
Algorithmica (2024) 86:638–655
https://doi.org/10.1007/s00453-023-01181-5

Token Sliding on Graphs of Girth Five

Valentin Bartier1 · Nicolas Bousquet1 · Jihad Hanna2 · Amer E. Mouawad2,3 ·
Sebastian Siebertz3

Received: 9 June 2022 / Accepted: 9 October 2023 / Published online: 28 October 2023
© The Author(s) 2023

Abstract
In the Token Sliding problem we are given a graph G and two independent sets
Is and It in G of size k ≥ 1. The goal is to decide whether there exists a sequence
〈I1, I2, . . . , I�〉 of independent sets such that for all j ∈ {1, . . . , � − 1} the set I j is an
independent set of size k, I1 = Is , I� = It and I j�I j+1 = {u, v} ∈ E(G). Intuitively,
we view each independent set as a collection of tokens placed on the vertices of the
graph. Then, the problem asks whether there exists a sequence of independent sets
that transforms Is into It where at each step we are allowed to slide one token from a
vertex to a neighboring vertex. In this paper, we focus on the parameterized complexity
of Token Sliding parameterized by k. As shown by Bartier et al. (Algorithmica
83(9):2914–2951, 2021. https://doi.org/10.1007/s00453-021-00848-1), the problem
is W[1]-hard on graphs of girth four or less, and the authors posed the question of
whether there exists a constant p ≥ 5 such that the problem becomes fixed-parameter
tractable ongraphs of girth at least p.Weanswer their questionpositively andprove that
the problem is indeed fixed-parameter tractable on graphs of girth five or more, which
establishes a full classification of the tractability of Token Sliding parameterized
by the number of tokens based on the girth of the input graph.

Keywords Token sliding · Independent set · Girth · Combinatorial reconfiguration ·
Parameterized complexity

Valentin Bartier, Nicolas Bousquet, Jihad Hanna, Amer E. Mouawad and Sebastian Siebertz have
contributed equally to this work.

This work is supported by PHC Cedre Project 2022 “PLR”. A Preliminary version of the work appeared
in the 48th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2022).
Valentin Bartier: Supported by ANR Project GrR (ANR-18-CE40-0032). Nicolas Bousquet: Supported by
ANR Project GrR (ANR-18-CE40-0032). Amer E. Mouawad: Research supported by the Alexander von
Humboldt Foundation and partially supported by URB Project “A theory of change through the lens of
reconfiguration”.

B Amer E. Mouawad
amer.mouawad@gmail.com

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01181-5&domain=pdf
https://doi.org/10.1007/s00453-021-00848-1

Algorithmica (2024) 86:638–655 639

1 Introduction

Many algorithmic questions present themselves in the following form: Given the
description of a system state and the description of a state we would prefer the system
to be in, is it possible to transform the system from its current state into the more
desired one without “breaking” certain properties of the system in the process? Such
questions, with some generalizations and specializations, have received a substan-
tial amount of attention under the so-called combinatorial reconfiguration framework
[1–3].

Historically, the study of reconfiguration questions predates the field of computer
science, as many classic one-player games can be formulated as reachability questions
[4, 5], e.g., the 15-puzzle and Rubik’s cube. More recently, reconfiguration problems
have emerged from computational problems in different areas such as graph theory
[6–8], constraint satisfaction [9, 10], computational geometry [11], and even quantum
complexity theory [12]. We refer the reader to the surveys by van den Heuvel [2] and
Nishimura [13] for extensive background on combinatorial reconfiguration.

Independent Set Reconfiguration. In this work, we focus on the reconfiguration
of independent sets. Given a simple undirected graph G, a set of vertices I ⊆ V (G)

is an independent set if the vertices of this set are pairwise non-adjacent. Finding
an independent set of size k, i.e., the Independent Set problem, is known to be
NP-hard, but also W[1]-hard1 parameterized by solution size k and not approximable
within O(n1−ε), for any ε > 0, unless P = NP [14]. Moreover, Independent Set

remains W[1]-hard on graphs excluding C4 (the cycle on four vertices) as an induced
subgraph [15].

We view an independent set as a collection of tokens placed on the vertices of
a graph such that no two tokens are placed on adjacent vertices. This gives rise to
two natural adjacency relations between independent sets (or token configurations),
also called reconfiguration steps. These reconfiguration steps, in turn, give rise to two
combinatorial reconfiguration problems.

In the Token Sliding problem, introduced by Hearn and Demaine [16], two
independent sets are adjacent if one can be obtained from the other by removing
a token from a vertex u and immediately placing it on another vertex v with the
requirement that {u, v} must be an edge of the graph. The token is then said to slide
from vertex u to vertex v along the edge {u, v}. Generally speaking, in the Token

Sliding problem, we are given a graph G and two independent sets Is and It of G.
The goal is to decide whether there exists a sequence of slides (a reconfiguration
sequence) that transforms Is to It . The problem has been extensively studied under
the combinatorial reconfiguration framework [17–23]. It is known that the problem
is PSPACE-complete, even on restricted graph classes such as graphs of bounded
bandwidth (and hence pathwidth) [24], planar graphs [16], split graphs [25], and
bipartite graphs [26]. However, Token Sliding can be decided in polynomial time on
trees [19], interval graphs [17], bipartite permutation and bipartite distance-hereditary
graphs [20], and line graphs [7].

1 Informally, this means that it is unlikely to be fixed-parameter tractable.

123

640 Algorithmica (2024) 86:638–655

In the Token Jumping problem, introduced by Kamiński et al. [22], we drop the
restriction that the token should move along an edge of G and instead we allow it
to move to any vertex of G provided it does not break the independence of the set
of tokens. That is, a single reconfiguration step consists of first removing a token on
some vertex u and then immediately adding it back on any other vertex v, as long as
no two tokens become adjacent. The token is said to jump from vertex u to vertex
v. Token Jumping is also PSPACE-complete on graphs of bounded bandwidth [24]
and planar graphs [16]. Lokshtanov and Mouawad [26] showed that, unlike Token

Sliding, which isPSPACE-complete on bipartite graphs, theToken Jumping problem
becomesNP-complete on bipartite graphs. On the positive side, it is “easy” to show that
Token Jumping can be decided in polynomial-time on trees (and even on split/chordal
graphs) since we can simply jump tokens to leaves (resp. vertices that only appear in
the bag of a leaf in the clique tree) to transform one independent set into another.

In this paper we focus on the parameterized complexity of the Token Sliding

problem on graphs where cycles with prescribed lengths are forbidden. Given an NP-
hard problem, parameterized complexity permits to refine the notion of hardness; does
the hardness come from the whole instance or from a small parameter? A problem
� is FPT (fixed-parameter tractable) parameterized by k if one can solve it in time
f (k) · poly(n), for some computable function f . In other words, the combinatorial
explosion can be restricted to the parameter k. In the rest of the paper, our parameter k
will be the size of the independent set (i.e. the number of tokens). Token Sliding is
known to beW[1]-hard parameterized by k on general [23] and bipartite [27] graphs. It
remainsW[1]-hard on {C4, . . . ,Cp}-free graphs for any p ∈ N [27] and becomes FPT
parameterized by k on bipartiteC4-free graphs. TheToken Jumping problem isW[1]-
Hard on general graphs [21] and is FPT when parameterized by k on graphs of girth
five or more [27]. For graphs of girth four, it was shown that Token Jumping being
FPT would imply that Gap-ETH, an unproven computational hardness hypothesis, is
false [28]. Both Token Jumping and Token Sliding were recently shown to be
XL-complete [29].

Our Result. The complexity of the Token Jumping problem parameterized by k
is settled with regard to the girth of the graph, i.e., the problem is unlikely to be FPT
for graphs of girth four or less and FPT for graphs of girth five or more. For Token
Sliding, it was only known that the problem is W[1]-hard for graphs of girth four or
less and the authors in [27] posed the question of whether there exists a constant p
such that the problem becomes fixed-parameter tractable on graphs of girth at least
p. We answer their question positively and prove that the problem is indeed FPT for
graphs of girth five or more, which establishes a full classification of the tractability
of Token Sliding parameterized by the number of tokens based on the girth of the
input graph.

OurMethods.Our result extends and builds on the recent galactic reconfiguration
framework introduced by Bartier et al. [30] to show that Token Sliding is FPT
on graphs of bounded degree, chordal graphs of bounded clique number, and planar
graphs. Let us briefly describe the intuition behind the framework and how we adapt
it for our use case. One of the main reasons why the Token Sliding problem is
believed to be “harder” than the Token Jumping problem is due to what the authors

123

Algorithmica (2024) 86:638–655 641

in [30] call the bottleneck effect. Indeed, if we consider Token Sliding on trees, there
might be a lot of empty leaves/subtrees in the tree but there might be a bottleneck in
the graph that prevents any other tokens from reaching these vertices. For instance, if
we consider a star with one long subdivided branch, then one cannot move any tokens
from the leaves of the star to the long branch while there are at least two tokens on
leaves. That being said, if the long branch of the star is “long enough” with respect
to k then it should be possible to reduce parts of it; as some part would be irrelevant.
In fact, this observation can be generalized to many other cases. For instance, when
we have a large grid minor, then whenever a token slides into the structure it should
then be able to slide freely within the structure (while avoiding conflicts with any
other tokens in that structure). However, proving that a structure can be reduced in the
context of reconfiguration is usually a daunting task due to the many moving parts.
To overcome this problem, the authors in [30] introduce a new type of vertices called
black holes, which can simulate the behavior of a large grid minor by being able to
absorb as many tokens as they see fit; and then project them back as needed.

Sinceweneed tomaintain the girth property,2 wedonot use the notion of black holes
and instead show that when restricted to graphs of girth five or more we can efficiently
find structures that behave like large grid minors (from the discussion above) and
replace themwith subgraphs of size bounded by a function of k that can absorb/project
tokens in a similar fashion (and do not decrease the girth of the graph). We note that
our strategy for reducing such structures is not limited to graphs of high girth and
could in principle apply to any graph.

At a high level, our FPT algorithm can then be summarized as follows. We let
(G, k, Is, It) denote an instance of the problem, where G has girth five or more. In a
first stage,we show thatwe can alwaysfind a reconfiguration sequence from Is to I ′

s and
from It to I ′

t such that each vertex v ∈ I ′
s ∪ I ′

t has degree bounded by some function of
k. This immediately implies that we can bound the size of L1∪L2, where L1 = I ′

s ∪ I ′
t

and L2 = NG(I ′
s ∪ I ′

t). In a second stage, we show that every connected component
C of L3 = V (G)\(L1 ∪ L2) can be classified as either a degree-safe component, a
diameter-safe component, a bad component, or a bounded component. The remainder
of the proof consists in showing that degree-safe and diameter-safe components behave
like large grid minors and can be replaced by bounded-size gadgets.We then show that
bounded components and bad components will eventually have bounded size and we
then conclude the algorithm by showing how to bound the total number of components
in L3.

Finally, we note that many interesting questions remain open. In particular, it
remains open whether Token Sliding admits a (polynomial) kernel on graphs of
girth five or more and whether the problem remains tractable if we forbid cycles of
length p mod q, for every pair of fixed integers p and q, or if we exclude odd cycles.

2 This is not the only reason we opted to not use black holes; introducing black holes in our algorithm
complicates parts of the analysis.

123

642 Algorithmica (2024) 86:638–655

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N we let [n] = {1, 2, . . . , n}.
Graphs.Weassume that each graphG is finite, simple, and undirected.We letV (G)

and E(G) denote the vertex set and edge set ofG, respectively. The open neighborhood
of a vertex v is denoted by NG(v) = {u | {u, v} ∈ E(G)} and the closed neighborhood
by NG [v] = NG(v) ∪ {v}. For a set of vertices Q ⊆ V (G), we define NG(Q) =
{v /∈ Q | {u, v} ∈ E(G), u ∈ Q} and NG [Q] = NG(Q) ∪ Q. The subgraph of
G induced by Q is denoted by G[Q], where G[Q] has vertex set Q and edge set
{{u, v} ∈ E(G) | u, v ∈ Q}. We let G − Q = G[V (G) \ Q]. We use NQ(v)

and NQ[v] instead of NG[Q∪{v}](v) and NG[Q∪{v}][v] to denote the open and closed
neighborhoods of v in the graph induced by Q ∪ {v}, respectively.

A walk of length � from v0 to v� in G is a vertex sequence v0, . . . , v�, such that for
all i ∈ {0, . . . , � − 1}, {vi , vi+1} ∈ E(G). It is a path if all vertices are distinct. It is
a cycle if � ≥ 3, v0 = v�, and v0, . . . , v�−1 is a path. A path from vertex u to vertex
v is also called a uv-path. For a pair of vertices u and v in V (G), by distG(u, v) we
denote the distance or length of a shortest uv-path in G (measured in number of edges
and set to ∞ if u and v belong to different connected components). The eccentricity
of a vertex v ∈ V (G), ecc(v), is equal to maxu∈V (G)(distG(u, v)). The diameter of
G, diam(G), is equal to maxv∈V (G)(ecc(v)). The girth of G, girth(G), is the length
of a shortest cycle contained in G. If the graph does not contain any cycles (that is, it
is a forest), its girth is defined to be infinity.

Reconfiguration. In theToken Slidingproblemweare given agraphG = (V , E)

and two independent sets Is and It of G, each of size k ≥ 1. The goal is to determine
whether there exists a sequence 〈I0, I1, . . . , I�〉 of independent sets of size k such
that Is = I0, I� = It , and I j�I j+1 = {u, v} ∈ E(G) for all j ∈ {0, . . . , � − 1}. In
other words, if we view each independent set as a collection of tokens placed on a
subset of the vertices of G, then the problem asks for a sequence of independent sets
which transforms Is to It by individual token slides along edges of G which maintain
the independence of the sets. Note that Token Sliding can be expressed in terms
of a reconfiguration graph R(G, k); R(G, k) contains a node for each independent
set of G of size exactly k and we add an edge between two nodes whenever the
independent set corresponding to one node can be obtained from the other by a single
reconfiguration step. That is, a single token slide corresponds to an edge in R(G, k).
The Token Sliding problem asks whether Is, It ∈ V (R(G, k)) belong to the same
connected component of R(G, k).

3 Reducing the Graph

Let (G, k, Is, It) be an instance of Token Sliding, where G has girth five or more.
The aim of this section is to bound the size of the graph by a function of k. We start
with a very simple reduction rule that allows us to get rid of most twin vertices in the
graph. Two vertices u, v ∈ V (G) are said to be twins if u and v have the same set of
neighbours, that is, if N (u) = N (v).

123

Algorithmica (2024) 86:638–655 643

Lemma 1 Assume u, v ∈ V (G)\(Is ∪ It) and N (u) = N (v). Then (G, k, Is, It) is a
yes-instance if and only if (G − {v}, k, Is, It) is a yes-instance.
Proof Since u, v ∈ V (G)\(Is ∪ It) andG−{v} is an induced subgraph ofG, it follows
that if there exists a reconfiguration sequence S = 〈I0, I1, . . . , I�−1, I�〉 from Is to It
in G − {v}, then the same sequence remains valid in G.

Now assume that there exists a sequence S = 〈I0, I1, . . . , I�−1, I�〉 from Is to It
in G. Since u, v ∈ V (G) \ (Is ∪ It), in Is there are no tokens on u and v and the same
holds for It . Hence, if there exists I j , 1 ≤ j ≤ �−1 such that v ∈ I j , then u /∈ I j . The
reason is that a token can be moved to u only via N (u). By assumption N (u) = N (v)

and N (v) is blocked by the token on v. This implies that we can always choose to
slide the token to u instead of v, as needed. �

Note that in a graph of girth at least five twins can have degree at most one.
Given Lemma 1, we assume in what follows that twins have been reduced. In other

words, we let (G, k, Is, It) be an instance of Token Sliding where G has girth five
or more and twins not in Is ∪ It have been removed. We now partition our graph into
three sets L1 = Is ∪ It , L2 = NG(L1), and L3 = V (G)\(L1 ∪ L2).

Lemma 2 If u ∈ L2 ∪ L3, then u has at most |L1| ≤ 2k neighbors in L1 ∪ L2, i.e.,
|NL1∪L2(u)| ≤ 2k.

Proof Assume u1 is a vertex in L2 and u2 ∈ NL2(u1) is a neighbor of u1 in L2. If u1
and u2 have a common neighbor u3 ∈ L1, then this would imply the existence of a
triangle in G, a contradiction.

Now assume u1 ∈ L3 and assume u2, u3 ∈ NL2(u1) are two neighbors of u1 in L2.
If u2 and u3 have a common neighbor u4 ∈ L1 this would imply the existence of a C4
in G, a contradiction.

Hence, for any vertex u ∈ L2 ∪ L3 we have NL1(v) ∩ NL1(w) = ∅ for all distinct
v,w ∈ NL2 [u]. Since each vertex in L2 has at least one neighbor in L1 by definition,
each vertex u ∈ L2 ∪ L3 can have at most one neighbor in L2 for each of its non-
neighbors in L1, for a total of |L1| ≤ 2k neighbors in L1 ∪ L2. �

3.1 Safe, Bounded, and Bad Components

Given G and the partition L1 = Is ∪ It , L2 = NG(L1), and L3 = V (G) \ (L1 ∪ L2)

we now classify components of G[L3] into four different types.
Definition 1 Let C be a maximal connected component in G[L3].
• We call C a diameter-safe component whenever diam(G[V (C)]) > k3.
• We callC a degree-safe component wheneverG[V (C)] has a vertex u with at least
k2 + 1 neighbors X in C and at least k2 vertices of X have degree (at least) two in
G[V (C)].

• We call C a bounded component whenever diam(G[V (C)]) ≤ k3 and no vertex
of C has degree more than k2 in G[V (C)].

• We call C a bad component otherwise.

123

644 Algorithmica (2024) 86:638–655

Lemma 3 A bounded component C in G[L3] contains at most 2k2k
3
vertices, i.e.,

|V (C)| ≤ 2k2k
3
.

Proof Let T be a breadth-first search tree of C and let u ∈ V (C) denote the root of T .
Each vertex in T has at most k2 children given the degree bound of C and the height
of the tree is at most k3 given the diameter bound of C . Hence the total number of
leaves in T is at most k2k

3
and the total number of vertices in C is at most 2k2k

3
. �

We now describe a crucial property of degree-safe and diameter-safe components,
which we call the absorption-projection property. We note that this notion is similar
to the notion of black holes introduced in [30]. The key (informal) insight is that for
a safe component C we can show the following:

1. If there exists a reconfiguration sequence S = 〈I0, I1, . . . , I�−1, I�〉 from Is to It ,
then we may assume that I j ∩ NG(V (C)) ≤ 1, for 0 ≤ j ≤ �.

2. A safe component can absorb all k tokens, i.e, a safe component contains an
independent set of size at least k and whenever a token reaches NG(V (C)) then
we can (but do not have to) absorb it into C (regardless of how many tokens are
already in C). Moreover, a safe component can then project the tokens back into
its neighborhood as needed.

Let us start by proving the absorption-projection property for degree-safe compo-
nents. An s-star is a vertex with s pairwise non-adjacent neighbors, which are called
the leaves of the s-star. A subdivided s-star is an s-star where each edge is subdivided
(replaced by a new vertex of degree two adjacent to the endpoints of the edge) any
number of times. We say that each leaf of a subdivided star belongs to a branch of the
star. The length of a branch is the length of the path connecting the center of the star
to the leaf of the branch.

Lemma 4 Let C be a degree-safe component in G[L3]. Then C contains an induced
subdivided k-star where all k branches have length more than one.

Proof Since C is a degree-safe component, it must contain a vertex u with at least
k2 neighbors in C and each one of these neighbors must have another neighbor in C .
Note that all of these vertices must be distinct, as otherwise we could find a cycle of
length three or four.

Let us call the distance-one and distance-two neighbors of u in C the first level and
second level. That is, we let N1(u) = NC (u)\{u} and N2(u) = NC (N1(u))\(N1(u)∪
{u}).

Note that the first level, N1(u), is an independent set, since otherwise that would
imply the existence of a triangle. Also, vertices in the second level, N2(u), cannot
be connected to more than one vertex of the first level, since that would imply the
existence of a C4.

As for the second level, it contains at least k2 vertices and we can have edges
between those vertices. We claim that G2 = G[N2(u)] contains an independent set of
size k. Assume first that G2 contains a vertex v of degree k. Then, since G2 is triangle
free, the k neighbors of v form the required independent set. Otherwise, all vertices of
G2 have degree at most k − 1. We iteratively add one vertex v to the independent set

123

Algorithmica (2024) 86:638–655 645

and remove N [v] from G2. This can be repeated for k times leading to the required
independent set. Therefore, we get an induced subdivided star with at least k branches
of length at least two and there is no edge between the different branches. �
Lemma 5 Let C be a degree-safe component in G[L3] and let A be an induced
subdivided k-star contained in C where all branches have length exactly two. Let
B = NG(V (A)). If (G, k, Is, It) is a yes-instance, then there exists a reconfiguration
sequence from Is to It in G where we have at most one token on a vertex of B at all
times.

Proof First, note that the existence of A follows from Lemma 4 and that it is indeed
the case that Is ∩ B = It ∩ B = ∅. Let r denote the root of the induced subdivided
k-star and let N1 and N2 denote the first and second levels of subdivided the star,
respectively. Let us explain how we can adapt a transformation S from Is to It into
a transformation containing at most one token on a vertex of B at all times and such
that, at any step, the number of tokens in V (A)∪ B in both transformations is the same
and the positions of the tokens in V (G)\(V (A) ∪ B) are the same.

Assume that, in the transformation S, a token is about to reach a vertex b ∈ B, that
is, we consider the step right before a token is about to slide into B. We first move all
tokens residing in A, if any, to the second level of their branches, i.e, to N2. This is
possible as A is an induced subdivided star and there are no other tokens on B. Note
that we can assume that there is no token on r (and hence every token is on a branch
and “the branch” of a token is well defined) since we can otherwise slide this token
to one of the empty branches while B is still empty of tokens. Then we proceed as
follows:

• If b is a neighbor of the root r of the subdivided star, then b is not a neighbor of
any vertex at the second level of A, since otherwise this would create a cycle of
length four. Hence, we can slide the token into b and then r and then some empty
branch of A (which is possible since we have k branches in A).

• Otherwise, if b has no neighbors in the first level N1 of A, we choose a branch
that has a neighbor a of b in N2 (which exists since b is not adjacent to r nor N1).
Then, if the branch of a already contains a token, we can safely slide the token
into another branch by going to the first level, then the root r , then to another
empty branch of A. Now we slide all tokens in A to the first level of their branch
(ensuring that b has no neighbors in A containing tokens) and finally we slide the
initial token to b and then to a.

• Finally, if b has neighbors in the first level of A, note that it cannot have more than
one neighbor in N1 since that would imply the existence of a cycle of length four.
Let a denote the unique neighbor of b in N1. If the branch of a has a token on it,
then we safely slide it into another empty branch. Now we slide all tokens in A to
the first level of their branch and finally we slide the initial token to b and then to
a.

Note that all of above slides are reversible and we can therefore use a similar
strategy to project tokens from V (A) to B. If, in S, a token is about to leave the
vertex b ∈ B, then we can similarly move a token from V (A) to b and then perform

123

646 Algorithmica (2024) 86:638–655

Fig. 1 An illustration of a
degree-safe component C

L1 = Is ∪ It

L2 = N(L1)

C

A

B

B

r

N1

N2

the same move. Finally, if a reconfiguration step in S consists of moving tokens in
V (A)∪ B to V (A)∪ B, we ignore that step. And, if it consists of moving a token from
V (G)\(V (A) ∪ B) to V (G)\(V (A) ∪ B) we perform the same step.

It follows from the previous procedure that whenever (G, k, Is, It) is a yes-instance
we can find a reconfiguration sequence from Is to It in G where we have at most one
token in B at all times, as claimed (see figure 1). �
Corollary 1 Let C be a degree-safe component in G[L3]. If (G, k, Is, It) is a yes-
instance, then there exists a reconfiguration sequence from Is to It in G where we
have at most one token in N (C) (⊆ L2) at all times.

Proof Let A be an induced subdivided k-star contained in C where all branches have
length exactly two and let B = NG(V (A)). Assume a token slides to a vertex c ∈ N (C)

(for the first time). If c ∈ B, then the result follows from Lemma 5. Otherwise, we
can follow a path P contained in C that leads to the root of the induced k-subdivided
star (such a path exists since c ∈ N (C) and C is connected) and right before we reach
B we then again can apply Lemma 5. Note that, regardless of whether c is in B or
not, once the token reaches N (C) we can assume that it is immediately absorbed by
the degree-safe component (and later projected as needed). This implies that we can
always find a path P to slide along such that N [P] contains no tokens. �

We now turn our attention to diameter-safe components and show that they have a
similar absorption-projection behavior as degree-safe components.Given a component
C we say that a path A in C is a diameter path if A is a longest shortest path in C .

Lemma 6 Let C be a diameter-safe component, let A be a diameter path of C, and let
B = NG(V (A)). If (G, k, Is, It) is a yes-instance, then there exists a reconfiguration
sequence from Is to It in G where we have at most one token on vertices of B at all
times.

Proof As in the proof of Lemma 5, the goal will consist in proving that we can adapt a
transformation S from Is to It into a transformation containing at most one token on a
vertex of B at all times and such that, at any step, the number of tokens in V (A)∪ B in
both transformations is the same and the positions of the tokens in V (G)\(V (A)∪ B)

are the same. As in the proof of Lemma 5, all the tokens in V (A)∪ B will be absorbed

123

Algorithmica (2024) 86:638–655 647

Fig. 2 An illustration of a
diameter-safe component C

L1 = Is ∪ It

L2 = N(L1)B

A

B

B

C

into V (A) (and later projected back as needed) and it suffices to explain how we can
move the tokens on V (A) when a new token wants to enter in B or leave into B.

We know that two non-consecutive vertices in A cannot be adjacent by minimality
of the path. Now assume a token t is about to reach a vertex b ∈ B (for the first
time). Note that neighbors of b in A are pairwise at distance at least three in A, since
otherwise that would imply the existence of a cycle of length less than five. We call
the sets of vertices in intervals between consecutive neighbor of b (in A) gap interval
sets (with respect to b).

If b has more than k neighbors in A, then we can put the already in A tokens (at
most k − 1 of them) in the at most k − 1 first gap interval sets; the existence of k − 1
gap interval sets implies the existence of an independent set of size k − 1 consisting
of the middle vertex of each gap interval set. Indeed, since there is no token on B and
A is an induced path, we can freely move tokens where we want and, in particular, to
the corresponding independent set. Then, we can slide the token t to b, since none of
its neighbors in A have a token on them, and then slide it to the next neighbor of b in
A since it has more than k neighbors.

Otherwise, b has at most k neighbors in A. Hence there are at most k+1 gap interval
sets in A (with respect to b). The average number of vertices in the gap interval sets
(assuming k ≥ 4) is

α = diam(C) − |NV (A)(b)|
|NV (A)(b)| + 1

≥ k3 − k

k + 1
≥ 2k.

Hence at least one gap interval set has length at least α and therefore we can slide
all tokens currently in A (at most k − 1 of them) into this gap interval set in such a
way that no token is on the border of the gap interval set (since the gap interval set
contains an independent set of size at least k − 1 which does not contain an endpoint
of the gap interval set). Now we can simply slide the token t onto b and then onto any
of the neighbors of b in A.

Combined with the fact that the above strategy can also be applied to project a token
from V (A) to B, it then follows that whenever (G, k, Is, It) is a yes-instance we can
find a reconfiguration sequence from Is to It in G where we have at most one token
in B at all times, as claimed (see Fig. 2). �

123

648 Algorithmica (2024) 86:638–655

Fig. 3 An illustration of the
replacement gadget for a safe
component C

L1 = Is ∪ It

L2 = N(L1)B

C1 C�p1

p3k

Corollary 2 Let C be a diameter-safe component. If (G, k, Is, It) is a yes-instance
then there exists a reconfiguration sequence from Is to It where we have at most one
token in N (C) (⊆ L2) at all times.

Proof We follow the same strategy as for the degree-safe components. Let A be a
diameter path ofC and let B = NG(V (A)).Assumea token slides to a vertex c ∈ N (C)

(for the first time). If c ∈ B, then the result follows from Lemma 6. Otherwise, we
can follow a path P contained in C that leads to a vertex a ∈ NG(B) \ (V (A) ∪ B)

(with a possibly equal to c). Such a path exists since c ∈ N (C) and C is connected.
Once we reach a, and before we slide to a neighbor of a in B, say b ∈ B, we again
apply Lemma 6. Consequently, once a token reaches N (C) we can assume that it is
immediately absorbed by the diameter-safe component (and later projected as needed).
This implies that we can always find a path P to slide along such that N [P] contains
no tokens. �

Putting Corollaries 1 and 2 together, we know that if (G, k, Is, It) is a yes-instance,
then there exists a reconfiguration sequence from Is to It where we have at most one
token in N (C) ⊆ L2 at all times, where C is either a degree-safe or a diameter-safe
component.We now showhow to reduce a safe componentC by replacing it by another
smaller subgraph that we denote by H .

Lemma 7 Let C be a safe component in G[L3] and let G ′ be the graph obtained from
G as follows:

• Delete all vertices of C (and their incident edges).
• For each vertex v ∈ N (C) ⊆ L2 add two new vertices v′ and v′′ and add the edges

{v, v′} and {v′, v′′}.
• Add a path of length 3k consisting of new vertices p1 to p3k .
• Add an edge {p1, v′′} for every vertex v′′.

Note that this new component has size 3k + |2N (C)| (see Fig.3). We claim that
(G, k, Is, It) is a yes-instance if and only if (G ′, k, Is, It) is a yes-instance.

Proof First, we note that replacingC with this new component, H , cannot create cycles
of length less than five. This follows from the fact that all the vertices at distance one
or two from p1 have distinct neighbors.

123

Algorithmica (2024) 86:638–655 649

Assume (G, k, Is, It) is a yes-instance. Then, by Corollary 1 and Corollary 2, we
know that there exists a reconfiguration sequence from Is to It in G where we have
at most one token in N (C) ⊆ L2 at all times, where C is either a degree-safe or a
diameter-safe component. Hence, we can mimic the reconfiguration sequence from Is
to It in G ′ by simply projecting tokens onto the path of length 3k in each of the safe
components that we replaced.

Now assume that (G ′, k, Is, It) is a yes-instance. By the same arguments, and
combined with the fact that a safe component C can absorb/project the same number
of tokens as its replacement component H , we can again mimic the reconfiguration
sequence of G ′ in G. �

3.2 Bounding the Size of L2

Having classified the components in L3 and the edges between L2 and L3, our next
goal is to bound the size of L2, which until now could be arbitrarily large. We know
that vertices in L2 are the neighbors of vertices in L1, hence the size of L2 will grow
whenever there are vertices in L1 with arbitrarily large degrees. Bounding L2 will
therefore be done by first proving the following lemma.

Lemma 8 Assume a vertex u in L1 = Is ∪ It has degree greater than 2k2. Moreover,
assume, without loss of generality, that u ∈ Is . Then, there exists I ′

s such that Is�I ′
s =

{u, u′}, u′ has degree at most 2k2, and the token on u can slide to u′.

Proof First note that from such a vertex u ∈ Is we can always slide to a vertex in L2.
Indeed, for every v, |N (u) ∩ N (v)| ≤ 1 by the assumption on the girth of the graph.
Thus, since the degree of u is larger than the number of tokens, there exists at least
one vertex in L2 that the token on u can slide to.

Ifwe slide to a vertex v ∈ L2 of degree atmost 2k2, thenwe are done (we set u′ = v).
Otherwise, by Lemma 2, we know that most of the neighbors of v are in L3; since v

has degree greater than 2k2 and at most 2k of its neighbors are in L1 ∪ L2. Hence, we
are guaranteed at least one neighbor w of v in some component of L3.

If we reach a bounded component C , i.e., if w belongs to a bounded component,
then all vertices of C (including w) have at most k2 neighbors in C and have at most
2k neighbors in L2 (by Lemma 2) and thus we can set u′ = w.

If we reach a bad component C , then we know that diam(G[V (C)]) ≤ k3 (since
C is not diameter-safe) and therefore C must have a vertex b with at least k2 + 1
neighbors in C (as otherwise C is a bounded component). Moreover, since C is not
degree-safe, at most k2 − 1 of the neighbors of b have other neighbors in C . Let z
denote a vertex in the neighborhood of b that does not have other neighbors in C . By
Lemma 2, z will have degree at most 2k + 1 and we can therefore let u′ = z.

Finally, if we reach a safe component, then after our replacement such components
contain a lot of vertices of degree exactly two and we can therefore slide to any such
vertex, which completes the proof. �

After exhaustively applying Lemma 8, each time relabeling vertices in L1, L2 and
L3 and replacing safe components as described in Lemma 7, we get an equivalent

123

650 Algorithmica (2024) 86:638–655

instance where the maximum degree in L1 is at most 2k2 and hence we get a bound
on the size of L2. We conclude this section with the following lemma.

Lemma 9 Let (G, k, Is, It) be an instance of Token Sliding, where G has girth at
least five. Then we can compute an equivalent instance (G ′, k, I ′

s, I
′
t), where G

′ has
girth at least five, |L1 ∪ L2| ≤ 2k + 4k3 = O(k3), and each safe component of G is
replaced in G ′ by a component with at most 3k + 8k3 = O(k3) vertices.

3.3 Bounding the Size of L3

We have proved that the number of vertices in L1 and L2 is bounded by a function
of k, namely |L1 ∪ L2| = O(k3). We have also shown that every safe or bounded
component in L3 has a bounded number of vertices, namely safe components have
O(k3) vertices and bounded components have at most 2k2k

3
vertices. We still need to

show that L3 is bounded. We start by showing that bad components become bounded
after bounding L2:

Lemma 10 Let (G, k, Is, It) be an instance where G has girth at least five, |L1∪L2| ≤
2k + 4k3 = O(k3), and each safe component has at most 3k + 8k3 = O(k3) vertices.
Then, every bad component in that instance has at most kO(k3) vertices.

Proof Let C be a bad component, hence diam(C) ≤ k3 since C is not diameter-safe.
Let v ∈ V (C) be a vertex in C whose degree is d > k2. Since C is not a degree-safe
component v can have at most k2 − 1 neighbors in C that have other neighbors in C .
Hence, at least d−(k2−1) = d−k2+1 neighbors of v will have only v as a neighbor
in C and all their other neighbors must be in L2. Since, by Lemma 1, we can assume
that L3 contains no twin vertices, d − k2 of the neighbors of v in C must have at least
one neighbor in L2. But we know that L2 has size O(k3) and if two neighbors of v had
a common neighbor in L2, this would imply the existence of a cycle of length four.
Therefore, d must be at most O(k3). Having bounded the degree and diameter of bad
components, we can now apply the same argument as in the proof of Lemma 3. �

Since bounded and bad components now have the same asymptotic number of
vertices, in what follows we refer to both of them as bounded components. What
remains to show is that the number of safe and bounded components is also bounded
by a function of k and hence L3 and the whole graph will have size bounded by a
function of k.

Definition 2 Let C1 and C2 be two components in G[L3] and B1 and B2 be their
respective neighborhoods in L2. We say C1 and C2 are equivalent whenever B1 =
B2 = B and G[V (C1) ∪ B] is isomorphic to G[V (C2) ∪ B] by an isomorphism
that fixes B point-wise. We let β(G) denote the number of equivalence classes of
bounded components and we let σ(G) denote the number of equivalence classes of
safe components.

We are now ready to prove a crucial result for bounding L3.

123

Algorithmica (2024) 86:638–655 651

Lemma 11 Let S1 and S2 be equivalent safe components and let B1, . . ., Bk+1 be
equivalent bounded components. Then, (G, k, Is, It), (G−V (S2), k, Is, It) and (G−
V (Bk+1), k, Is, It) are equivalent instances.

Proof Removing vertices from the graph preserves no-instances. As for yes-instances,
we will prove equivalence for safe and bounded components separately.

Assume a token reaches the neighborhood of S1 and S2 (they have the same neigh-
borhood). Whether the token slides to either of them is irrelevant because both can
hold all the tokens together and have the same behavior regarding entering from L2
and leaving to L2. Hence, from Corollary 1 and Corollary 2, we can always choose to
slide to S1 and never to S2 and therefore removing S2 will preserve yes-instances.

Assume a token reaches the neighborhood of all Bi ’s (they have the same neighbor-
hood). The components not being empty implies that each one can hold at least one
token if it can, and hence we can always choose to slide the tokens to one of the first k
components since it will be enough to hold all tokens. Therefore removing Bk+1 will
preserve yes-instances. �

After exhaustively removing equivalent components as described in Lemma 11 we
obtain the following corollary.

Corollary 3 There are atmost kβ(G) bounded components andσ(G) safe components.

This leads to the final lemma.

Lemma 12 We have β(G) = 2k
O(k3)

, σ(G) = 2O(k6), |L3| ≤ kO(k3)2k
O(k3)

+ k32O(k6) = 2k
O(k3)

, and |V (G)| = |L1| + |L2| + |L3| = 2k
O(k3)

.

Proof Since L2 and safe components have O(k3) size (from Lemma 9) then safe
components along with their neighbors in L2 have size O(k3). Hence there are 2O(k6)

equivalence classes of safe components.
Since bounded components have size kO(k3) (from Lemma 3) the bounded com-

ponents along with their neighbors in L2 have size kO(k3) and hence there are 2k
O(k3)

equivalence classes of bounded components.
Finally, using the fact that there are 2(

n
2) graphs with n vertices combined with

Corollary 3, we get the desired bound on L3, which implies the desired bound on the
size of V (G). �

4 The Algorithm

4.1 Outline

Now that we have bounded the size of G by f (k) = 2k
O(k3)

we describe below
the complete algorithm for solving an instance (G, k, Is, It) of the Token Sliding

problem, where G has girth five or more.

1. Bound the graph size;

123

652 Algorithmica (2024) 86:638–655

(a) Remove twin vertices as described in Lemma 1;
(b) Repeat the following while L1 has a vertex of degree greater than 2k2 or there

exists an unbounded safe component in L3:
• Find safe components as described in Definition 1;
• Replace safe components as described in Lemma 7;
• Find a vertex u ∈ L1 with degree greater than 2k2;
• Slide the token to a vertex of degree at most 2k2 (Lemma 8);

(c) Test all pairs of L3 components for equivalence (Lemma 2);
(d) Partition the components into equivalence classes;

• For classes containing a safe component, keep one component and remove
the others from the graph (Lemma 11);

• For each other class, keep k components and remove the others from the
graph. If there are already less than k components then do nothing (Lemma
11);

2. Build the graph R(G, k);

• R(G, k) will have a node for each independent set of G of size k;
• Two nodes I , J ∈ R(G, k) will be connected by an edge if the corresponding
independent sets are adjacent with respect to the token slide definition, namely
I�J = {u, v} ∈ E(G);

3. Run a breadth-first search (BFS) traversal on R(G, k) with source Is and
destination It . Return true if the two are in the same component and falseotherwise;

4.2 Analysis

Complexity of step (1). Step (a), removing twin vertices, can be naively implemented
to run in O(n3)-time. Going to step (b), finding degree-safe components will take
O(n)-time by simply checking the degrees of all vertices in a component. As for
diameter-safe components, we can find them in O(n2)-time by finding for each vertex
u in a component C the vertex v furthest away from u in C using a BFS. Replacing
a component can be done in O(n)-time. Finding u ∈ L1 such that the degree of u is
greater than 2k2 and replacing it via slides can be done in O(k)-time. This procedure
will be repeated at most 2k times and hence step (b) requires O(k2 + kn2)-time.
Going to step (c), we can test isomorphism of components using any exponential-time
algorithm. Since the size of the individual components is now bounded by kO(k3) and

the algorithm will run on all pairs of components, step (c) will require 2k
O(k3)

-time

123

Algorithmica (2024) 86:638–655 653

in the worst case. Finally, step (d) consists only of removing components and can be

done in O(n). Therefore step (1) will take O(kn3 + 2k
O(k3)

)-time.

Complexity of step (2). Building the graphR(G, k) will take O(|V (R(G, k))| +
k2|V (R(G, k))|2) = O(k2

(f (k)
k

)2
)-time since we can check naively for each pair of

nodes if they are connected via one slide.

Complexity of step (3). The breadth-first search traversal will take

O(|V (R(G, k))| + |E(R(G, k))|) = O(
(f (k)

k

)2
)-time.

Putting it all Together. Therefore, the total running time of the algorithm is

O(kn3) + 2k
O(k3) + O(k2

(
f (k)

k

)2

)

and hence we get the desired result.

Theorem 1 Token Sliding is fixed-parameter tractable when parameterized by k
on graphs of girth five or more.

Author Contributions All authors contributed equally to this work.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Brewster, R.C., McGuinness, S., Moore, B., Noel, J.A.: A dichotomy theorem for circular colouring
reconfiguration. Theor. Comput. Sci. 639, 1–13 (2016). https://doi.org/10.1016/j.tcs.2016.05.015

2. van denHeuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,Wildon,M. (eds.) Surveys
in Combinatorics 2013. London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160.
Cambridge University Press (2013). https://doi.org/10.1017/CBO9781139506748.005

3. Wrochna, M.: Homomorphism reconfiguration via homotopy. SIAM J. Discrete Math. 34(1), 328–350
(2020). https://doi.org/10.1137/17M1122578

4. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404 (1879)
5. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. J. Int. Comput. Games Assoc.

31(1), 13–34 (2008)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2016.05.015
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1137/17M1122578

654 Algorithmica (2024) 86:638–655

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings.
Discrete Math. 308(5–6), 913–919 (2008). https://doi.org/10.1016/j.disc.2007.07.028

7. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the
complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011). https://
doi.org/10.1016/j.tcs.2010.12.005

8. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Appl.
Math. 160(15), 2199–2207 (2012). https://doi.org/10.1016/j.dam.2012.05.014

9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfia-
bility: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009). https://
doi.org/10.1137/07070440X

10. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution
space of Boolean formulas. SIAM J. DiscreteMath. 31(3), 2185–2200 (2017). https://doi.org/10.1137/
16M1065288

11. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput.
Geom. 49, 17–23 (2015). https://doi.org/10.1016/j.comgeo.2014.11.001

12. Gharibian, S., Sikora, J.: Ground state connectivity of localHamiltonians.ACMTrans. Comput. Theory
10(2), 8–1828 (2018). https://doi.org/10.1145/3186587

13. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). https://doi.org/10.3390/
a11040052

14. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory Comput. 3(1), 103–128 (2007). https://doi.org/10.4086/toc.2007.v003a006

15. Bonnet, É., Bousquet, N., Charbit, P., Thomassé, S., Watrigant, R.: Parameterized complexity of inde-
pendent set in H-free graphs. In: Paul, C., Pilipczuk, M. (eds.) 13th International Symposium on
Parameterized and Exact Computation, IPEC 2018, August 20–24, 2018, Helsinki, Finland. LIPIcs,
vol. 115, pp. 17–11713. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/
10.4230/LIPIcs.IPEC.2018.17

16. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2),
72–96 (2005). https://doi.org/10.1016/j.tcs.2005.05.008

17. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L., Woeginger, G.J.
(eds.) Graph-Theoretic Concepts in Computer Science—43rd International Workshop, WG 2017,
Eindhoven, The Netherlands, June 21–23, 2017, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 10520, pp. 127–139. Springer (2017). https://doi.org/10.1007/978-3-319-68705-6_10

18. Bonsma, P.S., Kaminski, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In:
Ravi, R., Gørtz, I.L. (eds.) Algorithm Theory—SWAT 2014—14th Scandinavian Symposium and
Workshops, Copenhagen, Denmark, July 2–4, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8503, pp. 86–97. Springer (2014). https://doi.org/10.1007/978-3-319-08404-6_8

19. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara,
R., Yamada, T.: Polynomial-time algorithm for sliding tokens on trees. In: Ahn, H., Shin, C. (eds.)
Algorithms andComputation—25th International Symposium, ISAAC2014, Jeonju,Korea,December
15–17, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8889, pp. 389–400. Springer
(2014). https://doi.org/10.1007/978-3-319-13075-0_31

20. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs.
In: Elbassioni, K.M.,Makino, K. (eds.) Algorithms and Computation—26th International Symposium,
ISAAC2015, Nagoya, Japan, December 9–11, 2015, Proceedings. LectureNotes in Computer Science,
vol. 9472, pp. 237–247. Springer (2015). https://doi.org/10.1007/978-3-662-48971-0_21

21. Ito, T., Kaminski,M., Ono,H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity
for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) Theory and
Applications of Models of Computation—11th Annual Conference, TAMC 2014, Chennai, India,
April 11–13, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8402, pp. 341–351. Springer
(2014). https://doi.org/10.1007/978-3-319-06089-7_24

22. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems.
Theor. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.1016/j.tcs.2012.03.004

23. Lokshtanov, D.,Mouawad, A.E., Panolan, F., Ramanujan,M.S., Saurabh, S.: Reconfiguration on sparse
graphs. J. Comput. Syst. Sci. 95, 122–131 (2018). https://doi.org/10.1016/j.jcss.2018.02.004

24. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci. 93, 1–10
(2018). https://doi.org/10.1016/j.jcss.2017.11.003

123

https://doi.org/10.1016/j.disc.2007.07.028
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.dam.2012.05.014
https://doi.org/10.1137/07070440X
https://doi.org/10.1137/07070440X
https://doi.org/10.1137/16M1065288
https://doi.org/10.1137/16M1065288
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1145/3186587
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4230/LIPIcs.IPEC.2018.17
https://doi.org/10.4230/LIPIcs.IPEC.2018.17
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1007/978-3-319-13075-0_31
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1016/j.jcss.2017.11.003

Algorithmica (2024) 86:638–655 655

25. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token sliding on split graphs.
Theory Comput. Syst. 65(4), 662–686 (2021). https://doi.org/10.1007/s00224-020-09967-8

26. Lokshtanov,D.,Mouawad,A.E.: The complexity of independent set reconfiguration onbipartite graphs.
ACM Trans. Algorithms 15(1), 7–1719 (2019). https://doi.org/10.1145/3280825

27. Bartier, V., Bousquet, N., Dallard, C., Lomer, K., Mouawad, A.E.: On girth and the parameterized
complexity of token sliding and token jumping. Algorithmica 83(9), 2914–2951 (2021). https://doi.
org/10.1007/s00453-021-00848-1

28. Agrawal, A., Allumalla, R.K., Dhanekula, V.T.: Refuting FPT algorithms for some parameterized
problems under Gap-ETH. In: Golovach, P.A., Zehavi, M. (eds.) 16th International Symposium on
Parameterized and Exact Computation, IPEC 2021. LIPIcs, vol. 214, pp. 2–1212. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.IPEC.2021.2

29. Bodlaender, H.L., Groenland, C., Swennenhuis, C.M.F.: Parameterized complexities of dominating and
independent set reconfiguration. In:Golovach, P.A., Zehavi,M. (eds.) 16th International Symposiumon
Parameterized and Exact Computation, IPEC 2021, September 8–10, 2021, Lisbon, Portugal. LIPIcs,
vol. 214, pp. 9–1916. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.IPEC.2021.9

30. Bartier, V., Bousquet, N., Mouawad, A.E.: Galactic token sliding. CoRR arXiv (2022).
arXiv:2204.05549. https://doi.org/10.48550/arXiv.2204.05549

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Valentin Bartier1 · Nicolas Bousquet1 · Jihad Hanna2 · Amer E. Mouawad2,3 ·
Sebastian Siebertz3

Valentin Bartier
valentin.bartier@grenoble-inp.fr

Nicolas Bousquet
nicolas.bousquet@univ-lyon1.fr

Jihad Hanna
jgh20@mail.aub.edu

Sebastian Siebertz
siebertz@uni-bremen.de

1 CNRS, LIRIS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France

2 Department of Computer Science, American University of Beirut, Beirut, Lebanon

3 Fachbereich 3 - Mathematik und Informatik, University of Bremen, Bremen, Germany

123

https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1145/3280825
https://doi.org/10.1007/s00453-021-00848-1
https://doi.org/10.1007/s00453-021-00848-1
https://doi.org/10.4230/LIPIcs.IPEC.2021.2
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
http://arxiv.org/abs/2204.05549
https://doi.org/10.48550/arXiv.2204.05549

	Token Sliding on Graphs of Girth Five
	Abstract
	1 Introduction
	2 Preliminaries
	3 Reducing the Graph
	3.1 Safe, Bounded, and Bad Components
	3.2 Bounding the Size of L2
	3.3 Bounding the Size of L3

	4 The Algorithm
	4.1 Outline
	4.2 Analysis

	References

