
Algorithmica (2024) 86:1080–1134
https://doi.org/10.1007/s00453-023-01183-3

OnMaximizing Sums of Non-monotone Submodular and
Linear Functions

Benjamin Qi1

Received: 16 February 2023 / Accepted: 9 October 2023 / Published online: 13 November 2023
© The Author(s) 2023

Abstract
We study the problem of Regularized Unconstrained Submodular
Maximization (RegularizedUSM) as defined by Bodek and Feldman (Max-
imizing sums of non-monotone submodular and linear functions: understanding the
unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative
submodular function f : 2N → R≥0 and a linear function � : 2N → R over the same
ground setN , output a set T ⊆ N approximately maximizing the sum f (T)+ �(T).
An algorithm is said to provide an (α, β)-approximation for RegularizedUSM if it
outputs a set T such thatE[f (T)+�(T)] ≥ maxS⊆N [α · f (S)+β ·�(S)].We also con-
sider the setting where S and T are constrained to be independent in a given matroid,
which we refer to as RegularizedConstrained Submodular Maximization
(RegularizedCSM). The special case of RegularizedCSMwithmonotone f has
been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017;
Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International con-
ference onmachine learning, PMLR, 2634–2643, 2019), whereas we are aware of only
one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in
Optimization 1–27, 2023), and that work constrains � to be non-positive. In this work,
we provide improved (α, β)-approximation algorithms for both RegularizedUSM
and RegularizedCSM with non-monotone f . Specifically, we are the first to pro-
vide nontrivial (α, β)-approximations for RegularizedCSM where the sign of
� is unconstrained, and the α we obtain for RegularizedUSM improves over
(Bodek and Feldman in Maximizing sums of non-monotone submodular and lin-
ear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all
β ∈ (0, 1). We also prove new inapproximability results for RegularizedUSM
and RegularizedCSM, as well as 0.478-inapproximability for maximizing a sub-

A conference version of this paper that focused on results from Sects. 4 and 8 previously appeared in
ISAAC 2022.

B Benjamin Qi
bqi343@gmail.com

1 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01183-3&domain=pdf
http://orcid.org/0000-0002-0721-2036
http://arxiv.org/abs/2204.03412
http://arxiv.org/abs/2204.03412

Algorithmica (2024) 86:1080–1134 1081

modular function where S and T are subject to a cardinality constraint, improving a
0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of
the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp
1098–1116, 2011).

Keywords Submodular maximization · Regularization · Continuous greedy · Double
greedy · Inapproximability

1 Introduction

Submodularity is a property satisfied by many fundamental set functions, including
coverage functions, matroid rank functions, and directed cut functions. Optimization
of submodular set functions has found a wealth of applications in machine learning,
including the spread of influence in social networks [1], sensor placement [2], infor-
mation gathering [3], document summarization [4–6], image segmentation [7], and
multi-object tracking [8], among others (see Krause and Golovin [9] for a survey).

Problems involving the maximization of non-negative submodular functions can
be classified as either unconstrained or constrained. In the unconstrained case, the
objective is to return a set in the domain of the function approximately maximizing
the function; we refer to this problem as USM. In the most commonly studied form
of constrained submodular maximization, the returned set is subject to a “matroid
constraint,” which means that the returned set is constrained to be independent in a
given matroid. We refer to this form of constrained submodular maximization as CSM.
The simplest nontrivial example of a matroid constraint is a cardinality constraint,
which means that an upper bound is given on the allowed size of the returned set.
Additionally, we refer to the special case where the function f we are maximizing is
monotone as “monotone CSM.”

Approximation algorithms for both USM and CSM have been studied extensively.
Say that an algorithm running in polynomial time with respect to the size of the ground
set provides an α-approximation if it returns a set with expected value at least α times
that of the optimum. For USM, a 0.5-approximation algorithm was provided by Buch-
binder et al. [10]. For monotone CSM, a (1 − e−1)-approximation was achieved by
Nemhauser et al. [11] using a greedy algorithm for the special case of cardinality con-
straints and later generalized by Calinescu et al. [12] to matroid constraints using the
continuous greedy algorithm. For general CSM, themeasured continuous greedy algo-
rithmof Feldman et al. [13] achieves an e−1 > 0.367-approximation, and a subsequent
algorithm due to Buchbinder and Feldman [14] achieves a 0.385-approximation.

To bound how far the algorithms from the previous paragraph are from optimal,
corresponding inapproximability results have been shown. Say that a problem is α-
inapproximable if no algorithm running in sub-exponential timewith respect to the size
of the ground set can provide an α-approximation. The first two approximation factors
from the previous paragraph are in fact the best achievable; (0.5+ε)-inapproximability
and (1−e−1+ε)-inapproximability for any ε > 0 were shown by Feige et al. [15] and
Nemhauser and Wolsey [16], respectively, using ad hoc methods. On the other hand,
the best achievable approximability for general CSM remains open; the best-known

123

1082 Algorithmica (2024) 86:1080–1134

inapproximability factor is 0.478 due to Oveis Gharan and Vondrak [17] using the
symmetry gap technique of Vondrak [18]. This technique has the advantage of being
able to succinctly re-prove the inapproximability results of [15, 16] and many others.

In this work, we study approximation algorithms for maximizing the sum of a non-
negative submodular function f and a linear function �. Sviridenko et al. [19] were the
first to study algorithms for the sum f +� in the case of f monotone, in order to provide
improved approximation algorithms formonotoneCSMwith bounded curvature. Here,
the curvature c ∈ [0, 1]of a non-negativemonotone submodular function g is roughly a
measure of how far g is frombeing linear. They provided a (1−c/e−ε)-approximation
algorithm and a complementary (1 − c/e + ε)-inapproximability result. The idea of
the algorithm is to decompose g into f + � and show that an approximation factor of
1 − e−1 can be achieved with respect to f and an approximation factor of 1 can be
achieved with respect to � simultaneously. Formally, if I is the independent set family
of a matroid, the algorithm computes a set T ∈ I that satisfies

E[g(T)] = E[f (T)+ �(T)] ≥ max
S∈I
[(1− e−1 − ε) f (S)+ (1− ε)�(S)] (1.1)

byfirst “guessing” the value of �(S), and then running the continuous greedy algorithm.
Subsequently, Feldman eliminated the need for the guessing step and the dependence
on ε�(S)by introducing adistorted objective [20].Many faster algorithms andpractical
applications for the case of f monotone have since been introduced [21–23]. Note
that � has several potential interpretations; while setting � to be non-negative provides
improved approximations for monotone submodular functions with low curvature,
setting � to be non-positive allows it to serve as a regularizer or soft constraint that
favors returning smaller sets as suggested by Harshaw et al. [21].

On the other hand,we knowof only two priorworks that studyRegularizedUSM
where f is not constrained to be monotone. Bodek and Feldman [24] were the first
to consider the case where f is non-monotone and the sign of � is unconstrained.
They defined and studied the problem of Regularized Unconstrained
Submodular Maximization (RegularizedUSM):

Definition 1.1 (RegularizedUSM [24]) Given query access to a (not necessarily
monotone) non-negative submodular function f : 2N → R≥0 and a linear function
� : 2N → R over the same ground set N , an algorithm is said to provide an (α, β)-
approximation for RegularizedUSM if it outputs a set T ⊆ N such that E[f (T)+
�(T)] ≥ maxS⊆N [α · f (S)+ β · �(S)].

The main approximation result of [24] is the first non-trivial approximation algo-
rithm for RegularizedUSMwith f non-monotone and the sign of � unconstrained.
Specifically, they used non-oblivious local search to provide (α(β)− ε, β − ε)-
approximations for RegularizedUSM for all β ∈ (0, 1], where α(β) � β(1 −
β)/(1+β) [24, Theorem 1.2]. They also proved inapproximability results for the cases
of � non-negative and � non-positive using the symmetry gap technique of Vondrak
[18]. In particular, they showed (1 − e−β + ε, β)-inapproximability for monotone
f and non-positive � for all β ≥ 0 [24, Theorem 1.1], essentially matching the
(1− e−β − ε, β)-approximability provided by Lu et al.’s distorted measured contin-

123

Algorithmica (2024) 86:1080–1134 1083

uous greedy algorithm [25] (note that (α, β)-inapproximability is defined in the same
way as α-inapproximability).

In thiswork,we present improved approximability and inapproximability results for
RegularizedUSM as well as the setting where S and T are subject to a matroid con-
straint, which we define analogously as Regularized Constrained Submodular
Maximization (RegularizedCSM):

Definition 1.2 (RegularizedCSM) Given query access to a (not necessarily mono-
tone) non-negative submodular function f : 2N → R≥0 and a linear function
� : 2N → R over the same ground setN , as well as a matroid with family of indepen-
dent sets denoted by I also over the same ground set, an algorithm is said to provide
an (α, β)-approximation for RegularizedCSM if it outputs a set T ∈ I such that
E[f (T)+ �(T)] ≥ maxS∈I [α · f (S)+ β · �(S)].

The only prior work considering RegularizedCSM for non-monotone f that
we are aware of is that of Lu et al. [25], which as noted by [24] achieves (βe−β −
ε, β)-approximations for RegularizedCSM for all β ∈ [0, 1], but only when � is
constrained to be non-positive.

Organization of the Paper. We present the definitions and notation used throughout
this work in Sect. 2 and summarize our results in Sect. 3. Sections4, 5, 6, 7 and 8 prove
the results introduced in Sect. 3. We conclude with a discussion of open problems in
Sect. 9.

2 Preliminaries

Set Functions. Let N � {u1, u2, . . . , un} denote the ground set. A set function
f : 2N → R is said to be submodular if for every two sets S, T ⊆ N , f (S)+ f (T) ≥
f (S ∪ T)+ f (S ∩ T). Equivalently, f is said to be submodular if it satisfies the prop-
erty of “diminishing returns.” That is, for every two sets S ⊆ T ⊆ N and an element
u ∈ N \T , f (u|S) ≥ f (u|T), where f (u|S) � f (S ∪ {u}) − f (S) is the marginal
value of u with respect to S. We use f (u) as shorthand for f ({u}). All submodular
functions are implicitly assumed to be non-negative unless otherwise stated.

A set function f is said to be monotone if for every two sets S ⊆ T ⊆ N ,
f (S) ≤ f (T). A set function � is said to be linear if there exist values {�u ∈ R |
u ∈ N } such that for every set S ⊆ N , �(S) = ∑u∈S �u . When considering the
sum of a non-negative submodular function f and a linear function � whose sign is
unconstrained, define �+(S) �

∑
u∈S max(�u, 0) and �−(S) �

∑
u∈S min(�u, 0) to

be the components of � with positive and negative sign, respectively.

Value Oracles.We make the standard assumption that an algorithm for the sum f + �

does not havedirect access to the representationof f ; instead, itmayobtain information
about f only through a value oracle. Given any query set S ⊆ N , a value oracle for
f returns f (S) in polynomial time. The coefficients of � are directly provided to the
algorithm.

Multilinear Extensions. All vectors of reals are in bold (e.g., x). Given two vectors
x, y ∈ [0, 1]N , we define x∨ y, x∧ y, and x ◦ y to be the coordinate-wise maximum,

123

1084 Algorithmica (2024) 86:1080–1134

minimum, and multiplication, respectively, of x and y. We also define x\y � x −
x ∧ y. Given a set function f : 2N → R, its multilinear extension is the function
F : [0, 1]N → R defined by F(x) = E[f (R(x))], where R(x) is a random subset of
N including every element u ∈ N with probability xu , independently. One can verify
that F is a multilinear function of its arguments as well an extension of f in the sense
that F(1S) = f (S) for every set S ⊆ N . Here, 1S is the characteristic vector of the
set S; that is, the vector with value 1 at each u ∈ S and 0 at each u ∈ N \S.
Matroid Polytopes. A matroid M may be specified by a pair of a ground setN and a
family I of independent sets. The matroid polytope P corresponding toM is defined
to be conv({1S | S ∈ I}), where conv denotes the convex hull. Due to the matroid
axioms,P is guaranteed to be down-closed; that is, 0 ≤ x ≤ y and y ∈ P imply x ∈ P .
It is also well-known that P is solvable; that is, linear functions can be maximized
over P in polynomial time [12, Section 2.3]. For CSM and RegularizedCSM, we
let OPT denote any set such that OPT ∈ I (equivalently, 1OPT ∈ P), while for USM
and RegularizedUSM, we let OPT denote any subset of N . For example, in the
context of CSM, E[f (T)] ≥ α f (OPT) is equivalent to ∀S ∈ I,E[f (T)] ≥ α f (S).
Miscellaneous.We let ε denote any positive real. Many of our algorithms are “almost”
(α, β) approximations in the sense that they provide an (α − ε, β)-approximation in
poly
(
n, 1

ε

)
time for any ε > 0. Similarly, some of our results show (α + ε, β)-

inapproximability for any ε > 0.

2.1 Technical Tools

We obtain our results by carefully combining the following known techniques.
To show approximability, the main techniques we use are themeasured continuous

greedy introduced by Feldman et al. [13] and used by [14, 25], as well as the distorted
objective introduced by Feldman [20] and used by [25]. For some of our approx-
imability results, we additionally require the analysis of the 0.385-approximation
algorithm for CSM due to Buchbinder et al. [14] and the “guessing step” used by
Sviridenko et al. [19].

To show inapproximability, the main technique we use is the symmetry gap of
Vondrak [18], and most of our symmetry gap constructions are based on those of
Oveis Gharan and Vondrak [17].

Additional notes on all relevant prior work can be found in Sect. A.1.

3 Our Contributions

Our results are organized into five sections. Section4 contains our inapproximability
result for CSM. The remaining sections contain our results for RegularizedUSM
and RegularizedCSM divided by the assumptions they make about �. Specifically,
Sect. 5 covers non-negative �, Sects. 6 and 7 cover non-positive �, and Sect. 8 covers
arbitrary �.

123

Algorithmica (2024) 86:1080–1134 1085

Section 4: Inapproximability of Maximization with Cardinality Constraint

We start with the inapproximability of CSM. Oveis Gharan and Vondrak [17] used
a symmetry gap construction [18] to prove 0.491-inapproximability of CSM in the
special case where the matroid constraint is a cardinality constraint. Our first result
improves the inapproximability factor for a cardinality constraint to 0.478 using a
modified construction, matching the factor of the current best inapproximability result
for CSM in the general case (also due to [17]).

Theorem 4.1 There exist instances of the problem max{ f (S) : S ⊆ N and |S| ≤ w}
where f is non-negative submodular such that a 0.478-approximation would require
exponentially many value queries.

Section 5: Non-positive �

The results of this section are summarized in Fig. 1. In Sect. 5.1, we present
improved (α(β), β)-approximations for RegularizedUSM for all β ≥ 0 and
RegularizedCSM for all β ∈ [0, 1],1 Previously, the best known result for
both RegularizedUSM and RegularizedCSM was α(β) = βe−β − ε due to
Lu et al. [25]. This function achieves its maximum value at α(1) = e−1 − ε > 0.367.
We improve the approximation factor for RegularizedCSM to α(1) > 0.385,
matching the best-known approximation factor for CSM without a regularizer due
to Buchbinder and Feldman [14]. Additionally, we show that larger values of α(β)

are approximable for RegularizedUSM when β > 1. The idea is to combine the
“guessing step” of Sviridenko et al. [19] with a generalization of the aided measured
continuous greedy algorithm of Buchbinder and Feldman [14].

Theorem5.1ForRegularizedUSMwithnon-positive�,an (α(β), β)-approximation
algorithm exists for any (α(β), β) in Table 1. In particular, α(1) > 0.385 and
α(1.3) > 0.398. When β ≤ 1, there is an algorithm for RegularizedCSM that
achieves the same approximation factor.

Anatural follow-up question is whether there is a (0.5, β)-approximation algorithm
forRegularizedUSMwith non-positive � for someβ.Although it is unclearwhether
this is the case for general f , we use linear programming to show this result when f
is an undirected or directed cut function (Propositions 5.4 and 5.5).

In Sect. 5.2, we use the symmetry gap technique to demonstrate improved
inapproximability for RegularizedUSM with non-positive �. The previous best
inapproximability results were [24, Theorem 1.1] near β = 0 and [24, Theorem 1.3]
near β = 1. Our result, which generalizes the construction from Sect. 4, beats or
matches both of these theorems for all β.

Theorem 5.6 There are instances of RegularizedUSM with non-positive � such
that (α(β), β) is inapproximable for any (α(β), β) in Table 2. In particular, α(0) ≈ 0,
matching the result of [24, Theorem 1.1], and α(1) < 0.478, matching the result of
[24, Theorem 1.3].

1 For RegularizedCSM it is possible to consider β > 1, but the α obtained by our algorithm does not
increase as β increases past one.

123

1086 Algorithmica (2024) 86:1080–1134

Fig. 1 Graphical depiction of results for Sect. 5. Following the convention of [24], the x and y axes
represent the coefficients of � and f , respectively. We use blue for approximation algorithms and red for
inapproximability results, and the shaded area represents the gap between the best-known approximation
algorithms and inapproximability results. Theorem 5.6 unifies the two inapproximability theorems from
[24]. (0.5, 2 ln 2 − ε ≈ 1.386)-inapproximability is due to Proposition 5.9. For RegularizedCSM, the
results are the same for β ≤ 1

We conclude this section by showing that taking the limit of Theorem5.6 asα(β) →
0.5 implies (0.5, 2 ln 2− ε ≈ 1.386)-inapproximability (Proposition 5.9).

Section 6: Non-negative �, RegularizedUSM

The results of this section are summarized in Figs. 2 and 3.
It is easy to check that Theorem 5.1 may be modified to obtain guarantees for

RegularizedUSM with non-negative �, which we do in Sect. 6.2. But before that,
in Sect. 6.1, we take a slight detour and reanalyze the guarantee for this task pro-
vided by the randomized double greedy algorithm of [10] (RandomizedDG), which
achieves the best-known (α(β), β)-approximations near β = 3/4. We also reana-
lyze the guarantee of the deterministic variant of double greedy from the same paper
(DeterministicDG).

Recall that DeterministicDG achieves a 1/3-approximation for USM, while
RandomizedDG achieves a 1/2-approximation for USM in expectation. Bodek
and Feldman [24] extended these guarantees to RegularizedUSM with non-
negative �, showing that DeterministicDG simultaneously achieves (α, 1 −
α)-approximations for all α ∈ [0, 1/3], and that RandomizedDG simultaneously
achieves (α, 1 − α/2)-approximations for all α ∈ [0, 1/2]. In Sect. 6.1, we show
improved approximation factors for a variant of DeterministicDG and the origi-
nal RandomizedDG:

123

Algorithmica (2024) 86:1080–1134 1087

Fig. 2 Graphical depiction of results for Sect. 6.1. For RandomizedDG, we obtain higher α for all
β ∈ (3/4, 1), and for DeterministicDG, we obtain higher α for all β ∈ (2/3, 1)

Fig. 3 Graphical depiction of results for Sect. 6. (0.5+ ε)-inapproximability is due to [15] and (0.4998+
ε, 1)-inapproximability is due to [24, Lemma 6.3]. (0.478, 1)-inapproximability is due to Theorem 6.8, and
(0.5, 2

√
2/3+ ε)-inapproximability is due to Theorem 6.9

• Improved analysis of a variant of DeterministicDG (Theorem 6.1). For any
r ≥ 1,wedescribe avariant of DeterministicDG that simultaneously achieves

(0, 1) and
(

1
r+1+r−1 ,

r+1
r+1+r−1

)
-approximations. For r = 1, the variant is actually

just the original DeterministicDG.

123

1088 Algorithmica (2024) 86:1080–1134

• Improved analysis of RandomizedDG (Theorem 6.2). We then show that

RandomizedDG simultaneously achieves
(

2
r+2+r−1 ,

r+2
r+2+r−1

)
-approximations

for all r ≥ 1.

Observe that for both DeterministicDG and RandomizedDG, increasing r
improves the dependence of the approximation on �but decreases the dependence on f .
Setting r = 1 recovers the guarantees of [24]. We also provide examples showing that
neither DeterministicDG nor RandomizedDG achieve (α, β)-approximations
better than Theorems 6.1 and 6.2 in Propositions 6.3 and 6.4, respectively.

In Sect. 6.2 we provide improved approximation algorithms for non-negative � near
β = 1 by combining the results of Sects. 5.1 and 6.1:

Theorem 6.5 An (α(β), β)-approximation algorithm for RegularizedUSM with
non-negative � exists for any (α(β), β) in Table 3. In particular, the α(β) obtained
for β ≥ 0.85 is superior to that of Theorem 6.2, and α(1) > 0.385, matching the
approximation factor of Theorem 5.1.

In Sect. 6.3, we use the symmetry gap technique to prove both (0.478, 1 − ε)-
and (0.5, 2

√
2/3 ≈ 0.943 + ε)-inapproximability (Theorems 6.8 and 6.9). These

results are much stronger than [24, Theorem 1.6], which only proved (0.4998+ ε, 1)-
inapproximability. Again, our constructions are variants of that used in Sect. 4.

Section 7: Non-negative �, RegularizedCSM

The results of this section are summarized in Fig. 4. In Sect. 7.1 we combine the
distorted measured continuous greedy of [25] with the aided measured continuous
greedy of [14] to show the following.

Fig. 4 Graphical depiction of results for Sect. 7. Recall that [17, Theorem 5.4] showed 0.478-
inapproximability for CSM

123

Algorithmica (2024) 86:1080–1134 1089

Theorem7.1ForRegularizedCSMwithnon-negative�, there is a (α(β)− ε, β − ε)

approximation algorithm for all β ∈ [0, 1] where α is a decreasing concave function
satisfying α(0.385) > 0.385, α(0.6) > 0.384, α

(
1− e−1

) = e−1, and α(1) = 0.
Note that α(0.385) > 0.385 matches the (trivial) result of directly applying the

algorithm of [14] to f + �. In Sect. 7.2, we prove a complementary inapproximability
result showing that our algorithm is tight for β ≥ 1− e−1.

Theorem 7.6 (Inapproximability of RegularizedCSM Near β = 1) For any 0 ≤
β ≤ 1, there exist instances of RegularizedCSM with non-negative � such that a
(1− β + ε, β)-approximation would require exponentially many value queries.

Section 8: Unconstrained �

The results of this section are summarized in Figs. 5 and 6.
In Sect. 8.1, we present the first nontrivial (α, β)-approximation algorithm for

RegularizedCSM where the sign of � is unconstrained. Furthermore, the α we
obtain for RegularizedUSM improves over that of [24] for all β ∈ (0, 1).

Theorem 8.1 For all t ≥ 0, there is a
(

te−t
t+e−t − ε, t

t+e−t
)
-approximation algorithm

for RegularizedUSM. This algorithm achieves the same approximation guarantee
for RegularizedCSM when t ≤ 1.

For certain values of β, we can achieve greater α for RegularizedCSM than that
guaranteed by Theorem 8.1. Because the improvement is marginal and we do not have

Fig. 5 Graphical depiction of results from Sect. 8 relating to RegularizedUSM. The(
β(1−β)
1+β

− ε, β − ε
)
-approximation for RegularizedUSM is due to [24, Theorem 1.2]. The red dot

corresponds to (0.408, 1)-inapproximability, which is due to Theorem 8.5

123

1090 Algorithmica (2024) 86:1080–1134

Fig. 6 Graphical depiction of results fromSect. 8 relating toRegularizedCSM. The blue dot corresponds
to (0.280, 0.7)-approximability, which is due to Theorem 8.3

a closed form, our following result addresses only the specific case of β = 0.7. Note
that Theorem 8.1 guarantees a (0.277, 0.7)-approximation (by setting t ≈ 0.925).

Theorem8.3There is a (0.280, 0.7) -approximationalgorithm forRegularizedCSM.
In Sect. 8.2, we prove two theorems pertaining to improved inapproximability for

RegularizedUSM. The former generalizes Theorem 1.3 of [24] in order to show
improved inapproximability for a range of β when � is not necessarily constrained to
be non-positive.

Theorem 8.4 (Inapproximability of RegularizedUSM) There are instances of
RegularizedUSM where (α(β), β) is inapproximable for any (α(β), β) in Table 4.
In particular, (0.440, 1) is inapproximable.

The latter shows stronger inapproximability specifically near β = 1.

Theorem 8.5 (Inapproximability of RegularizedUSM,β = 1) There are instances
of RegularizedUSM where (0.408, 1) is inapproximable.

The best prior (α, 1)-inapproximability result for RegularizedUSM is (0.478, 1)
due to Theorem 1.3 of [24], matching the 0.478-inapproximability result for CSM due
to Oveis Gharan and Vondrak [17]. We note that as Bodek and Feldman [24] show
inapproximability specifically for the case of non-positive �, it is not too surprising that
we can show improved inapproximability for general �. Notably, the gap between the
best approximability and inapproximability results for RegularizedUSM remains
quite large; in fact, it remains unclearwhether an (ε, 1)-approximation algorithm exists
for any ε > 0.

123

Algorithmica (2024) 86:1080–1134 1091

4 Inapproximability of Maximization with Cardinality Constraint

In this section, we prove Theorem 4.1:

Theorem 4.1 There exist instances of the problem max{ f (S) : S ⊆ N and |S| ≤ w}
where f is non-negative submodular such that a 0.478-approximation would require
exponentially many value queries.

First, we provide the relevant definitions for proving inapproximability using the
symmetry gap technique from Vondrak [18].

Definition 4.2 (Symmetrization [18]) Let G be a group of permutations over N . For
x ∈ [0, 1]N , define the “symmetrization of x” as x = Eσ∈G[σ(x)], where σ ∈ G is
uniformly random and σ(x) denotes x with coordinates permuted by σ .

Definition 4.3 (Symmetry Gap [18]) Let max{ f (S) : S ∈ F ⊆ 2N } be strongly sym-
metric with respect to a group G of permutations over N , meaning that for all σ ∈ G
and S ⊆ 2N , f (S) = f (σ (S)) and S ∈ F ⇔ S′ ∈ F whenever 1S = 1S′ . Here,
σ(S) = {σ(i) : i ∈ S}. Define P(F) = conv({1I : I ∈ F}) to be the polytope asso-
ciated with F . Let OPT � maxx∈P(F) F(x) and OPT � maxx∈P(F) F(x). Then the

symmetry gap of max{ f (S) : S ∈ F} is defined as γ � OPT
OPT .

Lemma 4.4 (Inapproximability due to Symmetry Gap [18]) Let max{ f (S) : S ∈ F}
be an instance of non-negative submodular maximization, strongly symmetric with
respect to G, with symmetry gap γ . Let C be the class of instancesmax{ f̃ (S) : S ∈ F̃}
where f̃ is non-negative submodular and F̃ is a refinement ofF . Then for every ε > 0,
any (even randomized) (1+ε)γ -approximation algorithm for the classC would require
exponentially many queries to the value oracle for f̃ (S).

The formal definition of refinement can be found in [18]. The important thing to
note is that F̃ satisfies the same properties as F . In particular, F̃ preserves cardinality
and matroid independence constraints. Before proving Theorem 4.1, we start with a
related lemma.

Lemma 4.5 (Inapproximability of Cardinality Constraint on Subset of Domain) Let
T be some subset of the ground set N . There exist instances of the problem
max{ f (S) : S ⊆ N ∧ |S ∩ T | ≤ w} such that a 0.478-approximation would require
exponentially many value queries.

Proof It suffices to provide F , f , and G satisfying the definitions of Lemma 4.4 with
symmetry gap γ < 0.478. The construction is identical to that of [17, Theorem 5.4],
except we omit |S ∩ {a, b}| ≤ 1 from the definition of F . Specifically, letting a1···k be
shorthand for a1, a2, . . . , ak , we define N � {a, b, a1···k, b1···k} and

F � {S | S ⊆ N ∧ |S ∩ {a1···k, b1···k}| ≤ 1} (4.1)

123

1092 Algorithmica (2024) 86:1080–1134

instead of:

Forig � {S | S ⊆ N ∧ |S ∩ {a, b}| ≤ 1 ∧ |S ∩ {a1···k, b1···k}| ≤ 1}. (4.2)

Recall that Theorem 5.4 of [17] defines the submodular function f as the sum of the
weighted cut functions of two directed hyperedges ({a1, a2, . . . , ak}, a), ({b1, b2, . . . ,
bk}, b) and the undirected edge (a, b) (see Fig. 4 of [17] for an illustration). Specif-
ically, the weighted cut function on the directed hyperedge ({a1, a2, . . . , ak}, a)

contributes κ � 0.3513 to the value of f (S) if S ∩ {a1, . . . , ak} �= ∅ and a /∈ S, and 0
otherwise. The weighted cut function on the directed hyperedge ({b1, b2, . . . , bk}, b)
is defined in the same way. Finally, the weighted cut function on the undirected edge
(a, b) contributes 1 − κ if |S ∩ {a, b}| = 1 and 0 otherwise. Thus, the multilinear
extension of f is as follows:

F(xa, xb, xa1···k , xb1···k)

� (1− κ)(xa(1− xb)+ xb(1− xa))

+ κ

[(

1−
k∏

i=1
(1− xai)

)

(1− xa)+
(

1−
k∏

i=1
(1− xbi)

)

(1− xb)

]

. (4.3)

As in [17, Lemma 5.1], we let G be the group of permutations generated by {σ1, σ2},
where

σ1(a) = b, σ1(b) = a, σ1(ai) = bi , σ1(bi) = ai (4.4)

swaps the two hyperedges, and

σ2(a) = a, σ2(b) = b, σ2(ai) = ai (mod k)+1, σ2(bi) = bi (4.5)

rotates the tail vertices of the first hyperedge. It is easy to check that (f ,F) are
strongly symmetric with respect to both σ1 and σ2, and that the symmetrization of x
is as follows:

x = Eσ∈G [σ(x)] =
{
xa = xb = xa+xb

2

xa1 = · · · = xak = xb1 = · · · = xbk =
∑k

i=1
(
xai+xbi

)

2k .
(4.6)

Observe that

OPT ≥ max
S∈F

f (S) ≥ f ({a, b1}) = (1− κ)+ κ = 1. (4.7)

Defining q � xa+xb
2 and p �

∑k
i=1(xai+xbi)

2 , the maximum of F over all symmetric x
is thus:

OPT = max
x∈P(F)

F(x) = max
x∈P(F)

F(q, q,

2k times
︷ ︸︸ ︷
p/k, p/k, . . . , p/k) � max

x∈P(F)
F̂(q, p)

123

Algorithmica (2024) 86:1080–1134 1093

= (1− κ)2q(1− q)+ κ2(1− q)(1− (1− p/k)k)

≈ (1− κ)2q(1− q)+ κ2(1− q)(1− e−p) (4.8)

where the approximate equality holds as k →∞. Now,

OPT = max
x∈P(F)

F(x) = max
p≤1/2 F̂(q, p) = max

p,q≤1/2 F̂(q, p)

= max
x∈P(Forig)

F(x) < 0.478. (4.9)

The third equality holds (i.e., adding the constraint q ≤ 1/2 has no effect) since
F̂(q, p) ≤ F̂(1−q, p) for q ∈ (1/2, 1], while the inequality holds due to the proof of
[17, Theorem 5.4] and may be verified using a numerical optimizer. So the symmetry

gap γ = OPT
OPT is less than 0.478, as desired. ��

Now, to show Theorem 4.1, all we need to do is to convert the cardinality constraint
on S ∩ T in Lemma 4.5 into a cardinality constraint on all of S.

Proof of Theorem 4.1 Again, it suffices to provide F , f , and G satisfying the defini-
tions of Lemma 4.4 with symmetry gap γ < 0.478. We start with the construction
from Lemma 4.5, replace each element ai and bi with t copies ai,1, . . . , ai,t , and
bi,1, . . . , bi,t and setw � t+1. Letting a1···k,1···t be shorthand for {ai j : i ∈ [1, k]∧ j ∈
[1, t]}, we redefine f such that F is as follows:

F(xa, xb, xa1···k,1···t , xb1···k,1···t)

� (1− κ)(xa(1− xb)+ xb(1− xa))

+ κ

[(

1−
k∏

i=1

(

1−
∑t

j=1 xai, j
t

))

(1− xa)

+
(

1−
k∏

i=1

(

1−
∑t

j=1 xbi, j
t

))

(1− xb)

]

. (4.10)

Importantly, f remains non-negative submodular and symmetric, with the new sym-
metrization being as follows for an appropriate choice of G:

x = Eσ∈G [σ(x)] =

⎧
⎪⎪⎨

⎪⎪⎩

xa = xb = xa+xb
2

xa1,1 = · · · = xak,t = xb1,1 = · · · = xbk,t

=
∑k

i=1
∑t

j=1
(
xai, j+xbi, j

)

2kt .

(4.11)

For example, we may define G to be the group generated by {σ1, σ2, σ3} where
• σ1 swaps a with b and ai, j with bi, j ;
• σ2 takes ai, j to ai (mod k)+1, j and leaves all other vertices unchanged;
• σ3 takes a1, j to a1, j (mod t)+1 and leaves all other vertices unchanged.

123

1094 Algorithmica (2024) 86:1080–1134

It can be verified that F(x) may be written in terms of the same function of two
variables F̂(q, p) from Lemma 4.5. Let q be as defined above and redefine p �
∑k

i=1
∑t

j=1(xai j+xbi j)
2t , so that:

F(x) � F(q, q,

2kt times
︷ ︸︸ ︷
p/k, p/k, . . . , p/k) � F̂(q, p)

= (1− κ)2q(1− q)+ κ2(1− q)(1− (1− p/k)k)

≈ (1− κ)2q(1− q)+ κ2(1− q)(1− e−p) (4.12)

where the approximate equality holds as k →∞, same as before.
To finish, we must show that the symmetry gap of f with respect toF remains less

than 0.478 as t →∞. As in the proof of Lemma 4.5,

OPT ≥ max
S : |S|≤t+1 f (S) ≥ f ({a, b11, . . . , b1t }) = 1, (4.13)

OPT = max∑
xi≤t+1

F(x)= max∑
xi≤t+1

F̂(q, p)≤ max
p≤ t+1

2t

F̂(q, p)≈ max
p≤1/2 F̂(q, p)<0.478,

(4.14)

where the gap between the two sides of the approximate equality goes to 0 as t →∞
because F̂ is Lipschitz continuous and its domain is bounded. So the symmetry gap

γ = OPT
OPT is again less than 0.478, as desired. ��

5 Non-positive �

The results of this section are summarized in Fig. 1.

5.1 Approximation Algorithms

In this subsection, we provide improved approximations for general f (Theorem 5.1)
as well as for f a cut function (Propositions 5.4 and 5.5).

Theorem 5.1 ForRegularizedUSMwithnon-positive�, an (α(β), β)-approximation
algorithm exists for any (α(β), β) in Table 1. In particular, α(1) > 0.385 and
α(1.3) > 0.398. When β ≤ 1, there is an algorithm for RegularizedCSM that
achieves the same approximation factor.

We start with a special case of Theorem 5.1.

Lemma 5.2 There is a (0.385, 1) approximation algorithm for RegularizedCSM
when � is non-positive.

Proof The idea is to combine the “guessing step” of Sviridenko et al. [19] with the
0.385-approximation for CSM due to Buchbinder and Feldman [14] (which actually

123

Algorithmica (2024) 86:1080–1134 1095

Table 1 (α(β), β)-
Approximations for
RegularizedUSM with
non-positive � (Theorem 5.1)

β βe−β α(β)

0.7 0.3476 0.3478

0.8 0.3595 0.3630

0.9 0.3659 0.3757

1.0 0.3679 0.3856

1.1 0.3662 0.3925

1.2 0.3614 0.3967

1.3 0.3543 0.3982

1.4 0.3452 0.3982

For comparison, the previous best-known approximation factors of
[25] are included in the second column. These results are depicted
graphically in Fig. 1
In all tables, all values are rounded to the nearest multiple of 10−4

provides a (0.385+ε)-approximation for any ε ≤ 0.0006). Recall that [19] achieves a(
1− 1

e − ε, 1
)
-approximation formonotone f andnon-positive�. The idea is that ifwe

know the value of �(OPT), we can run the algorithmof [14] on the intersectionP∩{x :
L(x) ≥ �(OPT)}, which is down-closed and solvable because P is down-closed and
solvable, and the same is true for {x : L(x) ≥ �(OPT)}. This will guarantee finding
x ∈ P such that E[F(x)] ≥ 0.385 f (OPT) and E[L(x)] ≥ �(OPT). Afterward, we
can use pipage rounding to round x to an integral solution T ∈ I [18]. Specifically,
given x ∈ P , pipage rounding generates T ∈ I such that E[1T] = y and E[F(1T)+
L(1T)] ≥ F(x)+ L(x).

Of course, we do not actually know what the value of �(OPT) is. To guarantee
that we run [14] on the intersection P ∩ {x : L(x) ≥ w} for some w satisfying
�(OPT) ≥ w ≥ �(OPT)(1 + ε), it suffices to try setting w equal to each of the

O
(
n2
ε

)
values in the following set:

{0} ∪
{

�(u) · kε∣∣u ∈ N , k ∈ Z and k ∈
[⌈

1

ε

⌉

,
⌈n

ε

⌉]}

. (5.1)

For at least one of these values of w (“guesses”), we will have E[F(x)] ≥ (0.385 +
ε) f (OPT) (if ε ≤ 0.0006) and E[L(x)] ≥ (1+ ε)�(OPT). Combining these guar-
antees shows that rounding x provides a (0.385+ ε, 1+ ε) approximation, which in
turn implies a (0.385, 1) approximation because

max(0, (0.385+ ε) f (OPT)+ (1+ ε)�(OPT))

≥ (0.385+ ε) f (OPT)+ (1+ ε)�(OPT)

1+ ε

≥ 0.385 f (OPT)+ �(OPT). (5.2)

��

123

1096 Algorithmica (2024) 86:1080–1134

Before proving Theorem 5.1, we start by briefly reviewing the main algorithm
from [14] when executed on a solvable down-closed polytope P . First, it uses a local
search to generate z ∈ P such that both of the following inequalities hold with high
probability:

F(z) ≥ 1

2
F(z ∧ 1OPT)+ 1

2
F(z ∨ 1OPT)− o(1) · f (OPT), (5.3)

F(z) ≥ F(z ∧ 1OPT)− o(1) · f (OPT). (5.4)

Then it executes [14, Algorithm 2], Aided Measured Continuous Greedy, to generate
y ∈ P such that

E[F(y)] ≥ ets−1 · [(2− ts − e−ts − o(1)) · f (OPT)− (1− e−ts) · F(z ∧ 1OPT)

− (2− ts − 2e−ts) · F(z ∨ 1OPT)]. (5.5)

Finally, assuming P is the matroid polytope corresponding to a family of independent
sets I, pipage rounding may be used to convert both y and z to integral solutions y ∈ I
and z ∈ I such that E[f (y)] ≥ F(y) and E[f (z)] ≥ F(z), and the solution from y
and z with the larger value of f will be returned.2

To obtain improved approximation bounds, we need the following generalization
of Eq. (5.5):

Lemma 5.3 (Generalization of Aided Measured Continuous Greedy) If we run Aided
Measured Continuous Greedy given a fractional solution z and a polytope P for a
total of t f time, where t f ≥ ts , it will generate y ∈ t fP ∩ [0, 1]N such that

E[F(y)] ≥ e−t f [(ets + t f e
ts − tse

ts − 1− o(1)) f (OPT)

+ (−ets + 1)F(z ∧ 1OPT)

+ (−ets − t f e
ts + tse

ts + 1+ t f)F(z ∨ 1OPT)] (5.6)

Note that this matches term by term with Eq. (5.5) when t f = 1.

Proof Sketch By [14], proving the conclusion for integral sets Z implies the conclusion
for fractional z. So it suffices to prove the following.

E[F(y(t f))] ≥ e−t f [(ets + t f e
ts − tse

ts − 1− o(1)) f (OPT)

+ (−ets + 1) f (OPT ∩ Z)

+ (−ets − t f e
ts + tse

ts + 1+ t f) f (OPT ∪ Z)]. (5.7)

The idea of the original aided measured continuous greedy is to run measured contin-
uous greedy for ts time only on the elements of N \Z , and then for 1 − ts additional
time with all elements of N . Working out what happens when we run it for a total of
t f instead of 1 time is just a matter of going through the equations from [14, Section 4]
and making minor changes. The remainder of the proof is deferred to Sect. A.3.

2 Actually, [14] analyze their algorithm assuming z is returned with probability p = 0.23 and otherwise
y, but this distinction is of little consequence.

123

Algorithmica (2024) 86:1080–1134 1097

Proof of Theorem 5.1 Our algorithm for RegularizedUSM is as follows:

1. As in Lemma 5.2, first guess the value of �(OPT) to within a factor of 1+ ε, and
then replace P with P ∩ {x : L(x) ≥ (1+ ε)�(OPT)}.

2. Generate z using the local search procedure on (f ,P) described by [14].
3. Run aided continuous greedy given z for all pairs3

(ts, t f) ∈ T �
{(x

20
,
y

20

) ∣
∣(x, y) ∈ Z2 and 0 ≤ x ≤ y ≤ 40

}
. (5.8)

4. Round z from step 1 and all fractional solutions found in step 2 to valid integral
solutions. Note that by replacing z with R(z), the value of F + L is preserved in
expectation.

5. Return the solution from step 4 with themaximum value, or the empty set if none of
these solutions has positive value. LetOPT′ be the expected value of this solution.

For a fixed β ≥ 0, we can compute themaximum α(β) such that an (α(β)−O (ε) , β)-
approximation is guaranteed by solving the following linear program:

max x1
s.t. (x1, x2, x3, x4) ∈ conv({(0, 0, 0, 0), (0, 0.5, 0.5, 1), (0, 1, 0, 1)} ∪

{(ets−t f + t f e
ts−t f − tse

ts−t f − e−t f ,
− ets−t f + e−t f ,
− ets−t f − t f e

ts−t f + tse
ts−t f + e−t f + t f e

−t f ,
t f) | (ts, t f) ∈ T })

and x2 ≥ 0, x3 ≥ 0, x4 ≤ β. (5.9)

Any point (x1, x2, x3, x4) within the convex hull satisfies:

OPT′ ≥ x1 f (OPT)+ x2F(z ∧ 1OPT)+ x3F(z ∨ 1OPT)+ x4L(OPT) (5.10)

if we ignore the o(1) terms contributed by Lemma 5.3 and Eqs. (5.3) and (5.4) and
take the limit as ε → 0. The points determining the hull are as follows:

• (0, 0, 0, 0) corresponds to returning the empty set.
• (0, 0.5, 0.5, 1) corresponds to z satisfying Eq. (5.3).
• (0, 1, 0, 1) corresponds to z satisfying Eq. (5.4).
• The remaining vertices of the hull correspond to running Lemma 5.3 on P given
z for all (ts, t f) ∈ T .

Adding the constraints x2, x3 ≥ 0 and x4 ≤ β ensures that OPT′ ≥ x1F(z) +
βL(OPT). The results of solving this program with CVXPY [26] for β ∈ [0, 1.5]
are displayed in Fig. 1. In particular, α(1) ≥ 0.385 and the maximum value of α is
obtained around α(1.3) ≥ 0.398.

3 For improved approximations, a finer discretization can be chosen, but we found the benefit of doing so
to be negligible.

123

1098 Algorithmica (2024) 86:1080–1134

For the case of RegularizedCSM, the reasoning is almost the same, but to
ensure that all points returned by Lemma 5.3 lie within P , we only include pairs in
T with t f ≤ 1 in step 3, and pipage rounding with respect to the original P (not
P ∩ {x : L(x) ≥ (1+ ε)�(OPT)}, which is not necessarily a matroid polytope) must
be used for step 4. The results turn out to be identical to those displayed in Fig. 1 for
β ≤ 1. ��

Next, we state better approximation results for f an undirected and directed cut
function, respectively. The proofs, which use linear programming, are deferred to
Sect. A.3. We note that linear programming was previously used to provide a 0.5-
approximation forMAX-DICUTbyTrevisan [27] and later byHalperin andZwick [28].

Proposition 5.4 There is a (0.5, 1)-approximation algorithm for RegularizedCSM
when � has arbitrary sign and f is the cut function of a weighted undirected graph
(V , E, w); that is, for all S ⊆ V ,

f (S) �
∑

ab∈E
wab · [|S ∩ {a, b}| = 1], (5.11)

where each edge weight wab is non-negative.

Note that while our above result for undirected cut functions applies to
RegularizedCSM, our subsequent result for directed cut functions only applies
to RegularizedUSM.

Proposition 5.5 There is a (0.5, 1)-approximation algorithm for RegularizedUSM
when � has arbitrary sign and f is the cut function of a weighted directed graph
(V , E, w); that is, for all S ⊆ V ,

f (S) =
∑

ab∈E
wab · [a ∈ S and b /∈ S], (5.12)

where each edge weight wab is non-negative.

5.2 Inapproximability

In this subsection, we prove Theorem 5.6. Recall from Fig. 1 that it unifies the guar-
antees of [24, Theorem 1.1] and [24, Theorem 1.3].

Theorem 5.6 There are instances ofRegularizedUSMwith non-positive � such that
(α(β), β) is inapproximable for any (α(β), β) in Table 2. In particular, α(0) ≈ 0,
matching the result of [24, Theorem 1.1], and α(1) < 0.478, matching the result of
[24, Theorem 1.3].

The idea behind the proof ofTheorem5.6 is to extend the symmetry gap construction
of [24, Theorem 1.3], which in turn is a modification of the 0.478-inapproximability
result of [17] used in Sect. 4.

123

Algorithmica (2024) 86:1080–1134 1099

Table 2 Inapproximability of (α(β), β)-approximations for RegularizedUSM with non-positive �

β α(β) [24, Theorem 1.3] α(β) (Theorem 5.6) κ �p �q

0.1 0.2750 0.0935 0.6705 −0.6095 − 0.2680

0.2 0.2998 0.1743 0.6513 −0.5322 − 0.2192

0.3 0.3245 0.2433 0.6498 −0.4705 − 0.1505

0.4 0.3488 0.3008 0.6506 −0.4207 − 0.0893

0.5 0.3728 0.3477 0.6484 −0.3800 − 0.0410

0.6 0.3964 0.3846 0.6388 −0.3400 0.0000

0.7 0.4195 0.4162 0.5811 −0.2887 0.0000

0.8 0.4420 0.4420 0.5088 −0.2289 0.0000

0.9 0.4621 0.4621 0.4335 −0.1766 0.0000

1.0 0.4773 0.4773 0.3515 −0.1294 0.0000

The parameters κ, �p, �q are as described in the proof of Theorem 5.6. These results are depicted graphically
in Fig. 1

Before proving Theorem 5.6, we state a generalization of the symmetry gap tech-
nique to f +� sums that we use for Theorem 5.6 and the rest of our inapproximability
results.

Definition 5.7 [18] We say that maxS∈F [f (S)+ �(S)] is strongly symmetric with
respect to a group of permutations G if �(S) = �(σ (S)) for all σ ∈ G and (f ,F) are
strongly symmetric with respect to G as defined in Definition 4.3.

Lemma 5.8 (Inapproximability of (α, β)Approximations)LetmaxS∈F [f (S)+ �(S)]
be an instance of submodular maximization with f non-negative submodular and �

linear, strongly symmetric with respect to a group of permutations G. For any two
constants α, β ≥ 0, if

max
x∈P(F)

[F(x)+ L(x)] < max
S∈F

[α f (S)+ β�(S)], (5.13)

then no polynomial-time algorithm for RegularizedCSM can guarantee a (α, β)-
approximation. The same inapproximability holds for RegularizedUSM by setting
F = 2N .

Proof Theorem 3.1 of [24] proves this lemma only for the special case of F = 2N

because the proof of [24, Lemma A.3] cites a special case of [18, Lemma 3.3] that
only applies forF = 2N . It suffices to modify the proof to cite the full version of [18,
Lemma 3.3] instead. ��
Proof of Theorem 5.6 Set f to be the same as defined in Lemma 4.5. Now apply
Lemma 5.8 with S = {a, b1}. For a fixed β, we can show (α, β)-inapproximability
using this method if it is possible to choose � and κ such that the following inequality
is true:

max
x∈P(F)

[F(x)+ L(x)] < α f ({a, b1})+ β�({a, b1})

123

1100 Algorithmica (2024) 86:1080–1134

= α + β�({a, b1}) (5.14)

�⇒ max
x∈P(F)

[F(x)+ L(x)]− β�({a, b1}) < α. (5.15)

Our goal is now to minimize the LHS of the above inequality. Theorem 1.3 of [24] sets
�a = �b = 0, and then chooses κ and �a1···k = �b1···k � �p ≤ 0 in order to minimize
the quantity

max
x∈[0,1]N

[F(x)+ L(x)]− β�({a, b1})
= max

x∈[0,1]N
[F(x)+ L(x)]− β�p

= max
0≤q≤1,0≤p

[
(1− κ)2q(1− q)+ κ2(1− q)(1− e−p)+ 2p�p

]− β�p. (5.16)

However, choosing �a = �b � �q to be negative rather than zero gives superior bounds
for small β. That is, our goal is to compute

min
0≤κ≤1,�q≤0,�p≤0

[
max

0≤q≤1,0≤p

[
(1− κ)2q(1− q)+ κ2(1− q)(1− e−p)

+ 2p�p + 2q�q
]− β(�p + �q)

]
. (5.17)

We can approximate the optimal value by brute forcing over a range of (κ, �q , �p).
For β ∈ {0.8, 0.9, 1.0}, it is optimal to set �q = 0, and our guarantee is the same as
that of [24, Theorem 1.3]. Our results for β ∈ {0.6, 0.7} are stronger than those of [24,
Theorem 1.3] even though they also set �q = 0, because that theorem actually only
considers �p ≥ −0.5 and κ ≤ 0.5. ��

Next, we consider the limit of Theorem 5.6 as α(β) → 0.5. Note that this is not a
new result in the sense that [24, Theorem 1.3] can already prove it when the parameters
�p and κ are chosen appropriately, but we nevertheless believe it is worth explicitly
stating.

Proposition 5.9 For any ε > 0, there are instances of RegularizedUSM with non-
positive � such that (0.5, 2 ln 2− ε ≈ 1.386) is inapproximable.

Proof To find themaximum β such that we can show (0.5, β)-inapproximability using
the construction of Theorem 5.6, our goal is to choose κ ∈ (0, 0.5) and �p < 0 such
that β is maximized in

max
0≤q≤1,0≤p

[
(1− κ)2q(1− q)+ κ2(1− q)(1− e−p)+ 2p�p

]− β�p < 0.5

⇐⇒ β <
0.5−max0≤q≤1,0≤p

[
(1− κ)2q(1− q)+ κ2(1− q)(1− e−p)+ 2p�p

]

−�p
.

(5.18)

123

Algorithmica (2024) 86:1080–1134 1101

We can rewrite half the expression within the max as

max
q,0≤p

[
(1− κ)q(1− q)+ κ(1− q)(1− e−p)+ p�p

]

= max
q,0≤p

[
−q2(1− κ)+ q(1− 2κ + κe−p)+ κ(1− e−p)+ p�p

]

= max
0≤p

[
(1− 2κ + κe−p)2

4(1− κ)
+ κ(1− e−p)+ p�p

]

, (5.19)

so the RHS of Eq. (5.18) becomes:

2 ·min0≤p

[
1−κ−(1−2κ+κe−p)2

4(1−κ)
− κ(1− e−p)− p�p

]

−�p

=
2 ·min0≤p

[
κ(2e−p−1)−κ2e−2p

4(1−κ)
− p�p
]

−�p
. (5.20)

Next, we claim that for any p∗ > 0, it is possible to choose �p < 0 such that
the numerator of Eq. (5.20) reaches its minimum at p = p∗. Define the function

h(p) � κ(2e−p−1)−κ2e−2p
4(1−κ)

. It suffices to check that h is decreasing at p = 0 and

concave up for p ≥ 0; that is, d
dp h(p)

∣
∣
∣
p=0 < 0 and d2

dp2

[
κ(2e−p−1)−κ2e−2p

4(1−κ)

]
> 0 for

all p ≥ 0. Both of these inequalities follow from the assumption κ ∈ (0, 0.5).
Finally, when p∗ < ln 2, 2e−p∗ > 1, implying that h(p∗) > 0when κ is sufficiently

close to 0. For such p∗, the RHS of Eq. (5.20) becomes

2(h(p∗)− p∗�p)
−�p

≥ −2p
∗�p

−�p
= 2p∗, (5.21)

so the RHS of Eq. (5.18) can be made arbitrarily close to 2 ln 2. ��

6 Non-negative �: RegularizedUSM

6.1 Approximations with Double Greedy

In this subsection, we show improved approximability for DeterministicDG and
RandomizedDG in Theorems 6.1 and 6.2, and then show that both of these results
are tight in Propositions 6.3 and 6.4. The results of this subsection are summarized in
Fig. 2.

First, we briefly review the behavior of the original DeterministicDG and
RandomizedDG of [10] when executed on a non-negative submodular function g,
as well as their approximation factors.
The Algorithm:
The algorithm will construct sequences of sets Xi ,Yi for i ∈ [0, n]. First, X0 � ∅ and
Y0 � N . Then for each i from 1 to n, execute the following two steps:

123

1102 Algorithmica (2024) 86:1080–1134

1. Compute the marginal gains g(ui |Xi−1) = g(Xi−1 ∪ {ui }) − g(Xi−1) and
g(ui |Yi−1\{ui }) = g(Yi−1)−g(Yi−1\{ui }). By the original proof of double greedy,

g(ui |Xi−1)− g(ui |Yi−1\{ui }) ≥ 0 (6.1)

holds by submodularity.
2. Based on themarginal gains, either set (Xi ,Yi) = (Xi−1∪{ui },Yi−1) or (Xi ,Yi) =

(Xi−1,Yi−1\{ui }).
• InDeterministicDG, thefirst event occurs if g(ui |Xi−1)≥−g(ui |Yi−1\{ui }).
• In RandomizedDG, the first event occurs with probability proportional to
ai � max(g(ui |Xi−1), 0), while the second event occurs with probability
proportional to bi � max(−g(ui |Yi−1\{ui }), 0). In the edge case where
ai = bi = 0, it does not matter which event occurs.

Finally, the algorithm returns Xn = Yn .

The Approximation Factors:
Let OPTi � (OPT ∪ Xi) ∩ Yi , so that OPT0 = OPT while OPTn = Xn = Yn .
For DeterministicDG, it can be shown via exhaustive casework that:

g(OPTi−1)− g(OPTi) ≤ (g(Xi)− g(Xi−1))+ (g(Yi)− g(Yi−1)), (6.2)

while for RandomizedDG, it can similarly be shown that:

E[g(OPTi−1)− g(OPTi)] ≤ 1

2
E
[
(g(Xi)− g(Xi−1))+ (g(Yi)− g(Yi−1))

]
.

(6.3)
Summing Eq. (6.2) from i = 1 to i = n gives

g(OPT)− g(Xn) = g(OPT0)− g(OPTn)

≤ g(Xn)− g(X0)+ g(Yn)− g(Y0)

≤ 2g(Xn)− g(N)

�⇒ g(Xn) ≥ g(OPT)+ g(N)

3
, (6.4)

whereas summing Eq. (6.3) from i = 1 to i = n gives

E [g(OPT)− g(Xn)] = E [g(OPT0)− g(OPTn)]

≤ E

[
1

2
(2g(Xn)− g(N))

]

�⇒ E [g(Xn)] ≥ 2g(OPT)+ g(N)

4
. (6.5)

Equations (6.4) and (6.5) imply that if we substitute f + � in place of g,
DeterministicDG and RandomizedDG provide (1/3, 2/3)- and (1/2, 3/4)-
approximations for RegularizedUSM, respectively, because �(OPT) ≤

123

Algorithmica (2024) 86:1080–1134 1103

�(N). Showing improved (α, β)-approximations for DeterministicDG
(RandomizedDG) when α < 1

3 (α < 1
2) is just a matter of modifying Eq. (6.2)

(Eq. (6.3)).

Theorem 6.1 For RegularizedUSM with non-negative � and any r ≥ 1, there
exists a variant of DeterministicDG that simultaneously achieves (0, 1) and(

1
r+1+r−1 ,

r+1
r+1+r−1

)
-approximations (and consequently, (α, β)-approximations for

all (α, β) on the segment connecting these two points as well). For r = 1, the variant
is actually just the original DeterministicDG.

Proof Modify step 2 of DeterministicDG so that the first event occurs if
g(ui |Xi−1) ≥ −rg(ui |Yi−1\{ui }). We claim that the following modified version of
Eq. (6.2) now holds:

g(OPTi−1)− g(OPTi) ≤ r−1(g(Xi)− g(Xi−1))+ r(g(Yi)− g(Yi−1)). (6.6)

First we show that Eq. (6.6) implies an
(

1
r+1+r−1 ,

r+1
r+1+r−1

)
-approximation. Summing

it from i = 1 to i = n gives:

g(OPT)− g(Xn) = g(OPT0)− g(OPTn)

≤ r−1(g(Xn)− g(X0))+ r(g(Yn)− g(Yn))

≤
(
r−1 + r

)
g(Xn)− rg(N) (6.7)

�⇒ g(Xn) ≥ g(OPT)

r + 1+ r−1
+ r

r + 1+ r−1
g(N)

≥ f (OPT)

r + 1+ r−1
+ r + 1

r + 1+ r−1
· �(OPT), (6.8)

as desired. Now we show Eq. (6.6). First, we consider the case g(ui |Xi−1) ≥
−rg(ui |Yi−1\{ui }). This assumption implies that Yi = Yi−1, so the last part of
Eq. (6.6) drops out.

1. If ui ∈ OPTi−1, then OPTi = OPTi−1, and Eq. (6.6) reduces to 0 ≤ g(ui |Xi−1),
which holds by combining Eq. (6.1) with the assumption.

2. If ui /∈ OPTi−1, then OPTi = OPTi−1 ∪ {ui }, then Eq. (6.6) reduces to

− g(ui |OPTi−1) ≤ r−1g(ui |Xi−1). (6.9)

SinceOPTi−1 ⊆ Yi−1\{ui }, theLHSof this inequality is atmost−g(ui |Yi−1\{ui })
by submodularity. On the other hand, the RHS of this inequality is at least
−g(ui |Yi−1\{ui }) by assumption.

On the other hand, if g(ui |Xi−1) < −rg(ui |Yi−1\{ui }), then Xi = Xi−1, and the first
part of the RHS of Eq. (6.6) drops out.

1. If ui /∈ OPTi−1, then OPTi = OPTi−1, and Eq. (6.6) reduces to 0 ≤
−g(ui |Yi−1\{ui }), which holds by combining Eq. (6.1) with the assumption.

123

1104 Algorithmica (2024) 86:1080–1134

2. If ui ∈ OPTi−1, then OPTi = OPTi−1\{ui }, then Eq. (6.6) reduces to

g(ui |OPTi) ≤ −rg(ui |Yi−1\{ui }). (6.10)

Since Xi ⊆ OPTi , the LHS of this inequality is at most g(ui |Xi) by submodu-
larity. On the other hand, the RHS of this inequality is greater than g(ui |Xi−1) by
assumption.

It remains to show that this algorithm simultaneously achieves a (0, 1)-approximation.
Because g(ui |Xi)− g(ui |Yi\{ui }) ≥ 0, max (g(ui |Xi),−rg(ui |Yi\{ui }) ≥ 0. Next,

• If g(ui |Xi) ≥ −rg(ui |Yi\{ui }, then g(ui |Xi) ≥ 0, Yi+1 = Yi and

g(Xi+1) = g(ui |Xi)+ g(Xi) ≥ g(Xi). (6.11)

• Otherwise, if g(ui |Xi) < −rg(ui |Yi\{ui }), then g(ui |Yi\{ui }) ≤ 0, Xi+1 = Xi

and
g(Yi+1) = g(Yi)− g(ui |Yi\{ui }) ≥ g(Yi). (6.12)

Thus, the values of both g(Xi) and g(Yi) are increasing over the course of the
algorithm, so:

g(Xn) = g(Yn) ≥ g(Yn−1) ≥ · · · ≥ g(Y0) ≥ �(N) ≥ �(OPT). (6.13)

��
The reasoning for RandomizedDG, which we show next, is very similar.

Theorem 6.2 Running RandomizedDG on f + � simultaneously achieves an(
2

r+2+r−1 ,
r+2

r+2+r−1
)
- approximation for all r ≥ 1 for RegularizedUSM with non-

negative �.

Proof We claim that the following modified version of Eq. (6.3) holds for any r > 0:

E[g(OPTi−1)− g(OPTi)] ≤ 1

2
E

[
r−1(g(Xi)− g(Xi−1))+ r(g(Yi)− g(Yi−1))

]
.

(6.14)
As in the proof ofTheorem6.1, it is easy to check that Eq. (6.14) implies the conclusion:

E [g(OPT)− g(Xn)] = E [g(OPT0)− g(OPTn)]

≤ E

[
1

2

(
(r−1 + r)g(Xn)− rg(N)

)]

�⇒ E [g(Xn)] ≥ 2

r + 2+ r−1
· g(OPT)+ r

r + 2+ r−1
· g(N) (6.15)

≥ 2

r + 2+ r−1
· f (OPT)+ r + 2

r + 1+ r−1
· �(OPT)

(6.16)

123

Algorithmica (2024) 86:1080–1134 1105

It remains to show Eq. (6.14). We note that in the edge case ai = bi = 0, Eq. (6.1)
implies that g(ui |Xi−1) = g(ui |Yi−1\{ui }) = 0, so the inequality reduces to 0 ≤ 0.
Otherwise, recall that the original proof of double greedy upper bounded the LHS of
Eq. (6.14) by

E[g(OPTi−1)− g(OPTi)] ≤ aibi
ai + bi

. (6.17)

On the other hand, we can lower bound twice the RHS by

E[r−1(g(Xi)− g(Xi−1))+ r(g(Yi)− g(Yi−1))]
= r−1 · ai

ai + bi
(g(Xi−1 ∪ {ui })− g(Xi−1))

+ r · bi
ai + bi

(g(Yi−1\{ui })− g(Yi−1))

= r−1a2i
ai + bi

+ rb2i
ai + bi

≥ 2aibi
ai + bi

, (6.18)

where the last step follows from the AM-GM inequality as in the original proof.
Equation (6.14) follows. ��

Next, we prove that DeterministicDG and RandomizedDG do no better than
the bounds we just showed. Recall that [24, Theorem 1.4] proved that the original
DeterministicDG is an (α, β)-approximation algorithm whenever α ≤ 1

3 and
α+β ≤ 1. To show that this analysis is tight, it suffices to check that whenever α > 1

3
or α + β > 1, there are instances where DeterministicDG does not achieve the
desired approximation factor. The inequality α > 1

3 holds by [10, Theorem II.3], while
α + β > 1 holds by applying the following proposition with r = 1:

Proposition 6.3 For any r ≥ 1 and ε > 0, there are instances of RegularizedUSM
with non-negative �where the variant of DeterministicDG described in the proof
of Theorem 6.1 does not achieve an (α, β)-approximation for any (α, β) above the

line connecting (0, 1) and
(

1
r+1+r−1 ,

r+1
r+1+r−1

)
.

Proof Thepoints (α, β) lying above the line connecting (0, 1) and
(

1
r+1+r−1 ,

r+1
r+1+r−1

)

are precisely those that satisfy α+ βr = r + ε for some ε > 0. Define f (S) to be the
sum of two weighted cut functions:

N � {u1, u2} (6.19)

f (S) � (r + ε/2) · [u1 ∈ S and u2 /∈ S] + 1 · [u2 ∈ S and u1 /∈ S] (6.20)

�(u1) = 0, �(u2) = r (6.21)

The weights of the directed edges are chosen such that if the variant of
DeterministicDG considers u1 before u2, it will compute

g(u1|X0) = r + ε/2 > −rg(u1|Y0\{u1}) = r , (6.22)

123

1106 Algorithmica (2024) 86:1080–1134

so it will return a set T satisfying u1 ∈ T , implying that f (T) + �(T) ≤ r + ε/2
regardless of whether u2 ∈ T or not. If we define OPT � {u2}, then f (OPT) = 1
and �(OPT) = r , so we get

f (T)+ �(T) = r + ε/2 < r + ε = α + βr = α f (OPT)+ β�(OPT) (6.23)

implying that an (α, β)-approximation is not achieved. ��
Next, we generalize the construction of Proposition 6.3 to show that Theorem 6.2

is tight for RandomizedDG.

Proposition 6.4 For any r ≥ 1 and ε > 0, there are instances of RegularizedUSM
with non-negative � where RandomizedDG does not provide an (α, β) =(

2
r+2+r−1 + ε, r+2

r+2+r−1
)
-approximation.

Proof Define f (S) to be the sum of 2(n − 1) weighted directed cut functions:

f (S) = 1

n − 1

[
n−1∑

i=1
(r [ui ∈ S ∧ un /∈ S] + [un ∈ S ∧ ui /∈ S])

]

(6.24)

and �(u1) = �(u2) = · · · = �(un−1) = 0, �(un) = r − 1. For each i ∈ [1, n − 1],
RandomizedDG will compute ai = r

n−1 and bi = 1
n−1 , so it will include each of

u1···n−1 in its returned set Xn independently with probability r
r+1 each. Thus, for any

ε > 0, the following inequality holds by a Chernoff bound for sufficiently large n:

Pr

[∣
∣
∣
∣
|Xn ∩ {u1, . . . , un−1}|

n − 1
− r

r + 1

∣
∣
∣
∣ ≥

ε

2r

]

= o(1), (6.25)

Assuming
∣
∣
∣
|Xn∩{u1,...,un−1}|

n−1 − r
r+1
∣
∣
∣ < ε

2r holds, it follows that

f (Xn)+ �(Xn) < r ·
(

r

r + 1
+ ε

2r

)

= r2

r + 1
+ ε

2
. (6.26)

regardless of whether un is included in Xn or not. On the other hand, if we define
OPT � {un}, then

α f (OPT)+ β�(OPT) = α + (r − 1)β

= 2

r + 2+ r−1
+ ε + (r − 1)(r + 2)

r + 2+ r−1

= r2 + r

r + 2+ r−1
+ ε

= r2

r + 1
+ ε. (6.27)

123

Algorithmica (2024) 86:1080–1134 1107

As f (Xn)+ �(Xn) < α f (OPT)+ β�(OPT)− ε
2 with high probability and f (Xn)

is bounded above by a constant independent of n, E[f (Xn)+ �(Xn)] < α f (OPT)+
β�(OPT) for sufficiently large n, implying that RandomizedDG does not provide
an (α, β) approximation for this instance. ��

Unfortunately, neither version of double greedy achieves any (α, β)-approximation
when � is non-positive rather than non-negative. We defer further discussion to
Sect. A.2.

6.2 Additional Approximation Algorithms

In this subsection, we prove Theorem 6.5, which improves upon Theorem 6.2 for β

close to one. The results of this subsection and the next are summarized in Fig. 3.

Theorem 6.5 An (α(β), β)-approximation algorithm for RegularizedUSM with
non-negative � exists for any (α(β), β) in Table 3. In particular, the α(β) obtained
for β ≥ 0.85 is superior to that of Theorem 6.2, and α(1) > 0.385, matching the
approximation factor of Theorem 5.1.

First, we show that the result for β = 1 easily follows from Lemma 5.2.

Lemma 6.6 For RegularizedUSM with non-negative �, there is a (0.385, 1)-
approximation algorithm.

Proof Define g(S) � f (N \S), which is also non-negative submodular. Then apply
Lemma 5.2 on (g,−�) to find T ⊆ N such that

E[g(T)− �(T)] ≥ max
S
[0.385g(S)− �(S)]

= max
S
[0.385 f (S)− �(N \S)]

= max
S
[0.385 f (S)+ �(S)] − �(N). (6.28)

Setting T ′ = N \T , we have

E[f (T ′)+ �(T ′)− �(N)] = E[f (T ′)− �(N \T ′)]
= E[g(T)− �(T)]

Table 3 (α(β), β)-
approximations for
RegularizedUSM with
non-negative �

β α(β) (Theorem 6.5) α(β) (Theorem 6.2)

0.85 0.4749 0.4746

0.9 0.4493 0.4325

0.95 0.4226 0.3472

1 0.3856 0

These results are depicted graphically in Fig. 3

123

1108 Algorithmica (2024) 86:1080–1134

≥ max
S
[0.385 f (S)+ �(S)] − �(N). (6.29)

Adding �(N) to both sides, we conclude that

E[f (T ′)+ �(T ′)] ≥ max
S
[0.385 f (S)+ �(S)]. (6.30)

So an algorithm returning T ′ would achieve a (0.385, 1)-approximation as desired. ��
For β close to one, we can obtain better (α, β)-approximations than what Theo-

rem 6.2 alone provides by combining double greedy with the following corollary of
Lemma 6.6:

Corollary 6.7 An (α, β)-approximation algorithm for RegularizedUSM for the
case of � non-positive may be used to return a set T ⊆ N such that

E[f (T)] ≥ α f (OPT)+ β�(OPT)+ (1− β)�(N). (6.31)

for the case of � non-negative.

Proof The proof is very similar to the above; the RHSes of Eqs. (6.28) and (6.29)
become α f (OPT)+ β�(OPT)− β�(N). ��

Now we can prove Theorem 6.5 by combining Corollary 6.7 with Theorem 6.2.

Proof of Theorem 6.5 Our algorithm returns the best of the solutions returned by the
following two algorithms:

1. Randomized double greedy on f + �, whose guarantee is given by Eq. (6.15)
2. Corollary 6.7 using Theorem 5.1 for β ∈ T � {(α(1 + 0.01x), 1 + 0.01x) | x ∈
{0, 1, 2, . . . , 30}
As with Theorem 5.1, for a fixed β we can lower bound the α(β) guaranteed by the

algorithm above by the solution to the following linear program after choosing the set
R appropriately:

max x1

s.t. (x1, x2, x3) ∈ conv

(

{(α′, β ′, 1− β ′) | (α′, β ′) ∈ T and

∃(α′, β ′)-approximation algorithm for � ≤ 0}∪
{(

2

(r + 1/r)2
,

2

(r + 1/r)2
,

r2

(r + 1/r)2

)
∣
∣r ∈ R
})

and x2 + x3 ≥ β, x3 ≥ 0 (6.32)

Let OPT′ denote the expected value of the returned solution. Any point (x1, x2, x3)
within the convex hull satisfies the following inequality:

OPT′ ≥ x1 f (OPT)+ x2�(OPT)+ x3�(N). (6.33)

The conditions x2+ x3 ≥ β, x3 ≥ 0 ensure thatOPT′ ≥ x1 f (OPT)+β�(OPT). ��

123

Algorithmica (2024) 86:1080–1134 1109

6.3 Inapproximability

In this subsection, we prove Theorems 6.8 and 6.9.

Theorem 6.8 For some ε > 0, there are instances of RegularizedUSM with non-
negative � such that (0.478, 1− ε) is inapproximable.

Note that this is much stronger than the (0.4998+ε, 1)-inapproximability provided
by [24, Lemma 6.3].

Proof We start by showing (0.478, 1)-inapproximability, which is easier. First,
we claim that any (α, 1)-approximation algorithm for the RegularizedUSM
instance (f (N \S),−�(S)) immediately implies a (α, 1)-approximation algorithm for
(f (S), �(S)). LettingN \T be the set returned by the former approximation algorithm,
we find

E[f (N \(N \T))− �(N \T)] ≥ α f (N \OPT ′)− �(OPT ′)
�⇒ E [f (T)− �(N)+ �(T)] ≥ α f (N \OPT ′)− �(OPT ′) (6.34)

Substituting OPT ′ = N \OPT gives

E [f (T)− �(N)+ �(T)] ≥ α f (OPT)− �(N)+ �(OPT)

�⇒ E[f (T)+ �(T)] ≥ α f (OPT)+ �(OPT). (6.35)

Note that when � is set to be non-negative, this means that any (α, 1)-approximation
algorithm for � non-positive implies an (α, 1)-approximation algorithm for � non-
negative. Similarly, by setting � to be non-positive, we get the implication in the
opposite direction. This means that (α, 1)-inapproximability results for one sign of
� can be converted to corresponding inapproximability results for the other sign of
�. Thus, the (0.478, 1)-inapproximability result for non-positive � implies the same
inapproximability result for non-negative �.

The slightly stronger result of (0.478, 1 − ε) inapproximability for some ε > 0
follows from modifying the symmetry gap construction of Theorem 5.6. Let (f−, �−)

be the f and � defined in the proof of Theorem 5.6 for β = 1. Then let

f (S) � f−(N \S), �(S) � −�−(S). (6.36)

For k sufficiently large, this instance shows (α, 1)-inapproximability for some α <

0.478. Furthermore, if we fix k to be constant, then the desired result follows; specif-
ically, we can choose some ε > 0 such that

α f (OPT)+ �(OPT) = 0.478 f (OPT)+ (1− ε)�(OPT), (6.37)

showing (0.478, 1− ε)-inapproximability as desired. ��
Next, we provide an inapproximability result for α = 0.5 by fixing k = 2 in the

construction for Theorem 6.8.

123

1110 Algorithmica (2024) 86:1080–1134

Theorem 6.9 For any ε > 0, there are instances of RegularizedUSM with non-
negative � such that (0.5, 2

√
2/3 ≈ 0.943+ ε) is inapproximable.

Proof Again, let (f−, �−) be the f and � defined in the proof of Theorem 5.6 with
�q = 0. Define

f (S) � f−(N \S), (6.38)

p � k −
∑k

i=1(xai + xbi)
2

∈ [0, k], (6.39)

q � 1− xa + xb
2

∈ [0, 1]. (6.40)

�(S) � −�−(S) = �p(2k − 2p) (6.41)

where we may choose any real number �p > 0. Applying Lemma 5.8, we find that
the LHS is given by

max
x∈[0,1]N

[(F + L)(x)]
= max

x∈[0,1]N
[F−(1− x)+ L(x)]

= max
0≤p≤k,0≤q≤1

[(
(1− κ)2q(1− q)+ κ2(1− q)(1− (1− p/k)k)

)

+ (−2p�p + 2k�p
)]

= max
0≤p≤k,0≤q≤1

[
(1− κ)2q(1− q)+ κ2(1− q)(1− (1− p/k)k)− 2p�p

]

+ 2k�p, (6.42)

while the RHS is bounded below by

(α f + β�)(N \{a, b1}) = α + β
[
(2k − 1)�p

]
. (6.43)

Now fix k = 2 and α = 0.5, and define

g(p) � max
0≤q≤1

[
(1− κ)2q(1− q)+ κ2(1− q)(1− (1− p/k)k)

]
. (6.44)

Then the minimum β∗ such that we can show (α, β∗ + ε)-inapproximability using
this technique is given by

max
0≤p≤k
[
g(p)− 2p�p

]+ 2k�p = 0.5+ β∗[(2k − 1)�p] (6.45)

�⇒ β∗ = min
0≤κ≤1,0<�p

[
max0≤p≤k

[
g(p)− 2p�p

]+ 2k�p − 0.5

(2k − 1)�p

]

. (6.46)

123

Algorithmica (2024) 86:1080–1134 1111

Choose any p∗ ∈ (0, 2−√2), which automatically guarantees 1− (1− p∗/k)k < 1
2 .

For any such p∗, we claim that there exist κ and �p such that

max
0≤p≤k
[
g(p)− 2p�p

]
< 0.5− 2p∗�p. (6.47)

The reason why Eq. (6.47) holds is that, for sufficiently small κ > 0, g(p∗) < 0.5,
g(p) is increasing with respect to p, and g(p) is concave down with respect to p.
Thus, we can always choose �p > 0 so that argmax0≤p≤k[g(p)− 2p�p] = p∗. From
Eq. (6.47) we can finish as follows:

β∗ ≤ 2k�p − 2p∗�p
(2k − 1)�p

= 4− 2p∗

3
. (6.48)

Taking the limit as p∗ → 2−√2
−
shows the inapproximability of β∗ = 4−2(2−√2)

3 +
ε = 2

√
2

3 + ε, as desired. ��

7 Non-negative �: RegularizedCSM

The results of this section are summarized in Fig. 4.

7.1 Approximation Algorithms

In this subsection, we prove Theorem 7.1.

Theorem 7.1 ForRegularizedCSMwithnon-negative�, there is a (α(β)− ε, β − ε)

approximation algorithm for all β ∈ [0, 1] where α is a decreasing concave function
satisfying α(0.385) > 0.385, α(0.6) > 0.384, α

(
1− e−1

) = e−1, and α(1) = 0.

Recall from the introduction that [25] introduced distorted measured continuous
greedy and analyzed its guarantee for the case of non-positive �. Our improved results
are based on generalizing the analysis to the case where � contains both positive and
negative components.

Lemma 7.2 For unconstrained � and any t f ∈ [0, 1], there is a polynomial-time
algorithm for RegularizedCSM that returns T ∈ I such that

E[f (T)+ �(T)] ≥ (t f e
−t f − o(1)) f (OPT)+ (1− e−t f − o(1))�+(OPT)

+t f �−(OPT). (7.1)

When t f > 1, the algorithm provides the same approximation guarantee but is allowed
to return any T ⊆ N .4

4 Recall from Sect. 2 that �+ and �− are the components of � with positive and negative sign, respectively.

123

1112 Algorithmica (2024) 86:1080–1134

Proof It suffices to show that for any ε > 0, with high probability, Algorithm 1 from
[25] generates y(t f) ∈ [0, 1]N such that y(t f) ∈ t f · P and

F(y(t f))+ L(y(t f)) ≥ t f e
−t f f (OPT)+ (1− e−t f)�+(OPT)

+ t f �−(OPT)−O (εM) (7.2)

in poly(n, 1/ε) time,whereM � max{maxu∈N f (u|∅),−minu∈N f (u|N−u)} > 0.
How to use y(t f) to generate a set T satisfying the conditions in the statement of this
lemma is standard and is deferred to the appendix.

First, we briefly review the measured continuous greedy algorithm introduced by
Feldman et al. [13]. The idea is to continuously evolve a solution y(t) from time
t = 0 to time t = t f such that y(t) ∈ (t · P) ∩ ((1− e−t) · [0, 1]N). At all times,
y′(t) = z(t)◦ (1N −y(t)), where z(t) ∈ P . To transform this continuous process into
an algorithm running in finite time, it is necessary to discretize time into timesteps
of size δ, where δ evenly divides t f . Then y(t + δ) � y(t) + δz(t) ◦ (1N − y(t)).
How small δ needs to be to achieve the desired approximation factor is given by a
polynomial in terms of n and ε.

Algorithm 1 of [25] combines measured continuous greedy with Feldman’s dis-
torted objective [20]. Specifically, Algorithm 1 of [25] defines the objective at time t
to be

(t) = (1− δ)(t f−t)/δF(y(t))+ L(y(t)) ≈ et−t f F(y(t))+ L(y(t)) (7.3)

and chooses z(t) so that with high probability,

(t + δ)−
(t) ≥ δ
[
e−t f f (OPT)+ �(OPT)

]− δ

t f
·O (εM) , (7.4)

assuming that � is non-positive [25, Lemma 3.8]. Summing this inequality over all
t f
δ

timesteps yields the desired result for non-positive �.5

We claim that when the sign of � is unconstrained, the following generalization of
[25, Lemma 3.8] holds:

(t + δ)−
(t) ≥ δ
[
e−t f f (OPT)+ (1− δ)t/δ�+(OPT)+ �−(OPT)

]

− δ

t f
·O (εM) . (7.5)

To show this, the only part of the proof of [25, Lemma 3.8] that needs to change is the
part where [25, Lemma 3.7] is invoked. Lemma 3.7 of [25] states that for non-positive
�,

L(y(t + δ))− L(y(t)) = δL(z(t) ◦ (1N − y(t))) ≥ δ〈�, z(t)〉. (7.6)

5 Actually, the authors of [25] only described their algorithm for the case of t f = 1. Though as noted
in [24], the proof of their algorithm easily generalizes to arbitrary t f . Of course, the step size δ must be
adjusted accordingly.

123

Algorithmica (2024) 86:1080–1134 1113

For unconstrained �, we obtain the following inequality instead:

L(y(t + δ))− L(y(t)) = δL(z(t) ◦ (1N − y(t)))

= δ (〈�+, z(t) ◦ (1N − y(t))〉 + 〈�−, z(t) ◦ (1N − y(t))〉)
≥ δ
(〈�+, z(t)〉 · (1− δ)t/δ + 〈�−, z(t)〉) , (7.7)

where the last inequality follows from [25, Lemma 3.1], which states that yu(t) ≤
1− (1− δ)

t
δ for all u ∈ N . It is easy to verify that Eq. (7.5) follows after substituting

Eq. (7.7) in place of [25, Lemma 3.7] in the proof of [25, Lemma 3.8].

To go from Eq. (7.5) to the conclusion, we just need to check that
∑t f /δ−1

i=0 δ(1 −
δ)i ≥ 1− (1− δ)t f /δ ≥ 1− e−t f . Thus, Eq. (7.2) has been proven. ��
Corollary 7.3 When � ≥ 0, there is a

(
e−1 − ε, 1− e−1

)
-approximation algorithm for

RegularizedCSM.

Proof The result follows immediately from substituting t f = 1 into Lemma 7.2. ��
Before proving Theorem 7.1, we will need two more lemmas. The first is very

simple.

Lemma 7.4 (Trivial Approximation for RegularizedCSM) When � is uncon-
strained, there exists a (0, 1)-approximation algorithm for RegularizedCSM.

Proof Ignore f and maximize �, which can be done in polynomial time as noted in
the preliminaries. ��

The next lemma combines Lemma 7.2 with the aided measured continuous greedy
used by [14].

Lemma 7.5 (Guarantee of Distorted Aided Measured Continuous Greedy) Let � be
unconstrained. If we run Distorted Aided Measured Continuous Greedy given a frac-
tional solution z and a polytopeP for a total of t f time, where t f ≥ ts , it will generate
y ∈ t fP ∩

(
(1− e−t f) · [0, 1]N) such that

E
[
F(y)+ L(y)

] ≥ e−t f [(ets + t f e
ts − tse

ts − 1− o(1)) f (OPT)

+ (−ets + 1)F(z ∧ 1OPT)

+ (−ets − t f e
ts + tse

ts + 1+ t f)F(z ∨ 1OPT)]
+ (1− e−t f)L+(1OPT \z)+ (1− ets−t f)L+(1OPT ∧ z)

+ t f L−(1OPT \z)+ (t f − ts)L−(1OPT ∧ z). (7.8)

Note that the terms depending on f are precisely the same as those in Lemma 5.3.

The proof is deferred to Sect. A.3.

Proof of Theorem 7.1 The algorithm is similar to that of Theorem 5.1.

1. Run the trivial approximation algorithm (Lemma 7.4).

123

1114 Algorithmica (2024) 86:1080–1134

2. Generate z using the local search procedure described by [14, Lemma 3.1] on
(f + �,P). This finds z ∈ P such that

F(z)+ L(z) ≥ (F + L)(z ∨ 1OPT)+ (F + L)(z ∧ 1OPT)

2
− o(1) · (f + �)(OPT)

≥ 1

2
F(z ∨ 1OPT)+ 1

2
F(z ∧ 1OPT)+ 1

2
�(OPT)

+ 1

2
L(z ∧ 1OPT)− o(1) · (f + �)(OPT), (7.9)

and

F(z)+ L(z) ≥ F(z ∧ 1OPT)+ L(z ∧ 1OPT)− o(1) · (f + �)(OPT). (7.10)

Note that unlike Theorem 5.1, there is no guessing step.
3. Run distorted aided measured continuous greedy given z (Lemma 7.5), for all pairs

(ts, t f) ∈ T � {(0.1x, 1) | 0 ≤ x ≤ 10}. (7.11)

4. Round z from step 1 and all fractional solutions found in steps 2 and 3 to valid
integral solutions using pipage rounding, which preserves the value of F + L in
expectation.

5. Return the solution from step 4 with the maximum value. LetOPT′ be the expected
value of this solution.

As in the proof of Theorem 5.1, for a fixed β, we claim that to find a lower bound
on α such that the following inequality is true:

OPT′ � max

(

E[F(z)+ L(z)], max
(ts ,t f)∈T

(
E
[
F(yts ,t f)+ L(yts ,t f)

])
)

≥ αF(OPT)+ β�(OPT), (7.12)

it suffices to solve the following linear program:

max x1
s.t. (x1, x2, x3, x4, x5) ∈ conv({(0, 0, 0, 1, 1), (0, 0.5, 0.5, 0.5, 1), (0, 1, 0, 0, 1)}∪

{(ets−t f + t f e
ts−t f − tse

ts−t f − e−t f ,
− ets−t f + e−t f ,
− ets−t f − t f e

ts−t f + tse
ts−t f + e−t f + e−t f t f ,

1− e−t f ,
1− ets−t f)|(ts, t f) ∈ T })

and x2 ≥ 0, x3 ≥ 0, x4 ≥ β, x5 ≥ β. (7.13)

123

Algorithmica (2024) 86:1080–1134 1115

Any point (x1, x2, x3, x4, x5) within the convex hull satisfies:

OPT′ ≥ x1 f (OPT)+ x2F(z ∧ 1OPT)+ x3F(z ∨ 1OPT)+ x4L(1OPT \z)
+x5L(z ∧ 1OPT) (7.14)

up to o(1) terms. The points determining the hull are as follows:

• (0, 0, 0, 1, 1) corresponds to Lemma 7.4.
• (0, 0.5, 0.5, 0.5, 1) corresponds to Eq. (7.9).
• (0, 1, 0, 0, 1) corresponds to Eq. (7.10).
• The remaining points correspond to Lemma 7.5 for all (ts, t f) ∈ T .

The constraints x2, x3 ≥ 0 ensure that

OPT′ ≥ x1 f (OPT)+ x4L(1OPT \z)+ x5L(z ∧ 1OPT). (7.15)

The constraints min(x4, x5) ≥ β ensure that

OPT′ ≥ x1 f (OPT)+ β�(OPT). (7.16)

��

7.2 Inapproximability

In this subsection, we prove Theorem 7.6, which can be used to show that Theo-
rem 7.1 is tight for β ≥ (e − 1)/e. We then discuss whether the construction used in
Theorem 7.6 could potentially be extended to RegularizedUSM.

Theorem 7.6 (Inapproximability of RegularizedCSM Near β = 1) For any 0 ≤
β ≤ 1, there exist instances of RegularizedCSM with non-negative � such that a
(1− β + ε, β)-approximation would require exponentially many value queries.

Proof Define α � 1 − β + ε. By Lemma 5.8, it suffices to construct a submodular
function f satisfying

max
x∈P

[F(x)+ L(x)] < max
S∈I
[α · f (S)+ β · �(S)]. (7.17)

We use the same f that Vondrak [18] uses for proving the inapproximability of
maximization over matroid bases. Specifically, define N = {a1, . . . , ak, b1, . . . , bk}
and let f correspond to the sum of directed cut functions of k disjoint arcs; that is,
f (S) �

∑k
i=1[ai ∈ S and bi /∈ S]. Its multilinear extension is F(xa1···ak , xb1···bk) =∑k

i=1 xai (1− xbi). We define I to consist of precisely the subsets of N that contain
at most one element from a1, . . . , ak and at most k − 1 elements from b1, . . . , bk ,
resulting in the following matroid independence polytope:

P =
{

(xai , xbi)
∣
∣

k∑

i=1
xai ≤ 1 and

k∑

i=1
xbi ≤ k − 1

}

. (7.18)

123

1116 Algorithmica (2024) 86:1080–1134

Finally, we define � as �(ai) = 0, �(bi) = 1
k . Then the RHS of Eq. (7.17) is at least:

max
S∈I
[α f (S)+ β�(S)] ≥ (α f + β�)({a1, b2, b3, . . . , bk}) = α + β · k − 1

k
, (7.19)

while the LHS of Eq. (7.17) is:

max
x∈P

[F(x)+ L(x)] = max
0≤p≤1/k,0≤q≤(k−1)/k [kp(1− q)+ q]

= max
0≤p≤1/k,0≤q≤(k−1)/k [q(1− kp)+ kp]

= max
0≤p≤1/k [(1− kp)+ kp] = 1, (7.20)

where the third equality follows because the expression is alwaysmaximized by setting
q = k−1

k . For sufficiently large k we have

α + β · k − 1

k
≥ (α + β)

k − 1

k
= (1+ ε) · k − 1

k
> 1. (7.21)

Equation (7.17) follows. ��

In fact, the bound of Theorem 7.6 is (nearly) tight for β close to one.

Corollary 7.7 (TightRegularizedCSMNearβ = 1 for � ≥ 0)Forall e−1e ≤ β < 1,
there is a (1−β− ε, β)-approximation algorithm for RegularizedCSM with non-
negative �, nearly matching the bound of Theorem 7.6.

Proof The better of Corollary 7.3 and Lemma 7.4 will be an (α, β)-approximation for
all (α, β) lying above the segment connecting

(1
e − ε, e−1

e − ε
)
and (0, 1). ��

As the f used by Lemma 5.8 to prove Theorem 7.6 is just a directed cut function,
it is natural to ask whether directed cut functions can be used by Lemma 5.8 to show
improved inapproximability for RegularizedUSM. We build on Proposition 5.5 to
show that doing so is impossible.

Proposition 7.8 When � is unconstrained, setting f to be a directed cut function in
Lemma5.8 cannot beused to show (0.5, 1)-inapproximability forRegularizedUSM.

The proof is deferred to Sect. A.3.

8 Unconstrained �

The results of this section are summarized in Figs. 5 and 6.

123

Algorithmica (2024) 86:1080–1134 1117

8.1 Approximability

In this section, we prove Theorems 8.1 and 8.3.

Theorem 8.1 For all t ≥ 0, there is a
(

te−t
t+e−t − ε, t

t+e−t
)
-approximation algorithm

for RegularizedUSM. This algorithm achieves the same approximation guarantee
for RegularizedCSM when t ≤ 1.

Algorithm 1 Simple RegularizedCSM (t)
1: Let T ← the set returned by running Lemma 7.2 for t f = t time.
2: Let T ′ ← the set returned by Lemma 7.4 (trivial approximation).
3: if f (T)+ �(T) ≥ �(T ′) then return T .
4: else return T ′.

Proof It suffices to show that Algorithm 1 achieves the desired approximation factor.
Disregard the factors of o(1) in Lemma 7.2; they can be taken into account later at the
cost of introducing the factor of ε. The set returned from Lemma 7.4 actually satisfies
the stronger guarantee

�(T ′) ≥ �+(OPT), (8.1)

because if we define OPT ∗ � OPT ∩ {u : u ∈ N ∧ �(u) > 0}, OPT ∗ ∈ I due to
I being downward-closed, and thus �(T ′) ≥ �(OPT ∗) = �+(OPT).

Next, add t + e−t − 1 times Eq. (8.1) to the inequality of Lemma 7.2.

(t + e−t)E[max
(
f (T)+ �(T), �(T ′)

)] ≥ E[f (T)+ �(T)] + (t + e−t − 1)E[�(T ′)]
≥ te−t f (OPT)+ t(�+(OPT)+ �−(OPT))

= te−t f (OPT)+ t�(OPT). (8.2)

Dividing both sides by t + e−t gives the desired result after accounting for the factors
of o(1):

E[max(f (T)+�(T), �(T ′))] ≥
(

te−t

t + e−t
− ε

)

f (OPT)+ t

t + e−t
�(OPT). (8.3)

��
Note that an analog of Corollary 7.7 (Tight RegularizedCSM Near β = 1 for

� ≥ 0) holds for unconstrained �, though for a smaller range of β:

Corollary 8.2 (Tight RegularizedCSM Near β = 1) There is a (1 − β − ε, β)-
approximation algorithm for RegularizedCSM for any e

e+1 ≤ β < 1, almost
matching the bound of Theorem 7.6.

123

1118 Algorithmica (2024) 86:1080–1134

Proof Setting t = 1, the output of Theorem 8.1 is both a
(

1
e+1 − ε, e

e+1
)
-

approximation and a (0, 1)-approximation for RegularizedCSM. Therefore it is
also an (α, β)-approximation for all (α, β) lying above the segment connecting(

1
e+1 − ε, e

e+1
)
and (0, 1). ��

However, our result is not tight for β < e/(e + 1); it turns out that it is possible to
do a little better than Theorem 8.1 for β near 0.7 by making use of Lemma 7.5.

Theorem 8.3 There is a (0.280, 0.7)-approximationalgorithm forRegularizedCSM.

Proof The algorithm is Theorem 7.1 augmented to use the guessing step from The-
orem 5.1. That is, we start by guessing the value of �−(OPT) to within a factor of
1+ ε and replacing P with P ∩ {x : L−(x) ≥ (1+ ε)�−(OPT)} as in Theorem 5.1,
and then run Theorem 7.1.

To analyze the guarantee of this algorithm, we set up a linear program similar
to that of Theorem 7.1 with two additional variables x6 and x7 corresponding to
L−(1OPT \z) and L−(z ∧ 1OPT), respectively. Again, we ignore terms that are o(1)
and those depending on ε.

max x1
s.t. (x1, x2, x3, x4, x5, x6, x7) ∈ conv({(0, 0, 0, 1, 1, 0, 0),

(0, 0.5, 0.5, 0.5, 1, 1, 1),

(0, 1, 0, 0, 1, 0, 1)}∪
{(ets−t f + t f e

ts−t f − tse
ts−t f − e−t f ,

− ets−t f + e−t f ,
− ets−t f − t f e

ts−t f + tse
ts−t f + e−t f + e−t f t f ,

1− e−t f , 1− ets−t f , t f , t f − ts) | (ts, t f) ∈ T })
and x2 ≥ 0, x3 ≥ 0, x4 ≥ β, x5 ≥ β, x6 ≤ β, x7 ≤ β. (8.4)

Any point (x1, x2, x3, x4, x5, x6, x7) within the convex hull satisfies:

OPT′ ≥ x1 f (OPT)+ x2F(z ∧ 1OPT)+ x3F(z ∨ 1OPT)

+ x4L(1OPT \z)+ x5L(z ∧ 1OPT)+ x6L−(1OPT \z)
+ x7L−(z ∧ 1OPT) (8.5)

up to o(1) terms. The points determining the hull are as follows:

• (0, 0, 0, 1, 1, 0, 0) corresponds to Lemma 7.4.
• (0, 0.5, 0.5, 0.5, 1, 1, 1) corresponds to Eq. (7.9). Note that this inequality holds
only because of the guessing step.

• (0, 1, 0, 0, 1, 0, 1) corresponds to Eq. (7.10).
• The remaining vertices correspond to Lemma 7.5.

Choosing T = {(0.205, 0.955)} and solving the linear program gives x1 ≥ 0.280 as
desired. ��

123

Algorithmica (2024) 86:1080–1134 1119

8.2 Inapproximability

In this subsection, we prove Theorems 8.4 and 8.5. Note that Theorem 7.6 can-
not possibly apply to RegularizedUSM because Theorem 8.1 achieves (1 − β +
ε, β)-approximations for β close to one. Unfortunately, we are unable to prove (1, ε)-
inapproximability of RegularizedUSM, but we modify Theorem 5.6 to show
improved inapproximability for unconstrained � than for � non-negative or � non-
positive.

Theorem 8.4 (Inapproximability of RegularizedUSM) There are instances of
RegularizedUSM where (α(β), β) is inapproximable for any (α(β), β) in Table 4.
In particular, (0.440, 1) is inapproximable.

Proof Set f to be the same as defined in Lemma 4.5, and define S � {a, b1}. For a
fixed β, we can show (α, β)-inapproximability using Lemma 5.8 if it is possible to
choose � and κ such that:

max
x∈[0,1]N

[F(x)+ L(x)] < α f ({a, b1})+ β�({a, b1}) = α + β�({a, b1}), (8.6)

which is equivalent to

max
x∈[0,1]N

[F(x)+ L(x)]− β�({a, b1}) < α. (8.7)

For a fixedβ, our goal is to choose � and κ tominimize the LHS of the above inequality.
Theorem 1.3 of [24] sets �a = �b = 0, and then chooses κ and �a1···k = �b1···k � �p in
order to minimize the quantity

max
x∈[0,1]N

[F(x)+ L(x)]− β�({a, b1}) = max
x∈[0,1]N

[F(x)+ L(x)]− β�p

≈ max
0≤q≤1,0≤p

[
(1− κ)2q(1− q)+ κ2(1− q)(1− e−p)+ 2p�p

]− β�p (8.8)

Table 4 Inapproximability of
(α(β), β)-approximations for
RegularizedUSM with
unconstrained � (Theorem 8.4)

β α(β) κ �p �q

0.1 0.0935 0.6708 −0.6064 − 0.2644

0.2 0.1743 0.6598 −0.5370 − 0.2102

0.3 0.2432 0.6577 −0.4809 − 0.1504

0.4 0.3008 0.6519 −0.4261 − 0.0940

0.5 0.3476 0.6465 −0.3778 − 0.0407

0.6 0.3844 0.6390 −0.3309 0.0128

0.7 0.4114 0.6315 −0.2881 0.0655

0.8 0.4293 0.6226 −0.2498 0.1155

0.9 0.4383 0.6144 −0.2142 0.1668

1.0 0.4390 0.6022 −0.1819 0.2152

These results are depicted graphically in Fig. 5

123

1120 Algorithmica (2024) 86:1080–1134

However, allowing �a = �b � �q to be nonzero gives better bounds for all β. That is,
our goal is to compute

min
0≤κ≤1,�q ,�p

[
max

0≤q≤1,0≤p

[
(1− κ)2q(1− q)

+ κ2(1− q)(1− e−p)+ 2p�p + 2q�q
]− β(�p + �q)

]
. (8.9)

We can approximate the optimal value by brute forcing over a range of (κ, �q , �p).
The best triples we found are displayed in Table 4. Allowing �q to be negative gives
superior bounds for β near zero, while allowing �q to be positive gives superior bounds
for β near one. In particular, for β = 1, taking κ = 0.6022, �p = −0.1819, and
�q = 0.2152 gives α(β) ≈ 0.4390 < 0.440. ��

We can do slightly better than Theorem 8.4 for β very close to one with a construc-
tion inspired by [24, Theorem 1.6].

Theorem 8.5 (Inapproximability of RegularizedUSM, β = 1) There are instances
of RegularizedUSM where (0.408, 1) is inapproximable.

Proof Again, we use Lemma 5.8. LetN � {a1···k, b1···k}, and define f as the directed
cut function of a generalized hyperedge (a1···k; b1···k); that is, the generalized hyper-
edge is said to be cut by S if S contains at least one of the tails of the hyperedge (a1···k)
but not all of the heads of the hyperedge (b1···k):

f (S) � [S ∩ {a1···k} �= ∅] · [{b1···k} �⊂ S]. (8.10)

Also define �(ai) = −0.2037, �(bi) = 0.2037, p �
∑k

i=1 xai and q � k−∑k
i=1 xbi ,

and G such that a1, . . . , ak and b1, . . . , bk are symmetric. Then as k →∞,

F(x) =
(
1− (1− p/k)k

) (
1− (1− q/k)k

)
≈ (1− e−p)(1− e−q). (8.11)

Now,

max
x∈[0,1]N

[F(x)+ L(x)] = max
p,q≥0[(1− e−p)(1− e−q)− 0.2037(p + q)+ 0.2037k]

= 0.2037k, (8.12)

where the last equality follows since the maximum is attained at p = q = 0, which
may be verified using a numerical optimizer. On the other hand,

max
S
[α f (S)+ �(S)] ≥ (f + �)({a1, b1···k−1}) = α + 0.2037(k − 2). (8.13)

It follows from Lemma 5.8 that we have shown (α, 1)-inapproximability for any α

satisfying
0.2037k < α + 0.2037(k − 2) �⇒ α > 0.4074. (8.14)

��

123

Algorithmica (2024) 86:1080–1134 1121

9 Open Problems

For all of the settings we consider, there is still a range of β for which there is
a gap between the highest α(β) known to be approximable and the lowest α(β)

known to be inapproximable. The open problems discussed below focus more on
RegularizedUSM than RegularizedCSM due to this gap being larger for
RegularizedUSM.

9.1 Approximability

Section 5: Non-positive �.
Theorem 5.1 attains bounds for RegularizedUSM with α ≥ 0.398. What is the
maximum α such that an (α, β) approximation exists for some β? In particular, is
α = 0.5 achievable?

Section 8: Unconstrained �.
Is there an algorithm that achieves an (ε, 1) approximation for RegularizedUSM?
Recall that for RegularizedCSM this was achievable when � was restricted to be
non-positive or non-negative (Lemmas 5.2 and 6.6, respectively), but not in the case
where � can have arbitrary sign (Theorem 7.6).

Section A.2: Online RegularizedUSM.
Can the α in Proposition A.4 be improved? Is there an online algorithm that works
for general non-monotone f and � non-positive? We note that the semi-streaming
algorithms studied by Kazemi et al. [22] and Nikolakaki et al. [23] provide a (0.5, 1)-
approximation algorithm for RegularizedUSM when f is monotone. For non-
monotone USM, simply selecting each element of f with probability 0.5 achieves a
0.25-approximation [15]. For non-monotone CSMwhere the constraint is a cardinality
constraint, Buchbinder et al. [29] provide an online algorithm achieving a competitive
ratio of 56

627 > 0.0893 when preemption is allowed.

9.2 Inapproximability

Table 5 summarizes some of the best-known inapproximability results and their
corresponding approximation guarantees. The gaps between approximability and inap-
proximability are particularly large in the second and fourth rows, corresponding to
RegularizedUSM for � ≤ 0 and unconstrained �, respectively. Most of our inap-
proximability results are applications of the symmetry gap technique to modified
versions of [17, Theorem 5.4]. Perhaps further reducing these gaps is simply a matter
of finding a different construction to apply the symmetry gap technique to.

Supplementary information

Python code for all theorems requiring computational verification can be found at
https://github.com/bqi343/maximizing-sums.

123

https://github.com/bqi343/maximizing-sums

1122 Algorithmica (2024) 86:1080–1134

Ta
bl
e
5

G
ap
s
be
tw

ee
n
cu
rr
en
ta
pp

ro
xi
m
ab
ili
ty

an
d
in
ap
pr
ox

im
ab
ili
ty

Se
ct
io
n

Pr
ob

le
m

In
ap
pr
ox

im
ab
ili
ty

A
pp

ro
xi
m
ab
ili
ty

So
ur
ce

of
In
ap
pr
ox

im
ab
ili
ty

Se
ct
.4

C
S
M

0.
47

8
0.
38

5
[1
7,

T
he
or
em

5.
4]

Se
ct
.5

R
e
g
u
l
a
r
i
z
e
d
U
S
M
,�
≤

0
(0

.5
,
2
ln
2
−

ε
)

N
on

e
fo
r
α
=

0.
5

Pr
op

os
iti
on

5.
9

Se
ct
.6

R
e
g
u
l
a
r
i
z
e
d
U
S
M
,�
≥

0
(
0.
5,
2√

2/
3
+

ε
)

(0
.5

,
0.
75

)
T
he
or
em

6.
9

Se
ct
.8

R
e
g
u
l
a
r
i
z
e
d
U
S
M

(0
.4
08

,
1)

(0
,
1)

T
he
or
em

8.
5

123

Algorithmica (2024) 86:1080–1134 1123

Acknowledgements I thank Tasuku Soma for mentoring me through the MIT Undergraduate Research
Opportunities Program, as well as Moran Feldman for providing many helpful suggestions on an earlier
version of this paper.

Author Contributions Benjamin Qi wrote the manuscript.

Funding Open Access funding provided by the MIT Libraries. This work was funded by the MIT Depart-
ment of Mathematics.

Declarations

Conflict of interest None.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

A.1 PriorWork

We outline the general idea for all continuous greedy algorithms because our results
build on them.

A.1.1 Submodular Maximization

For surveys of submodular maximization results, see Krause and Golovin [9] or Buch-
binder and Feldman [30]. Here, we present the prior work most relevant to our results.

f Monotone (Constrained):
It is well-known that a simple greedy algorithm achieves a

(
1− 1

e

)
-approximation for

maximizing monotone submodular functions subject to a cardinality constraint [11],
and that this approximation factor is optimal [16].

Calinescu et al. [12] introduced the continuous greedy algorithm, which achieves a(
1− 1

e

)
-approximation for maximizing the multilinear extension of a monotone sub-

modular function over a solvable down-closed polytopeP . The idea is to continuously
evolve a fractional solution y(t) from “time” t = 0 to t = 1 such that

y(t) ∈ t · P and F(y(t)) ≥ (1− e−t) f (OPT). (A1)

This continuous process can be discretized into a polynomial number of steps at the
cost of a negligible loss in the approximation factor. If P is the matroid polytope
corresponding to a matroidM = (N , I), then pipage roundingmay be used to round

123

http://creativecommons.org/licenses/by/4.0/

1124 Algorithmica (2024) 86:1080–1134

the fractional solution y(1) to an independent set S ∈ I such that E[f (S)] ≥ F(y(1))
[18].
f Non-monotone (Unconstrained):
Feige et al. [15] showed that no polynomial-time algorithm may provide a (0.5 +
ε)-approximation for maximizing a non-monotone submodular function. Buch-
binder et al. [10] later discovered a randomized double greedy algorithm that achieves
a 0.5-approximation in expectation. The idea is to iterate through the elements of the
ground set N in arbitrary order, and for each one choose whether or not to include it
in the returned set with some probability.

f Non-monotone (Constrained):
Feldman et al. [13] showed a 1/e > 0.367-approximation for maximizing the multi-
linear extension of a non-monotone submodular function over a solvable down-closed
polytope P using a measured continuous greedy. The idea is to continuously evolve a
fractional solution y(t) from t = 0 to t = 1 such that

y(t) ∈ (t · P) ∩ ((1− e−t) · [0, 1]N) and F(y(t)) ≥ te−t f (OPT). (A2)

As with the original continuous greedy, the fractional solution y(1) can be rounded to
an integer solution when P is a matroid polytope. Additionally, when f is monotone,
measured continuous greedyprovides the sameapproximationguarantee as continuous
greedy.

The approximation factor was later improved by Buchbinder and Feldman [14]
to 0.385. The idea is to first run local search on the multilinear extension F to find
a “locally optimal” fractional solution z ∈ P , round z to a set Z , and then run a
measured continuous greedy “aided” by Z . Either Z will be a 0.385-approximation
in expectation, or the set returned by aided measured continuous greedy will be. The
aided measured continuous greedy consists of running measured continuous greedy
from t = 0 to t = ts onN \Z , followed by running measured continuous greedy from
t = ts to t = 1 on the entire ground setN , where ts = 0.372. The optimal value of ts
was determined by solving a non-convex optimization problem.

On the inapproximability side, Oveis Gharan and Vondrak [17] showed that no
polynomial-time algorithm may achieve a 0.478-approximation for maximizing a
non-negative submodular function subject to a matroid independence constraint or
a 0.491-approximation for maximizing a non-negative submodular function subject
to a cardinality constraint using the symmetry gap framework of Vondrak [18]. The
symmetry gap frameworkmay also be used to succinctly re-prove the optimality of the
1 − 1

e and 1
2 approximation factors for monotone and non-monotone maximization,

respectively, which were previously proved by ad hoc methods. The idea is that given
a maximization problemwith a symmetry gap of γ ∈ (0, 1), we can construct a family
of pairs of functions that require exponentially many value oracle queries to distin-
guish but whose maxima differ by a factor of γ . This in turn shows the impossibility
of a (γ + ε)-approximation.

A.1.2 Regularized Submodular Maximization

Monotone f :

123

Algorithmica (2024) 86:1080–1134 1125

Sviridenko et al. [19] first presented an (1− 1/e− ε, 1− ε)-approximation algorithm
for RegularizedCSM involving a step where the value of �(OPT) needs to be
“guessed” towithin a factor of 1+ε, followed by continuous greedy onP∩{x : L(x) ≥
�(OPT)}. Afterward, if P is a matroid independence polytope, x can be rounded to a
set S such that 1S ∈ P using pipage rounding such thatE[f (S)+�(S)] ≥ F(x)+L(x).

Feldman [20] later combined continuous greedy with the notion of a distorted
objective that initially places higher weight on the linear term and increases the weight
on the submodular term over time. This distorted continuous greedy achieves the same
approximation factor as [19] without the need for the guessing step. The idea is to
continuously evolve a fractional solution y(t) from t = 0 to t = t f such that

y(t) ∈ t · P and Gt (y(t)) ≥ (et−t f − e−t f) f (OPT)+ t�(OPT), (A3)

where Gt (y) � et−t f F(y) + L(y) is the distorted objective at time t .6 For t f = 1,
this gives a (1 − 1/e − ε, 1)-approximation, eliminating the ε in the linear term that
appears in the bound of [19] due to the guessing step.

Using the symmetry gap technique [18], Bodek and Feldman [24, Theorem 1.1]
proved that no (1 − e−β + ε, β)-approximation algorithm for RegularizedUSM
exists for any β ≥ 0, even when � is constrained to be non-positive (see Fig. 1
for an illustration). This matches the guarantee of distorted continuous greedy,
which achieves a (1 − e−β − ε, β)-approximation for RegularizedCSM when-
ever β ∈ [0, 1]. When � is constrained to be non-positive, Lu et al. [25] achieve
a (1 − e−β − ε, β)-approximation for RegularizedCSM for any β ≥ 0 using
distorted measured continuous greedy (described below). For the remainder of this
section, f is not necessarily monotone.

Non-positive �:
Lu et al. [25] presented a (βe−β−ε, β)-approximation algorithm for Regularized
CSM combining the measured and distorted continuous greedies mentioned above due
to Feldman et al. [13, 20]. The idea is to continuously evolve a solution y(t) from
t = 0 to t = t f such that

y(t) ∈ (t · P) ∩ ((1− e−t) · [0, 1]N) (A4)

and
Gt (y(t)) ≥ te−t f f (OPT)+ t�(OPT), (A5)

where Gt (y) = et−t f F(y) + L(y) as in distorted continuous greedy above. Setting
t f = β gives the desired approximation factor. Note that when � = 0, the guarantee
of distorted measured continuous greedy becomes the same as measured continu-
ous greedy. As noted in the previous paragraph, the approximation guarantee of this
algorithm becomes the same as Feldman’s distorted continuous greedy when f is
monotone.

Bodek and Feldman [24, Theorem 1.3] proved (α(β), β)-inapproximability for
RegularizedUSM for all β ≥ 0, where α(β) is an increasing function satisfying

6 Actually, the original paper shows this only for t f = 1, but as noted by [24] this can easily be generalized.

123

1126 Algorithmica (2024) 86:1080–1134

α(1) ≈ 0.478, matching the best known inapproximability bound for maximizing a
submodular function subject to amatroid constraint [17] (see Fig. 1 for an illustration).
Non-negative �:
Bodek and Feldman [24, Theorem 1.5] showed that Buchbinder et al.’s double greedy
[10] is simultaneously a (α, 1−α/2)-approximation for RegularizedUSM for any
α ∈ [0, 0.5], and that a (0.4998 + ε, 1)-approximation for RegularizedUSM is
impossible [24, Theorem 1.6].

Unconstrained �:
Bodek andFeldman [24,Theorem1.2] presented a

(
β(1−β)
1+β

− ε, β − ε
)
-approximation

for RegularizedUSM using a local search technique.
Sun et al. [31] presented an algorithm for RegularizedCSM where the sign

of � is unconstrained which turns out to be identical to that of Lu et al. [25].
They showed that their algorithm outputs x ∈ P such that F(x) + L(x) ≥
maxS∈P

[(1
e − ε
) · f (S)+

(
β(S)−e

e(β(S)−1)
)

�(S)
]
, where β(S) �

∑
u∈S∩N+ �(u)

−∑u∈S∩N− �(u)
≥ 0.

Note that when � ≤ 0, β(S) = 0 and the coefficient of �(S) is 1, recovering the approx-
imation guarantee of Lu et al. [25]. However, this is not quite an (α, β)-approximation
algorithm when � is allowed to have arbitrary sign since β(S) is not constant. Further-
more, the expression β(S)−e

e(β(S)−1) could potentially be negative, which is problematic.

A.2 Online Algorithms for RegularizedUSM

Here, we discuss whether the general class of online algorithms can achieve approxi-
mation factors for RegularizedUSM when � is not necessarily non-negative. First,
we formally define the notion of online algorithms in the context of f + � sums with
f a directed cut function.

Definition A.1 (Online Algorithms for Directed Cuts [32]) When f is a directed cut
function, we say that an algorithm is online in the sense of Bar-Noy and Lampis [32]
if it works in the following setting:

1. The vertices of the ground set are revealed in the order u1, u2, . . . , un .
2. The algorithm is provided with �u , the total in-degree of u (in(u)), the total out-

degree of u (out(u)), as well as the edges between u and all previously revealed
vertices, only after u is revealed.

3. The algorithm makes an irreversible decision about whether to include u in the
returned set before any vertices after u are revealed.

We note that both DeterministicDG and RandomizedDG are examples of
online algorithms. Huang and Borodin [33] extended the notion of online algorithms
to general non-monotone submodular f , though we do not consider their extension
here. We first show that deterministic online algorithms cannot achieve any (α, β)-
approximation.

Proposition A.2 There are instances of RegularizedUSM with f a directed cut
function and � non-positive such that no deterministic online algorithm can provide a
(α, β)-approximation for any α > 0.

123

Algorithmica (2024) 86:1080–1134 1127

Proof Suppose that after u1 is revealed, the algorithm is provided with in(u1) = 1,
out(u1) = α/2, and �(u1) = 0.

1. If the algorithm includes u1 in the returned set, then this algorithm fails to provide
the desired approximation factor on the following instance:

f (S) = α/2 · [u1 ∈ S and u2 /∈ S] + [u2 ∈ S and u1 /∈ S], �(u2) = 0, (A6)

since it outputs a set with value at most α/2, whereas if we let OPT � {u2} then
f (OPT) = 1 and �(OPT) = 0, implying that α f (OPT) + β�(OPT) = α >

α/2.
2. On the other hand, if the algorithm does not include u1 in the returned set, then

this algorithm fails to provide the desired approximation factor on the following
instance:

f (S) = α/2 · [u1 ∈ S and u2 /∈ S] + [u2 ∈ S and u1 /∈ S], �(u2) = −1, (A7)

since it outputs a set with value 0 whereas if we let OPT � {u1} then f (OPT) =
α/2 and �(OPT) = 0, implying that α f (OPT)+ β�(OPT) = α/2 > 0. ��
We next show that RandomizedDG does not achieve any (α, β)-approximation

by adapting the proof of Proposition 6.4.

Proposition A.3 There are instances of RegularizedUSM with f a directed cut
function and � non-positive such that RandomizedDG does not provide any (α, β)-
approximation for any α > 0.

Proof Define f to be the same as in Proposition 6.4, �(un) = 0, and �(ui) = 1−r
n−1 for

all i ∈ [1, n − 1]. Then

max
S
[α f (S)+ β�(S)] ≥ (α f + β�)({un}) = α · 1+ β · 0 = α. (A8)

For each i ∈ [1, n − 1],

ai = �(ui)+ f (ui |∅) = 1− r

n − 1
+ r

n − 1
= 1

n − 1
(A9)

and

bi = −�(ui)− f (ui |N \{ui }) = r − 1

n − 1
+ 1

n − 1
= r

n − 1
. (A10)

Soby similar reasoning as the proof of Proposition 6.4, the fraction f of {u1, . . . , un−1}
selected by double greedy will be close to 1

r+1 with high probability. If un is included

in the returned set, then the value of the set will be f (1−r)+ (1− f) ≈ 1
r+1 , whereas

if un is not, then the value of the set will be f ≈ 1
r+1 . So regardless of whether double

greedy chooses to include un in the returned set or not, the returned set will have
expected value at most 1

r+1 + ε < α when both r and n are sufficiently large. ��

123

1128 Algorithmica (2024) 86:1080–1134

On the other hand, there are randomized algorithms that achieve (α, β)-
approximations. In fact, the algorithm we provide next is oblivious in the sense of
Feige and Shlomo [34]; that is, it uses only information local to each vertex.

Proposition A.4 For any β ∈ [0, 1], there is an oblivious (β(1−β), β)-approximation
algorithm for RegularizedUSM with f a directed cut function and � having arbi-
trary sign.

Proof For each vertex v, select it with probability β if (1 − β) · out(v) + �(v) ≥ 0,
and 0 otherwise. Then

β(1− β) f (OPT)+ β�(OPT) ≤
∑

v∈OPT

(β(1− β) · out(v)+ β�(v))

≤
∑

v∈V
β max((1− β) · out(v)+ �(v), 0), (A11)

and the last expression lower bounds the expected value of the solution returned by
the randomized algorithm since every vertex is not selected with probability at least
1− β. ��

A.3 Omitted Proofs

Proof of Lemma 5.3 (Remainder) We modify the non-formal proof of [14]. This non-
formal proof uses some simplifications such as allowing direct oracle access to the
multilinear extension F and giving the algorithm in the form of a continuous-time
algorithm, but these simplifications may be removed using known techniques at the
cost of introducing the o(1) into the guarantee [14].

By [14, Lemma 4],

dF(y(t))
dt

≥
{
F(y(t) ∨ 1OPT \Z)− F(y(t)) t ∈ [0, ts)
F(y(t) ∨ 1OPT)− F(y(t)) t ∈ [ts, t f) . (A12)

Also, by [14, Lemma 5], for every time t ∈ [0, t f) and set A ⊆ N it holds that:

F(y(t) ∨ 1A) ≥
(
e−max{0,t−ts } − e−t

)
[f (A)− f (A ∪ Z)] + e−t f (A). (A13)

So then by [14, Corollary 1], plugging in A = OPT \Z and A = OPT for t ∈ [0, ts)
and t ∈ [ts, t f), respectively, gives us

dF(y(t))
dt

≥
{
f (OPT \Z)− (1− e−t) f (OPT ∪ Z) t ∈ [0, ts)
ets−t f (OPT)− (ets−t − e−t) f (OPT ∪ Z) t ∈ [ts, t f) − F(y(t))

� G(t)− F(y(t)). (A14)

123

Algorithmica (2024) 86:1080–1134 1129

By submodularity of f , we may replace f (OPT \Z) with f (OPT)− f (OPT ∩ Z)

in G(t). Then

F(y(t f)) ≥ e−t f
[∫ t f

0
etG(t) dt + F(y(0))

]

= e−t f
(∫ ts

0
et
[
f (OPT)− f (OPT ∩ Z)− (1− e−t) f (OPT ∪ Z)

]
dt

+
∫ t f

ts
et
[
ets−t f (OPT)− (ets−t − e−t) f (OPT ∪ Z)

]
dt

)

. (A15)

After evaluating and rearranging this final expression, we can see that this matches
Eq. (5.7). ��
Proof of Proposition 5.4 Consider the following linear program:

maximize
x∈P

1
2 f̂ (x)+ L(x) � 1

2 maxc
(∑

ab∈E wabcab
)+ L(x)

subject to cab≥ 0
cab≤ xa + xb
cab≤ 2− xa − xb

(A16)

Here, cab corresponds to whether the edge (a, b)was cut. Note that f̂ (1S) = f (S) for
all S ⊆ N , meaning that f̂ is an extension of f (though not multilinear). Furthermore,
since f is an undirected cut function,

∀(xa, xb) ∈ [0, 1]2, xa(1−xb)+ (1−xa)xb ≥ 1

2
min(xa +xb, 2−xa −xb), (A17)

implying that F(x) ≥ 1
2 f̂ (x) for all x ∈ [0, 1]N . Equation (A17) can be verified by

first replacing (xa, xb) with (1− xa, 1− xb) if xa + xb > 1, and then performing the
following sequence of computations:

xa(1− xb)+ (1− xa)xb = xa + xb − 2xaxb

≥ xa + xb − (xa + xb)2

2

= (xa + xb)
(

1− xa + xb
2

)

≥ xa + xb
2

. (A18)

Let x∗ be a solution attaining the optimal value for Eq. (A16), which can be found
using any LP solver (e.g. using the ellipsoid method). Then

F(x∗)+ L(x∗) ≥ 1

2
f̂ (x∗)+ L(x∗)

123

1130 Algorithmica (2024) 86:1080–1134

= max
x∈P

[
1

2
f̂ (x∗)+ L(x∗)

]

≥ max
S∈I

[
1

2
f (S)+ �(S)

]

= 1

2
f (OPT)+ �(OPT). (A19)

Thus, x∗ achieves the desired approximation factor. We can finish by using pipage
rounding to round x∗ to an integral solution within I that preserves the value of f + �

in expectation.

Proof of Proposition 5.5 Consider a linear program similar to the one in the proof of
Proposition 5.4.

maximize
x∈[0,1]N

1
2 f̂ (x)+ L(x) � 1

2 maxc
(∑

ab∈E wabcab
)+ L(x)

subject to cab≥ 0
cab≤ xa
cab≤ 1− xb

(A20)

Unfortunately, it does not suffice to just find any x∗ that attains the optimum value and
apply pipage rounding. The reason for this is that F(x) �≥ 1

2 f̂ (x) in general. However,
it can be verified that

1. F(x) ≥ 1
2 f̂ (x) when x is half-integral; that is, xu ∈ {0, 0.5, 1} for all u ∈ N . This

inequality can easily be verified for the cut function of a single directed edge, and
thus extends to sums of cut functions.

2. The (x, c) polytope defined by the constraints in Eq. (A20) is bounded, and all
its vertices are half-integral. Note that this property would no longer hold if the
constraint x ∈ P was included, which is why Proposition 5.5 does not apply to
RegularizedCSM.

Both of these properties were previously used by Halperin and Zwick’s combinatorial
0.5-approximation to MAX-DICUT [28]. Thus, the remainder of our algorithm is
identical to that in the proof of Proposition 5.4, except we additionally require that
the point x∗ returned by the LP solver is a vertex of the polytope to guarantee that
F(x) ≥ 1

2 f̂ (x). ��
Proof of Lemma 7.2 (Omitted Details) We need to show that we can use an algorithm
that outputs y(t f) satisfying Eq. (7.2) to generate y ∈ t f · P such that

E[F(y)+L(y)] ≥ (t f e
−t f−o(1)) f (OPT)+(1−e−t f−o(1))�+(OPT)+t f �−(OPT),

(A21)
where the RHS of Eq. (A21) is identical to that of Eq. (7.1). Once we have y satisfying
Eq. (A21), we can use pipage rounding to round y to an integral solution T ∈ I if
t f ≤ 1 or T ⊆ N otherwise [18]. Specifically, given y ∈ P , pipage rounding generates
T ∈ I such that E[1T] = y and E[F(1T)+ L(1T)] ≥ F(y)+ L(y).

We note that y(t f) satisfying Eq. (7.2) with high probability does not necessarily
satisfy Eq. (A21) if either:

123

Algorithmica (2024) 86:1080–1134 1131

1. M = ω(f (OPT)+ �+(OPT)).
2. Equation (7.2) does not hold.

Algorithm 2 Modified Distorted Measured Continuous Greedy (t)
1: Order the elements of N such that f (u1) ≤ f (u2) ≤ · · · ≤ f (un).
2: for i = 0 to n do
3: Let yi ← the result of running [25, Algorithm 1] onNi = {u1, u2, . . . , ui }.
4: Let Ti ← the result of applying pipage rounding to yi .
5: end for
6: return the set Ti maximizing f (Ti)+ �(Ti).

However, we claim that the output of Algorithm 2 does satisfy the conditions of
Lemma 7.2. It suffices to show that the two issues mentioned above are now resolved.

1. Assume

∅ �=OPT ∈ argmaxOPT⊆N
[
t f e

−t f f (OPT)

+ (1− e−t f)�+(OPT)+ t f �−(OPT)
]
. (A22)

Defining j � max{i | ui ∈ OPT }, it follows that

t f e
−t f f (OPT)+ (1− e−t f)�+(OPT) ≥ t f e

−t f max(f (u j), f (∅))
≥ t f e

−t f M j

j
, (A23)

where Mj is the value of M when restricted to N j . Thus, Mj ≤ n(f (OPT) +
�+(OPT)). By choosing ε = o

(1
n

)
in [25, Algorithm 1], Eq. (7.2) implies that y j

satisfies Eq. (A21) with high probability.
2. Regardless of whether Eq. (7.2) holds, the set T returned by Algorithm 2 always

satisfies f (T)+ �(T) ≥ f (T0)+ �(T0) ≥ 0. Thus, if T satisfies Lemma 7.2 with
high probability, it also satisfies Lemma 7.2 in expectation.

Proof of Lemma 7.5 As with the proof of Lemma 5.3, we only present an informal
proof assuming direct oracle access to the multilinear extension F and giving the
algorithm in the form of a continuous-time algorithm. The techniques mentioned in
[14, 25] can be used to formalize this at the cost of introducing the o(1) term. As
before, it suffices to prove the conclusion for integral sets Z .

Let G(y(t)) � et−t f F(y(t))) + L(y(t)) be the value of the distorted objective at
time t . Then

dG(y(t))
dt

≥ et−t f ·
{
f (OPT \Z)− (1− e−t) f (OPT ∪ Z) t ∈ [0, ts)
ets−t f (OPT)− (ets−t − e−t) f (OPT ∪ Z) t ∈ [ts, t f)

+ e−t ·
{

�+(OPT \Z) t ∈ [0, ts)
�+(OPT \Z)+ ets�(OPT ∩ Z) t ∈ [ts, t f)

123

1132 Algorithmica (2024) 86:1080–1134

+
{

�−(OPT \Z) t ∈ [0, ts)
�−(OPT) t ∈ [ts, t f) (A24)

Here, the first and third terms of the summation correspond directly to those of the
original aided measured continuous greedy, while the second comes from observing
that yu(t) ≤ 1−e−t for u ∈ OPT \Z and yu(t) ≤ 1−e−max(t−ts ,0) for u ∈ OPT ∩Z .

To lower bound G(y(t f)), we can integrate Eq. (A24) from t = 0 to t = t f . As
expected, the dependence on f turns out to be the same as Lemma 5.3. ��

Proof of Proposition 7.8 Our goal is to show that when f is a directed cut function,

max
x∈[0,1]N

[F(x)+ L(x)] ≥ max
S⊆N

[0.5 f (S)+ �(S)]. (A25)

The idea is to first construct an auxiliary function f̂ (x) satisfying the following prop-
erties (note that we do not capitalize f̂ since it is not a multilinear extension):

1. The function f̂ is symmetric; that is, f̂ (x) = f̂ (x) for all x ∈ [0, 1]N .
2. The function f̂ upper bounds f ; that is, f̂ (1S) ≥ f (S) for all S ⊆ N .

3. There exists x∗ ∈ argmaxx∈[0,1]N
[
0.5 f̂ (x)+ L(x)

]
such that x∗ = x∗ and

F(x∗) ≥ 0.5 f̂ (x∗).

Assuming that all these properties hold, we find:

max
x∈[0,1]N

[F(x)+ L(x)] ≥ max
x∈[0,1]N

[
0.5 f̂ (x)+ L(x)

]
(by properties 1 and 3)

≥ max
S⊆N

[0.5 f̂ (1S)+ �(S)]
≥ max

S⊆N
[0.5 f (S)+ �(S)] (by property 2). (A26)

Before defining f̂ , we examine the symmetrization operator x. Recall that sym-
metrization is defined with respect to a permutation group G. Partition the ground set
into K subsetsN = N1⊍N1 · · ·⊍NK , where ⊍ denotes the disjoint union of two sets,
and define the function g : N → {1, 2, . . . , K } to be the mapping from every element
of the ground set to the subset that contains it. This mapping satisfies the property that
g(ui) = g(u j) if and only if there exists a permutation σ ∈ G such that σ(ui) = u j .
Observe that

xui = avgg(ui)(x) �
∑

u∈Ng(ui)
xu

|Ng(ui)|
; (A27)

that is, the value at ui in x is just the average of the values in x of all u in the same
subset as ui .

Next, we define f̂ in terms of avg1(x), avg2(x), . . . , avgK (x), which guarantees
that property 1 is satisfied. For all 1 ≤ i, j ≤ K , define wi j ≥ 0 as the sum of the

123

Algorithmica (2024) 86:1080–1134 1133

weights of the edges directed from Ni to N j (where i can equal j). Then

f̂ (x) �
K∑

i=1

K∑

j=1
wi j min(avgi (x), 1− avg j (x)). (A28)

It remains to show that properties 2 and 3 are satisfied.

Property 2:
Since every subset Ni is symmetric, the proportion of edges from Ni to N j that are
cut by S is bounded above by the proportion of elements in Ni contained within S
(which is precisely avgi (x)) as well as the proportion of elements inN j not contained
within S (which is precisely 1− avg j (x)). This implies that f̂ (1S) ≥ f (S) for all S.

Property 3:
Similar to the proof of Proposition 5.5, it can be shown that there exists a half-integral
tuple (avg1(x), avg2(x), . . . , avgK (x)) at which 0.5 f̂ (x) + L(x) is maximized. This
tuple corresponds to a half-integral and symmetric x∗. As in Proposition 5.5, it is easy
to check that F(x∗) ≥ 0.5 f̂ (x∗), completing the proof. ��

References

1. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network.
In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 137–146 (2003)

2. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: theory,
efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(2) (2008)

3. Krause, A., Guestrin, C.: Submodularity and its applications in optimized information gathering. ACM
Trans. Intell. Syst. Technol. (TIST) 2(4), 1–20 (2011)

4. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pp. 510–520 (2011)

5. Wei, K., Liu, Y., Kirchhoff, K., Bilmes, J.: Using document summarization techniques for speech
data subset selection. In: Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 721–726 (2013)

6. Gygli, M., Grabner, H., Van Gool, L.: Video summarization by learning submodular mixtures of
objectives. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3090–3098 (2015)

7. Jegelka, S., Bilmes, J.: Submodularity beyond submodular energies: coupling edges in graph cuts. In:
CVPR 2011, pp. 1897–1904. IEEE (2011)

8. Shen, J., Liang, Z., Liu, J., Sun, H., Shao, L., Tao, D.:Multiobject tracking by submodular optimization.
IEEE Trans. Cybern. 49(6), 1990–2001 (2018)

9. Krause, A., Golovin, D.: Submodular function maximization. Tractability 3, 71–104 (2014)
10. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-approximation for

unconstrained submodular maximization. In: 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pp. 649–658 (2012). https://doi.org/10.1109/FOCS.2012.73

11. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submod-
ular set functions—I. Math. Program. 14(1), 265–294 (1978)

12. Calinescu, G., Chekuri, C., Pal, M., Vondrák, J.: Maximizing a monotone submodular function subject
to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

13. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maxi-
mization. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 570–579.
IEEE (2011)

123

https://doi.org/10.1109/FOCS.2012.73

1134 Algorithmica (2024) 86:1080–1134

14. Buchbinder, N., Feldman, M.: Constrained submodular maximization via a nonsymmetric technique.
Math. Oper. Res. 44(3), 988–1005 (2019)

15. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J.
Comput. 40(4), 1133–1153 (2011)

16. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set
function. Math. Oper. Res. 3(3), 177–188 (1978)

17. Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing. In: Proceedings of
the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1098–1116. SIAM
(2011)

18. Vondrák, J.: Symmetry and approximability of submodular maximization problems. SIAM J. Comput.
42(1), 265–304 (2013)

19. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular opti-
mization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

20. Feldman, M.: Guess free maximization of submodular and linear sums. Algorithmica 83(3), 853–878
(2021)

21. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity:
Guarantees, fast algorithms, and applications. In: International Conference on Machine Learning, pp.
2634–2643. PMLR (2019)

22. Kazemi, E., Minaee, S., Feldman, M., Karbasi, A.: Regularized submodular maximization at scale. In:
International Conference on Machine Learning, pp. 5356–5366. PMLR (2021)

23. Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing submodularity and cost. In:
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
1256–1266 (2021)

24. Bodek, K., Feldman, M.: Maximizing sums of non-monotone submodular and linear functions: under-
standing the unconstrained case. arXiv:2204.03412 (2022). A conference version appeared in ESA
2022

25. Lu, C., Yang, W., Gao, S.: Regularized nonmonotone submodular maximization. Optimization 1–27
(2023)

26. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J.
Mach. Learn. Res. 17(83), 1–5 (2016)

27. Trevisan, L.: Parallel approximation algorithms by positive linear programming. Algorithmica 21(1),
72–88 (1998)

28. Halperin, E., Zwick, U.: Combinatorial approximation algorithms. In: Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 103, p. 1. SIAM (2001)

29. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. In:
Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1202–
1216. SIAM (2014)

30. Buchbinder, N., Feldman, M.: Submodular functions maximization problems. (2018)
31. Sun, X., Xu, D., Zhou, Y., Wu, C.: Maximizing modular plus non-monotone submodular functions.

arXiv:2203.07711 (2022)
32. Bar-Noy, A., Lampis, M.: Online maximum directed cut. J. Comb. Optim. 24(1), 52–64 (2012)
33. Huang, N., Borodin, A.: Bounds on double-sided myopic algorithms for unconstrained non-

monotonesubmodular maximization. In: International Symposium on Algorithms and Computation,
pp. 528–539. Springer (2014)

34. Feige, U., Jozeph, S.: Oblivious algorithms for themaximumdirected cut problem.Algorithmica 71(2),
409–428 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2204.03412
http://arxiv.org/abs/2203.07711

	On Maximizing Sums of Non-monotone Submodular and Linear Functions
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Technical Tools

	3 Our Contributions
	Section 4: Inapproximability of Maximization with Cardinality Constraint
	Section 5: Non-positive ell
	Section 6: Non-negative ell, RegularizedUSM
	Section 7: Non-negative ell, RegularizedCSM
	Section 8: Unconstrained ell

	4 Inapproximability of Maximization with Cardinality Constraint
	5 Non-positive ell
	5.1 Approximation Algorithms
	5.2 Inapproximability

	6 Non-negative ell: RegularizedUSM
	6.1 Approximations with Double Greedy
	6.2 Additional Approximation Algorithms
	6.3 Inapproximability

	7 Non-negative ell: RegularizedCSM
	7.1 Approximation Algorithms
	7.2 Inapproximability

	8 Unconstrained ell
	8.1 Approximability
	8.2 Inapproximability

	9 Open Problems
	9.1 Approximability
	9.2 Inapproximability
	Supplementary information

	Acknowledgements

	Appendix A
	A.1 Prior Work
	A.1.1 Submodular Maximization
	A.1.2 Regularized Submodular Maximization

	A.2 Online Algorithms for RegularizedUSM
	A.3 Omitted Proofs

	References

