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Abstract
Matrix permanents are hard to compute or even estimate in general. It had been pre-
viously suggested that the permanents of Positive Semidefinite (PSD) matrices may
have efficient approximations. By relating PSD permanents to a task in quantum state
tomography, we show that PSD permanents are NP-hard to approximate within a con-
stant factor, and so admit no polynomial-time approximation scheme (unless P = NP).
We also establish that several natural tasks in quantum state tomography, even approx-
imately, are NP-hard in the dimension of the Hilbert space. These state tomography
tasks therefore remain hard even with only logarithmically few qubits.

Keywords Matrix permanent · Hermitian matrix · NP-hard · Quantum state
tomography · Positive semidefinite

1 Introduction

1.1 Background

The permanent is a classical problem of intense interest in the study of counting
problems. For a matrix A ∈ C

n×n , the permanent is defined as

Perm(A) =
∑

σ∈Sn

n∏

i=1

Ai,σ (i) (1)

summing over all permutations σ of rows and columns, products of matrix elements
Ai, j . While directly evaluating the expression in Eq. (1) takes O(n!) time, Ryser’s
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formula [1] gives anO(2nn) time algorithm.Valiant showed in1979 that computing the
permanent exactly is #P-hard, even for 0–1 matrices [2, 3]. However, it is amenable to
efficient approximation in particular settings. In 2001, Jerrum, Sinclair and Vigoda [4]
gave a fully-polynomial randomized approximation scheme (FPRAS) for permanents
of nonnegative matrices. In 2002, Gurvits and Samorodnitsky [5] gave a polynomial
time en multiplicative approximation to PSD mixed discriminants, which included
permanents of nonnegative matrices as a special case.

When the matrix is Hermitian positive semidefinite (HPSD, or if purely real, PSD),
the permanent is necessarily nonnegative, and this offers hope of efficient multi-
plicative approximation. HPSD permanents are of particular interest to the quantum
information community - for reasons unrelated to quantum state tomography, but
rather related to thermal BosonSampling experiments [6–8]. Computing PSD perma-
nents exactly remains #P-hard [9]. It is known that by Stockmeyer counting [7, 9, 10]
computing multiplicative approximations to PSD permanents is contained in FBPPNP.
In 1963, Marcus [11] observed that the product of the diagonal of a PSDmatrix imme-
diately gives an n! approximation ratio to the permanent. In 2017, Anari et al. gave a
polytime approximation to PSD permanents within a ratio of cn with c = e1+γ ≈ 4.85
[12]. Yuan and Parillo [13] described a similar approach with the same approximation
ratio. Chakhmakhchyan et al. [14] and Barvinok [15] gave algorithms for approxma-
tion when the spectrum of the matrix is small in radius, that is, when λmin/λmax is not
too small.

1.2 Main Results

Our main result is to show that there is no efficient approximation of PSD permanents.
Precisely, we show that it isNP-hard to approximate within a particular subexponential
factor.

Theorem 1 (Theorem5, restated)For any constant ε > 0, it isNP-hard to approximate
the permanent of n × n HPSD matrices within a factor of 2n

1−ε
.

This implies the absence of a polynomial time approximation scheme (PTAS) or
polynomial randomized approximation scheme (PRAS).

Corollary 1 (of Theorem 5) There is no PTAS for HPSD permanents unless P=NP, and
there is no PRAS for HPSD permanents unless RP=NP.

In Sect. 3.5, we show that these theorems also hold for (purely real) PSD matrices.
Our work provides a lower bound on the difficulty of approximating PSD perma-

nents, that almost matches known upper bounds. The algorithm of Anari et al. [12]
shows that the singly exponential approximation ratio 4.85n is possible within polyno-
mial time,whilewe show that a subexponential approximation ratio 2n

1−ε
is intractable.

This primarily leaves the question whether (1 + ε)n is polynomial-time computable
for any ε > 0. The algorithms of Chakhmakhchyan et al. [14] and Barvinok [15]
fail on the hard instances that we construct: the matrices we construct are highly rank
deficient, and therefore have λmin = 0.

Our most key connection is that between a permanent and an particular integral
over the unit sphere. If a matrix M is Hermitian positive semidefinite, then it has a
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matrix square root V = V † satisfying VV † = V 2 = M . If M is n × n, and rank d,
then V is n × d. We will show (Theorem 3) that

Perm(M) = (d + n − 1)!
2πn

∫

�x∈Cn , |x |=1
d �x

d∏

k=1

|�x · Vk |2 . (2)

Here Vi are the rows of V , and the integral is the Haar measure over the unit com-
plex sphere. As we will see, this integral occurs naturally in the context of Bayesian
inference for quantum state tomography. In that context, the rows Vi correspond to an
observation history, and the variable of integration �x represents an unknown quantum
state. This intuition gained from viewing it as a quantum state tomography problem
guided us towards finding our hard instances M . We analyze the problem by first
establishing a concentrating construction (Lemmas 2 and 3). Informally, when Vi
contains many copies of basis vectors �e j and vectors of the form

�e j±i �ek√
2

, the integral
concentrates at the points (up to a phase) of an appropriately scaled hypercube:

∫

�x∈Cn , |x |=1
d �x

d∏

k=1

|�x · Vk |2 ∝
∑

�x∈{−1,+1}d

d∏

k=1

|�x · Vk |2 (3)

with some exponentially small error, and a simple constant of proportionality that
depends only on d and n. This concentration will let us relate permanents to combi-
natorial problems (Lemma 4), specifically counting solutions to Not-All-Equal-3SAT,
and ultimately let us prove hardness.

The connection to quantum state tomography means we also get results about the
hardness of estimating quantum states given measurements.

Definition 1 (Maximum Pure State Likelihood) For a quantum system with Hilbert
space dimension n and poly(n) observations, themaximum pure state likelihood is the
highest likelihood of those observations attainable over any pure state |ψ〉.
Theorem 2 (Theorem 9, informal) For any constant ε > 0, the following task is NP-
hard: given a series of quantum observations, find a pure state with likelihood at least
2−n1−ε

times the maximum pure state likelihood.

Unless RP=NP, this implies that there is no PRAS for maximum likelihood esti-
mation (MLE) quantum state tomography; in fact, it is not even in APX. We have
similar statements about the NP-hardness of computing the Bayesian average state
and Bayesian average observables (Theorem 8). These results are unusual in that they
imply exponential difficulty in dimension n in the Hilbert space C

n . Most quantum
problems are only considered tractable if they have efficient algorithms in the number
of particles q = log(n), and have trivially polynomial solutions in n; whereas we show
that (assuming ETH [16]) quantum state tomography takes time exponential in n.

We stress that although our work has connections to quantum information through
BosonSampling and tomography, our discussion of complexity is focused on classical
computers. TheNP-hardness are statements about classical hardness, and the algorithm
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described in Sect. 4.3 for tomography in fixed dimension is a polynomial time classical
algorithm.UnlessNP⊆BQPhowever, our results rule efficient permanent computations
on quantum computers as well.

2 Key Ideas of the Proof

Westartwith a lemma relating symmetric,multilinear functions to permanents. Similar
lemmas have appeared in [15, 17], and they can broadly be viewed as alternate forms
of Wick’s Theorem [18].

Lemma 1 Suppose f : (Cd)2n → R is a function of 2n vectors of dimension d, that
is:

• Multilinear in its first n arguments
• Conjugate multilinear in its latter n arguments
• Symmetric in its first n arguments, and its latter n arguments
• Invariant under unitary change of basis: for any unitary U ∈ C

d×d ,

f (v1, . . . ; vn, . . . ) = f (Uv1, . . . ;Uvn, . . . )

Then f is determined up to an overall constant C by the formula,

f (v1, . . . ; vn, . . . ) = C Perm(Ai j ), where Ai j = vi · v∗
j (4)

and the constant C can be determined by

C = f (�e1, �e1, �e1, . . . )
n! (5)

where �e1 is the unit basis vector in the first coordinate.
Proof Because f is invariant under a unitary change of basis, f can only depend on
its inputs through inner products of vectors, 〈vi , v j 〉. Since f is multilinear, it can be
written as a sum of terms tk , where each tk is a product of terms from the vectors. The
separate linearity and conjugate linearity means that the only permitted inner products
are of covariant (first n) and contravariant (latter n) vectors. This means every term in
the sum must be some product of the form

∏
i∈[n] vi · v∗

n+σ(i) for some permutation σ

of [n]. Then by symmetry of the arguments, all pairs must occur in the same relation
to either, so all pairings must occur equally. This leaves only a single form, the result
above.

Computing C can be found by substituting in �e1 in Eq. (4) so that all dot prod-
ucts become 1. The permanent of the all-1’s matrix is just n!, so this becomes the
normalizing factor. �
This lets us relate the permanent to a particular integral over unit-norm complex
vectors:

123



3832 Algorithmica (2023) 85:3828–3854

Theorem 3 For any L, R ∈ C
d×n be complex matrices, denoting the kth row of L as

Lk and the kth row of R as Rk,

∫

�x∈Cn , |x |=1
d �x

(
d∏

k=1

�x†Lk

) (
d∏

k=1

R†
k �x

)
= 2πn Perm(LR†)

(d + n − 1)! (6)

Note that when L = R, the product in the integral becomes
∏

k |〈Lk, �x〉|2, and the
product M = LL† is PSD.

Proof Viewing the left side as a function f of the n rows of each L and R, we can see
that it satisfies all the hypotheses of Lemma 1. It is linear in each row of L , conjugate
linear in each row of R, and symmetric under permuting the rows of L or the rows of
R. It is also invariant under a unitary change of basis:

f (UL,UR) =
∫

�x∈Cn , |x |=1
d �x

d∏

k=1

�x†(ULk)

d∏

k=1

(URk)
†�x (7)

=
∫

�x∈Cn , |x |=1
d �x

d∏

k=1

(U †�x)†Lk

d∏

k=1

R†
k (U

†�x) (8)

=
∫

�u∈Cn , |u|=1
d �u

d∏

k=1

�u†Lk

d∏

k=1

R†
k �u = f (L, R) (9)

so that we’ve used the symmetry of the unit sphere in C
n to remove the unitary via

�u = U �x . Setting each Lk = Rk = �e1, the spherical integral can be computed with
standard formulae (e.g. [19]) to find the normalizing constant

C = 1

n!
∫

�x∈Cn , |x |=1
d �x (�x†�e1)n(�e†1 �x)n = 2πn

(d + n − 1)! . (10)

�

2.1 Outline of the Proof

Before diving into the proof of hardness itself, we aim to provide some intuition of the
construction. We focus on the integral F = ∫

�x
∏

k |〈Vk, �x〉|2 over the sphere of unit
(complex) vectors, and build up a set of vectors V with desirable properties. The proof
will involve gradually adding vectors to a list Vk , in turn modifying the integrand
GV (�x) = ∏

k |〈Vk, �x〉|2. This integrand GV (�x) is nonnegative, so there cannot be
any cancellation in the integral. Our goal will be only showing that certain regions
have exponentially small magnitude, so that only particular regions with appreciable
contribution remain, and they are primarily responsible for the overall value of F . Then,
the magnitude of F will be used to understand the value of GV on those particular
regions, where large values of F indicate solutions to an NP-hard problem. And since
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Fig. 1 Schematic of how we can
create “corners” on the sphere
by repeatedly cutting with
planes. Blue represents lower
magnitude. This shows only
purely real �x

F can be computed by a HPSD permanent, computing that permanent must be hard
as well.

How are we to choose the V in order to make an interesting function GV ? Each
vector Vk introduces zeroes on the sphere at all vectors orthogonal to Vk . All points
approximately orthogonal to Vk will have a very small magnitude, and so contribute
very little to the integral. We will start our collection of vectors by taking several
copies of each standard basis vector �ek . This creates high-degree zeros along each of
d distinct perpendicular directions, slicing the sphere so that the only regions with
appreciable magnitude form the corners of a cube.

After adding one copy of each basis vector �ek , the magnitude at a given point
�x = (α1, . . . αd) is the product of the absolute values of its entries in that basis:
GV (�x) = ∏

j |α j |2. This is maximized when |α j | = |αk | = 1√
d
for all j , k. If

we then subsequently add several vectors of the form
�e j+i �ek√

2
and

�e j−i �ek√
2

, together
these rule out a purely imaginary phase between the j and k components, so that the

maxima are at
�e j±�ek√

2
. After adding these two for each j �= k, G(�x) will peak near

�x = eiθ√
d
(1,±1,±1 . . . ). Up to an overall phase of �x , we’ve focused G to a set of 2d−1

distinct points. These 2d−1 circles of “binarized” vectors will be our focus, and we call

this set B0 = { eiθ√
d
(1,±1,±1 . . . )}. To force GV to concentrate on B0, we had to add

d+2 dC2 = d2 vectors into our running list Vk . By analogywith quantum information,
we will refer to these as the Z vectors and Y vectors respectively. Together, this set of
d2 vectors will form one “basic set” – “basic” in the set of “enforcing the basis”.

This is visualized in Fig. 1. This plots G(�x), where �x = (x, y, z). The unit vectors
form a sphere. After adding one basic set, we add a zero plane at x = 0, y = 0, z = 0;
these planes are drawn as squares intersecting the sphere. The orange/white circles
show the points that maximize G(�x): 1√

3
(±1,±1,±1). Taking many copies of the

basic set is equivalent to raising G(�x) to a high power, and the function will rapid fall
off anywhere off the eight white hotspots, the binarized points that we concentrate to.
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Once we have our basic vectors to concentrate G at these binarized points B0, we
want to add vectors that will penalize some of these 2d−1 points, so that finding the
optimum becomes a search problem over exponentially many points. Our functional
G is only sensitive to the relative phase between components of a vector, and not to
the signs of the components themselves. This is the same symmetry that appears in
quantum mechanics, where multiplying a quantum state |ψ〉 by a phase yields as a
physically identical state eiθ |ψ〉. Such a factor θ is a global phase, that we can and
will neglect later. When we restrict to the binarized points B0, these phases are just
sign differences, and the phase symmetry says that we don’t care about any individual
sign: only the pattern of relative signs in the vector.

This sign-flipping symmetry leads us most naturally to the problem of Not-All-
Equal 3-Satisfiability, or NAE3SAT [20]:

Definition 2 (NAE3SAT) Given n boolean variables and a set of clauses, each of
which are triple of variables (v1, v2, v3), is there an assignment such that each clause
contains at least one true variable and at least one false variable?

NAE3SAT is known to be NP-complete. It also has the same global symmetry where all
variables in an assignment can be negated, and the satisfaction of the clauses remains
unchanged; this reflects our global phase symmetry. So now consider the impact of
adding a triple of “clause vectors”,

�v1 = (
√
6)−1(−2�e1 + �e2 + �e3) (11)

�v2 = (
√
6)−1(�e1 − 2�e2 + �e3) (12)

�v3 = (
√
6)−1(�e1 + �e2 − 2�e3). (13)

Each is orthogonal to 1√
3
(�e1 + �e2 + �e2), in which all the relative signs are positive

(or equivalently, all negative). We call this collection of three vectors a “clause set”.
This effectively rules out the possibility of all signs being the same. There are three
not-all-equal points (up to phase):

�p1 = (
√
3)−1(−�e1 + �e2 + �e3) (14)

�p2 = (
√
3)−1(�e1 − �e2 + �e3) (15)

�p3 = (
√
3)−1(�e1 + �e2 − �e3) (16)

while we forbid the the fourth point

�q = (
√
3)−1(�e1 + �e2 + �e3). (17)

We see that | �pi · �v j |2 = 2+6δi, j
9 . So, when V consists of just the three �vi , thenGV ( �pi ) =

32
729 , while GV (�q) = 0.

This is visualized in Fig. 2. This shows G(�x) in the same coordinates as Fig. 1,
from three different viewpoints. The basic set from Fig. 1 are still present, and form
the axis-aligned cuts visible in the first plot. The clause set adds three more planes,
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Fig. 2 Illustration of the effect of a clause. The eight corners {−1/
√
3, 1/

√
3}3 represent four essentially

distinct assignments, where opposite points are equivalent. The clause has three zero lines passing through
one of the four points, while leaving the other three points untouched

and eliminate two of the eight orange spots. They form the six-way intersection in
the second plot. That six-way intersection was one of the eight orange spots, but now
G(x) has been driven down to be zero there by the three incoming zero planes. The
other six points are essentially unaffected.

By adding appropriate clause sets, the only remaining points with large values will
be those satisfying an NAE3SAT problem, which is NP-hard. The other points will be
too small to contribute to the integral, so that evaluating the integral tells us about the
satisfiability of the NAE3SAT problem. With the outline complete, we now begin the
steps of the proof, starting with the concentration.

3 Proof of Hardness

3.1 Concetration

After one basic set, each point in B0 has a valueGV (�x) of 1/dd2 (by direct calculation).
We would like to show that any point far away from B0 has a significantly lower value.
For this reason, (and with the intuition that the integrand GV represents likelihood
values) we talk about relative values of GV . By the value of GV (a) relative to GV (b),
we simply mean GV (a)/GV (b).

Any unit vector �x ∈ C
d can be written as

�x = ei�√
d

d∑

k=1

√
αke

iπ(θk+nk )�ek (18)

where �, �αk and �θk are all real, αk ≥ 0,
∑

k αk = d, θ1 = 0, and all �,
θk ∈ [−1/2, 1/2]), and nk ∈ {0, 1}. The �α, �θ , and �n respectively indicate the ampli-
tudes, phases relative to the first component, and signs of the real part. This polar
representation is unique except for when one of the α0 = 0, which is a measure-
zero set. (We can neglect measure zero sets, as our concern is only with the integral
F(V ) = ∫

GV (x)).
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Lemma 2 Let �x be a unit vector with polar representation �, �α, �θ , and �n. Let εα be
the 2-norm distance of �α = (α1, . . . αd) from �1. Then when V is one basic set, the

value of GV (�x) relative to any point in B0, is at most 1 − ε2α
4d . If εα ≤ 1/2, then the

value is also at most 1 − 3θ2i for all components θi of �θ .

Proof The set B0 consists of the points with αk = 1 and θk is an integer. If �x has
significant distance from all elements of B0, then either the amplitudes αk or phases
θk must differ significantly from these conditions. The value after the basic set is

GV (�x) =
(

∏

k

∣∣∣∣

√
αk

d

∣∣∣∣
2
) ⎛

⎝
∏

j≤k

∣∣∣∣∣

√
α j eiπ(θ j+n j ) + i

√
αkeiπ(θk+nk )

√
2d

∣∣∣∣∣

2 ∣∣∣∣∣

√
α j eiπ(θ j+n j ) − i

√
αkeiπ(θk+nk )

√
2d

∣∣∣∣∣

2
⎞

⎠

=
(

∏

k

αk

dd

) ⎛

⎝
∏

j≤k

α2
j + α2

k + 2α jαk cos(2π(θ j − θk + n j − nk))

4d2

⎞

⎠

= 1

dd (2d)d
2−d

(
∏

k

αk

) ⎛

⎝
∏

j≤k

α2
j + α2

k + 2α jαk cos(2π(θ j − θk))

⎞

⎠

The first factor coming from the Z vectors �ek in the basic set, and the last two factors
coming from the Y vectors

�e j±i �ek√
2

, for each j < k, in the basic set.
The first step is to bound the value in terms of the magnitudes αk . Looking at the

effect of the Z vectors,
∏d

k αk , we have a convex function on the standard (d − 1)-
simplex

∑
αk = d. It is clearlymaximized at �αopt = (1, 1, 1, . . . 1), where it evaluates

to 1. Suppose that our �x’s associated α-vector, �α = (α1, . . . αd), is a distance at least εα

away from �αopt , and that εα ≤ 1. Then one of the coordinates must be at least εα/
√
d

away from 1. With generality, let this coordinate be α1. If α1 ≤ 1 − εα/
√
d, then the

greatest the value could still be is when the other αk are all equal at 1+εα/
√
d(d−1).

Multiplying these together, the resulting value is upper-bounded by 1 − ε2α
2(d−1) . If α1

has instead been increased so that α1 ≥ 1 + εα/
√
d, then the value is maximized

when the other αk are all equal at 1 − εα/
√
d(d − 1). Multiplying these together, the

resulting value is upper-bounded by 1− ε2α
4d . Since the latter of these bounds is looser,

we see that any state whose �α is at least εα away from the all-ones vector has a value
at most 1 − ε2

4d in these measurements.
This gives bounds on the Z vectors’ contribution to the value. To keep this bound

when the Y vectors are added, we need to check that they are also maximized at �α = �1.
Each factor

∏

j≤k

α2
j + α2

k + 2α jαk cos(2π(θ j − θk))

is maximized when θ j −θk is an integer, at which point it becomes
∏

j≤k(α j +αk)
2 =

(∏
α j + αk

)2. This is in turn globally maximized by α j = αk = 1, so the error bound
on �α holds.
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The next step is to bound the value in terms of the �θ . We only care about the
degree to which θi − θ j is not an integer, let ri j = θi − θ j to the nearest integer, so
ri j ∈ [−1/2, 1/2]. Given that cos(2πr) ≤ 1 − 8r2 for all r ∈ [−1/2, 1/2], we have
a relative value of

GV (�x)
GV (B0)

= α2
j + α2

k + 2α jαk cos(2πr jk)

α2
j + α2

k + 2α jαk
≤ α2

j + α2
k + 2α jαk(1 − 8r2jk)

α2
j + α2

k + 2α jαk

= 1 − 16α jαk

(α j + αk)2
r2jk

Let’s assume that each α j is in the interval [1/2, 3/2] – which is implied by them
being sufficiently close to the all-ones vector, that is, εα ≤ 1/2. Then the expression
16α jαk

(α j+αk )
2 is at least 3, so

GV (�x)
GV (B0)

≤ 1 − 3r2jk

which tells us that every phase θi should be close to 0 for GV to be large, or else suffer
a 1 − 3r2 penalty in the value. �

This sets upper bounds on the integrand where are not close to B0. We will also need
lower bounds on the integrand, if we are close to B0:

Lemma 3 If a vector �x is within distance ε ≤ 0.1 of some point b in B0, and V is one
basic set, then �x has value at least

GV (�x) ≥ 1 − 2εd5/2

dd2
.

or in terms of the relative value,

GV (�x)/GV (B0) ≥ 1 − 2εd5/2.

Proof We will again use polar representation for �x :

GV (�x) = 1

dd(2d)d
2−d

(
∏

k

αk

) ⎛

⎝
∏

j≤k

α2
j + α2

k + 2α jαk cos(2π(θ j − θk))

⎞

⎠

If our point �x is within distance ε < 1 of B0, then each of the αi must individually be
within ε

√
d of 1, and each θi satisfies

cos(πθi ) >
√
1 − ε2 �⇒ |θi | < ε/2
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and so

cos(2π(θ j − θk)) ≥ 1 − (2π(θ j − θk))
2

2
≥ 1 − (2πε)2

2
.

Then the value is bounded by,

GV (�x) ≥ 1

dd(2d)d
2−d

(
∏

k

1 − ε
√
d

)

⎛

⎝
∏

j≤k

(1 − ε
√
d)2 + (1 − ε

√
d)2 + 2(1 − ε

√
d)2

(
1 − (2πε)2

2

)⎞

⎠

≥ 1

dd(2d)d
2−d

(1 − ε
√
d)(d

2+d)/2
(
4 − 4π2ε2

)(d2−d)/2

≥ 1

dd2

(
1 − ε

√
d(d2 + d)/2 − π2ε2(d2 − d)/2

)

If ε <
√
d/π2, which is implied by ε < 0.1, then the term π2ε2(d2 − d) is smaller

than ε
√
d(d2 + d)/2, so we can combine the two. We can also bound d2 + d < 2d2.

GV (�x) ≥ 1

dd2

(
1 − 2ε

√
d(d2 + d)/2

)
= 1 − 2εd5/2

dd2

�
Together, these two lemmas establish a form of concentration: points close to B0

have large (lower-bounded) values of GV , and points far from B0 have small (upper-
bounded) values of GV .

3.2 Restricting to Neighborhoods of B0

Now we consider the effect of clause sets. A clause C is defined by a triple of integers
(C1,C2,C3). A point b ∈ B0 with coordinates (b1, b2, . . . bd), each bk = ±ei�, is
“good" for the clause C if {bC1, bC2 , bC3} are not all equal. A point in B0 is “good" for
a set of clauses if it is good for each of them, and a point is “bad” if it is not good.
Each clause C has an associated set of three clause vectors

�v1 = (
√
6)−1(−2�eC1 + �eC2 + �eC3)

�v2 = (
√
6)−1(�eC1 − 2�eC2 + �eC3)

�v3 = (
√
6)−1(�eC1 + �eC2 − 2�eC3).

Lemma 4 Take a clause C = (C1,C2,C3) and let V be its three clause vectors.
Nowhere does GV exceed 1. At any point �x within a distance ε of a good point,
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GV (�x) ≥ 32
27d3

(
1 − 12ε

√
d
)
. At any point �x within a distance ε of a bad point,

GV (�x) ≤ 4096
27 ε6.

Proof To see that 1 is an upper bound onGV , note thatGV is a product of dot products
of unit vectors, each of which is at most 1, so that GV ≤ 1.

For the second claim, we have a point �x close to a good point �g. Since we only care
about the value of GV and the distance between |�x − �g|, we may adjust the phase of
�x and �g jointly so that �g is entirely real, and all of its entries are ±1. We decompose
�x in the form

�x = α�eC1 + β�eC2 + γ �eC3 + �x⊥

where �x⊥ is the support of �x onall component besides thefirst three.Then the likelihood
factor due to the three clause vectors is,

GV (�x) = 1

63
|α + β − 2γ |2 · |α − 2β + γ |2 · | − 2α + β + γ |2

We seek to bound this value in the vicinity of good points. A good B0 point has not
all signs equal. Since we can permute the elements of C without affecting the value of
GV , a general good point �g can be written as

�g = 1√
d

(
−�eC1 + �eC2 + �eC3 + √

d − 3 �g⊥
)

where �g⊥ contains the support on all the other basis vectors. It has GV (�g) = 32
27d3

, by
direct computation. Then for our other point �x within a distance ε of �g, each coordinate
must also be within ε of the corresponding coordinate in �g. So

�[α + β − 2γ ] ≤ 1√
d

(
(−1 + ε

√
d) + (1 + ε

√
d) − 2(1 − ε

√
d)

)

= −2(1 − 2ε
√
d)/

√
d

and similarly

�[−2α + β + γ ] ≥ 1√
d

(
−2(−1 + ε

√
d) + (1 − ε

√
d) + (1 − ε

√
d)

)

= 4(1 − ε
√
d)/

√
d ≥ 4(1 − 2ε

√
d)/

√
d.

Putting together the six factors,

GV (�x) = 1

63
|α + β − 2γ |2 · |α − 2β + γ |2 · | − 2α + β + γ |2 (19)

≥ 1

63
�[α + β − 2γ ]2�[α − 2β + γ ]2�[−2α + β + γ ]2 (20)
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≥ 32

27d3
×

(
1 − 2ε

√
d
)6

(21)

≥ 32

27d3
×

(
1 − 12ε

√
d
)

(22)

which is the second claim. For the third claim, take a bad point �h in B0, for which we
can correct the phase to put it in the form

�h = 1√
d

(
+�eC1 + �eC2 + �eC3 + √

d − 3 �h⊥
)

Then for a nearby point only ε away, each coordinate is at most ε away. This means

�[α + β − 2γ ] ≤
(

1√
d

+ ε

)
+

(
1√
d

+ ε

)
+

( −2√
d

+ 2ε

)
= 4ε

�[α + β − 2γ ] ≤ 4ε

�⇒ |α + β − 2γ |2 ≤ 32ε2

and similarly for the other two permutations, so that

GV (�x) ≤ 1

63
(32ε2)3 = 4096

27
ε6.

�

3.3 F = ∫
x GV(�x)Detects NAE3SAT

With these bounds, we will be able to relate the number of solutions to a NAE3SAT
instance to the integral F = ∫

x GV (�x).
Theorem 4 Given an instance of NAE3SAT with d variables and k clauses, let the
set of vectors V be given by K1 = 1600d7 ln2(d) copies of basic vectors (Z and Y
vectors), together with K2 = d2 ln(d) copies of the clause vectors for each clause.
For sufficiently large d, there is a function p(n, k) such that, if there is at least one
solution to the NAE3SAT, F = ∫

x GV (�x) ≥ pd−22d , and if there are no solutions,

F ≤ pd−d2 .

Proof The theorem will hold if we take p as the value of GV at a good point, or

p = d−K1d2
(

32

27d3

)K2

.

If the original NAE3SAT instance has a satisfying assignment (1, 0, 0, 1, . . . ), there
is a corresponding good point

�g = 1√
d

(+�e1 − �e2 − �e3 + �e4 . . . )
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with a large value of GV (�g). Each set of basic vectors introduces a factor of 1/dd2 in
G, and each set of clause vectors introduces a factor of 32/27d3. Thus

GV (�g) = d−K1d2
(

32

27d3

)K2

= p

Further, we want to show that around this good point �g, there is an appreciable
volume with large GV , that will contribute substantially to F . Around each good
point, take the ball of radius

εg = 1

3200d9(1 + d)
.

Then by Lemma 3, each set of basic observations gives a factor in G of at least

G1 ≥ 1 − 2εgd5/2

dd2

and by Lemma 4, each set of clause observations gives a factor at least

G2 ≥ 32

27d3
(1 − 12εg

√
d)

so that the final GV value of each point in the ball is at least

G0 = GK1
1 GK2

2 ≥ p(1 − 2εgd
5/2)K1 (1 − 12εg

√
d)K2 (23)

≥ p(1 − 2εgK1d
5/2)(1 − 12K2εg

√
d) (24)

= p

(
1 − 2

1

3200d9(1 + d)
(1600d7 ln2(d))d5/2

) (
1 − 12(d2 ln(d))

1

3200d9(1 + d)

√
d

)

(25)

≥ p

(
1 − ln2 d√

d

)
(26)

This means the total contributed to F by the ball around this good point is then at
least p(1− ln2 d/

√
d) times the volume of this ball around �g. The ball is not actually

a sphere in R
2d , as it lies on the manifold of normalized states, which is curved; it’s

the intersection of a ball centered at �g and the unit sphere. But since εg < 1/2, this
deformation reduces the volume by less than a factor of 1/2, and then we can use the
standard volume of the ball. So the volume obeys

Vol ≥ 1

2
· 2(d − 1)!(4π)(d−1)

(2d − 1)! ε2d−1
g

and a single good point contributes a total to the integral F(V ) at least

Vol · G0 ≥ pc1c
−d
2 d9d−21d
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for some particular constants c1, c2 > 1; the d−21d term clearly dominates the scale
for large d. For sufficiently large d then we can write

F ≥ Vol · G0 ≥ pd−22d

which establishes the first claim. The second claim concerns when there are no good
points. Suppose for contradiction that there is some point �x (not necessarily in B0) so
that GV (�x) > p/dd

2
. Applying Lemma 2, we know that it must have εα = |�α − �1| <

0.1/d2, otherwise it would have at most

GV (�x) ≤
(
d−d2 (1 − 0.12/4d5)

)K1
< d−K1d2 exp(−K1/400d

5) (27)

= d−K1d2 exp(−4d2 ln2 d) (28)

< d−K1d2 exp
(−4d2 ln2 d + d2 ln d ln(32/27)

)
(29)

= d−K1d2 exp
(−d2 ln2 d + d2 ln d ln(32/27d3)

)
(30)

= d−K1d2 exp

(
−d2 ln2 d + ln

((
32

27d3

)K2
))

(31)

= d−K1d2
(

32

27d3

)K2

/dd
2 ln d = p/dd

2 ln d (32)

< p/dd
2

(33)

Since εα ≤ 1/2, we can also apply the second part of Lemma 2 and check that the
all phases |θi | < 0.1/d, otherwise our point would have GV at most

(
d−d2(1 − 3θ2i )

)K1
<

(
d−d2(1 − 0.03/d2)

)K1
(34)

<
(
d−d2(1 − 0.12/4d5)

)K1
(35)

< p/dd
2

(36)

Since the amplitudes are all within εa of 1/
√
d , and the phases are all within 0.1/d of

0, the point’s distance to the nearest point b in B0 is at most

distB0 ≤ √
d

(
εa +

(
1√
d

+ εa

) (
(1 − cos(θi ))

2 + sin2(θi )
))

≤ √
d

(
0.1

d2
+

(
1√
d

+ 0.1

d2

)
(2 − 2 cos(0.1/d))

)
≤ √

d

(
0.1

d2
+ 2√

d
(0.1/d)2

)

≤ 0.11

d3/2
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If that point b is bad, then by Lemma 4 our point would have GV at most

d−K1d2
(
4096

27

(
0.11

d3/2

)6
)K2

= d−K1d2
(
0.00027

d9

)K2

= d−K1d2
(

32

27d3

)K2
(

0.00027

(32/27)d6

)K2

< p × 0.00025K2 = p/4000d
2 ln d < p/(4000d)d

2
< p/dd

2
.

We’ve shown that all points have GV ≤ p/dd
2
. The volume of integration is S2n−1 <

1, so the total integral F is less than p/dd
2
. �

As an aside, we might hope that F actually detectsMAX3SAT as well: that, if there are
no solutions to the original constraint problem, that perhaps the value of F would be
determined by the maximum number of clauses satisfied at once. This is considerably
harder to analyze, however, sinceGV itself is actually zero at any binarized point, since
at least one constraint is not satisfied. Accordingly, the value of F will be based on
the relatively small values of GV away from binarized points. The fact that we cannot
reasonably analyze this case does not hurt our results of course, since MAX3SAT can
still be reduced to NAE3SAT by virtue of its NP-completeness.

3.4 NP Hardness

We can now prove our main result.

Theorem 5 For any constant C < 1, it is NP-Hard to approximate the permanent of
an n × n Hermitian positive semidefinite matrix within a factor of 2n

C
.

Proof We can reduce from NAE3SAT. Given an NAE3SAT instance on d variables,
we can use the set of vectors V described in Theorem 4 and examine the resulting value
F . As we have O(d9) vectors in V , the quantity F can be represented as a permanent
of a matrix of size O(d9). The NAE3SAT instance is satisfiable if F ≥ pd−22d and
unsatisfiable if F ≤ pd−d2 , which can be distinguished if approximating within a
factor of dd

2−22d = O(dd
2
), and so O(2d

2
)will suffice. If we had an oracle that could

approximate permanents of size n PSDmatrices within a factor of 2n
C
for someC < 1,

then we could do the replica trick: take the matrix corresponding to F , and repeat it
M = d(9C−2)/(1−C) many times along the diagonal. We assume that 9C − 2 ≥ 0, so
that the exponent on M is positive; otherwise we can freely increaseC up past 2/9 and
this would only make the problem easier. The result is a matrix of size Md9, which is
then approximated within a factor of 2(Md9)C . The resulting matrix size Md9 is still
poly(d) for any fixed C . Then we raise this approximate answer to the power 1/M to
recover an approximation to the original permanent, and it has multiplicative error

(
2(Md9)C

)1/M = 2d
9CMC−1 = 2d

9Cd2−9C = 2d
2
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which is sufficient to distinguish between satisfiable and unsatisfiable instances. As
NAE3SAT is NP hard, so is approximating HPSD permanents with this accuracy. �

This result is complementary to one of Anari et al. [12], where they show that
one can approximate within a factor of exp((1 + γ + o(1))n) where γ is the Euler-
Mascheroni constant, while we showed that permanents cannot be approximated with
subexponential error. Our hard instances circumvent the fast approximation schemes
of Barvinok [15] and Chakhmakhchyan et al. [14], which both have requirements on
the spectrum of the matrix, and perform more favorably when λmax/λmin is smaller.
Our instances are of low rank (only rank d, which is much smaller than the matrix size
n) so that λmin = 0. Finally, we conjecture that the reduction above is approximation
preserving: that each good point contributes an equal amount to the integral that can
easily be estimated beforehand. Showing this would require tighter error bounds.

Conjecture 1 With an appropriate choice of polynomial-scaling K1 and K2, the con-
struction used inTheorem4 is anapproximation-preserving reduction from#NAE3SAT
to HPSD permanents, such that approximating HPSD Permanents within a factor C
is as hard as approximating #NAE3SAT (or #3SAT) within a factor C.

It is known that by Stockmeyer counting [7, 9, 10] computing multiplicative approxi-
mations to PSD permanents is contained in FBPPNP. If approximating PSD permanents
is indeed as hard as approximating #3SAT, it seems unlikely to be significantly easier
than FBPPNP.

3.5 Real Matrices

The arguments above all involve complex vectors, complex matrices, and integrals
over the complex unit sphere. The arguments however can easily be adapted to show
that PSD permanents remain hard even for purely real matrices. We could have proved
the results only for the real case and this would of course imply hardness for the more
general complex case, but the proof for the real case was less symmetric, asthetic, or
inuitive than the complex case, which is why we delayed to this section.

Theorem 6 For any constant C < 1, it is NP-Hard to approximate the permanent of
an n × n real positive semidefinite matrix within a factor of 2n

C
.

Proof The construction proceeds very similarly to above, by reducing fromNAE3SAT.
However, we now use one dimension more in the space: a d-variable NAE3SAT
problem is mapped to a (d + 1)-dimensional spherical integral

∫
GV (�x). The clauses

are mapped, as before, with K2 many sets of clause vectors, connecting the variables 1
through d in the original problemwith dimensions 1 through d in the spherical integral
G(x). The “basic sets" still include K1 many instances of the unit vectors �ek in each
basis direction k ∈ [d + 1], what we previously referred to as the Z vectors.

The Y vectors were, in preivous proofs, of the form
�e j±i �ek√

2
, for j �= k. This was

the sole source of complex terms in our vectors, and the reasons the resulting matrices

were complex. Instead now we use four copies of each of
�e j±�ed+1√

2
. These each softly

enforce the constraint that the component of �x in the j direction and the d+1 direction
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have relative phase ±i (that is, ±√−1). Since each j has ±i relative to d + 1, this
implies that each j �= k have relative phase ±1.

To make this quantitative and precise, we refer to the proof of Lemma 2. The bound

of 1 − ε2α
4d applies as before, since the �ek vectors occur just as before. As proved in

Lemma 2, if θ j and θd+1 differ by a phase (up to ±1) of θ j = θ j − θd+1, then the
likelihood GV (x) is reduced by a factor of 1 − 3θ2j ; since we use each vector eight

times, this becomes (1 − 3θ2j )
8. Then for two j �= k, j, k ≤ d, the likelihood is at

most

(1 − 3θ2j )
4(1 − 3θ2k )4 ≤

(
1 − 3

( |θ j | + |θk |
2

)2
)8

≤
(
1 − 3

( |θ j − θk |
2

)2
)8

≤ 1 − 3(θ j − θk)
2

which gives us the same bound on the relative phases as before, so that an analogous
statement to Lemma 2 also holds for our new basis set. The proof of Lemma 3 holds
with few modifications: in the proof above, the Y terms

∏

j≤k

α2
j + α2

k + 2α jαk cos(2π(θ j − θk))

as bounded by a factor

∏

j≤k

(1 − ε
√
d)2 + (1 − ε

√
d)2 + 2(1 − ε

√
d)2

(
1 − (2πε)2

2

)

=
(
(1 − ε

√
d)

(
4 − 4π2ε2

))(d2−d)/2 ≥ 1 − (ε
√
d + π2ε2)

d2 − d

2
.

Here instead we have four copies of each phase constraint, but only between j ≤ d
and d + 1. So the penalty from

∏

j≤d

(
α2
j + α2

d+1 + 2α jαd+1 cos(2π(θ j − θd+1))
)4

becomes

∏

j≤d

(
(1 − ε

√
d)2 + (1 − ε

√
d)2 + 2(1 − ε

√
d)2

(
1 − (2πε)2

2

))4

=
(
(1 − ε

√
d)

(
4 − 4π2ε2

))4d

≥ 1 − (ε
√
d + π2ε2)(4d) ≥ 1 − (ε

√
d + π2ε2)

d2 − d

2
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as before, as long as d ≥ 9. The resulting conclusion of the lemma that the relative
value GV (�x)/GV (B0) ≥ 1 − 2εd5/2 thus still holds.

Finally, Lemma 4 remains umodified in this setting, as the form of the clause vectors
is unchanged.As all the necessary lemmas hold as before, and the proofs of Theorems 4
and 5 only care about relative values, they will all hold in the real-valued PSD setting.

�

4 Quantum State Tomography

The author initially found the above construction while investigating the worst-case
hardness of quantum state tomography, and the hardness implies that several problems
in the context of tomography are NP-hard as well.

Quantum State Tomography (QST) is the procedure of estimating an unknown
quantum state from a set of measurements on an identically prepared ensemble. The
procedure can encompass both the choosing of measurement bases as well as esti-
mating the resulting state from the measurements; in adaptive settings, the running
estimate is also used to inform future measurement choices [21, 22]. We focus on the
latter task, of building an estimate of the state. We look at four related forms of what
“estimation" can qualify as:

1. Finding the Maximum Likelihood Estimator (MLE): the pure state ρ most likely
to produce the observations.

2. Finding the Bayesian expected state ρAvg: assuming a prior over the possible pure
states, finding the mixed state presenting the mixture of appropriately weighted
possible states.

3. Computing the expectation value of some future observation(s).
4. Finding the probability that the unknown state is in fact some particular ρ0. (As

there are infinitely many different pure states, we are actually asking for the prob-
ability density at ρ0.)

The first three estimations problems have all been extensively studied with various
heuristics. MLE can be attempted by linear inversion [23, 24], iterative search [25,
26], or even neural networks [27]. Bayesian estimation can be accomplished by direct
numerical integration [28] or particle based sampling [21], possibly with neural net-
works guiding the particles [22]. Directly estimating future samples has also been
attempted with neural networks [29] or classical shadows [30–32]. The author is not
aware of any prior work on computing estimation problem 4.

We can show that estimation problems 2, 3, and 4 are essentially as hard as approx-
imating PSD permanents, and that task 1 is also NP-hard. The exponential difficulty
(assuming ETH [16]) is in fact in the dimension d of the underlying Hilbert space.
Many questions in quantum information appear to be “exponentially” hard, in the sense
that it is hard to analyze a system of q qubits faster than O(2q). But here d = 2q ,
so that even when the number of qubits is a logarithmically small q = log(d), the
problem of state estimation remains exponentially hard.
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4.1 Outline of Tomography Results

Of the four forms above, we focus first on estimation problem 4. Although it is likely
the question least relevant to experiment, it is the easiest to manipulate algebraically.
We call it Quantum- Bayesian- Update, or simply QBU, and define it in Sect. 4.2.
In Sect. 4.3, we give an exponential time algorithm for QBU, showing that it is at least
possible. In Sect. 4.4 we show that estmation problems 2, 3, and 4 are equivalent. In
Sect. 4.5 we explain QBU’s connection to HPSD permanents, and show it is NP-Hard
to approximate within subexponential error. In Sect. 4.6 we show how the construction
of difficult PSD permanents can also be modified shows that the MLE problem (esti-
mation problem 1) is alsoNP-hard to approximate: it is NP-hard to check the existence
of a state with likelihood within a subexponential factor.

4.2 Quantum Bayesian Update

We define the QBU problem as follows: given a series of observations Oi each taken
froma copy ofρ, and a guessρ0,what is the probability density thatρ = ρ0?The actual
probability of equality is zero—unlesswe have some other powerful information about
the state—which is why we ask for the probability density in the space of candidate
density matrices.

Bayes’ theorem lets us compute the probability density of a true state ρ in terms
of the likelihood of the observations P(O|ρ), a prior belief distribution P(ρ), and the
total probability of the sequence of observations P(O). It reads,

P(ρ0|O) = P(O|ρ0)P(ρ0)

P(O)

In order for the equation to be meaningful and not identically zero on both sides, we
can read ρ as representing a small volume in the space of density matrices. While
there are many natural priors on the space of density matrices, we focus on the case
where we know the unknown state ρ is pure. This models, for instance, where we are
trying to identify the output of a unitary quantum channel. The most natural prior is
then the uniform distribution over all pure states, given by the Haar measure. Then all
P(E) are equal. The likelihood of a given observation Oi is simply Tr[Oiρ], so our
goal is to compute

P(ρ|O) =
∏

i∈[n] Tr[Oiρ]
P(O)

In general Oi could be operators of any rank, and could belong to POVMs. For
hardness, it will suffice it consider only observations with rank 1 and trace 1, but for
nowwe allow them to be general. For any particular ρ and sequenceOi , the likelihood∏

Tr[Oiρ] can be evaluated directly in O(nd2) operations. The difficulty then lies in
the normalizing factor,

pnorm = P(O)
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so that

P(ρ|O) = p−1
norm

∏

i∈[n]
Tr[Oiρ]

This indicates the probability of an entire sequence of observations. While a single
observation has the simple form of P(Oi ) = Tr[Oi ], the expression rapidly becomes
more complicated as we consider sequences of observations.

A brief example is useful for understanding what pnorm represents. Suppose that
we measure a qubit 1000 times along each of the X, Y, and Z axes: we expect to see
a particular amount of bias. Observing 1000 results each of +X, +Y, and +Z would
be very unlikely, as the qubit cannot be in the +1 eigenstate of all three axes at once.
It would be similarly surprising to see exactly 500 counts each of +X, −X, +Y, −Y,
+Z, and −Z: this state shows no tendency of a particular orientation, but a pure qubit
state must show a bias towards some orientation. This would have a small value of
pnorm , as there is no good state to explain the sequence observed. A sequence of 1000
+Z observations, and 500 each of +X, −X, +Y, and −Y is much more likely, as it
can be well explained by the | ↑〉 state, and so has a larger value of pnorm .

As we just saw, computing the probability density Pdensity(ρ = ρ0|O) is easy if
pnorm is known, and conversely pnorm can be easily computed from the probability
density. pnorm is a more attractive goal for our problem, as it doesn’t depend on ρ0. It
can be computed by summing up all unnormalized probabilities:

pnorm =
∫

�x∈Cd
1

∏

i∈[n]
Tr[Oi xx

†] dx

where the integral is over the Hilbert space Cd restricted to length-1 vectors. This
leads to the definition,

Definition 3 (Quantum-Bayesian-Update) Given a collection of observations O =
(O1, . . .On) in a Hilbert space of dimension d, compute

pnorm =
∫

�x∈Cd
1

∏
i∈[n] Tr[Oi xx†] dx
Tr[Oi ] (37)

4.3 Polynomial Time QBU for Fixed d

This space of state vectors Cd
1 has the geometry of a real (2d − 1)-sphere, and the

entries of ρ are quadratic in the Cartesian coordinates for this sphere. Thus, pnorm
becomes a integral over a (2d −1)-sphere of a homogeneous 2n degree polynomial in
the 2d variables. The expansion of the polynomial into monomials takes O((2n)2d)

time, and each monomial can then be immediately integrated over the sphere using
the formula [19]

∫

Sk
xα1
1 xα2

1 . . . xαk
k =

⎧
⎨

⎩
0 if any αi are odd
2

∏
i �( 12 (αi+1))

�(
∑

i
1
2 (αi+1))

if all αi are even
(38)
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where � is gamma function, �( 12 (α + 1)) = √
π2α(α − 1)!!. This gives a polynomial

time algorithm for evaluating pnorm when d is fixed. This is functionally equivalent to
the O(nd) algorithm for permanents described in [33]: Barvinok describes the more
general form that applies to any matrices (not just PSD) of rank d. This fact puts the
(exact) permanent calculation in the class XP, or slicewise polynomial time, when
parameterized by rank.

4.4 Relationship Between Estimation Problems

Since QBU is not of particular interest to actual tomography tasks, we show it is
equivalent (under polynomial many-one reductions) to the more realistic tasks 2 and
3 above, of estimating observables or the state itself. We can show that these are just
as difficult (or, just as easy) as the Bayesian update step.

4.4.1 Computing�Avg

Given that there will always be room for uncertainty, we cannot meaningfully ask for a
single pure state as an answer, but we can ask for ρAvg: themixed state representing the
correctly updated mixture over all the possible true states, given by

∫
P(ρ)ρ dρ. The

impure ρAvg reflects the expectation of all observables given our current information.
We parameterize the space of density matrices by a single vector ψ ∈ S2d−1, and
given some completed observations O, the Bayesian expected state is

ρAvg =
∫

ψ∈S2d−1
P

(
|ψ〉〈ψ |

∣∣∣O
)
|ψ〉〈ψ | dψ

=
∫

ψ∈S2d−1
p−1
norm

(
|ψ〉〈ψ |

) ∏

O∈O
〈ψ |O|ψ〉 dψ

whose individual matrix elements are

〈i |ρAvg| j〉 = p−1
norm

∫

ψ∈S2d−1
〈i |ψ〉〈ψ | j〉

∏

O∈O
〈ψ |O|ψ〉 dψ

We have already discussed computing pnorm , as a spherical integral of a polynomial.
For any given i and j , the remaining integral is also a spherical integral of a polynomial,
and can be computed in the same fashion as 4.3. Since each of the d2 matrix elements
can be computed in O((2n)(2d)) time, this the Bayesian average state ρAvg is also
computable in polynomial time for a fixed d.

On the other hand, a diagonal element 〈i |ρavg|i〉 gives

〈i |ψ〉〈ψ |i〉
∏

O∈O
〈ψ |O|ψ〉 = 〈ψ |

(
|i〉〈i |

)
|ψ〉

∏

O∈O
〈ψ |O|ψ〉 =

∏

O∈(O∪{|i〉〈i |})
〈ψ |O|ψ〉

which is the same integrand as for pnorm , only with one additional observation |i〉〈i |
added.
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If we had an algorithm compute ρAvg efficiently, we could use it to solve the
Bayesian update problem on a set of observations O, as follows. First, discard the
last observation Olast , compute ρAvg on the n − 1 other observations, and compute
pnorm,n−1 for those n − 1 as well. This calls the procedure recursively on one less
observation. Then the desired answer is

pnorm = pnorm,n−1 Tr[OlastρAvg]

That is to say, the probability of the n observations is just the probability of the first
n − 1 observations multiplied by the last probability of the last (conditioned on the
first). This recursive approach makes n calls to computing ρAvg , which shows that the
QBU problem is at most n times as hard as state estimation.

4.4.2 Computing Observable Expectations

We could try to only find the expectation of a particular observable A, and not the
whole state ρAvg , conditioned on our observations. We can write this as E[A|O].
This is also just as hard: density matrices as a d2 − 1 linear space, and expectations of
observables are linear inρ, so by computing the exact expectation ofd2−1 independent
observables, we can find ρAvg exactly, by solving a linear system. This is of course
precisely the idea behind least-squares quantum state estimation, and it shows that
computing expectation values is as hard as ρAvg .

Finally, if we could compute a Bayesian update, we could compute the expectation
values of observables. Take the eigendecomposition of our operator A: write A =∑

λi |i〉〈i |, and evaluate

E[A|O] =
∑

λi E[〈i |ψ〉〈ψ |i〉|O] =
∑

λi p
−1
norm

∫

ψ∈S2d−1
〈i |ψ〉〈ψ |i〉

∏

O∈(O
〈ψ |O|ψ〉 dψ

∑
λi p

−1
norm

∫

ψ∈S2d−1

∏

O∈(O∪{|i〉〈i |})
〈ψ |O|ψ〉 dψ

Computing pnorm and each of the d many spherical integrals is a Bayesian update
problem. We have reductions (Bayesian update) → (Compute ρAvg) → (Compute
E[A|O]) → (Bayesian update), so these are equivalent in difficulty. Note that these
are many-one reductions, which is unavoidable as ρAvg is a matrix-valued function
problem while the two are scalar-valued.

4.5 NP-Hardness of QBU and�Avg

We now state the main hardness results on quantum tomography.

Theorem 7 For any C < 1, it is NP-hard to compute the value pnorm for Quantum-
Bayesian-Update with an approximation factor of at most 2n

C
.
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Proof When Oi are all rank-1 operators, the numerator in Eq. (37) is of the form in
Theorem 3, and the denominator in Eq. (37) can be efficiently computed by direct
calculation. Thus any PSD permanent can be efficiently reduced to a problem of
computing pnorm with an approximation-preserving reduction, and QBU is NP-Hard
to approximate to the same degree. �
Theorem 8 For any C < 1, it is NP-hard to compute a diagonal matrix entry of ρAvg,

in any basis, with an approximation factor of at most 2n
C
. It is alsoNP-hard to compute

the expectation of a positive semidefinite operatorO with an approximation factor of
at most 2n

C
.

Proof A diagonal element of ρAvg is the expectation value of the rank-1 PSD operator
projecting onto that element, so the first statement is a special case of the second. As
described above, both of these quantities then also take the form of a PSD permanent,
and any PSD permanent can be turned into these problem by taking the desired matrix
element (in the first case) or observabe O (in the second case) to be the first vector
V †
1 V1. These are also approximation preserving reductions, so these are also NP-hard

to approximate. �

4.6 NP-Completeness of Maximum Likelihood Estimation

In the case of MLE state tomography, we are not so demanding that we require knowl-
edge of the full average state, andwe are contentwith just finding one good explanatory
state |ψ〉. Accordingly, we do not consider a permanent

∫
x GV (x) (a problem of count-

ing solutions to 3-SAT), but just the question of maximizing GV (x) (a problem of
finding a solution to 3-SAT). This allows to show that the problem is actually lies
in NP, while this is unlikely to be true for the other problems in this paper unless
BPPNP = NP.

Formulating the MLE problem as a decision problem:

Definition 4 (C-Approximate-Quantum-MLE) Given a collection of observationsOi

of an unknown quantum state |ψ〉, and a real number p, decide whether there is a |ψ〉
whose likelihood L(ψ) = ∏

i 〈ψ |Oi |ψ〉 is at least p, or if L(ψ) < p/C for all ψ ,
being promised that one of these is the case.

We will show that even the approximate problem is NP-complete, for any C .

Theorem 9 For any C > 1, the C-Approximate-Quantum-MLE problem is NP-
complete.

Proof Containment in NP is straightforward, as one can supply a description of the
state |ψ〉, which requires only 2d many real numbers, and then L(ψ) can be directly
evaluated. To be contained in NP, we need to show that only poly(n) bits of precision
are needed, equivalently a 1+2−poly(n) approximation ratio to the exact number. Every
factor in L(ψ), a single 〈ψ |Oi |ψ〉, is a sum of products of numbers in our witness ψ

and the given Oi . Each individual product has a 1+ 2−poly(n) ratio, but when we add
them there may be a catastrophic cancellation, and 〈ψ |Oi |ψ〉 is very small, so that we
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get a large multiplicative error. But we know this cannot be optimal: this would mean
thatOi projects onto a subspace that |ψ〉 is exponentially close to (within an angle of
2−poly(n). We can choose any other point |ψ〉 that is not exponentially close to any
projected subspace, and get at least a better score. Such a point is guaranteed to exist,
because n hyperplanes can only divide the d-sphere into 2poly(n,d) many sections; by
taking a larger poly in our precision, we avoid catastrophic cancellation and compute
〈ψ |Oi |ψ〉 to within 1+ 2−poly(n). Finally, the multiplicative accuracies in each factor
〈ψ |Oi |ψ〉 multiply together, so we can guarantee the C constant approximation ratio
necessary to distinguish the two sides of the promise.

We also need to check that the witness is normalized, 〈ψ |ψ〉 ≈ 1. As long as this
is accurate to within 1+ 2−n , rescaling |ψ〉 by a factor f just scales L(ψ) by f 2n , so
also preserves the good multiplicative approximation. This shows containment in NP.

To showhardness, we use the sameNAE3SATconstruction as in Theorem4.Aswas
shown in the proof of that theorem, any good point (thus, a solution to the underlying
NAE3SAT problem) has

L(ψ) = G0(x) ≥ p

(
1 − ln2 d√

d

)
.

We also show in that proof that, if there are no good points (and thus no solutions)
then

L(ψ) = G0(x) ≤ p/dd
2

for all points. Thus, the existence of a high likelihood point even within C < dd
2

implies the existence of a solution. �

4.7 Practical Difficulty of Tomography

Although the above results imply that several approaches to quantum state tomography
may be difficult to compute exactly, these difficult instances are somewhat artificial
and unlikely to occur in practice. Additionally, difficult instances such as the one
constructed in the above proofs could be readily addressed in practice by the addition
of measurements in e.g. the X measurement basis, which would directly probe the
relative signs in the state vector and allow relatively efficient readout of the state.
Additionally, the constraint that we only search for pure states—while a useful prior
that could be relevant once high-fidelity quantum computer exists—makes a highly
nonconvex search space. If we relax this and take a prior with uniform measure over
the space of density matrices, then the resulting likelihood function is logarithmically
convex and the resulting MLE problem can be solved in polynomial time in d. Thus,
these results should not be taken as a statement that quantum state tomography is
actually exponentially hard in the Hilbert space dimension d. Rather, any analysis
of quantum state tomography procedures will need at least one of: careful choice of
measurement basis, only probabilistic guarantees on convergence, or (if doing MLE)
a convex prior.

This work has little implication for the learnability of quantum states, which asks
howmany (or what kind of) samples we need in order to constrain a state. The optimal
sample complexity of states is alread known [34, 35] to scale as O(d) for pure states
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and O(d2) for mixed states. It is also known that simple reconstruction algorithms,
this quantity of data, converge with high probability. Our work, in contrast, shows that
the optimal answer given a fixed set of data is hard to compute in general.
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