
Algorithmica (2024) 86:566–584
https://doi.org/10.1007/s00453-023-01175-3

Randomized Strategies for Robust Combinatorial
Optimization with Approximate Separation

Yasushi Kawase1 · Hanna Sumita2

Received: 10 March 2023 / Accepted: 20 September 2023 / Published online: 10 October 2023
© The Author(s) 2023

Abstract
In this paper, we study the following robust optimization problem. Given a set family
representing feasibility and candidate objective functions, we choose a feasible set,
and then an adversary chooses one objective function, knowing our choice. The goal
is to find a randomized strategy (i.e., a probability distribution over the feasible sets)
that maximizes the expected objective value in the worst case. This problem is funda-
mental in wide areas such as artificial intelligence, machine learning, game theory, and
optimization. To solve the problem, we provide a general framework based on the dual
linear programming problem. In the framework, we utilize the ellipsoid algorithmwith
the approximate separation algorithm. We prove that there exists an α-approximation
algorithm for our robust optimization problem if there exists an α-approximation
algorithm for finding a (deterministic) feasible set that maximizes a nonnegative lin-
ear combination of the candidate objective functions. Using our result, we provide
approximation algorithms for the max–min fair randomized allocation problem and
the maximum cardinality robustness problem with a knapsack constraint.

Keywords Robust optimization · Ellipsoid method · Max–min fair allocation ·
Maximum cardinality robustness problem

Portions of this paper are based on [18, 19].

B Yasushi Kawase
kawase@mist.i.u-tokyo.ac.jp

B Hanna Sumita
sumita@c.titech.ac.jp

1 The University of Tokyo, Tokyo, Japan

2 Tokyo Institute of Technology, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01175-3&domain=pdf

Algorithmica (2024) 86:566–584 567

1 Introduction

This paper addresses robust combinatorial optimization. Let E be a finite ground
set, and let n be a positive integer. Suppose that we are given n set functions
f1, . . . , fn : 2E → R+ and a feasibility constraint I ⊆ 2E . Here, R+ is the set of
nonnegative reals. The functions f1, . . . , fn represent possible scenarios. We assume
that each function is given by a value oracle, i.e., for a given X ⊆ E , we can query
the oracles about the values f1(X), . . . , fn(X). For each k = 1, . . . , n, we denote by
X∗
k an optimal solution for the kth function fk (i.e., X∗

k ∈ argmaxX∈I fk(X)), and
assume that fk(X∗

k) > 0.
Throughout this paper, we denote [n] = {1, . . . , n}. The worst case value for

X ∈ I across all scenarios is defined as mink∈[n] fk(X). We focus on a randomized
strategy for the robust optimization problem, i.e., a probability distribution over I.
Let �(I) ⊆ [0, 1]I and �n ⊆ [0, 1]n denote the set of probability distributions over
I and [n], respectively. The worst case value for a randomized strategy p ∈ �(I) is
defined as mink∈[n]

∑
X∈I pX · fk(X). The aim of this paper is to solve the following

robust optimization problem:

max
p∈�(I)

min
k∈[n]

∑

X∈I
pX · fk(X). (1)

This problem is regarded as the problem of computing the game value in a two-person
zero-sum game where one player (Algorithm) selects a feasible solution and the other
player (Adversary) selects an objective function.

There are two advantages to adopting a randomized strategy rather than a deter-
ministic one for the problem (1). One is that the randomization improves the worst
case value dramatically. Suppose that I = {∅, {a}, {b}}, f1(X) = |X ∩ {a}|, and
f2(X) = |X ∩ {b}|. Then, the maximum worst case value among deterministic strate-
gies is maxX∈I mink∈{1,2} fk(X) = 0, while the maximum worst case value among
randomized ones is maxp∈�(I) mink∈{1,2}

∑
X∈I pX · fk(X) = 1/2. The other merit

is that the optimal randomized strategy can be found easier. It is known that finding
an optimal deterministic solution is hard even in a simple setting [1, 17]. In particular,
even for an easy case, computing the optimal worst case value among deterministic
solutions is NP-hard even to approximate, while we can compute that among random-
ized solutions in polynomial time. We will show these facts in this paper.

The robust optimization problem also has widespread applications in game the-
ory and combinatorial optimization. One is the problem of computing a Stackelberg
equilibrium of the (zero-sum) security games. This game models interaction between
a system defender (Algorithm) and a malicious attacker (Adversary) to the system.
A Stackelberg equilibrium is an optimal solution that maximizes the defender’s util-
ity, taking into account the constraint that the attacker plays a best response to the
defender’s action. The model and its game-theoretic solution have various applica-
tions in the real world [33]. Another application is the problem of maximizing the
cardinality robustness for the maximum weight independent set problem [9, 12, 14,
23, 28]. The goal is to choose an independent set of size at most k with as large total
weight as possible, but the cardinality bound k is not known in advance. We refer

123

568 Algorithmica (2024) 86:566–584

this problem to the maximum cardinality robustness problem (MCRP). We can regard
MCRP as the game where Algorithm chooses an independent set X , and then Adver-
sary chooses k knowing X . In addition, dense subgraph discovery in a multilayer
network is studied as a robust optimization problem. Randomized solutions for this
problem are studied in the paper [20].

One of the most standard ways to solve the robust optimization problem is to use
the linear programming (LP). In fact, it is known that we can compute the exact game
value in polynomial time with respect to the numbers of deterministic (pure) strategies
for both players (see, e.g., [2, 29] for more details). However, in our setting, direct use
of the LP formulation is not effective. This is because the set of deterministic strategies
for Algorithm has exponentially large cardinality in general, and hence the number of
the variables in the LP formulation is exponentially large. We overcome this difficulty
by taking the dual and utilizing an (approximate) separation algorithm.

Another approach is to use the multiplicative weights update (MWU) method. The
MWUmethod is an algorithmic technique that maintains a distribution on a certain set
of interests and updates it iteratively by multiplying the probability mass of elements
by suitably chosen factors based on feedback obtained by running another algorithm
on the distribution [16]. MWU is simple but so powerful that it is widely used in game
theory, machine learning, computational geometry, optimization, and so on. Freund
and Schapire [7] apply the MWUmethod to calculate the approximate value of a two-
person zero-sum game, and showed that if (i) the set of deterministic strategies for
Adversary is polynomially sized, and (ii) Algorithm can compute a best response, then
MWUyields a polynomial-time algorithm to compute the game value up to an additive
error of ε for any fixed constant ε > 0. Krause [26] and Chen et al. [5] extended this
result for the case when Algorithm can compute only an approximately best response.
They provided a polynomial-time algorithm that finds an α-approximation of the game
value up to an additive error of ε · maxk∈[n], X∈I fk(X) for any fixed constant ε > 0.
This result leads to no theoretical guarantee in general because themaximum objective
value can be arbitrarily large compared with the optimal value. Moreover, obtaining
an (α − ε′)-approximate solution of the problem (1) for a fixed constant ε′ > 0 by
their algorithms requires pseudo-polynomial time. Here, an algorithm is said to be an
α-approximation algorithm if, for any problem instance, it yields a solution whose
objective value is at least α times the optimal value.

RelatedWork

While there exist still few papers on randomized strategies of the robust optimization
problems, algorithms to find a deterministic strategy have been intensively stud-
ied in various settings. See survey papers [1, 17] and references therein for details.
Krause et al. [25] focused on solving maxX⊆E, |X |≤� mink∈[n] fk(X) where fk’s are
monotone submodular functions. Those authors showed that this problem is NP-
hard even to approximate and provided an algorithm that outputs a set X of size
� · (1 + log(maxe∈E

∑
k∈[n] fk({e}))) whose objective value is at least as good as the

optimal value. Orlin et al. [30] provided constant-factor approximate algorithms to

123

Algorithmica (2024) 86:566–584 569

solve maxX⊆E, |X |≤k minZ⊆X , |Z |≤τ f (X − Z), where f is a monotone submodular
function.

Since Hassin and Rubinstein [12] introduced the notion of the cardinality robust-
ness, many papers have been investigating the value of the maximum cardinality
robustness [9, 12, 14, 15, 23]. Kakimura et al. [15] proved that the deterministic
version of MCRP is weakly NP-hard but admits an FPTAS. Matuschke et al. [28]
introduced randomized strategies for cardinality robustness, and they presented a ran-
domized strategy with (1/ ln 4)-robustness for a certain class of independence system.
However, they did not consider the computational aspect of cardinality robustness.
Kobayashi and Takazawa [23] focused on independence systems that are defined
from the knapsack problem, and exhibited two randomized strategies with robustness
�(1/ log σ) and �(1/ log υ), where σ is the exchangeability of the independence
system and υ = the size of a maximum independent set

the size of a minimum dependent set−1 .
When n = 1, the deterministic version of the robust optimization problem is exactly

the classical optimization problem maxX∈I f (X). It is well-known that the problem
is solvable in polynomial-time if f is additive and I is a matroid intersection con-
straint [31]. If f is additive and I is a μ-matroid intersection constraint, there is a
1/(μ − 1 + ε)-approximation algorithm for any fixed ε > 0 and μ ≥ 3 [27]. For
the monotone submodular function maximization problem, there exist (1 − 1/e)-
approximation algorithms under a knapsack constraint [32] or a matroid constraint [3,
6], and there exists a 1/(μ + ε)-approximation algorithm under a μ-matroid intersec-
tion constraint for any fixed ε > 0 and μ ≥ 2 [27]. As for the case when the objective
function f is additive, the knapsack problem admits an FPTAS [21].

Our Results

We provide a general framework based on a dual LP to solve the robust optimiza-
tion problem. Our framework achieves better performance than the MWU based
frameworks [5, 26]. In our framework, we utilize the ellipsoid algorithm with
the approximate separation algorithm. The separation problem in the framework
is of the form maxX∈I

∑
k∈[n] zk fk(X) where zk is a nonnegative real for each

k ∈ [n]. The framework provides an α-approximation algorithm for the robust
optimization problem (1) if we are given an α-approximation algorithm to solve
maxX∈I

∑
k∈[n] zk fk(X) for any z ∈ R

n+. Specifically, if maxX∈I
∑

k∈[n] zk fk(X)

is polynomial-time solvable for any z ∈ R
n+, the robust optimization problem is also

solvable in polynomial-time.
The above framework yields approximation algorithms according to classes of

objective functions and constraints. For example, let us focus on when objective func-
tions f1, . . . , fn are additive. The problem (1) is polynomial-time solvable if the
constraintI is given by amatroid (intersection), since the separation problemcoincides
with the maximum weight matroid intersection problem and this is polynomial-time
solvable. Similarly, when I is a knapsack constraint, we can provide an FPTAS for
the robust optimization problem since the knapsack problem admits an FPTAS. For
monotone submodular functions f1, . . . , fn and a knapsack or a matroid constraint I,
we obtain a (1−1/e)-approximation algorithm by using the (1−1/e)-approximation

123

570 Algorithmica (2024) 86:566–584

Table 1 The approximation ratios for robust optimization problems shown in the present paper

Objective functions Constraint Approx. ratio Reference

additive matroid intersection P Theorem 4

additive μ-matroid intersection 1/(μ − 1 + ε) Theorem 6

additive knapsack FPTAS Theorem 7

additive (shortest path) s–t path P Theorem 8

monotone submodular matroid/knapsack (1 − 1
e)-approx Theorem 9

monotone submodular μ-matroid intersection 1/(μ + ε)-approx Theorem 11

MCRP knapsack FPTAS Theorem 14

algorithms for the monotone submodular function maximization problem. For MCRP
with a knapsack constraint, we design an FPTAS by constructing an FPTAS for the
corresponding separation problem. Our results are summarized in Table 1.

2 Preliminaries

For given objective functions f1, . . . , fn : 2E → R+ and a feasibility constraint I ⊆
2E , we consider problem (1).

Objective functions
Throughout this paper, we consider set functions f with f (∅) = 0. We say that a set
function f : 2E → R is submodular if f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) holds
for all X ,Y ⊆ E [8, 24]. In particular, a set function f : 2E → R is called additive
(or modular) if f (X) + f (Y) = f (X ∪ Y) + f (X ∩ Y) holds for all X ,Y ⊆ E . An
additive function f is represented as f (X) = ∑

e∈X we for somew ∈ R
E . A function

f is said to be monotone if f (X) ≤ f (Y) for all X ⊆ Y ⊆ E . An additive function
f (X) = ∑

e∈X we is monotone if and only if we ≥ 0 (∀e ∈ E).

Feasibility constraints
Let E be a finite ground set. An independence system is a set system (E, I) with the
following properties: (I1) ∅ ∈ I, and (I2) X ⊆ Y ∈ I implies X ∈ I. A set X ⊆ I
is said to be independent, and an inclusion-wise maximal independent set is called a
base.

A matroid is an independence system (E, I) satisfying that (I3) if X ,Y ∈ I and
|X | < |Y | then there exists e ∈ Y \ X such that X ∪ {e} ∈ I. All bases of a matroid
have the same cardinality, which is called the rank of the matroid and is denoted
by ρ(I). An example of matroids is a uniform matroid (E, I), where I = {X ⊆
E : |X | ≤ r} for some r . Note that the rank of this uniform matroid is r . Given
two matroids M1 = (E, I1) and M2 = (E, I2), the matroid intersection of M1
andM2 is defined by (E, I1 ∩ I2). By definition, a matroid is a matroid intersection
in which one matroid is a uniform matroid with rank r = |E |. Similarly, given μ

matroids (E, I1), . . . , (E, Iμ), theμ-matroid intersection is defined by (E,
⋂μ

i=1 Ii).

123

Algorithmica (2024) 86:566–584 571

We assume that the independence oracle for each matroid is given when we consider
a matroid intersection or a μ-matroid intersection constraint.

Given an item set E with size s(e) and value v(e) for each e ∈ E , and a capacity
c ∈ R+, the knapsack problem is to find a subset X of E that maximizes the total value∑

e∈X v(e) subject to a knapsack constraint
∑

e∈X s(e) ≤ c. Each subset satisfying the
knapsack constraint is called a knapsack solution. LetI = {X ⊆ E : ∑

e∈X s(e) ≤ c}
be the family of knapsack solutions. Then, (E, I) is an independence system.

Hardness of the problem
We show that computing the optimal worst case value among deterministic solutions
is strongly NP-hard even to approximate, as we mentioned in Introduction. To prove
this, we reduce from the hitting set problem, which is known to be NP-hard [10]. Given
n subsets Sk ⊆ E (k ∈ [n]) on a ground set E and an integer r , the hitting set problem
is to find a subset A ⊆ E such that |A| ≤ r and Sk ∩ A = ∅ for all k ∈ [n], if such a
subset exists.

Theorem 1 It is NP-hard to compute the value

max
X∈I

min
k∈[n] fk(X) (2)

even when the objective functions f1, . . . , fk are additive and I is given by a uniform
matroid. Moreover, there exists no approximation algorithm for the problem unless
P=NP.

Proof Let (E, {S1, . . . , Sn}, r) be an instance of the hitting set problem. We construct
an instance of the problem (2) as follows. The constraint I is defined as the uniform
matroid over E with rank r , i.e., I = {X ⊆ E : |X | ≤ r}. Each objective function
fk (k ∈ [n]) is defined by fk(X) = |X ∩ Sk | (X ⊆ E), which is additive.
If there exists a hitting set X ∈ I, then mink∈[n] fk(X) ≥ 1, which implies that

the optimal value of (2) is at least 1. On the other hand, if any X ∈ I is not a hitting
set, then mink∈[n] fk(X) = 0 for all X ∈ I, meaning that the optimal value of (2)
is 0. Therefore, even deciding whether the optimal value of (2) is positive or zero is
NP-hard. Thus, there exists no approximation algorithm to the problem unless P = NP.

��
Note that the randomized version of the problem (2) is solvable in polynomial time

by Theorem 4.
We conclude this section by presenting details about the applications of (1).

Security game
In a security game, we are given a set E of n targets. One player called defender
selects a set of targets X ∈ I ⊆ 2E , and then the other player called attacker selects
one target i ∈ E . A typical example of the constraint is I = {X ⊆ E : |X | ≤ �},
which means that the defender can protect at most � targets at the same time. The
utility of defender is ri if i ∈ X and ci if i /∈ X . Then, we can interpret the game as
the robust optimization with fi (X) = ci + ∑

j∈X wi j (i ∈ E), where wi i = ri − ci
and wi j = 0 for j = i . Note that all of the functions are additive. Then the problem
of computing the Stackelberg equilibrium is equivalent to (1).

123

572 Algorithmica (2024) 86:566–584

Max–min fair allocation
Suppose that we are given indivisible goods E and agents N = [n], where each
agent k ∈ N has a utility function uk : 2E → R+. Our goal is to allocate goods
to agents so as to make the least happy agent as happy as possible. Such an allo-
cation is said to achieve the max–min fairness. Let I = {X ⊆ [n] × E :
|X ∩ {(k, e) : e ∈ E}| ≤ 1 (∀k ∈ [n])} and fk(X) = uk({e ∈ E : (k, e) ∈ X}).
Then, each X ∈ I corresponds to an allocation such that agent k ∈ N receives a
bundle {e ∈ E : (k, e) ∈ X}. Then, the max–min fair randomized allocation problem
is to solve maxp∈�(I) mink∈[n]

∑
X∈I pX · fk(X).

MCRP
Consider that given an independence system (E, I)with weights of elements in E , we
are required to choose X ∈ I of size at most k with as large total weight as possible,
but k is not known in advance. For each X ∈ I, we denote the total weight of the k
heaviest elements in X by v≤k(X). For α ∈ [0, 1], an independent set X ∈ I is said
to be α-robust if v≤k(X) ≥ α · maxY∈I v≤k(Y) for any k ∈ [n]. Then, MCRP is a
problem to find a randomized strategy that maximizes the robustness α, i.e., solve

max
p∈�(I)

min
k∈[n]

∑
X∈I pX · v≤k(X)

maxY∈I v≤k(Y)
.

This is formulated as problem (1) by setting fk(X) = v≤k(X)

maxY∈I v≤k (Y)
.

3 Dual-Based Framework

In this section, we propose a computation framework for the robust optimization
problem (1). The problem can be described as the following LP:

max t
s.t. t ≤ ∑

X∈I fi (X)pX (∀i ∈ [n]),∑
X∈I pX = 1,

pX ≥ 0 (∀X ∈ I).

(3)

We may assume that the optimal value t is positive because a solution (p, t) defined
by pX = |{i ∈ [n] : X = X∗

i }|/n (X ∈ I) and t = ∑
i∈[n] fi (X∗

i)/n > 0 is feasible.
Here, recall that X∗

k ∈ argmaxX∈I fk(X) and fk(X∗
k) > 0 is assumed for every

k ∈ [n]. By setting qX = pX/t for each X ∈ I and changing the objective to
minimize 1/t , we obtain the following equivalent and simpler LP:

min
∑

X∈I qX
s.t.

∑
X∈I fi (X)qX ≥ 1 (∀i ∈ [n]),

qX ≥ 0 (∀X ∈ I).

(4)

123

Algorithmica (2024) 86:566–584 573

Then, the dual LP is given as follows:

max
∑

i∈[n] zi
s.t.

∑
i∈[n] fi (X)zi ≤ 1 (∀X ∈ I),

zi ≥ 0 (∀i ∈ [n]).
(5)

In the following, we aim to solve problem (4) via solving (5) by the ellipsoid
algorithm. This algorithm works when we have a separation algorithm to solve the
separation problem [11]. For a polyhedron P ⊆ R

n , the separation problem for P
receives a vector y and either asserts y ∈ P or finds a vector d such that d�x > d�y
for all x ∈ P . In our setting, we need a separation algorithm for the feasible region
of (5). Suppose that ẑ ∈ R

n is an input of the separation problem. If ẑi < 0 for some
i ∈ N , then ẑ is infeasible and −ẑi > 0 ≥ −zi for all feasible solutions z ∈ R

n .
Hence, assume that ẑi ≥ 0 for all i ∈ [n]. We observe that checking the feasibility
of a given input ẑ ∈ R

n can be done by solving max
∑

i∈[n] fi (X)ẑi . For z ∈ R
n , we

define a function f z : 2E → R+ by

f z(X) =
∑

i∈[n]
fi (X)zi , (6)

and consider the following optimization problem:

max
X∈I

f z(X). (7)

If the optimal solution X∗ ∈ I has the objective value larger than 1 for the problem
(7) with z = ẑ, then

(
f1(X∗), . . . , fn(X∗)

)
is a desired vector as d. This is because∑

i∈[n] fi (X∗)ẑi > 1 ≥ ∑
i∈[n] fi (X∗)zi for all feasible solutions z ∈ R

n . Note that
if fi ’s are additive or submodular, then the objective function f z is also additive or
submodular for any z ∈ R

n+, respectively.
The solvability of the separation problem is dependent on the class of the objective

functions fi ’s and the constraint I. It is generally difficult to solve the separation
problem in polynomial time. As a remedy, we employ the technique of Jansen [13]
that uses an approximate separation algorithm to solve the LP approximately. For a
polyhedron P ⊆ R

n and a positive α ≤ 1, the α-approximate separation algorithm
for P receives a vector y and either asserts αy ∈ P or finds a vector d such that
d�x > d�y for all x ∈ P . Jansen [13] focused on the LP of the form:

max c�y
s.t. a�

j y ≤ b j (∀ j ∈ [m]),
y ∈ B,

(8)

where a j is an n-dimensional rational vector and b j is a positive rational number for all
j ∈ [m], and B is a polyhedron defined by some inequalities such that the separation
problem for B is solvable in polynomial time. Let K be the feasible region of (8).
Then, Jansen [13] showed the following result. Suppose that we know an integerψ for

123

574 Algorithmica (2024) 86:566–584

which there is a system of inequalities with rational coefficients that has a solution set
K , and such that the encoding length of each inequality is at most ψ . Also, suppose
that we have an α-approximation algorithm APP for finding � ∈ [m] maximizing
a�
j y/b j , where y ∈ B is fixed, in polynomial time with respect to n and ψ . Then,

there is a polynomial-time α-approximate separation algorithm for the polyhedron K
with respect to n, and this yields an α-approximation algorithm for (8) in polynomial
time with respect to n andψ . Moreover, there is an α-approximation algorithm for the
dual of (8) that runs in polynomial time in n and ψ .

We utilize the result of Jansen [13] as follows. We set c to be the all-one vector and
B = {z ∈ R

n : zk ≥ 0 (∀k ∈ [n])}. Let μ be the maximum encoding length of fk(X)

among k ∈ [n] and X ∈ I. We set ψ = O(n logμ). Indeed, each constraint in (5) has
at most n coefficients of size bounded by logμ. In addition, suppose that we have an
α-approximation algorithm APP for the problem (7) in polynomial time with respect
to n and the time to evaluate the value of fi (i ∈ [n]). According to the paper [13],
an α-approximate separation algorithm can be constructed in the same way as when
the problem (7) can be solved exactly. We summarize this in Algorithm 1. When a
violated constraint for a vector ẑ is not found, it returns that αẑ is feasible. This is
correct because, when APP finds a solution X̃ , we have 1 ≥ f ẑ(X̃) ≥ α f ẑ(X) =
α · ∑

i∈[n] fi (X)ẑi for all X ∈ I by the construction. We can see that Algorithm 1
returns an answer in polynomial time in n and the running time of APP.

It is worth mentioning that this method is applicable thanks to the variable trans-
formation from problem (3)–(4). In fact, the dual of LP (3) is not in the form of
(8).

Algorithm 1 α-approximate separation algorithm for a vector z
1: if zi < 0 for some i ∈ [n] then
2: return “zi ≥ 0 is violated”;
3: end if
4: X̃ ← the α-approximate solution returned by APP for maxX∈I f z(X);
5: if f z(X̃) > 1 then
6: return “

∑
i∈[n] fi (X)zi ≤ 1 is violated”;

7: else
8: return “αz is feasible”;
9: end if

Then, we solve the problem (4) as follows. First, solve the dual LP (5) using the
ellipsoid algorithm with Algorithm 1. Let S be the family of X ∈ I corresponding to
the violated constraints in (5) returned at Line 6 of Algorithm 1. Let z̃ be the obtained
feasible solution to the LP (5). Next, construct a restriction of the primal LP (4) by
setting qX = 0 for all X /∈ S, i.e.,

min
∑

X∈S qX
s.t.

∑
X∈S fi (X)qX ≥ 1 (∀i ∈ [n]),

qX ≥ 0 (∀X ∈ S).

(9)

123

Algorithmica (2024) 86:566–584 575

Then, solve LP (9) with a standard LP algorithm (such as the algorithm by
Khachiyan [22]). We summarize this in Algorithm 2.

Algorithm 2 Approximate algorithm for (4)
1: Solve the dual LP (5) using the ellipsoid algorithm with Algorithm 1.
2: Let S ⊆ I be the family of the sets corresponding to the violated constraints in (5) returned at Line 6

of Algorithm 1;
3: Let z̃ be the obtained solution;
4: Solve the restricted LP (9) with a standard LP algorithm;
5: return an optimal solution (q̃X)X∈S of LP (9);

We remark that S has polynomial size. The size of S increases by at most one per
one call for Algorithm 1. Moreover, by construction of the ellipsoid algorithm, the
number of the calls for Algorithm 1 is bounded by a polynomial (in n, logμ, and time
to evaluate fi ’s).

Thus, we can rewrite the result of Jansen [13] as follows.

Theorem 2 (Jansen [13]) Suppose that there is an α-approximation algorithm APP for
(7). Then, Algorithm 1 is a polynomial-time α-approximate separation algorithm for
(5), and Algorithm 2 is an α-approximation algorithm for (3) that runs in polynomial
time in n, logμ and the running time of APP.

From the output (q̃X)X∈S of Algorithm 2, we construct a solution ((p̃X)X∈S , t̃) of
LP (3) as t̃ = 1/

∑
X∈S q̃X and p̃X = t̃ · q̃X for X ∈ S. We provide a theoretical

guarantee on this solution.

Theorem 3 With anα-approximation algorithmAPP for the problem (7), we canobtain
an α-approximation algorithm for the robust optimization problem (1) in polynomial
time with respect to n, logμ, and the time to evaluate the value of fi (i ∈ [n]).
Proof We see from Theorem 2 that Algorithm 2 terminates in polynomial time. The
construction of ((p̃X)X∈S , t̃) can be done also in polynomial time. Since (q̃X)X∈S
is feasible for (3), ((p̃X)X∈S , t̃) is feasible for (3). Let OPT be the optimal value of
(3). By construction, the optimal value of (3) is equal to 1/OPT. By Theorem 2, we
have

∑
X∈S q̃X ≤ (1/α) · (1/OPT). Thus, it holds that α · OPT ≤ 1/

∑
X∈S q̃X = t̃ .

Therefore, ((p̃X)X∈S , t̃) is an α-approximate solution of LP (3). ��

4 Application of Our Framework

In this section, we apply Theorem 3 for concrete problems.

4.1 Robust Additive Maximization

Weconsider the casewhere f1, . . . , fn are additive.Wecall such a problem the additive
robust optimization problem. In this case, the function f z defined as (6) is additive for

123

576 Algorithmica (2024) 86:566–584

any z ∈ R
n+. It is well-known that the problem (7) is solvable in polynomial-time if

the constraint I is a matroid intersection (see, e.g., the book of Schrijver [31]). The
maximum encoding length μ of the function values can be obtained by evaluating the
encoding length of fk({e}) for each k ∈ [n] and e ∈ E . Hence, we obtain the following
theorem.

Theorem 4 There exists a polynomial-time algorithm for the additive robust optimiza-
tion problem if the constraint I is defined from a matroid intersection.

In the max–min fair randomized allocation problem, the constraint I = {
X ⊆

[n] × E : |X ∩ {(k, e) : e ∈ E}| ≤ 1 (∀k ∈ [n])} is a matroid. Hence, we obtain the
following corollary from Theorem 4.

Corollary 5 There exists a polynomial-timealgorithm for themax–min fair randomized
allocation problem when every agent has an additive utility function.

Let us consider a general case in which I is a μ-matroid intersection. It is NP-
hard to maximize an additive function subject to a μ-matroid intersection constraint
if μ ≥ 3 [10]. Hence, it is also NP-hard to solve the additive robust optimization
subject to a μ-matroid intersection constraint if μ ≥ 3. Nevertheless, by utilizing
1/(μ−1+ε)-approximation algorithm [27] (ε > 0), we obtain the following theorem.

Theorem 6 For any fixed ε > 0, there exists a 1/(μ − 1 + ε)-approximation algo-
rithm for the additive robust optimization problem if the constraint I is a μ-matroid
intersection.

When I is a knapsack constraint, the additive robust optimization problem is NP-
hard. However, an FPTAS is known for the knapsack problem.

Theorem 7 There exists an FPTAS for the additive robust optimization problem if the
constraint I is defined from a knapsack constraint.

Furthermore, our method can be applied to the robust shortest s–t path problem. In
the problem, we are given a directed graph G = (V , E), a source s ∈ V , a destination
t ∈ V , and lengths �k : E → R++ (k ∈ [n]), where R++ is the set of positive reals.
Let I ⊆ 2E be the set of s–t paths and fk(X) = −∑

e∈X �k(e) for k ∈ [n]. Then,
the robust shortest path problem is to find a probability distribution over s–t paths
p ∈ �(I) that maximizes mink∈[n]

∑
X∈I pX fk(X). As the shortest s–t path problem

is solvable in polynomial time, the following theorem holds.

Theorem 8 There exists a polynomial-time algorithm for the robust shortest s–t path
problem.

4.2 Robust Monotone Submodular Maximization

We consider the case where f1, . . . , fn are monotone submodular. We call such a
problem the monotone submodular robust optimization problem. For any z ∈ R

n+,
the function f z defined by (6) is monotone submodular since a nonnegative linear

123

Algorithmica (2024) 86:566–584 577

combination of monotone submodular functions is a monotone submodular func-
tion. Thus, (7) is an instance of the monotone submodular function maximization
problem. We assume that the maximum encoding length μ of the function values
is known. There exists (1 − 1/e)-approximation algorithms for this problem under
a knapsack constraint [32] or under a matroid constraint [3, 6]. When I is defined
from a knapsack constraint or a matroid, Theorem 3 implies that Algorithm 2 finds a
(1− 1/e)-approximate solution to (1) by using the existing approximation algorithms
as APP in Algorithm 1.

Theorem 9 There exists a (1 − 1/e)-approximation algorithm for the monotone sub-
modular robust optimization problem if the constraint I is defined from a knapsack
constraint or a matroid.

Recall that the max–min fair randomized allocation problem is to solve maxp∈�(I)

mink∈[n]
∑

X∈I pX · fk(X) where I = {X ⊆ [n] × E : |X ∩ {(k, e) : e ∈ E}| ≤
1 (∀k ∈ [n])} and fk(X) = uk({e ∈ E : (k, e) ∈ X}). Here, I is a (partition)
matroid. Additionally, fk is a monotone submodular function if the utility function uk
is a monotone submodular function. Hence, from Theorem 9, we obtain the following
corollary.

Corollary 10 There exists a (1 − 1/e)-approximation algorithm for the max–min fair
randomized allocation problem when every agent has a monotone submodular utility
function.

In addition, there exists a 1/(μ + ε)-approximation algorithm for the monotone
submodular function maximization problem under aμ-matroid intersection constraint
[27]. Hence, the following theorem holds by Theorem 3.

Theorem 11 For any fixed ε > 0, there exists a 1/(μ + ε)-approximation algorithm
for themonotone submodular robust optimization problem if the constraintI is defined
from a μ-matroid intersection.

4.3 MCRPwith a Knapsack Constraint

Now, we apply Theorem 3 to MCRP with a knapsack constraint. In MCRP, suppose
that we are given a set of items E = {1, 2, . . . , n} with size s : E → R++, and value
v : E → R++, and a knapsack capacity c. Without loss of generality, we assume that
s(e) ≤ c for every e ∈ E . The set of feasible solutions is I = {X ⊆ E : s(X) ≤ c}.
Let us denote

v≤k(X) = max
{∑

e∈X ′ v(e) : |X ′| ≤ k, X ′ ⊆ X
}

and let X∗
k ∈ argmaxX∈Iv≤k(X) for k ∈ [n]. The cardinality robustness of a solution

X ∈ I is defined as

min
k∈[n]

v≤k(X)

v≤k(X∗
k)

.

123

578 Algorithmica (2024) 86:566–584

MCRP with a knapsack constraint is to find a randomized solution p ∈ �(I) with
the maximum cardinality robustness under the knapsack constraint. We show that this
problem is NP-hard but admits an FPTAS; the proof of the hardness is deferred to
Appendix A. We note that Kakimura et al. [15] proved that its deterministic version
is NP-hard but also admits an FPTAS. However, their results and ours do not directly
imply each other. Because the optimal values in the deterministic and randomized
setting may be significantly different, even an optimal deterministic solution may
not be a good approximate randomized solution. Furthermore, converting an optimal
randomized solution into a deterministic solution with a good approximation ratio is
a challenging task.

We can see MCRP as the robust optimization problem (1) with constraint I and
objective functions

fk(X) = v≤k(X)

v≤k(X∗
k)

(k ∈ [n]).

We note that maxX∈I fk(X) = fk(X∗
k) = 1 for each k ∈ [n].

To construct an FPTAS for the problem (7), we need to evaluate fk(X), and we do
this by using the following result.

Lemma 12 Caprara et al. [4] There exists an FPTAS to compute the value of v≤k(X∗
k)

for each k ∈ [n].
Then we construct our FPTAS for (7) based on the dynamic programming.

Lemma 13 For a given z ∈ R
n+, there exists an FPTAS to solve the problem

maxX∈I f z(X).

Proof Without loss of generality, we may assume z = 0. Let ε be a positive real and
let ν be the optimal value, i.e., ν = maxX∈I f z(X) = maxX∈I

∑
k∈[n]

zk ·v≤k(X)

v≤k (X∗
k)

. For

each k ∈ [n], let v∗
k be a value such that v≤k(X∗

k) ≤ v∗
k ≤ v≤k(X∗

k)/(1 − ε). We can
compute such values in polynomial time with respect to n and 1/ε by Lemma 12. For
each X ∈ I, let g(X) = ∑

k∈[n]
zk ·v≤k(X)

v∗
k

. Then by the definition of v∗
k , we have

(1 − ε)ν ≤ max
X∈I

g(X) ≤ ν.

Hence, it suffices to solve maxX∈I g(X) to know an approximate solution to prob-
lem (7).

A simple dynamic programming based algorithm for maximizing g runs in time
depending on the value of g. By appropriately scaling the value of g according to ε,
we will obtain a solution whose objective value is at least (1 − 2ε)ν in polynomial
time with respect to both n and 1/ε. Let κ = � n2

ε
�. For each X = {e1, . . . , e�} with

v(e1) ≥ . . . ≥ v(e�), we define

ḡ(X) =
�∑

k=1

⌊(
n∑

i=k

zi
v∗
i

)

v(ek) · κ
∑

i∈[n] zi

⌋

·
∑

i∈[n] zi
κ

.

123

Algorithmica (2024) 86:566–584 579

We note that

g(X) =
n∑

k=1

zk · v≤k(X)

v∗
k

=
n∑

k=1

zk
v∗
k

min{k,�}∑

i=1

v(ei) =
�∑

k=1

(
n∑

i=k

zi
v∗
i

)

v(ek).

Thus, we have ḡ(X) ≤ g(X) ≤ ḡ(X) + n · (
∑

i∈[n] zi/κ) for all X .
In addition, we have

ν = max
X∈I

f z(X) ≥ max
X∈{X∗

1 ,...,X
∗
n }

∑

k∈[n]

zk · v≤k(X)

v≤k(X∗
k)

≥ max
k∈[n] zk ≥

∑
k∈[n] zk
n

.

Hence, we obtain

max
X∈I

ḡ(X) ≥ max
X∈I

g(X) − n
∑

k∈[n] zk
κ

≥ max
X∈I

g(X) − ε ·
∑

k∈[n] zk
n

≥ (1 − ε)ν − ε · ν = (1 − 2ε)ν.

This implies that there exists an FPTAS to solve maxX∈I f z(X) if we can compute
maxX∈I ḡ(X), or equivalently maxX∈I(κ/

∑
k∈[n] zk) · ḡ(X) in polynomial time in n

and 1/ε.
Here, we assume that E = {1, 2, . . . , n} and v(1) ≥ v(2) ≥ · · · ≥ v(n). Let

τ(ζ, ξ, φ) = min{s(X) : X ⊆ {1, . . . , ζ }, |X | = ξ, (κ/
∑

k∈[n] zk) · ḡ(X) = φ}.
Then we can compute the value of τ(ζ, ξ, φ) by the following equation:

τ(ζ, ξ, φ) = min
{
τ(ζ − 1, ξ, φ), s(ζ) + τ

(
ζ − 1, ξ − 1, φ − ⌊(∑n

i=ζ
zi
v∗
i

)
v(ζ)·κ∑
i∈[n] zi

⌋)}
.

We see that maxX∈I ḡ(X) = max{φ : τ(n, ξ, φ) ≤ c, 0 ≤ ξ ≤ n}, and an optimal
solution is obtained straightforwardly.

It remains to discuss the running time. For all X , the value (κ/
∑

k∈[n] zk) · ḡ(X)

is an integer in [0, κ] because ḡ(X) ≤ ∑
k∈[n]

zk ·v≤k (X)

v≤k (X∗
k)

≤ ∑
k∈[n] zk . Hence, there

exist κ + 1 possibilities of φ. Therefore, we can compute maxX∈I ḡ(X) in O(n2κ) =
O(n4/ε) time. ��

Note that the maximum encoding length μ of the function values fk(X) can be
obtained by summing up the encoding length of v(e) for each e ∈ E . Therefore, we
obtain the following theorem by combining Theorem 3 and Lemma 13.

Theorem 14 There exists an FPTAS to solve MCRP with a knapsack constraint.

Acknowledgements The first author is supported by JSPS KAKENHI Grant Nos. JP16K16005,
JP20K19739, JST ACT-I Grant No. JPMJPR17U7, JST PRESTO Grant No. JPMJPR2122, and Value
ExchangeEngineering, a joint researchproject betweenR4D,Mercari, Inc. and theRIISE.The second author
is supported by JSTERATOGrantNo. JPMJER1201, Japan, and JSPSKAKENHIGrantNos. JP17K12646,
JP21K17708, and JP21H03397, Japan.

123

580 Algorithmica (2024) 86:566–584

Author Contributions All authors wrote and reviewed the manuscript.

Funding Open access funding provided by The University of Tokyo.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: NP-Hardness of MCRP for the Knapsack Problem

In this section, we show that MCRP is NP-hard. We give a reduction from the parti-
tion problem with restriction that two partitioned subsets are restricted to have equal
cardinality, which is an NP-complete problem [10]. Given an even number of positive
integers a1, a2, . . . , a2n , the problem is to find a subset I ⊆ [2n] such that |I | = n
and

∑
i∈I ai = ∑

i∈[2n]\I ai . Recall that [2n] = {1, 2, . . . , 2n}.

Theorem 15 It is NP-hard to find a solution p ∈ �(I) with the maximum cardinality
robustness for the knapsack problem.

Proof Let (a1, a2, . . . , a2n) be an instance of the partition problem. Without loss of
generality, we assume that a1 ≥ a2 ≥ · · · ≥ a2n (≥ 1) and n ≥ 4. Define A =∑2n

i=1 ai/2. We construct the following instance of MCRP for the knapsack problem:

• E = {0, 1, . . . , 2n},
• s(0) = A + 2n2a1, v(0) = 2(2n + 1)a1,
• s(i) = v(i) = ai + 2na1 (i = 1, . . . , 2n),
• c = ∑2n

i=1 s(i) = 2A + 4n2a1.

Note that c/2 = s(0) ≥ s(1) ≥ · · · ≥ s(2n) and v(0) = 2v(1) > v(1) ≥ · · · ≥ v(2n).
We denote by I the set of knapsack solutions.

Let

α = 1

4
· 3c − 2v(0)

c − v(0)
= 1

4
· 3(A + 2n2a1) − 2(2n + 1)a1

A + 2n2a1 − (2n + 1)a1
(∈ [0, 1]).

We claim that this instance has a randomized α-robust solution p ∈ �(I) if and only if
the partition problem instance has a solution. Recall that p ∈ �(I) is called α-robust
if

∑
X∈I pX · v≤k(X) ≥ α · maxY∈I v≤k(Y) for any k ∈ [|E |]. For p ∈ �(I), we

denote v≤k(p) = ∑
X∈I pX · v≤k(X).

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:566–584 581

Suppose that I ⊆ [2n] is a solution to the partition problem instance, i.e., |I | = n
and

∑
i∈I ai = ∑

i∈[2n]\I ai (= A). Let

r = 1

2
· c − 2v(0)

c − v(0)
= 1

2
· A + 2n2a1 − 2(2n + 1)a1
A + 2n2a1 − (2n + 1)a1

.

We note that r = 2(1 − α). We define a randomized solution p ∈ �(I) by pY = r if
Y = [2n], pY = 1−r if Y = {0}∪ I , and pY = 0 otherwise.We observe that [2n] ∈ I
by the definition of c, and that {0} ∪ I ∈ I because s(0) = c/2 and

∑
i∈I s(i) = c/2.

We claim that p is an α-robust solution by showing that v≤k(p)/v≤k(X∗
k) ≥ α for all

k = 1, . . . , 2n + 1. Recall that X∗
k ∈ argmaxX∈Iv≤k(X).

First, take arbitrarily k ∈ {1, . . . , n + 1}. We have v≤k(X∗
k) ≤ ∑k−1

i=0 v(i) ≤ (k +
1)v(1). Moreover, v≤k([2n]) = ∑k

i=1 v(i) ≥ v(1)+ (k−1)2na1, and v≤k({0}∪ I) ≥
v(0) + (k − 1)2na1. Thus, we see that

v≤k(p)

v≤k(X∗
k)

≥ (r(2n + 1)a1 + (1 − r) · 2(2n + 1)a1) + (k − 1) · 2na1
(k + 1)(2n + 1)a1

= 2n

2n + 1
+

(
2

2n + 1
− r

)

· 1

k + 1
.

Here, because a1 ≤ A ≤ 2na1 and n ≥ 4, it follows that

α = 1

4
· 3(A + 2n2a1) − 2(2n + 1)a1

A + 2n2a1 − (2n + 1)a1
≤ 1

4
· 6n

2 − 4n + 1

2n(n − 1)
≤ 2n

2n + 1
. (10)

Then, we see that 2
2n+1 − r ≤ 0 since r = 2(1 − α) ≥ 2(1 − 2n

2n+1) = 2
2n+1 . This

implies that

v≤k(p)

v≤k(X∗
k)

≥ 2n

2n + 1
+

(
2

2n + 1
− r

)

· 1
2

= 1 − r

2
= α.

Next, assume that k = n + 2. We claim that v≤k(X∗
k) ≤ (n + 2) · (2n + 1)a1. To

describe this, let X be any set in I with 0 ∈ X . Since s(0) = c/2 and s(i) = v(i)
for all i ≥ 1, we have

∑
i∈X v(i) ≤ v(0) + c/2 = v(0) + ∑

i∈I v(i) ≤ v(0) +∑
i∈I v(1) ≤ (n + 2)v(1). On the other hand, for any set X ∈ I with 0 /∈ X , we have

v≤k(X∗
k) ≤ ∑n+2

i=1 v(i) ≤ (n + 2)v(1). Hence, v≤k(X∗
k) ≤ (n + 2) · (2n + 1)a1. In

addition, we observe that v≤k([2n]) = ∑n+2
k=1 v(i) ≥ (n+2) ·2na1 and v≤k({0}∪ I) ≥

v(0) + n · 2na1 ≥ (n + 2)2na1. Thus, v≤k(p) ≥ (n + 2) · 2na1. These facts together
with (10) imply that

v≤k(p)

v≤k(X∗
k)

≥ (n + 2)2na1
(n + 2)(2n + 1)a1

= 2n

2n + 1
≥ α.

Let us consider the casewhen k ∈ {n+3, . . . , 2n−1}. For any X ∈ I with 0 ∈ X ,we
observe that v≤k(X) ≤ (n + 2)(2n + 1)a1 ≤ 2n(n + 3)a1 ≤ ∑k

i=1 v(i) = v≤k([2n]),

123

582 Algorithmica (2024) 86:566–584

where the first inequality holds by a similar argument to the one in the above case.
Thus, we see that v≤k(X∗

k) = v≤k([2n]). Because v≤k([2n]) ≤ v≤k+1([2n]) and
v≤k({0} ∪ I) = v≤k+1({0} ∪ I), it holds that

v≤k(p)

v≤k(X∗
k)

= r · v≤k([2n]) + (1 − r)v≤k({0} ∪ I)

v≤k([2n])
= r + (1 − r)v≤k({0} ∪ I)

v≤k([2n])
≥ r + (1 − r)v≤k({0} ∪ I)

v≤k+1([2n])
= r · v≤k+1([2n]) + (1 − r)v≤k({0} ∪ I)

v≤k+1([2n])
= v≤k+1(p)

v≤k+1(X∗
k+1)

.

Hence, it remains to show that v≤k (p)
v≤k(X∗

k)
≥ α when k = 2n and k = 2n+1. It is clear

that v≤2n(p) = v≤2n+1(p) since v≤2n([2n]) = v≤2n+1([2n]) and v≤2n({0} ∪ I) =
v≤2n+1({0} ∪ I). We have also v≤2n+1(X∗

k) = v≤2n(X∗
k) = ∑2n

i=1 v(i) = c because
{0, 1, . . . , 2n} /∈ I. Thus, it follows that

v≤2n+1(p)

v≤2n+1(X∗
k)

= v≤2n(p)

v≤2n(X∗
2n)

= rc + (1 − r)(v(0) + c/2)

c

= 1 + r

2
+ (1 − r)v(0)

c
= 1 − r

2
= α,

where the last second equation holds because r = (c − 2v(0))/2(c − v(0)) ⇔ (1 −
r)v(0) = c(1/2 − r). Therefore, p is α-robust.

It remains to prove that if the partition problem instance has no solution, then there
exists no α-robust solution. Let p ∈ �(I) be a solution and let r = ∑

X :0/∈X∈I pX .
To show a contradiction, we assume that p is α-robust. Then it must hold that

v≤1(p)

v≤1(X∗
1)

= r · v(1) + (1 − r) · v(0)

v(0)
= (2 − r)v(1)

2v(1)
= 2 − r

2
≥ α = 1

4
· 3c − 2v(0)

c − v(0)

and hence

r ≤ 1

2
· c − 2v(0)

c − v(0)
.

This implies that r < 1 and pX > 0 for some X ∈ I with 0 ∈ X .
On the other hand, we claim that v≤2n+1(p)/v≤2n+1(X∗

2n+1) < α. For any X ∈ I
with 0 /∈ X , we observe that v≤2n+1(X) ≤ ∑2n

i=1 v(i) = c. Take an arbitrary setY such
that Y ∪ {0} ∈ I. It holds that v≤2n+1(Y ∪ {0}) = v(0) + ∑

i∈Y s(i) ≤ v(0) + c/2.

123

Algorithmica (2024) 86:566–584 583

We claim that
∑

i∈Y s(i) = c/2. If |Y | > n, then
∑

i∈Y s(i) ≥ (n + 1) · 2na1 >

na1+2n2a1 ≥ A+2n2a1 = c/2. If |Y | < n, then
∑

i∈Y s(i) ≤ (n−1) ·(2n+1)a1 ≤
−n−1+2n2a1 < A+2n2a1 = c/2. If |Y | = n, then

∑
i∈Y s(i) = ∑

i∈Y ai+2n2a1 =
A + 2n2a1 (= c/2) since the partition problem instance has no solution. Thus we see
that v≤2n+1(p) < r · c + (1 − r) · (v(0) + c/2) by r < 1. Since v≤2n+1(X∗

2n+1) = c

and r ≤ 1
2 · c−2v(0)

c−v(0) , we have

v≤2n+1(p)

v≤2n+1(X∗
2n+1)

<
rc + (1 − r)(v(0) + c/2)

c

= r(c − 2v(0))

2c
+ c + 2v(0)

2c

≤ 1

4
· (c − 2v(0))2 + 2(c − v(0))(c + 2v(0))

c(c − v(0))

= 1

4
· 3c − 2v(0)

c − v(0)
= α.

This implies that p cannot be α-robust.
Therefore, there exists a randomized α-robust solution p ∈ �(I) if and only if the

partition problem instance has a solution. This completes the proof. ��

References

1. Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial
optimization problems: a survey. EJOR 197(2), 427–438 (2009)

2. Bowles, S.:Microeconomics: Behavior, Institutions, andEvolution. PrincetonUniversity Press, Prince-
ton (2009)

3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a
matroid constraint. In: IPCO, vol. 7, pp. 182–196. Springer (2007)

4. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems
with cardinality constraints. EJOR 123(2), 333–345 (2000)

5. Chen, R.S., Lucier, B., Singer, Y., Syrgkanis, V.: Robust optimization for non-convex objectives. In:
Proceedings of the NIPS, pp. 4708–4717 (2017)

6. Filmus, Y.,Ward, J.: A tight combinatorial algorithm for submodularmaximization subject to amatroid
constraint. In: Proceedings of the FOCS, 659–668. IEEE (2012)

7. Freund, Y., Schapire, R.E.: Adaptive game playing usingmultiplicative weights. GEB 29(1–2), 79–103
(1999)

8. Fujishige, S.: Submodular Functions and Optimization, vol. 58. Elsevier, Amsterdam (2005)
9. Fujita, R., Kobayashi, Y., Makino, K.: Robust Matchings and Matroid Intersections 27, 1234–1256

(2013)
10. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.

Freeman, New York (1979)
11. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol.

2. Springer, Berlin (2012)
12. Hassin, R., Rubinstein, S.: Robust matchings. SIDMA 15(4), 530–537 (2002)
13. Jansen, K.: Approximate strong separationwith application in fractional graph coloring and preemptive

scheduling. Theor. Comput. Sci. 302(1–3), 239–256 (2003)
14. Kakimura, N., Makino, K.: Robust independence systems. SIDMA 27(3), 1257–1273 (2013)
15. Kakimura, N., Makino, K., Seimi, K.: Computing knapsack solutions with cardinality robustness. Jpn.

J. Ind. Appl. Math. 29(3), 469–483 (2012)

123

584 Algorithmica (2024) 86:566–584

16. Kale, S.: Efficient algorithms using the multiplicative weights update method. Ph.D. thesis, Princeton
University (2007)

17. Kasperski, A., Zieliński, P.: Robust Discrete Optimization Under Discrete and Interval Uncertainty: A
Survey, pp. 113–143. Springer, Berlin (2016)

18. Kawase, Y., Sumita, H.: Randomized strategies for robust combinatorial optimization. In: Proceedings
of the AAAI (2019)

19. Kawase, Y., Sumita, H.: On themax–min fair stochastic allocation of indivisible goods. In: Proceedings
of the AAAI (2020)

20. Kawase, Y., Miyauchi, A., Sumita, H.: Stochastic solutions for dense subgraph discovery in multilayer
networks. In: Proceedings of the WSDM, pp. 886–894 (2023)

21. Kellerer, H., Mansini, R., Speranza, M.G.: Two linear approximation algorithms for the subset-sum
problem. EJOR 120, 289–296 (2000)

22. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Comput. Math. Math. Phys.
20(1), 53–72 (1980)

23. Kobayashi, Y., Takazawa, K.: Randomized strategies for cardinality robustness in the knapsack prob-
lem. Theor. Comput. Sci. 699, 53–62 (2016)

24. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Practical Approaches
to Hard Problems (to appear). Cambridge University Press, London (2014)

25. Krause, A., McMahan, H.B., Guestrin, C., Gupta, A.: Robust submodular observation selection. J.
Mach. Learn. Res. 9, 2761–2801 (2008)

26. Krause, A., Roper, A., Golovin, D.: Randomized sensing in adversarial environments. In: Proceedings
of the IJCAI, vol. 22, pp. 2133–2139 (2011)

27. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized
exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)

28. Matuschke, J., Skutella, M., Soto, J.A.: Robust randomized matchings. Math. Oper. Res. 43(2), 675–
692 (2018). https://doi.org/10.1287/moor.2017.0878

29. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge Uni-
versity Press, London (2007)

30. Orlin, J.B., Schulz, A.S., Udwani, R.: Robust monotone submodular function maximization. In: Pro-
ceedings of the IPCO, pp. 312–324. Springer (2016)

31. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics.
Springer, Berlin (2003)

32. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint.
Oper. Res. Let. 32(1), 41–43 (2004)

33. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge
University Press, London (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/moor.2017.0878

	Randomized Strategies for Robust Combinatorial Optimization with Approximate Separation
	Abstract
	1 Introduction
	Related Work
	Our Results

	2 Preliminaries
	3 Dual-Based Framework
	4 Application of Our Framework
	4.1 Robust Additive Maximization
	4.2 Robust Monotone Submodular Maximization
	4.3 MCRP with a Knapsack Constraint

	Acknowledgements
	Appendix A: NP-Hardness of MCRP for the Knapsack Problem
	References

