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Abstract
Amap is a partition of the sphere into interior-disjoint regions homeomorphic to closed
disks. Some regions are labeled as nations, while the remaining ones are labeled as
holes. A map in which at most k nations touch at the same point is a k-map, while
it is hole-free if it contains no holes. A graph is a map graph if there is a bijection
between its vertices and the nations of a map, such that two nations touch if and only
the corresponding vertices are connected by an edge. We present a fixed-parameter
tractable algorithm for recognizing map graphs parameterized by treewidth. Its time
complexity is linear in the size of the graph. It reports a certificate in the form of a
so-called witness, if the input is a yes-instance. Our algorithmic framework is general
enough to test, for any k, if the input graph admits a k-map or a hole-free k-map.

Keywords Map graphs · K-map graphs · Fixed-parameter tractability · Treewidth

1 Introduction

Planarity is one of the most influential concepts in Graph Theory. Inspired by topolog-
ical inference problems and by intersection graphs of planar curves, in 1998, Chen,
Grigni and Papadimitriou [2] suggested the study of map graphs as a generalized
notion of planarity. A map of a graph G is a functionM that assigns each vertex v of
G to a region M(v) on the sphere homeomorphic to a closed disk such that no two
regions share an interior point, and any two distinct vertices v and w are adjacent in
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Fig. 1 a A graph G, b a map of G - the striped region is a hole, and c a witness of G (Color figure online)

G if and only if the boundaries ofM(v) andM(w) share at least one point. For each
vertex v of G, the region M(v) is called the nation of v. A connected open region
of the sphere that is not covered by nations is a hole. A graph that admits a map is a
map graph, whereas a graph that admits a map without holes is a hole-free map graph.
Moreover, a graph that admits a map in which at most k nations meet at a common
point is a k-map graph. Observe that, when k ≥ n − 1, map graphs and k-map graphs
trivially coincide. Fig1a and b show a graph and a map of it, respectively. Map graphs
generalize planar graphs by allowing local non-planarity at points where more than
three nations meet. In fact, the planar graphs are exactly those graphs having a 3-map
[2, 3].

Besides their theoretical interest, the study of map graphs is motivated by applica-
tions in graph drawing, circuit board design, and topological inference problems [4–7].
Map graphs are also useful to design parameterized and approximation algorithms for
several optimization problems that are NP-hard on general graphs [8–12].

A natural and central algorithmic question concerns the existence of efficient algo-
rithms for recognizing map graphs. Towards an answer to this question, Chen et al.
[2, 13] first gave a purely combinatorial characterization of map graphs: A graph is a
map graph if and only if it admits a witness, formally defined as follows; see Fig1c.
A witness of a graph G = (V , E) is a bipartite planar graph W = (V ∪ I , A) with
A ⊆ V × I and such that W 2[V ] = G, where the graph W 2[V ] is the half-square
of W , that is, the graph on the vertex set V in which two vertices are adjacent if and
only if their distance in W is two. Here, the vertices in I are meant to represent the
adjacencies among nations, hence they are called intersection vertices, while the ver-
tices in V are called real. Note that the degree of an intersection vertex corresponds to
the number of nations that meet at the corresponding point in the map. Since W can
always be chosen to have linear size in the number of vertices of G [13], the problem
of recognizing map graphs is in NP. In 1998, Thorup [14] proposed a polynomial-time
algorithm to recognize map graphs. However, the extended abstract by Thorup does
not contain a complete proof of the result and, to the best of our knowledge, a full
version has not appeared yet. Moreover, the proposed algorithm has two drawbacks.
First, the time complexity is not specified explicitly (the exponent of the polynomial
bounding the time complexity is estimated to be about 120 [15]; see also [6, 16]).
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Second, it does not report a certificate in the positive case; a natural one would be a
witness.

Hence, the problem of finding a simple and efficient recognition algorithm for map
graphs remains open. In recent years, several authors focused on graphs admitting
restricted types of maps. For instance, Chen studied the density of k-map graphs [17].
As another example, in a recent milestone paper on linear layouts, Dujmović et al.
[18] proved that the queue number of k-map graphs is cubic in k; this bound has been
recently improved to linear [19]. On a similar note, Brandenburg [20] showed that
k-map graphs admit book embeddings in 6� k

2� + 5 pages. Chen et al. [15] focused
on hole-free 4-map graphs and gave a cubic-time recognition algorithm for this graph
family. Later, Brandenburg [6] gave a cubic-time recognition algorithm for general
(i.e., not necessarily hole-free) 4-map graphs, by exploiting an alternative characteriza-
tion of these graphs closely related tomaximal 1-planarity. Notably, a polynomial-time
recognition algorithm for the family of (general or hole-free) k-map graphs with k > 4
is still missing. In particular, for k > 4, the only result we are aware of is a charac-
terization of 5-map graphs in terms of crossing patterns [5]. A different approach for
the original problem is the one by Mnich, Rutter, and Schmidt [16], who proposed
a linear-time algorithm to recognize the map graphs with an outerplanar witness; a
certificate witness, if any, is also reported. In addition, we mention the series of works
of Le and Le [21–23]; among other results, they proved that, for any fixed g ≥ 8,
deciding if a given n-vertex m-edge graph G admits a map having a witness of girth
at least g can be done in O(n2m) time [21].

We remark that the size of the largest clique in a k-map graph is �3k/2� (see, e.g.,
[13]), thus bounding the size of the largest clique does not seem to be a strong enough
structural limitation of the input to obtain an efficient time complexity. In particular,
map graphs have O(n) maximal cliques [13], and such cliques can be identified in
O(n4) time by looking for maximal independent sets in the complement graph [24].
Despite the notable amount of work, no prior research focuses on further structural
parameters of the input graph to design efficient recognition algorithms. In this paper,
we address precisely this challenge.

Our contributionOurmain result is a novel algorithmic framework that can be used to
recognizemap graphs, as well as variants thereof; in particular, hole-free k-map graphs
and k-map graphs. Recall that, by setting k = n − 1, our algorithm also recognizes
(hole-free) map graphs. In fact, we can also compute the minimum value of k within
the same asymptotic running time. The proposed algorithm is parameterized by the
treewidth [25, 26] of the n-vertex input graph G and its time complexity has a linear
dependency in n, while it does not depend on the natural parameter k. Notably, for
graphs of bounded treewidth, our algorithm improves over the existing literature [6,
14, 15] in three ways: it solves the problem for any fixed k, it can deal with both
scenarios where holes are or are not allowed in the sought map (which is the case
also for the result in [6]), and it exhibits a linear running time. The following theorem
summarizes our main contribution.

Theorem 1 Given an n-vertex graph G and a tree-decomposition of G of width t,
there is a O(t O(t) · n)-time algorithm that computes the minimum k, if any, such that
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G admits a (hole-free) k-map. In the positive case, the algorithm returns a certificate
in the form of a witness of G within the same time complexity.

We remark that the problem of recognizing map graphs can be expressed by using
MSO2 logic. Thus the main positive result behind Theorem 1 can be alternatively
achieved by Courcelle’s theorem [27]. A formal proof is reported in the appendix.
However, with this approach, the dependency of the time complexity on the treewidth
is notoriously very high. As a matter of fact, Courcelle’s theorem is generally used
as a classification tool, while the design of an explicit ad-hoc algorithm remains a
challenging and valuable task [28].

To prove Theorem 1, we first solve the decision version of the problem. For a fixed
k, we use a dynamic-programming approach, which can deal with different constraints
on the desired witness. While we exploit such flexibility to check whether at most k
nations intersect at any point andwhether holes can be avoided, other constraints could
be plugged into the framework such as, for example, the outerplanarity of the witness
(as in [16]). In view of this versatility, future applications of our tools may be expected.

Proof strategy We exploit the characterization in [13] and test for the existence of a
suitable witness of the input graph. The crux of our technique is in the computation
of suitable records that represent equivalent witnesses and contain only vertices of a
tree-decomposition bag. Each such record must carry enough information, in terms
of an embedding of the witness, so to allow testing whether it can be extended with a
new vertex or merged with another witness. Moreover, we need to check whether any
such witness yields a k-map and, if required, a hole-free one. To deal with the latter
property, we provide a strengthening of the characterization in [13], which we believe
to be of independent interest, that translates into maintaining suitable counters on the
edges of our records. Additional checks on the desired witness can be plugged in the
presented algorithmic framework, provided that the records store enough information.
One of themain difficulties is hence “sketching” irrelevant parts of the embedded graph
without sacrificing toomuch information. (A similar challenge is faced in the context of
different planarity and beyond-planarity problems [29–31].) Also, when creating such
sketches, multiple copies (potentially linearly many) of the same edge may appear,
which we need to simplify in order to keep our records small. The formalization
of such records then allows us to exploit a dynamic-programming approach on a
tree-decomposition.

Paper structure Section. 2 contains preliminary definitions. Section3 illustrates basic
properties of map graphs that will be used throughout the paper. Section4 introduces
the concept of “sketching” an embedding of a witness, the key ingredient of the
algorithmic framework, which we present in Sect. 5. Section6 contains open problems
raised by our work.

2 Preliminaries

We consider finite, undirected, and simple graphs, although some procedures may
produce non-simple graphs. In such a case the presence of self-loops or multiple
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edges will be clearly indicated. Let G = (V , E) be a graph; for a vertex v ∈ V , we
denote by N (v) the set of neighbors of v in G, and by deg(v) the degree of v, i.e., the
cardinality of N (v).

EmbeddingsA topological embedding of a graphG on the sphere� is a representation
of G on � in which each vertex of G is associated with a point and each edge of G
with a simple arc between its two endpoints in such a way that any two arcs intersect
only at common endpoints. A topological embedding of G subdivides the sphere
into topologically connected regions, called faces. If G is connected, the boundary
of a face f is a closed walk, that is, a circular list of alternating vertices and edges;
otherwise, the boundary of f is a set of closed walks. Note that a cut-vertex of G
may appear multiple times in any such walk. A topological embedding of G uniquely
defines a rotation system, that is, a cyclic order of the edges around each vertex. If
G is connected, the boundary defining each face can be reconstructed from a rotation
system; otherwise, to reconstruct the boundary of every face f , we also need to know
which connected components are incident to f . We call the incidence relationship
between closed walks of different components and faces the position system of G.
A combinatorial embedding of G is an equivalence class of topological embeddings
that define the same rotation and position systems. An embedded graph G is a graph
along with a combinatorial embedding. A pair of parallel edges e and e′ of G with
end-vertices v and w is homotopic if there is a face of G whose boundary consists of
a single closed walk 〈v, e, w, e′〉.
Tree-decompositions Let (X , T ) be a pair such that X = {X1, X2, . . . , X�} is a
collection of subsets of vertices of a graph G, called bags, and T is a tree whose
nodes are in one-to-one correspondence with the elements of X . When this creates no
ambiguity, Xi will denote both a bag of X and the node of T whose corresponding
bag is Xi . The pair (X , T ) is a tree-decomposition of G if: (i) for every edge (u, v)

of G, there exists a bag Xi that contains both u and v, and (ii) for every vertex v

of G, the set of nodes of T whose bags contain v induces a non-empty (connected)
subtree of T . The width of (X , T ) is max�

i=1{|Xi |−1}, while the treewidth of G is the
minimumwidth over all tree-decompositions of G. For an n-vertex graph of treewidth
t , a tree-decomposition of width t can be found in FPT time [32].

Definition 1 A tree-decomposition (X , T ) of a graph G is called nice if T is a rooted
tree with the following properties [33].

(P.1) Any node of T has at most two children.
(P.2) If a node Xi of T has two children whose bags are X j and X j ′ , then Xi = X j =

X j ′ . In this case, Xi is a join bag.
(P.3) If a node Xi of T has only one child X j , then Xi �= X j and there exists a vertex

v ∈ G such that either Xi = X j ∪ {v} or Xi ∪ {v} = X j . In the former case Xi

is an introduce bag, while in the latter case Xi is a forget bag.
(P.4) If a node Xi is a leaf of T , then Xi contains exactly one vertex, and Xi is a leaf

bag.

Note that, given a tree-decomposition of width t , a nice tree-decomposition can be
computed in O(t · n) time (see, e.g., [34]).
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Fig. 2 a Inessential intersection
vertices, and b a twin-pair

3 Basic Properties of Map Graphs and Their Witnesses

The following statements have already been discussed in the work by Chen et al. [13],
even though in a weaker or different form. For completeness, we provide full proofs.

Let G = (V , E) be a map graph and let W = (V ∪ I , A) be a witness of G, i.e.,
W is a planar bipartite graph such that W 2[V ] = G. A vertex u ∈ I is an intersection
vertex of W , while a vertex v ∈ V is a real vertex of W . Also, we let nV = |V |,
nI = |I |, and n = nV + nI .

Property 1 A graph is a k-map graph if and only if it admits a witness such that the
maximum degree of every intersection vertex is k.

Property 2 A graph G admits a map if and only if each of its biconnected components
admits a map. Also, if G admits a hole-free map, then G is biconnected.

Let W = (V ∪ I , A) be an embedded witness (i.e., with a prescribed combinatorial
embedding). An intersection vertex u ∈ I is inessential if deg(u) = 2 and there exists
u′ ∈ I such that N (u) ⊂ N (u′); see Fig2a. Furthermore, a pair of intersection vertices
u1, u2 ∈ I is a twin-pair if N (u1) = N (u2) = {v,w}, for some v,w ∈ V , and W
contains a face whose boundary consists of a single closed walk with exactly four
edges with end-vertices v, u1, w, u2; see Fig2b. Note that removing an inessential
vertex or one vertex of a twin-pair from W does not modify W 2[V ].
Definition 2 An embedded witness of a map graph is compact if it contains neither
inessential intersection vertices nor twin-pairs.

We remark that a compactwitness is not necessarily minimal, i.e., it may contain
intersection vertices of degree greater than two whose removal does not modify its
half-square; see also [13]. However, in our setting, removing further information from
a witness would have an impact on the proof of Theorem 2 and on the recognition
algorithm (Sect. 5).

The next lemma shows that focusing on compactwitnesses is not restrictive.

Lemma 1 thcharcompact A graph G = (V , E) is a map graph if and only if it admits
a compactwitness. Also, G is a k-map graph if and only if it admits a compactwitness
whose intersection vertices have degree at most k.

Proof For the first part of the statement, recall that a graph admits a map if and only
if it admits a witness [2, 13]. Thus, if G has a compactwitness, it is a map graph. For
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the other direction, suppose that G admits a map. Let Ŵ be any embedded witness
of G. Let W be the embedded graph obtained from Ŵ by removing all inessential
intersection vertices and by iteratively removing one intersection vertex for each twin-
pair. Sinceweonly removeddegree-2 intersectionverticeswhoseneighbors are already
incident to a common intersection vertex, it holds that W 2[V ] = Ŵ 2[V ]. Thus, since
Ŵ 2[V ] = G, it holds W 2[V ] = G.

For the second part of the statement, recall that G admits a k-map if and only
if it has a witness whose intersection vertices have degree at most k, by Property
1. Moreover, we have seen before that, for every witness Ŵ , there exists (at least)
one compactwitness W obtained by fixing a combinatorial embedding of Ŵ and by
possibly removing intersection vertices of degree 2 that are either inessential or part of
a twin-pair. Since Ŵ is bipartite, this implies that any intersection vertex that belongs
to both Ŵ and W has the same degree in the two graphs. 
�

Given a graph G such that nV ≥ 3 and a mapM of G, the order of a point p ∈ M,
denoted by ord(p), is equal to the number of nations and holes whose boundary
contains p. Let W = (V ∪ I , A) be the bipartite embedded graph computed with
the compactconstruction, defined as follows. For ease of description, we define W by
constructing a topological embedding of it; refer to Fig1. In particular, the witness of
Fig1c is compactand constructed with the described procedure (which again follows
the lines of the work in [13]). For each nationM(v), we place the real vertex v in its
interior. For each point p such that ord(p) ≥ 3, we add an intersection vertex u p to I
and place it at point p. We connect each real vertex v to the intersection vertices that
lie on the boundary ofM(v), by drawing crossing-free simple arcs insideM(v). Note
that, for each intersection vertex u p, it holds deg(u p) = ord(p)−h(p), where h(p) is
the number of holes inMwhose boundary contains p. Finally, we remove inessential
intersection vertices and, iteratively, a vertex for each twin-pair. For instance, in Fig1b
the nations colored light-yellow and light-green share two order-3 points that would
give rise to inessential intersection vertices, which are indeed not reported in Fig1c.

Lemma 2 Let W = (V ∪ I , A) be the embedded graph obtained from the map M of
G by means of the compactconstruction. Then W is a compactwitness of G.

Proof The fact that the compactconstructiondefines a topological embeddingofW , and
in particular that each arc is simple and no two arcs intersect at an interior point, follows
by construction. Moreover, we explicitly removed inessential intersection vertices and
twin-pairs, if any. So, it remains to prove that W 2[V ] = G. By construction, for each
edge of W 2[V ], there is an edge in G. Also, any edge of G is represented by at least
one point ofMwhose order is at least two. Since we created an intersection vertex for
each point of order greater than two, it remains to argue about points of order exactly
two. Any such a point is an interior point of a simple arc along which two nations
M(v) andM(w) touch. The two endpoints of this arc must have order at least three,
which implies that edge (v,w) exists in W 2[V ]. 
�
In [13], it is observed (without a formal argument) that a map graph is hole-free if and
only if it admits awitnesswhose faces have 4 or 6 edges each. The next characterization
improves over this observation and hence can be of independent interest. A connected
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Fig. 3 Illustration for the proof of Theorem 2 (Color figure online)

embedded graph is a quadrangulation if each face boundary consists of a single closed
walk with 4 edges.

Theorem 2 A graph is a hole-free map graph if and only if it admits a compactwitness
that is a biconnected quadrangulation.

Proof (⇐) Refer to Fig3. If a graph G admits a compactwitnessW , then by Theorem
1 G is a map graph. Thus we only need to show that W yields a map that is hole-free,
by exploiting the assumption that W is a biconnected quadrangulation. Let W ∗ be the
embedded graph defined as follows: We add a dummy vertex inside each face of W
and connect it to all vertices on the boundary of the face. SinceW is biconnected, each
face boundary is a simple cycle, and therefore W ∗ is an embedded triangulation, i.e.,
each face contains three edges on its boundary. Let � be a topological embedding on
the sphere of W ∗. It follows that each triangular face of � is incident to exactly one
real vertex of W . Also, for each real vertex v of W , the union of the triangular faces
incident to v defines a region Rv that contains v in its interior. The latter property of �

allows us to construct a mapM of G by settingM(v) to be equal to the closure of Rv ,
for each real vertex v ofW . The fact thatM is a hole-freemap follows by construction.
Namely, all points of the sphere are covered by nations, hence there are no holes. Also,
the points of M of order at least three are in a one-to-one correspondence with the
intersection vertices of W , and any other order-2 point of M lies along a simple arc
connecting two points of higher order.

(⇒) Let M be a hole-free map of a graph G. By Property 2, G is biconnected.
Let W be the compactwitness of G computed by the compactconstructionfrom M;
for instance, the compactwitness in Fig3a is constructed from the map in Fig3c by
using the compactconstruction. Since G is biconnected,W is (at least) connected, and
thus the boundary of any face of W consists of a single closed walk. In the following
we prove that W is a quadrangulation. This, together with the fact that W is simple,
implies biconnectivity. Since W is connected, simple and bipartite, the boundary of
each of its faces consists of a single closed walk containing at least four edges. Assume
for a contradiction that W contains a face f with more than four edges on the closed
walk π defining its boundary. Then, sinceW is bipartite, π contains at least six edges.
Consider any intersection vertex u on π . Let v and w be the two (real) vertices that

123



Algorithmica (2024) 86:613–637 621

Fig. 4 Illustrations for the proof of Theorem 2

precede and follow u alongπ , respectively.We distinguish two cases based onwhether
u is or is not the only intersection vertex in π that is adjacent to both v and w.

Suppose first that u is the only intersection vertex in π that is adjacent to both v

and w. By construction, u has been placed on a point p ∈ M such that ord(p) ≥ 3.
SinceM is hole-free, p is the endpoint of a simple arc a that forms a shared boundary
betweenM(v) andM(w). Let p′ be the other endpoint of a. Since ord(p′) ≥ 3 and
M is hole-free, again W contains an intersection vertex u′ that has been placed on
p′. Either u′ belongs to π or not. In the first case, we contradict the fact that u is the
only intersection vertex of π adjacent to both v and w; see Fig. 4a for an illustration.
In the second case, p is on the boundary of a hole, which contradicts the fact thatM
is hole-free; see Fig. 4b for an illustration.

Suppose now that there is another intersection vertex u′ in π adjacent to both v and
w; refer to Fig. 4c for an illustration. Since u and u′ are both adjacent to v and w and
both belong toπ , in order forπ to contain six (ormore) edges, at least one of v, u, w, u′
occurs more than once along π , and between its (at least) two occurrences, there must
be a real vertex w′. Note that, by definition of v and w, such vertex occurring multiple
times along π cannot be u. We assume that such vertex is u′, the remaining cases can
be handled with symmetric arguments. Consider a traversal of π that visits v, u, w in
this order. Up to a renaming of the vertices, we can assume that w′ is the vertex that
precedes the last occurrence of u′ in this traversal. Let q be the point of M where u′
has been placed on. By construction, q is the endpoint of a simple arc b that forms a
shared boundary betweenM(w′) andM(v). Let q ′ be the other endpoint of b. Since
ord(q ′) ≥ 3 and M is hole-free, again W contains an intersection vertex u′′ that has
been placed on q ′ and that belongs to π by construction. Since u′′ is adjacent to both
v and w′, we get a contradiction to the fact that the last occurrence of u′ before v is
encountered after w′ in the above traversal. 
�
Lemma 3 A (hole-free) map graph G admits a compactwitness with n ≤ 6nV − 10
(respectively, n ≤ 3nV − 4) vertices.

Proof Suppose first that G is hole-free. Let W = (V ∪ I , A) be a compactwitness of
G that is a quadrangulation, which exists by Theorem 2. We start with the following
claim.

Claim 1 ∀u ∈ I , it holds deg(u) > 2.
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Proof Suppose, for a contradiction, that W contains an intersection vertex u such that
deg(u) = 2 and let f be any face of W that contains u on its boundary. Let u′ be the
other intersection vertex on the boundary of f , and observe that N (u) ⊆ N (u′). If
N (u) = N (u′), then u and u′ form a twin-pair. Otherwise, u is inessential. Both cases
contradict the fact that W is compact. 
�

Since W is crossing-free and bipartite (because W is a witness), it holds |E | =∑
u∈I deg(u) ≤ 2(nV +nI )−4. By Claim 1, we have

∑
u∈I deg(u) ≥ 3nI . Putting all

together, we have 2(nV +nI )−4 ≥ ∑
v∈I deg(u) ≥ 3nI . Consequently, nI ≤ 2nV −4

and thus n = nV + nI ≤ 3nV − 4.
Suppose now thatG is not hole-free. LetW be any compactwitness ofG and letW ′

be the graph obtained by removing all degree-2 intersection vertices from W . Since
W ′ is crossing-free and bipartite and since its intersection vertices have degree at least
3, we can conclude as above that W ′ has at most 3nV − 4 vertices. We now claim
that W has no more than 3nV − 6 degree-2 intersection vertices, which concludes
the proof, since these are exactly the vertices in W \ W ′. To prove the claim, replace
each degree-2 intersection vertex of W with an edge connecting its two neighbors.
Since W is crossing-free, the resulting graph W ∗ is also crossing-free. Also, each
intersection vertex in W ∗ has degree greater than two. Since W contains no twin-
pairs, W ∗ contains no pairs of homotopic parallel edges. Thus, Euler’s formula for
planar graphs still applies and therefore W ∗ contains at most 3nV − 6 edges. Since
each edge of W ∗ corresponds to at most one degree-2 intersection vertex of W , the
claim follows. 
�

Based on Lemma 3, we can make the following remark.

Remark 1 Without loss of generality, we assume in the following that any compactwit-
ness W of G has n ≤ 3nV − 4 vertices if G is hole-free, or n ≤ 6nV − 10 vertices
otherwise.

4 Embedding Sketches

LetG be an input graph. Property 2 allows us to assume thatG is biconnected, and thus
every witness of G, if any, is connected. Also, by Theorem 1, it suffices to consider
compactwitnesses.

Let (X , T ) be a nice tree-decomposition of G of width t = ω − 1, i.e., each bag
contains at most ω vertices. Given a bag X ∈ X , we denote by TX the subtree of T
rooted at X , and by GX = (VX , EX ) the subgraph of G induced by all the vertices in
all bags of TX . Let WX = (VX ∪ IX , AX ) be a compactwitness of GX (in particular,
W 2

X [VX ] = GX ).Note that, althoughG is connected,GX mayhavemultiple connected
components. However, since G is connected, each connected component of GX must
contain at least one vertex of X . Moreover, for each connected component C of GX ,
there is a connected component C ′ of WX such that C ′ is a witness of C . A vertex
of WX is an anchor vertex if it is either a real vertex of X or an intersection vertex
whose neighbors in WX all belong to X . Observe that if an intersection vertex u has
a neighbor v in VX \ X , then no real vertex in V \ VX is adjacent to v, and therefore
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Fig. 5 a A sketchS(W , X ′) computed from the witness W of Fig1 with respect to a bag X ′ (VX ′ = V ).
The anchor vertices of X ′ are opaque, while the non-anchor vertices are faded. The active boundaries are
red and the background of the active faces is light red. b A sketchS(W , X), where X ∪ {v} = X ′ computed
from S(W , X ′) by applying the deletion operation (Sect. 5) (Color figure online)

Fig. 6 An active boundary (red)
made of three closed walks
(edges are omitted):
〈v1, v2, u2, v3, v4, v1〉,
〈u6, v6, u7, v7〉, 〈v8〉; vertices
u1, u3, u4, v5, u5 have been
shortcut (Color figure online)

there is no way to add further edges to u without creating a false adjacency involving
v.

We will exploit anchor vertices to reduce the size of WX from O(|VX |) to O(ω),
by “sketching” parts of the embedding that are not relevant.1 The idea of sketching
an embedded graph is inspired by a previous work about orthogonal planarity [29];
applying this idea to our problem requires the development of several new tools and
concepts, described in the remainder of this section (and partly in Sect. 2). A face
f of WX is active either if its boundary contains only one vertex v (which implies
WX = ({v},∅)) and v is an anchor vertex, or if its boundary contains more vertices
amongwhich there are at least two anchor vertices; refer to Fig5a. The active boundary
of f (red in Fig5a) is obtained by shortcutting all non-anchor vertices of f , where
the shortcut operation is defined as follows. For a closed walk π and a vertex v in π ,
shortcutting v consists of removing each occurrence of v (if more than one), together
with the edge (u, v) that precedes it in π , and the edge (v, u′) that follows it in π , and
of adding the edge (u, u′) between u and u′ in π . Figure6 illustrates a single face f
and the corresponding active boundary. The embedding sketch(for short the sketch)
of WX with respect to X is the embedded graph S(WX , X) formed by all the vertices
and edges that belong to the active boundaries of WX . For each active boundary B f

of an active face f of WX , S(WX , X) has an active face f ∗ (light red in Figs. 5a and

1 In the database and data engineering fields, sketching algorithms form a powerful toolkit to compress
data in a way that supports answering various queries [35]. Our idea of sketching has some similarities with
this concept but serves a different purpose.
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Fig. 7 Illustrations for the proof of Lemma 4. Modifying the rotation system of Ŵ such that each Hi lies
in B1 and all other non-extensible active boundaries become empty

6). Note that S(WX , X) also has faces that are not active (white in Figs. 5a and 6).
Also, the position system of WX yields a position system for S(WX , X), since if two
closed walks of distinct components of WX were incident to the same active face f ,
then the two corresponding closed walks of S(WX , X) are also incident to the same
active face f ∗. However, S(WX , X) may not be bipartite any longer (as in Fig. 6) and
it may contain multiple edges (but no self-loops). It is worth noting that the embedding
sketchof WX can be defined with respect to any bag X ′, as long as VX ′ = VX (see
Fig. 5a).

We now further refine S(WX , X) to avoid active boundaries that are not useful
for our purposes. Namely, an active boundary is non-extensible if it consists of two
homotopic parallel edges. Given a witness W of G, the restriction of W to GX is the
compactwitnessW [GX ] of GX obtained fromW by removing all the real vertices not
in GX , all the intersection vertices that are isolated (due to the removal of some real
vertices) or inessential, as well as a vertex for each twin-pair until the graph contains
none of them. The next lemmas allow us to bound the size of a sketch.

Lemma 4 If G is a map graph, then it admits a compactwitness W with the following
property. If S(W [GX ], X) contains h > 1 non-extensible active boundaries that share
the same pair of end-vertices v and w, then the vertices of W lie in at most one of
these h active boundaries.

Proof Refer to Fig. 7. Let Ŵ be a compactwitness of G. Suppose S(Ŵ [GX ], X) con-
tains h > 1non-extensible active boundaries, denoted by B1, B2, . . . , Bh .Also, denote
by v and w the common end-vertices of these boundaries. Let Hi be the subgraph of
W that lies inside Bi (if any), for 1 ≤ i ≤ h. Since each Bi consists of two parallel
edges, v and w separate Hi and S(W [GX ], X)\Hi . We obtain a new compactwitness
W of G by modifying the rotation system of Ŵ so that each Hi lies inside B1. 
�
Remark 2 By Lemma 4, we assume in the following that for any compactwitness W
of G such that, for some X ∈ X , the sketchS(W [GX ], X) contains h > 1 non-
extensible active boundaries, the vertices of W lie in at most one of such active
boundaries. Therefore, in S(W [GX ], X), we keep only one of the corresponding h
pairs of homotopic parallel edges.

Lemma 5 A sketchS(WX , X) contains O(ω) vertices and edges.
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Proof With a similar argument as in the proof of Lemma 3 we can show that, in WX ,
each real vertex in X is adjacent to O(ω) intersection vertices that are anchor vertices.
Therefore, S(WX , X) contains O(ω) vertices in total. Concerning the number of edges,
since S(WX , X) is embedded on the sphere, it contains O(ω) edges such that each
pair of edges is either non-parallel or non-homotopic parallel. In addition, since each
of these edges participates in at most one homotopic pair by Remark 2, it follows that
S(WX , X) contains O(ω) edges. 
�
We now exploit the concept of a sketchto define an equivalence relation among
witnesses.

Definition 3 Two compactwitnessesWX andW ′
X of GX are X -equivalent if they have

the same sketchwith respect to X , i.e., S(WX , X) = S(W ′
X , X).

The next lemma deals with the size of the quotient of such a relation.

Lemma 6 The X-equivalence relation yields ωO(ω) classes for the compactwitnesses
of GX .

Proof Let n1 be the number of possible (abstract) graphs that can be obtained from the
real vertices of X and all possible sets of intersection vertices. For any such graph, let
n2 be the maximum number of its possible rotation and position systems. It follows
that the number of X -equivalent classes is upper bounded by the product of n1 and n2.

Given the set X of real vertices and a compactwitness WX of GX , any
sketchS(WX , X) contains O(ω) intersection vertices, as otherwise WX would con-
tain inessential intersection vertices or twin-pairs. Since each intersection vertex is
adjacent to a set of at most ω real vertices, we can bound the number nint of possible
sets of intersection vertices by a · ∑ω

i=2

(
ω
i

)
< a · 2ω, where a is the maximum num-

ber of intersection vertices in any sketchthat have the same set of neighbors. Since
a ∈ O(ω), we have that nint ∈ 2O(ω). Let IX be one of the nint possible sets of inter-
section vertices. The number nabs of distinct abstract graphs with vertex set X∪ IX can
be upper bounded by the number of possible neighborhoods of a real vertex combined
for all real vertices, that is

nabs ≤
∏

v∈X
ωdeg(v) = ω

∑
v∈X deg(v) ≤ ωO(ω)

holds, which yields n1 ≤ nint · nabs ∈ ωO(ω).
For a fixed graph S, the number of possible rotation systems nrot is upper bounded

by the number of possible permutations of edges around each vertex. Thus we have

nrot ≤
∏

v∈S
deg(v)! <

∏

v∈S
deg(v)deg(v) ≤ ωO(

∑
v∈S deg(v)) ≤ ωO(ω).

Each rotation system of S fixes the closed walk of each face of each connected com-
ponent of S. Since S contains, over all its connected components, at most ω closed
walks (at most one for each real vertex in X ) and hence at most ω faces, for the
number npos of possible position systems it holds npos ≤ ωω. Therefore we have
n2 ≤ nrot · npos ∈ ωO(ω), which yields n1 · n2 ∈ ωO(ω), as desired. 
�
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5 Algorithmic Framework

Let G = (V , E) be an input graph, let k be an integer, and let (X , T ) be a nice tree-
decomposition of G of width t = ω − 1. We present an algorithmic framework to
test whether G is a k-map graph or a hole-free k-map graph. Namely, we traverse T
bottom-up and equip each bag X ∈ X with a suitably defined set of sketches, called
record and denoted by RX . The framework can be tailored by imposing different
properties for the records. The next three properties are rather general; the first two
are useful to prove the correctness of our approach, as shown in Theorem 3, whereas
the third comes into play when dealing with the efficiency of the approach, and in
particular in Lemma 7.

Definition 4 The record RX is feasible if the following properties hold:

F1 For every compactwitness WX of GX , RX contains its sketchS(WX , X).
F2 For every entry r ∈ RX , there is a compactwitness WX of GX such that r =

S(WX , X).
F3 RX contains no duplicates.

Lemma 7 Any X ∈ X contains ωO(ω) entries, each of size O(ω), if RX is feasible.

Proof By FF1–FF3, the entries of RX are all and only the possible sketchesof WX

and are all distinct. Hence, |RX | ∈ ωO(ω) by Lemma 6. Each sketchhas size O(ω) by
Lemma 5. 
�

We now describe the additional properties that we incorporate in the framework.
In order to verify that G admits a k-map we exploit Property 1, which translates into
verifying that, for each sketch, the degree of any intersection vertex is at most k.

Definition 5 A record RX is k-map feasibleif it is feasibleand it contains a non-empty
subset R∗

X ⊆ RX , called subrecord, for which the following additional property holds:

F4 For every entry r ∈ RX , it holds r ∈ R∗
X if and only if r contains no intersection

vertex u with deg(u) > k.

It is worth observing that, since an intersection vertex of degree k implies the existence
of a clique of size k in the input graphG, property FF4 is trivially verified when k ≥ ω.
On the other hand, the size of the largest clique of a k-map graph is �3k/2� (see, e.g.,
[13]).

To checkwhetherG has a hole-free k-map,we exploit Theorem2.Namely, consider
a sketchS(WX , X) and an active boundary B f of S(WX , X). Let f be the active face
of WX corresponding to B f . Note that any edge e that is part of B f represents a
subsequence πe of a closed walk π in the boundary of f . Therefore, to control the
number of edges on the boundary of each face ofWX , for every edge e that is part of an
active boundary of S(WX , X) we also store a counter c(e) ≥ 1, which represents the
number of edges in πe. If there is an edge e such that c(e) > 4, then G does not admit
a compactwitnessW that is a quadrangulation such thatWX = W [GX ]; hence we can
avoid storing counters greater than four.Moreover, for any face f of a compact witness
W of G, we know that there exist two bags X̂ ′ and X̂ in T such that X̂ ′ is the child
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of X̂ , X̂ is a forget bag, the active boundary representing f in X̂ ′ has more than one
anchor vertex, while the one in X̂ has only one anchor vertex (and hence is not part of
S(WX̂ , X̂)). We call such an active boundary complete in X̂ ′, as it will not be modified
anymore by the algorithm. As such, for each complete active boundary, the sum of the
counters of its edges in S(WX̂ ′ , X̂ ′) must be exactly 4, otherwise G does not admit a
compactwitness W that is a biconnected quadrangulation such that WX̂ = W [GX̂ ].
Definition 6 A record RX is hole-free feasibleif it is feasibleand it contains a non-
empty subset R◦

X ⊆ RX , called subrecord, for which the following additional property
holds:

F5 For every entry r ∈ RX , it holds r ∈ R◦
X if and only if r contains no intersection

vertex u with deg(u) > k and each complete active boundary of r (if any) is
such that its edge counters sum up to 4.

Each leaf bag contains only one vertex v, thus its record consists of one sketchwith
only one active face whose active boundary is 〈v〉. Such a record can be computed in
O(1) time and it is trivially feasible. Also, it is hole-free (and hence k-map) feasible,
as its unique active boundary is not complete. The next three operations are performed
on a non-leaf bag X of T , based on the type of X , to compute a k-map or hole-free
feasiblerecord RX , if any.

Deletion operation. Let X be a forget bag whose child X ′ in T has a (hole-free) k-map
feasiblerecord RX ′ . Let v be the vertex forgotten by X . We generate RX from RX ′ as
follows.

For a fixed sketchS(WX ′ , X ′) of RX ′ , let NI (v) ⊆ N (v) be the set of intersection
vertices adjacent to v in S(WX ′ , X ′). Since v is forgotten by X , all its neighbors have
already been processed, thus no vertex in NI (v) can connect vertices that will be
introduced by bags visited after X . Therefore, for every vertex y ∈ NI (v) ∪ {v} and
for every sketchS(WX ′ , X ′) of RX ′ , we apply a deletion operation, which consists of
updating every active boundary B f of S(WX ′ , X ′) containing y; see Fig. 5b. Namely,
let B f be one of these active boundaries, we distinguish two cases based on whether
B f contains only y or it contains further vertices. Let πy be the closed walk of B f

that contains all occurrences of y (there might be more than one). If B f contains only
y, we remove πy (and hence the whole active boundary B f ) from S(WX ′ , X ′). If B f

contains further vertices, we shortcut every occurrence of y in πy . Also for every
edge e introduced to shortcut y such that e replaces edges e1 and e2 of πy , we set
c(e) = c(e1)+ c(e2). Observe that, if y has only one neighbor u in πy , this procedure
creates a self-loop at u, which we remove. If this procedure generates more than one
pair of homotopic parallel edges with the same pair of end-vertices, then we keep only
one such pair. Once all active boundaries have been updated, the resulting embedded
graph is stored in RX . After every sketchof RX ′ has been processed, we might have
produced the same embedded graph for RX from two distinct sketchesof RX ′ ; in this
case we keep only one copy.

Addition operation. Let X be an introduce bag whose child X ′ in T has a (hole-free)
k-map feasiblerecord RX ′ . Let v be the vertex introduced by X and NX (v) ⊆ N (v)

be the set of vertices that are neighbors of v and belong to X . We generate RX from
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Fig. 8 Illustration for the addition of vertex v. a Details of a face of S(WX ′ , X ′) that contains all the
neighbors of v. b–c Two distinct embedded graphs computed from S(WX ′ , X ′) by introducing vertex v in
different ways. d The sketchS(WX , X) obtained by replacing the active boundary of the red face with the
new active boundaries corresponding to the three newly created active faces in c (Color figure online)

RX ′ with the following addition operation. For each sketchS(WX ′ , X ′) of RX ′ , the
high-level idea is to exhaustively generate all possible embedded graphs that can be
obtained by introducing v in S(WX ′ , X ′). We distinguish two cases.

Case 1: NX (v) = ∅. For each active boundary B f of S(WX ′ , X ′), we generate a new
embedded graph by adding the closed walk 〈v〉 to B f .

Case 2: NX (v) �= ∅. We look for a face f ∗ of S(WX ′ , X ′) that contains all the
vertices of NX (v) on its active boundary B f (which may consist of multiple closed
walks). If such a face does not exist, we discard S(WX ′ , X ′). Else, for any such face,
we generate a set of entries E f ∗ as follows. Intuitively, we will insert v inside f ∗
and generate one entry of E f ∗ for each possible way in which v can be connected
to its neighbors. Namely, we can connect v to its neighbors by means of different
intersection vertices and by realizing different permutations of the edges around v and
around those neighbors that appear multiple times along some closedwalk of B f ; refer
to Fig. 8 for an illustration. Concerning the intersection vertices, we can use those that
already belong to B f and are adjacent only to vertices in NX (v), as well as we can
create new ones. We note that since v has at most ω − 1 neighbors in NX (v), there are∑ω−1

i=1

(
ω−1
i

) = 2ω−1 possible combinations of intersection vertices (see also the proof
of Lemma 6). This is done avoiding inessential intersection vertices and twin-pairs.
For each choice of intersection vertices, since the degree of a vertex is O(ω), there are
ωO(ω) distinct rotation systems to consider. Additionally, if B f consists of multiple
closed walks, we shall consider all possible permutations of the edges around v that
do not cause edge crossings (i.e., any edge permutation in which there are no four
edges e1, e2, e3, e4 in this order around v, such that e1, e3 connect v to the vertices of
a closed walk π and e2, e4 connect v to the vertices of a closed walk π ′ with π �= π ′),
and we consider each of them independently as a new embedded graph. Based on the
fixed intersection vertices and rotation system, if the insertion of v does not split f ∗
into multiple faces, we can suitably update B f , otherwise we can generate the new
active boundaries that appear in place of B f ; see in particular Fig. 8d. Also, for each
newly introduced edge e in a closed walk, we set c(e) = 1.

Merge operation. Let X be a join bag whose children X1 and X2 in T have (hole-
free) k-map feasiblerecords RX1 and RX2 , respectively.We generate RX from RX1 and
RX2 . Since X is a join bag, X , X1, and X2 contain the same vertices, whereas GX1 and
GX2 only share the vertices in X . Consider any pair of sketchesS(WX1 , X) of RX1 and
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S(WX2 , X) of RX2 . Such sketchesshare the same set of real vertices, whereas theymay
have different sets of intersection vertices and different combinatorial embeddings. At
high-level, we aim at combining S(WX1 , X) and S(WX2 , X) in all possible ways,
provided that the original rotation and position systems of each sketchare preserved
and that we never insert a subgraph of one sketchinto a non-active face of the other.
In practice, we apply the merge operation, consisting of the next steps.

(S.1) We compute all possible unions of the two abstract graphs underlying the
two sketches. Namely, let IX1 and IX2 be the sets of intersection vertices of
S(WX1 , X) and S(WX2 , X), respectively. We identify each pair of real vertices
the two sketchesshare, and we consider all possible abstract graphs whose set
of intersection vertices IX is such that: (a) IX ⊆ IX1 ∪ IX2 ; (b) for each inter-
section vertex of IX1 there is an intersection vertex in IX with the same set of
neighbors, and the same holds for IX2 .

(S.2) For each generated graph S∗, we compute all combinatorial embeddings, i.e.,
all possible rotation and position systems yielding a topological embedding on
the sphere of S∗. If no such combinatorial embedding exists, we discard S∗,
else we go to the next step.

(S.3) We generate all possible one-to-one mappings φ1 between intersection vertices
of S∗ and of S(WX1 , X), and all possible one-to-one mappings φ2 between
intersection vertices of S∗ and of S(WX2 , X).

(S.4) We check, for each pair φ1, φ2, that the restriction of the resulting embedded
graph on the real vertices, intersection vertices (up to the mapping defined by
φ1 and φ2) and edges of each of the two sketchespreserves the corresponding
rotation and position systems. If so,we go to the next step; otherwise,we discard
the candidate solution.

(S.5) Since the previous step guaranteed that the active boundaries of each sketchare
preserved when looking at the corresponding restriction, we can verify that
there is no subgraph of one sketchinside a non-active face of the other.

(S.6) We suitably update the active boundaries of the resulting embedded graph and
we add it to RX . More precisely, the boundary of a face is active if it does not
correspond to a non-active boundary in any of the two sketchesand it contains
either exactly one anchor vertex or at least two anchor vertices.

(S.7) We remove inessential intersection vertices and iteratively one intersection
vertex for each twin-pair, until there are no twin-pairs.

(S.8) Once all pairs of sketcheshave been processed, we remove possible duplicates.

This concludes the description of the main algorithmic steps for proving Theorem
1. Next, we provide lemmas to establish the correctness and the time complexity of
these steps.

Lemma 8 Let X be a forget bag whose child X ′ in T has a k-map (resp. hole-free)
feasiblerecord RX ′ . The algorithm either rejects the instance or computes a k-map
(resp. hole-free) feasiblerecord RX of X in ωO(ω) time.

Proof Let v be the vertex forgotten by X . We prove that the record RX generated by
applying the deletion operation is feasible, given that RX ′ is feasible. In particular, since
we removed possible duplicates, FF3 holds and it remains to argue about FF1 and FF2.
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To this aim, since X is a forget bag, note that GX = GX ′ . Hence any compactwitness
WX ′ ofGX ′ is also a compactwitness ofGX . Moreover, since RX ′ is feasible, it follows
by FF1 that RX ′ contains a sketch S(WX ′ , X ′) for every compactwitness WX ′ . Now,
since X ′ = X ∪{v}, the sketchofWX ′ with respect to X , namely S(WX ′ , X), coincides
with the one obtained by applying the deletion operation to S(WX ′ , X ′). Thus, FF1
holds for X . Similarly, since RX ′ is feasible, it follows by FF2 that every entry of RX ′ is
the sketchS(WX ′ , X ′) of a compactwitnessWX ′ ofGX ′ . Again since X ′ = X∪{v}, the
entry of RX obtained by applying the deletion operation to S(WX ′ , X ′) corresponds
to the sketchS(WX ′ , X). Thus, FF2 holds for X and consequently RX is feasible, as
claimed.

Suppose now that RX ′ is k-map feasible, i.e, R∗
X ′ �= ∅. We show how to check

whether a sketchof RX belongs to R∗
X . Since the deletion operation does not modify

the degree of any intersection vertex, the subrecord R∗
X contains all sketchesof RX

generated from sketchesin R∗
X ′ . Based on this observation, we can check whether

R∗
X = ∅ or not. In the former case the algorithm rejects the instance, in the latter case

RX is k-map feasible. Suppose that RX ′ is hole-free feasible, i.e., R◦
X ′ �= ∅. Again the

subrecord R◦
X contains all sketchesof RX that have been generated from sketchesin

R◦
X ′ and that contain no active boundary whose edge counters sum up to 4. To decide

whether an active boundary is complete, it suffices to check whether the parent of X
is a forget bag such that the shortcuttings due to the removal of the forgotten vertex
make that active boundary a self-loop. If any complete active boundary does not meet
this condition, the corresponding sketchdoes not belong to R◦

X . As before if R
◦
X = ∅

the algorithm rejects the instance, otherwise RX is hole-free feasible.
By Lemma 7, RX ′ contains ωO(ω) entries, each of size O(ω). Updating each of

them takes O(ω) time. Also, RX contains at most as many entries as RX ′ . It follows
that removing duplicates can be naively done in (ωO(ω))2 ∈ ωO(ω) time. For the sake
of efficiency, if we interpret each rotation and position system together as a number
with Õ(ω2) bits, then removing duplicates can be done in Õ(ω2) · ωO(ω) ∈ ωO(ω)

time by using radix sort (we omit the details as the asymptotic running time would
be the same). We have seen that condition FF4 is always verified. Checking condition
FF5 requires scanning each active boundary in RX and decide whether it is complete
or not, and if so to verify whether it will become a self-loop when visiting the parent
of X . This can be done in O(ω) time for each of the O(ω) active boundaries of each
of the ωO(ω) sketches, and thus in ωO(ω) time overall. Thus RX and its subrecords can
be computed in ωO(ω) time, as desired. 
�

Lemma 9 Let X be an introduce bag whose child X ′ in T has a k-map (resp. hole-
free) feasiblerecord RX ′ . The algorithmeither rejects the instance or computes a k-map
(resp. hole-free) feasiblerecord RX of X in ωO(ω) time.

Proof Let v be the vertex introduced by X . We prove that the record RX generated by
applying the addition operation is feasible, given that RX ′ is feasible. Regarding FF1,
letWX ′ andWX be a witness ofGX ′ andGX , respectively, such thatWX [GX ′ ] = WX ′ .
Since FF1 holds for RX ′ , we know that S(WX ′ , X ′) ∈ RX ′ . Observe that the only
difference between WX and WX ′ lies in the presence of vertex v and of a (possibly
empty) set Iv of intersection vertices adjacent to v.
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If NX (v) = ∅, then v forms a trivial closed walk that might be added in any face of
WX ′ that either consists of exactly one anchor vertex or contains at least two anchor
vertices (among possibly other non-anchor vertices). We recall that an active face
satisfying the mentioned properties corresponds to an active boundary of the witness’
sketch. Also, adding the closed walk to a face that contains more than one vertex,
but at most one anchor vertex, on its boundary would imply that the resulting witness
cannot be augmented to a witness of G, since G is biconnected. Since Case 1 places
v in all possible active boundaries of S(WX ′ , X ′), we can conclude that S(WX , X)

belongs to RX .
On the other hand, if NX (v) �= ∅, then all neighbors of v belong to a common

boundary of some face f of WX ′ , as otherwise the rotation system of WX would
not be compatible with a topological embedding (in particular, some edges would
cross each other). Hence all neighbors of v are part of the same active boundary
B f of S(WX ′ , X ′). Since Case 2 exhaustively considers all the ways in which v can
be inserted into B f , avoiding inessential intersection vertices and twin-pairs (which
cannot belong to WX , since it is compact), we can again conclude that S(WX , X)

belongs to RX . Consequently, FF1 holds for RX .
About FF2, it suffices to prove that each entry generated by the addition operation is

indeed a sketchof some compactwitness of GX with respect to X . Since FF2 holds for
RX ′ , the addition operation starts from a sketchS(WX ′ , X ′) and generates new entries
in which there are neither inessential intersection vertices nor twin-pairs; therefore,
such entries are indeed sketchesof compactwitnesses, as desired.

Concerning FF3, if RX contained two entries r1, r2 that are the same (up to a
homeomorphism of the sphere), then r1 and r2 would have been originated by the
same sketchr of RX ′ , as otherwise either r1 and r2 would not be the same or FF3
would not hold for RX ′ . On the other hand, since the addition operation inserts v in
different ways but without repetitions, it cannot generate two entries that are the same
starting from a single entry of RX ′ . Thus, FF3 holds for RX .

If RX ′ is k-map feasible, we know that R∗
X contains those sketchesof R∗

X ′ for which
the addition operation did not introduce intersection vertices of degree larger than k.
Based on this observation, we can check whether R∗

X = ∅ or not. In the former case
the algorithm rejects the instance, in the latter case RX is k-map feasible. The case
when RX ′ is hole-free feasiblecan be proved analogously as in the proof of Lemma 8.

Finally, each single entry constructed by the addition operation can be computed in
O(ω) time and RX contains ωO(ω) entries by Lemma 7. Also, condition FF4 can be
easily verified in O(ω) time, for each of theωO(ω) sketchesof RX . Checking condition
FF5 requires scanning each active boundary in RX and deciding whether it is complete
or not. This can be done in O(ω) time, for each of the O(ω) active boundaries of each
of the ωO(ω) sketches, and thus in overall ωO(ω) time. Thus, RX and its subrecords
can be computed in ωO(ω) time. 
�

The proof of the next lemma exploits the merge operation.

Lemma 10 Let X be a join bag whose children X1 and X2 in T both have k-map (resp.
hole-free) feasiblerecords RX1 and RX2 . The algorithm either rejects the instance or
computes a k-map (resp. hole-free) feasiblerecord RX of X in ωO(ω) time.
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Proof We prove that the record RX generated by applying the merge operation is
feasible, given that RX1 and RX2 are feasible. Consider any compactwitness WX of
GX and its restrictions WX [GX1 ] and WX [GX2 ] to GX1 and GX2 , respectively. By
definition of restriction, there must exist a mapping of the intersection vertices of
WX to the intersection vertices of WX [GX1 ] such that when looking at the restriction
of WX to the real and intersection vertices of WX [GX1 ] (up to the above mentioned
mapping), the rotation and position systems of WX [GX1 ] are preserved. The same
property must hold for WX [GX2 ]. These properties clearly carry over to the corre-
sponding sketchesS(WX , X), S(WX [GX1 ], X), and S(WX [GX2 ], X). Since RX1 and
RX2 are feasible, they contain S(WX [GX1 ], X) and S(WX [GX2 ], X), respectively.
Hence, Steps S.(S.1)–S.(S.4) guarantee that the aforementioned mapping is consid-
ered and that all the above properties hold on the candidate solutions given by the
combination of S(WX [GX1 ], X) and S(WX [GX2 ], X). Moreover, any subgraph of
WX that belongs to WX [GX1 ] but not to WX [GX2 ], except for the shared vertices
of X , must lie in an active face of WX [GX2 ] (and vice versa); if this is not the case,
then WX would not be augmentable to a witness of G, since G is biconnected. This
property translates into verifying that any subgraph of S(WX [GX1 ], X) lies in an active
face of S(WX [GX2 ], X) (and vice versa). This is achieved in Step S.(S.5). Step S.(S.6)
suitably updates the active boundaries so that a boundary is active only if it represents
a face of WX that either consists of exactly one anchor vertex or contains at least two
anchor vertices, as by definition of active boundary. Step S.(S.7) removes inessential
intersection vertices and twin-pairs, which is a safe operation becauseWX is compact.
Therefore, we can conclude that S(WX , X) belongs to RX , and thus FF1 holds for
RX . Concerning FF2, any entry S in RX generated by the merge operation, starting
from entries S(WX1 , X) ∈ RX1 and S(WX2 , X) ∈ RX2 , defines a way to combine the
combinatorial embeddings of S(WX1 , X) and S(WX2 , X) at common real vertices and
at possibly common (based on some mappings φ1 and φ2) intersection vertices. Such
information can be used to combine in the sameway the corresponding witnessesWX1

and WX2 , which exist because FF2 holds for RX1 and RX2 , respectively. On the other
hand, such combination yields a compactwitnessWX of GX with respect to X , whose
sketchis S, as desired. Thus FF2 holds for RX . In Step S.(S.8) we remove possible
duplicates, hence FF3 holds by construction for RX . Therefore RX is feasible. Since
the merge operation does not increase the degree of intersection vertices, and since
RX1 and RX2 are k-map feasible, the subrecord R∗

X contains all sketchesof RX gen-
erated from sketchesin R∗

X1
and R∗

X2
. If R∗

X = ∅, the algorithm rejects the instance,
otherwise RX is k-map feasible. If RX1 and RX2 are hole-free feasible, R

◦
X contains all

sketchesof RX that are generated from sketchesin R◦
X1

and R◦
X2

and whose complete
active boundaries are such that the edge counters sum up to 4. If R◦

X = ∅, the algorithm
rejects the instance, otherwise RX is hole-free feasible.

Concerning the time complexity, we process each pair of sketches, one in RX1 and
one in RX2 , and since both RX1 and RX2 are feasible, we have ωO(ω) such pairs.
Each of Steps S.(S.1), S.(S.2), and S.(S.3) generates ωO(ω) new entries, and each
entry is computed in O(ω) time. The remaining steps all run in O(ω) time for each
processed entry. Condition FF4 can be easily verified in O(ω) time, for each of the
ωO(ω) sketchesof RX . Furthermore, verifying condition FF5 requires scanning the
active boundaries of each entry in RX and deciding whether it is complete or not. This
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can also be done in O(ω) time for each of the O(ω) active boundaries of each of the
ωO(ω) sketches, and thus in overall ωO(ω) time. Consequently, RX and its subrecords
can be computed in ωO(ω) time. 
�
Lemmas 8–10 imply the next theorem, which summarizes the correctness of the
approach.

Theorem 3 Let G be a graph in input to the algorithm, along with a nice tree-
decomposition (T ,X ) of G and an integer k > 0. Graph G is a k-map graph,
respectively a hole-free k-map graph, if and only if the algorithm reaches the root
ρ of T and the record Rρ is k-map feasible, respectively hole-free feasible.

We are finally ready to prove Theorem 1. We recall that if k ≥ n − 1, recognizing
n-vertex (resp. hole-free) k-map graphs coincides with recognizing general n-vertex
(resp. hole-free) map graphs.

Proof of Theorem 1 We first discuss the decision version of the problem for a fixed
k > 0. Namely, the algorithm described below is used in a binary search to find the
optimal value of k. Recall that t is the width of the tree decomposition (i.e.,ω = t+1).
Note that, if G is a positive instance, then k varies in the range [1, t + 1], since the
size of the largest clique of G is at most t +1. Thus the algorithm is executed O(log t)
times, which however does not affect the asymptotic running time.

If G is not biconnected, by Property 2, it is not a hole-free map graph, and it is a
k-map graph if and only if all its biconnected components are k-map graphs. Hence we
run our algorithm on each biconnected component independently. Theorem 3 implies
the correctness of the algorithm (which assumes the input graph to be biconnected).

For the time complexity, suppose that G has h ≥ 1 biconnected components and
let ni be the size of the i-th component Ci , for each i ≤ h. Decomposing G into its
biconnected components takes O(n + m) time [36], where m is the number of edges
of G and, since G has treewidth t , it holds m ∈ O(n · t2). Given a tree-decomposition
of G with O(n) nodes and width t , we can easily derive a tree-decomposition (Ti ,Xi )

for each Ci in overall O(n) time, such that each Ti has O(ni ) nodes and width at
most t . Then we can apply the algorithm in [33] to obtain, in O(ni )-time, a nice tree-
decomposition of Ci with O(ni ) nodes without increasing the original width. Since
each bag is processed in t O(t) time by Lemmas 8–10, the algorithm runs in t O(t) · ni
time for each Ci . Since

∑h
i=1 ni ∈ O(n), decomposing the graph and applying the

algorithm to all its biconnected components takes t O(t) · n time.
To reconstruct a witness of a yes-instance, we store additional pointers for each

record (a common practice in dynamic programming). Namely, for each sketchS of
a record RX of a bag X , we store a pointer to the sketchof the child bag X ′ that
generated S, if X is an introduce or forget bag, and we store two pointers to the
two sketchesof the children bags X1 and X2 that generated S, if X is a join bag.
With these pointers at hand, we can apply a top-down traversal of T , starting at any
sketchof the non-empty subrecord of ρ, and reconstruct the corresponding witness
W by incrementally combining the retrieved sketches, except at forget bags (the only
points in which we lose information). Suppose first that G is a k-map graph but not
hole-free. If G is not biconnected, a witness W ∗ of G is obtained by merging the
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witnesses of its biconnected components. Note that distinct witnesses corresponding
to distinct biconnected components of G can only share real vertices. Thus, each
intersection vertex of W ∗ has degree at most k and W ∗ is a certificate by Property
1. Suppose now that G is a hole-free k-map graph. Then G is biconnected and the
resulting witness is a biconnected quadrangulation whose intersection vertices have
degree at most k, a certificate by Theorem 2. 
�

6 Conclusions and Open Problems

We have shown how to recognize (hole-free) k-map graphs in linear time for input
graphs having bounded treewidth. The general problem of recognizing map graphs
efficiently remains a major algorithmic challenge. To restrict the complexity of the
input, further parameters of interest might be the cluster vertex deletion number [37]
and the clique-width [38] of the input graph, as well as the treewidth of the putative
witness [16].

Another interesting line of research would be generalizing our framework to rec-
ognize (g, k)-map graphs, i.e., those graphs that admit a k-map on a surface of genus
g (see, e.g., [3]).

Wefinally recall that the complexity of recognizing (hole-free) k-mapgraphs is open
for any fixed k ≥ 5. A natural step in this direction is hence studying the complexity
of recognizing (hole-free) 5-map graphs.
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Appendix A: Monadic Second-Order Logic Formulation

We prove that the problem of recognizing map graphs can be expressed by using
MSO2 logic, which implies the existence of a fixed-parameter tractable algorithm for
parameterized by treewidth.

Theorem 4 Givenann-vertex graphG of treewidth t, there is analgorithm that decides
whether G is a map graph in time f (t) · O(n), for some computable function f .

Proof Let V and E be the vertex and edge set of G, respectively. We construct a graph
G∗ = (V ∪ C, E ∪ D) by augmenting G. For every subset S of V such that S forms
a clique in G: (i) We add a vertex vS ∈ C to G∗, and (ii) We add an edge (vS, u) ∈ D
for each u ∈ S. Since G has n vertices and treewidth t , it admits a tree-decomposition
T with O(n) bags, such that each bag contains at most t vertices. Also, for any clique
of G there is a bag that contains all its vertices. Altogether, it follows that G contains
O(2t n) cliques and hence G∗ has O(2t n) vertices. Moreover, the treewidth of G∗ is
at most t + 1. Namely, we can obtain a valid tree-decomposition T ∗ of G∗ from T as
follows. For a vertex vS ∈ C , let S be the corresponding clique in V and let ν be a
bag of T that contains all the vertices of S. For any such a vertex vS , we add a new
leaf bag ν∗ in T ∗, connected only to ν and containing vS and all the vertices in S. It
is immediate to verify that T ∗ is a tree-decomposition of G∗ of width at most t + 1.

By construction, G is a map graph if and only if there exists a subset B of D such
that: (i) The graph GB formed by the edges of B is planar (note that it is bipartite by
construction), and (ii) For every edge (u, v) of E , there is a path between u and v in
G∗ composed of two edges of B. Indeed, if B exists, then GB is a witness of G. Both
conditions (planarity and the existence of a length-2 path) can be expressed in MSO2
logic.2 Consequently, the statement follows by Courcelle’s theorem [27]. 
�

We remark that the proof of Theorem 4 can be easily modified to find the minimum
k such that G is a k-map graph. Namely, for the decision version of the problem, it
suffices to add a vertex vS ∈ C to G∗ only if the clique S has size at most k. However,
it is less obvious how to adjust the proof in order to test whether G is also hole-free,
in particular, how to additionally ensure that GB has a planar embedding in which all
faces have length at most six [13].
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