, ϕ) = ⋂r
i=1 to(B, Si , ϕi) and we can compute (B, S, ϕ) in

linear time from {(B, Si , ϕi)|1 ≤ i ≤ r}.
Proof Let OH ∈ ⋂r

i=1 to(B, Si , ϕi) and let
B[H] be the orientation of the quotient
graphs of B that induces OH . Then for every i ∈ {1, . . . , r} the variable assignment

123

1280 Algorithmica (2024) 86:1263–1292

induced by OH satisfies ϕi and for every complete node μ in B, the total order OH↓μ

is represented by Siμ, hence it is also represented by Sμ. Let i ∈ {1, . . . , r} and
let q be a Q-node in Siμ and let q ′ be the Q-node in Sμ containing q. Without loss

of generality assume q ′ contains q forwards and
B[H] induces xq = true with
respect to (B, Si , ϕi). Then
B[H] induces xq ′ = true with respect to (B, S, ϕ)

and ϕ′ contains the clause (xq ′ ↔ xq) for xq . Hence ϕ′ is satisfied in any extension
of an assignment of variables corresponding to Q-nodes in Sμ, S1μ, . . . , Srμ induced

by
B[H]. Hence OH induces a variable assignment that satisfies ϕ and thus OH ∈
to(B, S, ϕ).

Conversely let OH ∈ to(B, S, ϕ) and let
B[H] be the orientation of the quo-
tient graphs of B that induces OH . Then for every complete node μ ∈ B, the total
order OH↓μ is represented by S and thus by Siμ for i ∈ {1, . . . , r}. Further
B[H]
induces assignments of the variables corresponding to the prime nodes in B and to
the Q-nodes in S. These induced variable assignments can be extended to a solu-
tion of ϕ. Let i ∈ {1, . . . , r} and let q be a Q-node in Siμ such that q ′ is the
Q-node in Sμ containing q. Without loss of generality assume q ′ contains q for-
wards and
B[H] induces xq ′ = true with respect to (B, S, ϕ). Then ϕ contains
the clause (xq ′ ↔ xq) and hence xq = true in any solution of ϕ that is an exten-
sion of an assignment of variables corresponding to Q-nodes in Sμ induced by
B[H].
Since for every complete node μ in B, the total order OH↓μ is also represented
by Siμ,
B[H] also induces assignments of the variables corresponding to Q-nodes

in Siμ. Since q
′ contains q forwards
B[H]must induce xq = true aswell with respect

to (B, Si , ϕi). Hence the variable assignment induced by
B[H] and Siμ satisfies ϕi

and thus OH ∈ ⋂r
i=1 to(B, Si , ϕi).

It remains to show the linear runtime. Let G1 = (V1, E1), . . . ,Gr = (Vr , Er)

with ni = |Vi | and mi = |Ei | for all 1 ≤ i ≤ r and let n = ∑r
i=1 ni , m = ∑r

i=1 mi .
Since every Siμ for a node μ ∈ K (B) has one leaf per child of μ, by Lemma 7
their intersection Sμ can be computed in O(r · | deg(μ)|) time. Hence in total we
need

∑
μ∈K (B) O(r ·| deg(μ)|) = O(n) time to compute S. For every i , by Theorem 2,

we can compute ϕi in O(ni + mi) time. By Lemma 7 we can also find out in O(n)

time which Q-nodes are merged and in which direction and hence the construction
of ϕ in total takes O(n + m) time. �	

Now consider the case where (B, S1, ϕ1), . . . , (B, Sr , ϕr) are the constrained
modular decompositions we get from T1|H , . . . , Tr |H . By Lemma 11 and The-
orem 2 we have to(B, S, ϕ) = ⋂r

i=1 to(B, Si , ϕi) = ⋂r
i=1 to(Ti , D) and by

Lemma 3 G1, . . . ,Gr are simultaneous comparability graphs if and only if ϕ is
satisfiable and S does not contain the null tree.

Theorem 3 SimOrient
�can be solved in linear time.

Proof Let G1 = (V1, E1), . . . ,Gr = (Vr , Er) be r -sunflower graphs with ni = |Vi |
and mi = |Ei | for all 1 ≤ i ≤ r and let n =

r∑

i=1
ni , m =

r∑

i=1
mi . We

solve SimOrient�as follows.

123

Algorithmica (2024) 86:1263–1292 1281

1. Compute the canonical modular decomposition Ti for every Gi and the canonical
modular decomposition B of H in O(n+m) time byMcConnell and Spinrad [27].

2. Compute Ti |H for every i in O(n) time in total.
3. Compute (B, Si , ϕi) for every i , in O(n + m) time in total by Theorem 2.
4. Compute (B, S, ϕ) in linear time by Lemma 11.
5. Check whether S contains the null tree and whether ϕ is satisfiable in linear time.

We execute Step 5 as follows. For i ∈ {1, . . . , r}, ϕi contains one variable and one
constraint per prime node in B, one variable per prime node in Ti |H and one variable
and one constraint per Q-node in Siμ. Since Siμ has O(ni) nodes, it contains O(ni)
Q-nodes. Hence in total every ϕi contains O(ni) variables and clauses. Note that ϕ′
contains one clause per Q-node in the PQ-trees in S. Hence ϕ′ contains O(n) clauses
and variables and thus the 2-SAT formula ϕ can be solved in O(n) time by Aspvall et
al. [34].

If S does not contain the null tree and ϕ has a solution, we get simultaneous
transitive orientations of G1, . . . ,Gr in linear time by proceeding as follows. We
orient every complete quotient graph of B according to a total order induced by the
corresponding PQ-tree where every Q-node is oriented according to the solution of ϕ.
For a prime quotient graph H [μ] we choose Dμ if in the chosen solution of ϕ we
have xμ = true and D−1

μ otherwise. Together, all these orientations of quotient
graphs of B induce a transitive orientation on H and by applying the linear-time
algorithm from Sect. 3 to solveOrientExtwe can extend it to a transitive orientation
of Gi for every i ∈ {1, . . . , r}. �	

5 Permutation Graphs

We give algorithms that solve RepExt(Perm) and SimRep
�(Perm) in linear time

using modular decomposition and the results from Sects. 3 and 4. To do so, we need
the following definitions and observations. Let G = (V , E) be a permutation graph
and let D be a representation of G. We denote the upper horizontal line of D by L1
and the lower line by L2.

Proposition 4 ([35]) Let G = (V , E) be a permutation graph and let T be the
canonical modular decomposition of G. Then for every representation D of G and for
every μ ∈ T , the vertices in L(μ) appear consecutively along both L1 and L2.

Let G be a permutation graph and let T be the canonical modular decomposition
ofG. We use Proposition 4 to show that for nodeμ ∈ T we can compute a permutation
diagramofG[L(μ)] by iteratively replacing a line segment representing a descendent ν
of μ in T by a permutation diagram of G[ν].
Theorem 5 Let G be a permutation graph and let T be the canonical modular decom-
position of G. There is a bijection φ between the permutation diagrams of G and the
choice of a permutation diagram Dμ for each quotient graph μ ∈ T . Both φ and φ−1

can be computed in O(n) time.

Proof To compute a permutation diagram of G from {Dμ|μ ∈ T } we traverse T
bottom-up and compute for everyμ ∈ T a permutation diagram representingG[L(μ)]

123

1282 Algorithmica (2024) 86:1263–1292

as follows. For every child ν ofμ replace the line segment representing ν in Dμ by the
permutation diagram ofG[L(ν)]. For every permutation diagramwe store two doubly-
linked lists containing the order of labels along the two horizontal lines, respectively.
Then the replacements described above take linear time in total.

Conversely, assume that a permutation diagram D for G is given as two double
linked lists l1(D) and l2(D) containing the order of labels along the two horizontal
lines, respectively.We traverse T bottom-up and consider all leaves as initially visited.
Let l1 and l2 be two double linked lists and initially l1 = l1(D) and l2 = l2(D). When
visiting a non-leaf nodeμ ∈ T we compute the two double linked lists l1(μ) and l2(μ)

representing its permutation diagram as follows. As an invariant we claim that at any
time l1 and l2 are sublists of l1(D) and l2(D) and represent the permutation diagram
of a subgraph of G. Further l1 and l2 contain for every visited child ν of an unvisited
node exactly one entry corresponding to a leaf in L(ν). Clearly the invariant holds
at the beginning of the traversal. Now assume we visit a non-leaf node μ and the
invariant holds. Let l1(μ) and l2(μ) be the sublist of l1 and l2 consisting of all entries
corresponding to leaves in L(μ), respectively.The invariant togetherwithProposition4
gives us that when visiting a node μ, l1(μ) and l2(μ) are consecutive sublists of l1
and l2. To compute l1(μ) and l2(μ) we start at an arbitrary child ν of μ in l1 and l2
and search for the right and left end of l1(μ) and l2(μ), i.e. on both sides we search
for the first entry that does not correspond to a child of μ. Finally we remove all list
entries corresponding to a leaf in L(μ) that is not in L(ν) in l1 and l2. After this step
the invariant still holds. By definition of the quotient graphs and since they contain
exactly one representative per child of μ, l1(μ) and l2(μ) represent the permutation
diagram for G[μ]. In total these computations take linear time since for every μ ∈ T
the number of visited list entries is in O(deg(μ)). �	

5.1 Extending Partial Representations

For solvingRepExt(Perm) efficiently,we exploit that a given partial representation D′
of a permutation graph G is extendible if and only if, for every prime node μ in the
canonical modular decomposition of G, the partial representation of G[μ] induced
by D′ is extendible. Since G[μ] has only a constant number of representations this
can be checked in linear time.

In the following, letG = (V , E) be a permutation graph and let D′ be a correspond-
ing partial representation of a subgraph H = (V ′, E ′) of G. Furthermore, let T be the
canonical modular decomposition for G and let μ be a node in T . Let U ′

μ ⊆ V ′ be a
(not necessarily maximal)μ-set containing as many vertices in V ′ as possible. Let D′

μ

be the partial representation of G[μ] we get from D′ by removing all line segments
corresponding to vertices not in U ′

μ and replacing every label u by the label repμ(u).
Let Uμ be a maximal μ-set with U ′

μ ⊆ Uμ.

Lemma 13 Let D′ be a partial representation of G. Then D′ can be extended to a
representation D of G if and only if for every inner node μ in T , D′

μ can be extended
to a representation Dμ of G[μ].

123

Algorithmica (2024) 86:1263–1292 1283

Proof Assume that D′ can be extended to a representation D ofG. Then for every inner
node μ in T , D restricted to U ′

μ where every label u is replaced by the label repμ(u)

is an extension of D′
μ representing G[μ].

Conversely assume that for every inner nodeμ in T , D′
μ can be extended to a repre-

sentation Dμ of G[μ]. By Theorem 5 we get a permutation diagram D representing G
from the Dμs. We show that D extends D′.

Let L1 and L2 denote the upper and the bottom line of D, respectively. Now for
every pair u, v ∈ V ′ letμ = lcaT (u, v). By Proposition 4 L(μ) appears consecutively
along L1 and L2. Hence independently of the choice of U ′

μ, in Dμ rep(u) and rep(v)

appear in the same order as the labels corresponding to u and v in D′ along both
horizontal lines. Thus D restricted to V ′ coincides with D′. �	
Theorem 6 RepExt(Perm) can be solved in linear time.

Proof Let G = (V , E) be a permutation graph with n vertices and m edges and let D′
be a permutation diagram of an induced subgraph H = (V ′, E ′) of G. We compute
the canonical modular decomposition T of G in O(n +m) time [27]. By Lemma 13,
it suffices to check whether D′

μ can be extended to a representation of G[μ] for
every μ ∈ T .

If G[μ] is empty or complete, we can easily extend D′
μ to a representation Dμ

of G[μ]. If μ is prime, each of G[μ] and G[μ] has exactly two transitive orientations
where one is the reverse of the other. Hence there exist only four permutation dia-
grams representing G[μ] [24]. Note that given an arbitrary permutation diagram Dμ

for G[μ], we get the other three representations by either reversing the order along
both horizontal lines, switching L1 and L2, or applying both. Hence we can compute
all four representations in linear time and check whether one of them contains D′

μ.
In the positive case, by Theorem 5 we get a representation D of G that extends D′

from the representations of the quotient graphs in linear time. �	

5.2 Simultaneous Representations

Recall that a graph G is a permutation graph if and only if G is a comparability
and a co-comparability graph. To solve SimRep�(Perm) efficiently, we build on the
following characterization due to Jampani and Lubiw.

Proposition 7 ([19]) Sunflower permutation graphs are simultaneous permutation
graphs if and only if they are simultaneous comparability graphs and simultaneous
co-comparability graphs.

LetG1, . . . ,Gr be sunflower permutation graphs. It follows fromProposition 7 that
we can solve SimRep�(Perm) by solving SimOrient�(see Sect. 4) forG1, . . . ,Gr and
their complements G1, . . . ,Gr . Since the algorithm from Sect. 4 needs time linear in
the size of the input graphs andG may have a quadratic number of edges, this approach
takes quadratic time in total. This already improves the cubic runtime of the algorithm
presented by Jampani and Lubiw [19].

We show that it is possible to use the algorithm from Sect. 4 to solve
also SimOrient�for co-comparability graphs and thus SimRep�(Perm) in linear time.

123

1284 Algorithmica (2024) 86:1263–1292

Let G be a permutation graph with induced subgraph H . Recall that a graph G and
its complement have the same canonical modular decomposition, they only differ in
the type of the nodes. For a node μ with G[μ] prime also G[μ] is prime; if G[μ] is
complete or empty, G[μ] is empty or complete, respectively [26].

Let B be the canonical modular decomposition of H and let T be the canon-
ical modular decomposition of G restricted to H . The goal is to compute con-
strained modular decompositions (B, S1, ϕ1), . . . , (B, Sr , ϕr) such that for every i ∈
{1, . . . , r} (B, Si , ϕi) contains exactly those transitive orientations of H that can
be extended to a transitive orientation of Gi , and (B, S, ϕ) with to(B, S, ϕ) =⋂r

i=1 to(B, Si , ϕi). In linear time we cannot explicitly compute G and the corre-
sponding quotient graphs. Hence we cannot store a default orientation for the prime
quotient graphs H [μ]. We can, however, compute a default permutation diagram Dμ

representing H [μ] from its default orientation Oμ in linear time [27]. We apply the
algorithm from Sect. 4. The 2-Sat-formula ψ describing the dependencies between
the orientations of the prime nodes can be computed in O(|V (H)| + |E(H)|) time
since when it is required to check whether an oriented edge uv is contained in the
default orientation of a prime quotient graph H [μ], we do this in constant time by
checking for the non-edge uv in H [L(μ)] whether repμ(u) <μ repμ(v). We can
determine one non-edge for each prime quotient graph of B in O(|E(H)|) time in
total. Note that one non-edge per prime quotient graph suffices to answer the queries.
Further we have to compute the PQ-trees for the complete nodes in T and χ . Note
that the only step in the computation of the PQ-trees that takes potentially quadratic
time for H is the computation of the order of the children for the Q-nodes. But since
every prime node is labeledwith a default representation, we can compute the PQ-trees
and χ in O(|V (H)|) time instead of O(|V (H)|+|E(H)|) time, since we get the order
of the children of a Q-node directly from the corresponding permutation diagram.

Theorem 8 SimRep
�(Perm) can be solved in linear time.

Proof Letϕ be the 2-Sat formulaweget for H and letϕ be the formula from H . Further
let S and S be the set of intersected PQ-trees we get for the input graphs G1, . . . ,Gr

and G1, . . . ,Gr , respectively. Then G1, . . . ,Gr are simultaneous permutation graphs
if and only if ϕ and ϕ are satisfiable and neither S nor S contain the null tree. This can
be checked in linear time. In the positive case we proceed as follows.

1. For every quotient graph in B compute the permutation diagram induced by the
solutions of ϕ and ϕ.

2. Compute a permutation diagram DH representing H from the representations of
the quotient graphs (see Theorem 5).

3. For every input graph Gi use the algorithm from Sect. 5.1 to extend DH to a
representation of Gi .

More precisely, Step 2 works as follows. For complete or empty nodes μ we con-
struct the representation by choosing a linear order of their children represented by the
corresponding PQ-tree where every Q-node is oriented according to a solution of ϕ

or ϕ, for the upper line. If H [μ] is empty, we choose the same order for the bottom
line, if H [μ] is complete, the bottom line is labeled with the reversed order.

123

Algorithmica (2024) 86:1263–1292 1285

For a prime quotient graph μ we distinguish four cases. Let xμ be the variable
encoding the orientation of H [μ] and let yμ be the variable encoding the orientation
of H [μ]. If xμ = true, yμ = true we choose the default representation Dμ,
if xμ = true, yμ = false we reverse the orders along both horizontal lines of Dμ,
if xμ = false, yμ = true we switch the orders along the horizontal lines of Dμ

and if xμ = false, yμ = false we reverse the orders along both horizontal lines
of Dμ and switch them. �	

6 Circular Permutation Graphs

In this section we give efficient algorithms for solving RepExt (CPerm) and
SimRep

�(CPerm) based on the linear time algorithms for solving RepExt (Perm)
and SimRep

�(Perm) and the switch operation.
Let G = (V , E) be a circular permutation graph. Switching a vertex v in G, i.e.,

connecting it to all vertices it was not adjacent to in G and removing all edges to its
former neighbors, gives us the graph Gv = (V , Ev) with Ev = (V

2

)\E . The graph we
obtain by switching all neighbors of a vertex v we denote by GN (v).

Let C be a circular permutation diagram that represents a permutation graph G =
(V , E) and let v ∈ V be a vertex in G. The chord v in C can be switched to the
chord v′, if v′ has the same endpoints as v, but intersects exactly the chords v does not
intersect inC . Hence, thismodified circular permutation diagramC ′ is a representation
of Gv [36]. Here it suffices to know that there exists a v′ that v can be switched to,
hence, we use the term switching chord v, without further specifying v′.

6.1 Extending Partial Representations

In this section we show that RepExt(CPerm) can be solved via a linear-time Turing
reduction to RepExt(Perm) using the switch operation.

Let G be a circular permutation graph and letCp be a circular permutation diagram
representing an induced subgraph H of G. Let v be an arbitrary vertex in G and
let G ′ = GN (v). The circular permutation diagram we obtain by switching all chords
corresponding to neighbors of v in Cp we denote by C ′

p. Since G ′ is a permutation
graph C ′

p can be transformed into a permutation diagram D′
p representing the same

induced subgraph. Observe that Cp is extendible to a representation of G if and only
if D′

p can be extended to a representation of G ′ since an extension of D′
p can easily

be transformed back into a circular permutation diagram extending Cp. This can be
checked in linear time using the algorithm from Sect. 5.1.

To achieve a linear runtime in total we have to switch the neighborhood of a vertex v

with minimum degree in G. In case v ∈ V (H) we can easily transform C ′
p into

a permutation diagram D′
p representing the same induced subgraph by opening C ′

p
along the isolated chord v. If v /∈ V (H) it is more difficult to find a position where
we can open C ′

p.

Theorem 9 RepExt(CPerm) can be solved in linear time.

123

1286 Algorithmica (2024) 86:1263–1292

Fig. 7 The circular permutation
representation C of a graph with
four connected components. The
red line segments mark the
positions where C can be
opened (Color figure online)

Proof Let G be a circular permutation graph and let C ′ be a circular permutation
diagram representing an induced subgraph H of G. Let v be a vertex of minimum
degree in G. Then we compute G ′ in linear time [37]. In case v ∈ V (H) we open C ′

p
along the isolated chord v and check in linear time whether the resulting permutation
diagram can be extended to a representation ofG ′. If v /∈ V (H)we proceed as follows.

Let H ′ be the graph we obtain from H by switching all vertices that are adjacent
to v inG and letCC(H ′) be the set of all connected components in H ′. Note that inC ′

p
the endpoint of chords corresponding to vertices of the same connected component
of H ′ appear as consecutive blocks along both the outer and the inner circle and that
the only positions where we can open C ′

p are between these blocks; see Fig. 7.
If |CC(H ′)| = 1 or |CC(H ′)| = 2 there are only one or two positions, respec-

tively, where we can open C ′
p. Hence in these cases we can construct all one or two

possible permutation diagrams D′
p representing H ′ and check whether one of them is

extendible. Else we distinguish several further cases.
Case 1: |CC(H ′)| > 2 and there exists a vertex u in G such that u has a neighbor
in every connected component of H ′ but is not adjacent to all vertices in H . Note
that if more than two connected components in CC(H ′) contain vertices not adjacent
to u, C ′

p is not extendible. The same holds if two connected components in CC(H ′)
whose corresponding blocks are not adjacent inC ′

p, contain vertices not adjacent to u.
Else we distinguish further subcases.
Case 1a: Two connected components in CC(H ′) contain vertices not adjacent to u
and the corresponding blocks are adjacent in C ′

p. Then the only position where we
can open C ′

p is between these two blocks.
Case 1b: Only one connected components in CC(H ′) contains vertices not adjacent
to u. Then we can either open to the left or to the right of the block. In this case we
checkwhether one of the two possibilities gives us an extendible permutation diagram.
Case 2:There exists no vertex u inG that has a neighbor in every connected component
of H ′ but is not adjacent to every vertex in H . Then we remove all vertices from G
that are adjacent to every other vertex in H . If G is empty afterwards, we can choose
an arbitrary gap between two adjacent blocks and open C ′

p there. Else we iteratively
merge for each remaining vertex u all connected components of H ′ that contain a
vertex adjacent to u. Since G is connected we end up with either one or two blocks
which gives us only one or two positions to open C ′

p, respectively. We check whether
one of them leads to an extendible permutation diagram. �	

123

Algorithmica (2024) 86:1263–1292 1287

6.2 The Simultaneous Representation Problem

In this section we show that SimRep�(CPerm) can be solved via a quadratic-time
Turing reduction to SimRep

�(Perm) using the switch operation. Here we need to
switch the neighborhood of a vertex v shared by all input graphs. Hence in contrast
to the reduction in Section 6.1, where we switched the neighborhood of a vertex of
minimum degree, the graph GN (v) may have quadratic size.

Lemma 14 Let G1,G2, . . . ,Gr be sunflower circular permutation graphs sharing an
induced subgraph H. Let v be a vertex in H and let G ′

i be the graph we obtain by
switching all neighbors of vertex v in Gi for i ∈ {1, . . . , r}. Then G1,G2, . . . ,Gr

are simultaneous circular permutation graphs if and only if G ′
1,G

′
2, . . . ,G

′
r are

simultaneous permutation graphs.

Proof Recall that G ′
1,G

′
2, . . . ,G

′
r are indeed permutation graphs [36]. Now

let G1,G2, . . . ,Gr be simultaneous circular permutation graphs. Then there exist
circular permutation diagrams C1, C2, . . . , Cr such that for every 1 ≤ i ≤ r , Ci

represents Gi and all Ci s coincide restricted to the vertices of H . We get a circular
permutation diagram C ′

i representing G ′
i by switching all chords corresponding to

neighbors of vertex v in Ci . Since the order of the vertices along the inner and outer
circle is not affected by the switch operation, we know that all C ′

i s coincide restricted
to the vertices of H . Recall that after switching all neighbors of chord v in a circular
permutation diagram, no chord intersects v any more and hence we obtain a permuta-
tion diagram D′

i representing G ′
i by opening C

′
i along the chord v. Then the D′

i s also
coincide on the vertices of H and henceG ′

1,G
′
2, . . . ,G

′
r are simultaneous permutation

graphs.
Conversely let G ′

1,G
′
2, . . . ,G

′
r be simultaneous permutation graphs. Then there

exist permutation diagrams D′
1, D

′
2, . . . , D

′
r such that for every 1 ∈ {1, . . . , r}, D′

i
represents G ′

i and all D
′
i s coincide on the vertices of H . Recall that we can transform

every linear permutation diagram D′
i into a circular permutation diagramC ′

i represent-
ing G ′

i . Note that the C
′
i s also coincide on the vertices of H . Now we obtain a circular

permutation diagram Ci representing Gi by switching all chords that correspond to
vertices adjacent to v. The Ci s still coincide on the vertices of H since the switch
operation does not change the order of the vertices along the outer or the inner circle
of a circular permutation diagram and chords corresponding to vertices in H are either
switched in every Ci or in none of them. �	
Theorem 10 SimRep

�(CPerm) can be solved in O(n2) time.

Proof Let G1, . . . ,Gr be sunflower circular permutation graphs. Let v be a vertex
in H and let G ′

i be the graph we obtain by switching all neighbors of vertex v in Gi

for i ∈ {1, . . . , r}. By Lemma 14 to solve SimRep(CPerm) for G1,G2, . . . ,Gr it suf-
fices to solve SimRep(Perm) for G ′

1,G
′
2, . . . ,G

′
r . Computing G ′

1,G
′
2, . . . ,G

′
r takes

quadratic time. In Sect. 5.2 we have seen that SimRep(perm) can be solved in lin-
ear time for the sunflower permutation graphs G ′

1, . . . ,G
′
r , hence in total we need

quadratic time to solve the problem SimRep
�(CPerm).

IfG1,G2, . . . ,Gr are simultaneous circular permutation graphsweget correspond-
ing simultaneous representations by transforming simultaneous linear permutation

123

1288 Algorithmica (2024) 86:1263–1292

ai

bi

xi

zi
yi

bi

bi

ai

ai

yi

yi

zi

zi

xi

xi

Fig. 8 The (permutation) graph Gi corresponding to the i − th triple (xi , yi , zi) of a TotalOrdering

instance with corresponding permutation diagram

diagrams representingG ′
1,G

′
2, . . . ,G

′
r into circular permutation diagrams and switch-

ing all chords corresponding to a neighbor of vertex v in H . This takes quadratic time
in total. �	

7 Simultaneous Orientations and Representations for General
Comparability Permutation Graphs

We show that the simultaneous orientation problem for comparability graphs and the
simultaneous representation problem for permutation graphs are NP-complete in the
non-sunflower case.

Theorem 11 SimOrient for k comparability graphs where k is part of the input is
NP-complete.

Proof Clearly the problem is in NP.
To show the NP-hardness, we give a reduction from the known NP-complete prob-

lem TotalOrdering [38], which is defined as follows. Given a finite set S and a
finite set T of triples of elements in S, decide whether there exists a total ordering <

of S such that for all triples (x, y, z) ∈ T either x < y < z or x > y > z. Let HT be
an instance of TotalOrderingwith s = |S| and t = |T |. We number the triples in T
with 1, . . . , t and denote the i th triple by (xi , yi , zi). We construct an instance HS of
SimOrient, consisting of undirected graphs G0, . . . ,Gt as follows.

• G0 := (S, E0) is the complete graph with one vertex for each element in S.
• Gi := (Vi , Ei) for 1 ≤ i ≤ t is the graph with vertex set Vi = {xi , yi , zi , ai , bi },
where ai , bi /∈ S are new vertices, and edges Ei = {xiai , xi yi , xi zi , yi zi , zi bi };
see Fig. 8.

For every 1 ≤ i ≤ t , the graph Gi has exactly two transitive orientations,
namely {−−→xiai ,−−→xi yi , −→xi zi ,−→yi zi ,−→

bi zi } and its reversal. We now have to show that HT

has a solution if and only if G0, . . . ,Gt are simultaneous comparability graphs.
First, assume that G0, . . . ,Gt are simultaneous comparability graphs. Hence there

exist orientations T0, . . . , Tt such that for every 0 ≤ i ≤ t , Ti is an orientation of Gi

and for every j, k ∈ {0, . . . t} every edge in E j ∩ Ek is oriented in the same way in
both Tj and Tk . Then the orientation of the complete graph G0 implies a total order
on the elements of T , where u < v if and only if the edge uv is oriented from u to v.

123

Algorithmica (2024) 86:1263–1292 1289

By construction, there are only two valid transitive orientations for Gi . The one given
above implies xi < yi < zi and for the reverse orientation we get zi < yi < xi .
Hence the received total order satisfies that for every triple (x, y, z) ∈ T we have
either x < y < z or x > y > z.

Conversely, assume that HT has a solution. Then there exists a total order < such
that for all triples (x, y, z) ∈ T either x < y < z or x > y > z holds. We get
a transitive orientation Ti of Gi for 1 ≤ i ≤ t by orienting all edges between the
vertices xi , yi and zi towards the greater element according to the order <. If xi is
the smallest element of the triple, then we choose −−→xiai and −→

bi zi , else zi is the smallest
element and we choose −−→ai xi and −→

zi bi . Finally, we orient the edges in G0 also towards
the greater element according to<. This gives us orientations T0, . . . , Tt ofG0, . . . ,Gt

with the property that for every j, k ∈ {0, . . . t} every edge in E j ∩ Ek is oriented in
the same way in both Tj and Tk . Hence G0, . . . ,Gt are simultaneous comparability
graphs.

Hence the instance HT of TotalOrdering has a solution if and only if the
instance HS is a yes-instance of SimOrient. Since HS can be constructed from HT

in polynomial time, it follows that SimOrient is NP-complete. �	
Theorem 12 SimRep(Perm) for k permutation graphs where k is not fixed is NP-
complete.

Proof Clearly the problem is in NP.
To show the NP-hardness, we use the same reduction as in the proof of Theorem 11.

Let HT be the corresponding instance of TotalOrdering. Note that G0, . . . ,Gt are
permutation graphs and thus G0, . . . ,Gt are comparability graphs.. We already know
that HT has a solution if andonly ifG0, . . . ,Gt are simultaneous comparability graphs.
Hence it remains to show that G0, . . . ,Gt are simultaneous co-comparability graphs
if HT has a solution. Note that E(G0) is empty and for every 1 ≤ i ≤ t for every
edge uv ∈ E(Gi) at least one of the endpoints u and v is in {ai , bi }. Hence,G0, . . . ,Gt

pairwise do not share any edges and thus they are also simultaneous comparability
graphs. �	

8 Conclusion

We showed that the orientation extension problem and the simultaneous orientation
problem for sunflower comparability graphs can be solved in linear time using the con-
cept of modular decompositions. Further we were able to use these algorithms to solve
the partial representation problem for permutation and circular permutation graphs
and the simultaneous representation problem for sunflower permutation graphs also
in linear time. For the simultaneous representation problem for circular permutation
graphs we gave a quadratic-time algorithm. The non-sunflower case of the simultane-
ous orientation problem and the simultaneous representation problem turned out to be
NP-complete.

It remains an open problem whether the simultaneous representation problem for
sunflower circular permutation graphs can be solved in subquadratic time. Furthermore

123

1290 Algorithmica (2024) 86:1263–1292

it would be interesting to examine whether the concept of modular decomposition is
also applicable to solve the partial representation and the simultaneous representation
problem for further graph classes, e.g. trapezoid graphs. Theremayalso beother related
problems that can be solved for comparability, permutation and circular permutation
graphs with the concept of modular decompositions.

Author Contributions All authors wrote the main manuscript text and prepared the figures. All authors
reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by grant
RU 1903/3-1 of the German Research Foundation (DFG).

Declarations

Conflict of interest The authors have no known conflicts of interest to declare.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of
interval graphs. Algorithmica 78(3), 945–967 (2017). https://doi.org/10.1007/s00453-016-0186-z

2. Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial
representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017). https://doi.
org/10.1007/s00453-016-0133-z

3. Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function
graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) 20th Annual European Symposium
on Algorithms (ESA’12). Lecture Notes in Computer Science, pp. 671–682. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33090-2_58

4. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory
91(4), 365–394 (2019). https://doi.org/10.1002/jgt.22436

5. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of
chordal graphs. Theoret. Comput. Sci. 576, 85–101 (2015). https://doi.org/10.1016/j.tcs.2015.02.007

6. Krawczyk, T.,Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L.,
Woeginger,G.J. (eds.) 43rd InternationalWorkshop onGraph-TheoreticConcepts inComputer Science
(WG’17), pp. 358–371. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68705-6_27

7. Angelini, P., Battista, G.D., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing
planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 1–42 (2015). https://doi.org/
10.1145/2629341

8. Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded
graphs. Comput. Geom. 46(4), 466–492 (2013). https://doi.org/10.1016/j.comgeo.2012.07.005

9. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–
1070 (2006). https://doi.org/10.1142/S0129054106004261

10. Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings.
In: Czumaj, A., Dawar, A., Merelli, E. (eds.) Proceedings of the 47th International Colloquium on
Automata, Languages, and Programming (ICALP’20). LIPIcs, vol. 168, pp. 1–19. Schloss Dagstuhl

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.1007/s00453-016-0133-z
https://doi.org/10.1007/s00453-016-0133-z
https://doi.org/10.1007/978-3-642-33090-2_58
https://doi.org/10.1002/jgt.22436
https://doi.org/10.1016/j.tcs.2015.02.007
https://doi.org/10.1007/978-3-319-68705-6_27
https://doi.org/10.1145/2629341
https://doi.org/10.1145/2629341
https://doi.org/10.1016/j.comgeo.2012.07.005
https://doi.org/10.1142/S0129054106004261

Algorithmica (2024) 86:1263–1292 1291

- Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.
2020.43

11. Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar
graphs: Extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) 40th International
Workshop on Graph-theoretic Concepts in Computer Science (WG’14). Lecture Notes in Computer
Science, vol. 8747, pp. 139–151. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-
12340-0_12

12. Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A.: Extending partial representations of
rectangular duals with given contact orientations. In: Calamoneri, T., Corò, F. (eds.) Proceedings of the
12th International Conference on Algorithms and Complexity, (CIAC ’21) Lecture Notes in Computer
Science, vol. 12701, pp. 340–353. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-
75242-2_24

13. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R.
(ed.) Handbook of Graph Drawing and Visualization, pp. 349–381. CRC Press, Boca Raton (2013)

14. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A.,
Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2), 117–130 (2007).
https://doi.org/10.1016/j.comgeo.2006.05.006

15. Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings
with fixed edges. In: Fomin, F.V. (ed.) 32nd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’06), pp. 325–335. Springer, Heidelberg (2006). https://doi.org/10.1007/
11917496_29

16. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. In: 20th International
Symposium on Graph Drawing (GD’12), pp. 162–173. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-36763-2_15

17. Angelini, P., Da Lozzo, G., Neuwirth, D.: On some NP-complete SEFE problems. In: Pal, S.P.,
Sadakane, K. (eds.) roceedings of the 8th International Workshop on Algorithms and Computation
(WALCOM’14). Lecture Notes in Computer Science, vol. 8344, pp. 200–212. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-04657-0_20

18. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous
geometric graph embeddings. In: Hong, S., Nishizeki, T., Quan, W. (eds.) Proceedings of 15th Inter-
national Symposium on Graph Drawing (GD’07), pp. 280–290. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77537-9_28

19. Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and
permutation graphs. J. Graph Algorithms Appl. 16(2), 283–315 (2012). https://doi.org/10.7155/jgaa.
00259

20. Jampani, K.R., Lubiw, A.: Simultaneous interval graphs. In: Cheong, O., Chwa, K., Park, K. (eds.)
Proceedings of the 21st International Symposium on Algorithms and Computation (ISAAC’10), pp.
206–217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_20

21. Bläsius, T., Rutter, I.: Simultaneous PQ-orderingwith applications to constrained embedding problems.
ACM Trans. Algorithms 12(2), 1–46 (2015). https://doi.org/10.1145/2738054

22. Bok, J., Jedličková, N.: A note on simultaneous representation problem for interval and circular-arc
graphs. Computing Research Repository (2018)

23. Rutter, I., Strash, D., Stumpf, P., Vollmer, M.: Simultaneous representation of proper and unit interval
graphs. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on
Algorithms (ESA’19), vol. 144, p. 80. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2019)

24. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, London (2004)
25. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can.

J. Math. 16, 539–548 (1964)
26. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hung. 18(1–2), 25–66 (1967)
27. McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math.

201(1–3), 189–241 (1999). https://doi.org/10.1016/S0012-365X(98)00319-7
28. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2),

338–355 (1984). https://doi.org/10.1137/0213024
29. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press,

Cambridge (2009)

123

https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.1007/978-3-319-12340-0_12
https://doi.org/10.1007/978-3-319-12340-0_12
https://doi.org/10.1007/978-3-030-75242-2_24
https://doi.org/10.1007/978-3-030-75242-2_24
https://doi.org/10.1016/j.comgeo.2006.05.006
https://doi.org/10.1007/11917496_29
https://doi.org/10.1007/11917496_29
https://doi.org/10.1007/978-3-642-36763-2_15
https://doi.org/10.1007/978-3-642-36763-2_15
https://doi.org/10.1007/978-3-319-04657-0_20
https://doi.org/10.1007/978-3-540-77537-9_28
https://doi.org/10.1007/978-3-540-77537-9_28
https://doi.org/10.7155/jgaa.00259
https://doi.org/10.7155/jgaa.00259
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1137/0213024

1292 Algorithmica (2024) 86:1263–1292

30. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput.
Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/0022-0000(85)90014-5

31. Booth, K.S.: PQ-tree algorithms. PhD thesis, University of California, Berkeley (1975)
32. Booth,K.S., Lueker,G.S.: Testing for the consecutive ones property, interval graphs, andgraphplanarity

using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976). https://doi.org/10.1016/S0022-
0000(76)80045-1

33. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common graph is
2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013). https://doi.org/10.7155/jgaa.00289

34. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quan-
tified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979). https://doi.org/10.1016/0020-
0190(79)90002-4

35. Montgolfier, F.d.: Décomposition modulaire des graphes: théorie, extensions et algorithmes. PhD
thesis, Montpellier 2 University (2003)

36. Rotem, D., Urrutia, J.: Circular permutation graphs. Networks 12(4), 429–437 (1982). https://doi.org/
10.1002/net.3230120407

37. Sritharan, R.: A linear time algorithm to recognize circular permutation graphs.Netw. Int. J. 27(3), 171–
174 (1996). https://doi.org/10.1002/(SICI)1097-0037(199605)27:3<171::AID-NET1>3.0.CO;2-F

38. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979). https://doi.org/10.1137/
0208008

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.7155/jgaa.00289
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1002/net.3230120407
https://doi.org/10.1002/net.3230120407
https://doi.org/10.1002/(SICI)1097-0037(199605)27:3<171::AID-NET1>3.0.CO;2-F
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008

	Partial and Simultaneous Transitive Orientations via Modular Decompositions
	Abstract
	1 Introduction
	2 Modular Decompositions
	3 Transitive Orientation Extension
	4 Sunflower Orientations
	4.1 Constraints for Prime Nodes
	4.2 Constraints for Complete Nodes
	4.3 Correctness

	5 Permutation Graphs
	5.1 Extending Partial Representations
	5.2 Simultaneous Representations

	6 Circular Permutation Graphs
	6.1 Extending Partial Representations
	6.2 The Simultaneous Representation Problem

	7 Simultaneous Orientations and Representations for General Comparability Permutation Graphs
	8 Conclusion
	References

