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Abstract
Let P = {p0, . . . , pn−1} be a set of points in R

d , modeling devices in a wireless
network. A range assignment assigns a range r(pi ) to each point pi ∈ P , thus inducing
a directed communication graph Gr in which there is a directed edge (pi , p j ) iff
dist(pi , p j ) ≤ r(pi ), where dist(pi , p j ) denotes the distance between pi and p j .
The range-assignment problem is to assign the transmission ranges such that Gr has
a certain desirable property, while minimizing the cost of the assignment; here the
cost is given by

∑
pi∈P r(pi )α , for some constant α > 1 called the distance-power

gradient. We introduce the online version of the range-assignment problem, where
the points p j arrive one by one, and the range assignment has to be updated at each
arrival. Following the standard in online algorithms, resources given out cannot be
taken away—in our case this means that the transmission ranges will never decrease.
The property we want to maintain is that Gr has a broadcast tree rooted at the first
point p0. Our results include the following.

• Weprove that already inR1, a 1-competitive algorithm does not exist. In particular,
for distance-power gradient α = 2 any online algorithm has competitive ratio at
least 1.57.

• For points in R1 and R2, we analyze two natural strategies for updating the range
assignment upon the arrival of a new point p j . The strategies do not change
the assignment if p j is already within range of an existing point, otherwise
they increase the range of a single point, as follows: Nearest- Neighbor (nn)
increases the range of nn(p j ), the nearest neighbor of p j , to dist(p j , nn(p j )),
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and Cheapest Increase (ci) increases the range of the point pi for which the
resulting cost increase to be able to reach the new point p j is minimal. We give
lower and upper bounds on the competitive ratio of these strategies as a function
of the distance-power gradient α. We also analyze the following variant of nn in
R
2 for α = 2: 2- Nearest- Neighbor (2-nn) increases the range of nn(p j ) to

2 · dist(p j , nn(p j )),
• We generalize the problem to points in arbitrary metric spaces, where we present
an O(log n)-competitive algorithm.

Keywords Computational geometry · Online algorithms · Range assignment ·
Broadcast

1 Introduction

Consider a collection of wireless devices, each with its own transmission range. The
transmission ranges induce a directed communication network, where each device pi
can directly send a message to any device p j in its transmission range. If p j is not
within range, a message from pi can still reach p j if there is a path from pi to p j

in the communication network. The energy consumption of a device depends on its
transmission range: the greater the range, the more power is needed. This leads to the
range-assignment problem: assign transmissions ranges to the devices such that the
resulting network has some desired connectivity property, while minimizing the total
power consumption.

Mathematically we can model the problem as follows. Let P = {p0, . . . , pn−1} be
a set of n points in R

d . For an assignment r : P → R≥0, let Gr be the directed graph
on the vertex set P obtained by putting a directed edge from a vertex pi to a vertex p j

iff dist(pi , p j ) ≤ r(pi ), where dist(pi , p j ) denotes the distance between pi and p j .
We callGr the communication graph on P induced by the range assignment r . The cost
of a range assignment r is defined as costα(r) := ∑

pi∈P r(pi )α , whereα ≥ 1 is called
the distance-power gradient. In practice, α typically varies from 1 to 6 [15]. We then
want to find a range assignment thatminimizes the costwhile ensuring thatGr has some
desired property. Properties that have been investigated in this context include strong
connectivity [9, 14], h-hop strong connectivity [8, 10, 14], broadcast capability—
here Gr must contain a broadcast tree (that is, an arborescence) rooted at the source
point p0—, and h-hop broadcast capability [2, 13]; see the survey by Clementi et
al. [6] for an overview of the various range-assignment problems. Most previous work
considered the Euclidean setting. There has been somework on arbitrarymetric spaces
for the strong connectivity version [4, 12]. (Note that while the 2-dimensional version
seems the most relevant setting, the distances may not be Euclidean due to obstacles
that reduce the strength of the signal of a device.)

In this paper we focus on the broadcast version of the range-assignment problem.
This version can be solved optimally in a trivial manner when α = 1, by setting
r(p0) := max0≤i<n dist(p0, pi ) and r(pi ) := 0 for i > 0. Clementi et al. [7] showed
a polynomial time algorithm for the 1-dimensional problem when α ≥ 2. Moreover,
Clementi et al. [5] showed the problem is NP-hard for any α > 1 and any d ≥ 2.
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Clementi et al. [7], Clementi et al. [5], andWan et al. [17] also showed that the problem
can be approximated within a factor c · 2α for any α ≥ 2 and for a certain constant c.
Furthermore, Clementi et al. [5] showed that for any d ≥ 2 and for any α ≥ d,
there is a function f : N × R → R such that the problem can be approximated
within a factor f (d, α) in the d-dimensional Euclidean space. Fuchs [11] showed that
for d = 2, the problem remains NP-hard even for so-called well-spread instances
for any α > 1. In dimension d ≥ 3, he also showed that the problem is NP-hard to
approximate within a factor of 51/50when α > 1; the result also holds for well-spread
instances when α > d.

Our contribution. We study the online version of the broadcast range-assignment
problem. Here the points p0, p1, . . . , pn−1 come in one by one, and the goal is to
maintain a range assignment r such that Gr contains a broadcast tree on the currently
inserted points, rooted at the first point p0. Of course one can simply recompute the
assignment from scratch, but in online algorithms one requires that resources that have
been given out cannot be taken back. For the range assignment problem this means
that we are not allowed to decrease the range of any point. In fact, our algorithms
have the useful property that upon arrival of each point, we change the current range
assignment only minimally: either we do not change it at all—this happens when the
newly arrived point is already within range of an existing point—or we increase the
range of only a single point. Our goal is to obtain algorithms with a good competitive
ratio.1 As far as we know, the range-assignment problem has not been studied from
the perspective of online algorithms.

We first prove a lower bound on the competitive ratio achievable by any online
algorithm: even in R

1 there is a constant cα > 1 (which depends on the power-
distance gradient α) such that no online algorithm can be cα-competitive. For α = 2,
we have cα > 1.57.

We then investigate the following two natural online algorithms for the broad-
cast range-assignment problem. Suppose the point p j arrives. Our algorithms all set
r(p j ) := 0 and, asmentioned, theydonot change anyof the ranges r(p0), . . . , r(p j−1)

if |pi p j | ≤ r(pi ) for some 0 ≤ i < j . When p j is not within range of an already
inserted point, the algorithms increase the range of one point, as follows. Let nn(p j )

denote the nearest neighbor of p j in the set {p0, . . . , p j−1}, with ties broken arbitrarily.
• Nearest- Neighbor (nn) increases the range of nn(p j ) to dist(p j , nn(p j )).
• Cheapest Increase (ci) increases the range of pi∗ to dist(pi∗ , p j ), where pi∗ is
a point minimizing the cost increase of the assignment, which is dist(pi∗ , p j )

α −
r(pi∗)α where r(pi∗) denotes the current range of pi∗ .

The results are summarized in Table 1. Note the lower bounds hold only for nn,
while the upper bounds hold for nn and ci; the exception is the third row, which is for
2-nn (see below). The lower bound of 6(1+0.52α) mentioned in the table—the exact

1 The competitive ratio [16] of an online algorithm compares the cost of the solution it maintains to the
cost achieved by the optimal offline algorithm. More precisely, an online algorithm alg is c-competitive if
there is a constant a such that for any instance I , the cost of alg is at most c · OPT(I ) + a. Note the the
offline algorithm must still maintain the solution over time. Thus the offline problem is not the same as the
static problem, where we only want a solution for the final configuration.
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Table 1 Overview of results on the competitive ratios of nn and ci

Dimension Distance-power gradient Lower bound on the Upper bound on the
competitive ratio competitive ratio
of nn of nn and ci

d = 1 α = 2 2 2

d = 2 α = 2 ≈ 7.61 322

2-nn: 36

2 < α < α∗ ≈ 4.3 ≈ 6(1 + 0.52α) α 2α−3
2α−1−α

α ≥ α∗ ≈ 4.3 ≈ 12.94

bound is 6(1 + (
√
6−√

2
2 )α)—applies to all α > 1, and thus implies the given lower

bound for α = 2. Recall that for d = 1 and α = 2, we also have a universal lower
bound of 1.57 that holds for any online algorithm and, hence, also for ci. The exact
value of α∗ is α∗ = argmin F∗

α , where F∗
α = α 2α−3

2α−1−α
.

As can be seen in the table nn is O(1)-competitive for α = 2, but the competitive
ratio is quite large, namely 322. We therefore also analyze the following variant of nn,
which (if p j is not yet within range of an existing point) proceeds as follows:

• 2- Nearest- Neighbor (2-nn) increases the rangeof nn(p j ) to 2·dist(p j , nn(p j )).

We prove that the competitive ratio of 2-nn is at most 36 for α = 2. Thus, while
still rather large, the competitive ratio is a lot smaller than what we were able to
prove for nn. It is interesting to note that both nn and 2-nn make decisions that are
independent of α. Hence, nn obtains a solution that is simultaneously competitive for
all α ≥ 2.

As a final contribution we generalize the broadcast problem to points in arbitrary
metric spaces. Since to the best of our knowledge this version has not been studied
before,we present an approximation algorithm for the offline setting; its approximation
ratio is 5α . In this offline setting the algorithm must be what Boyar et al. [3] call
an incremental algorithm: an algorithm that, even though it may know the future,
maintains a feasible solution at any time. For the online setting (where the future is
unknown) we obtain an O(4α log n)-competitive algorithm.

Notation. We let P := p0, . . . , pn−1 denote the input sequence, where we assume
without loss of generality that pi is inserted at time i and that all pi are distinct.
Define Pi := p0, . . . , pi , and denote the range of a point pi ∈ Pj just after the insertion
of the point p j by r j (pi ). Thus in the online versionwe require that r j (pi ) ≤ r j+1(pi ).
For an algorithm alg we use costα(alg(P)) to denote the cost incurred by alg on
input P for distance-power gradient α. Finally we denote the ball of radius ρ centered
at a point p by B(p, ρ); note that in R1 this is an interval of length 2ρ and in R2 it is
a disk of radius ρ.
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Fig. 1 The lower-bound construction in R
1

2 Online Range-Assignment inR
1

In this sectionwe prove that no online algorithm can have a competitive ratio arbitrarily
close to 1, even in R

1. We also prove bounds on the competitive ratio of nn and ci
in R1.

2.1 A Universal Lower Bound

Toprove the lower boundwe consider an arbitrary online algorithmalg. Our adversary
then first presents the points p0 = 0, p1 = x , and p2 := δα ·x . Depending on the range
assignment alg has done so far, the adversary either ends the instance or presents a
fourth point p3 = −δα ·x . By picking a suitable value for δα and making x sufficiently
large, we can obtain a lower bound. This is made precise in the following theorem.

Theorem 1 For any distance-power gradient α > 1, there is a constant cα > 1 such
that any online algorithm for the range assignment problem in R

1 has a competitive
ratio of at least cα . For α = 2 this constant is c2 ≈ 1.58.

Proof Let α > 1 and let alg be an algorithm with competitive ratio c ≥ 1, i.e., there
is a constant a such that the cost of alg is upper bounded by c · OPT+a. We also
define

cα : = max
δ>1

min

(
δα

1 + (δ − 1)α
,
δα + (δ − 1)α

δα
,
1 + (δ + 1)α

δα

)

,

and δα : = argmax
δ>1

min

(
δα

1 + (δ − 1)α
,
δα + (δ − 1)α

δα
,
1 + (δ + 1)α

δα

)

.

(The reasons behind the various terms in these definitions will become apparent in
the rest of the proof.) We show that c ≥ cα by constructing the following families of
instances consisting of, respectively, three and four points, and parametrized by the
real number x ≥ 1:

F1 := {{p0 = 0, p1 = x, p2 = δα · x}}
and F2 := {{p0 = 0, p1 = x, p2 = δα · x, p3 = −δα · x}}.

See Fig. 1 for an illustration.
Note that there is a one-to-one correspondence between the instances in both fam-

ilies: each instance of F1 is the beginning of exactly one instance of F2 and each
instance of F2 starts like exactly one instance of F1.

For any x , depending on what alg does after p2 is inserted, we choose an instance
from either the family F1 or the family F2 using the following rule: if after p2 is
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inserted, alg has a disk of radius at least δα ·x , we chooseF1, otherwise we chooseF2.
In the former case,alg pays at least δα

α ·xα while the optimal solutionwould be to place
a disk of radius x at p0 and a disk of radius (δα −1)·x at p1 and pay xα +(δα −1)α ·xα .
Since the competitive ratio of alg is c, we have that δα

α · xα ≤ c · xα(1+(δα −1)α)+a
and hence

c ≥ δα
α

1 + (δα − 1)α
− a

xα(1 + (δα − 1)α)
.

Since the second term can be made arbitrarily small by choosing x large enough, c
must be at least δα

α

1+(δα−1)α .
In the latter case,alg has one disk of radius at least x and one of radius at least (δα−

1) · x before p3 is inserted. We split this case into two subcases: in the first one, alg
increases the radius of the disk at p0 and in the second one, alg increases the radius
of the disk at p1. The cost alg has to pay after p3 has been inserted is at least
either δα

α · xα + (δα −1)α · xα in the first subcase, or xα + (δα +1)α · xα in the second,
whereas the optimal solution for both subcases would be to place only one disk of
radius δα · x at p0 and pay δα

α · xα . Since the competitive ratio of alg is c, we have
that δα

α · xα + (δα − 1)α · xα ≤ c · δα
α · xα + a for the first subcase and hence

c ≥ δα
α + (δα − 1)α

δα
α

− a

δα
α · xα

;

and that xα + (δα + 1)α · xα ≤ cδα
α · xα + a for the second subcase and hence

c ≥ 1 + (δα + 1)α

δα
α

− a

δα
α · xα

.

Since, in both subcases, the second term can be made arbitrarily small by choosing x

large enough, cmust be at least δα
α+(δα−1)α

δα
α

for the first subcase, and at least 1+(δα+1)α

δα
α

,
otherwise there is an infinite family of instances contradicting the competitive ratio
for these two subcases.

Therefore, the competitive ratio of alg must be at least the minimum of the com-
petitive ratio between these cases, which is exactly cα . Even though it is not clear how
to compute the value of cα for any fixed α > 1, it is easy to see it is strictly bigger
than 1. If α = 2, we have (using WolframAlpha)

c2 : = max
δ>1

min

(
δ2

1 + (δ − 1)2
,
δ2 + (δ − 1)2

δ2
,
1 + (δ + 1)2

δ2

)

= 1

12

(

4 + 3
√

496 − 24
√
183 + 2

3
√

62 + 3
√
183

)

≈ 1.58

123



3934 Algorithmica (2023) 85:3928–3956

which is achieved for

δ2 : = argmax
δ>1

min

(
δ2

1 + (δ − 1)2
,
δ2 + (δ − 1)2

δ2
,
1 + (δ + 1)2

δ2

)

= 1

3

(

5 + 3
√

62 − 3
√
183 + 3

√

62 + 3
√
183

)

≈ 4.15. 	


2.2 Bounds for nn and ci

We now prove bounds on the competitive ratio of the algorithms nn and ci explained
in the introduction.

Theorem 2 Consider the range-assignment problem in R
1 with distance-power gra-

dient α.

(i) For any α > 1, the competitive ratio of ci is at most 2.
(ii) For any α > 1, the competitive ratio of nn is exactly 2.

Proof We first prove the upper bounds. Assume without loss of generality that p0 =
0. We first prove that both nn and ci perform optimally for α > 1 on any
sequence p0, p1, . . . , pn−1 with p j ≥ 0 for all 1 ≤ j < n.

Claim Suppose p0 = 0 and p j ≥ 0 for all 1 ≤ j < n. Then nn and ci are optimal.

Proof of claim We first observe that for any point p j the following holds for the
graph Gr j that we have after the insertion of p j : for any point pi with 0 < i ≤ j
there is a path from the source p0 to pi that only uses edges directed from left to right,
that is, edges (pi ′ , pi ′′) with pi ′ < pi ′′ . Indeed, if the path uses an edge (pi ′ , pi ′′)
with pi ′ > pi ′′ then the subpath from p0 to pi ′ must contain an edge (ps, pt ) with
ps ≤ pi ′′ ≤ pt , and then we can go directly from ps to pi ′′ . This observation implies
that there exists an optimal strategy Opt such that the balls B(pi , r j (pi )) of the cur-
rently inserted points never extend beyond the currently rightmost point, a property
which holds for nn and ci as well. (Intuitively, the part of B(pi , r j (pi )) to the right of
the rightmost point is currently useless, and the part of B(pi , r j (pi )) to the left of pi is
not needed because we never need edges going to the left. Hence, we decrease r j (pi )
until the right endpoint of B(pi , r j (pi )) coincides with the currently rightmost point,
and increase the range of pi later, as needed.)

Now imagine running nn, ci, and Opt simultaneously on P . We claim that nn and
ci do exactly the same, and that their cost increase after the insertion of any point p j

is at most the cost increase of Opt. To see this, let p j ′ be the rightmost point just
before inserting p j . If p j < p j ′ then nn and ci do not increase any range—since p j ′
is reachable from p0, the point p j must already be reachable as well—and so the cost
increase is zero. If p j > p j ′ then nn and ci both increase the range of p j ′ from 0
to p j − p j ′ . For nn this is clear. For ci it follows from the fact that α > 1. Indeed,
increasing the range of some pi < p j ′ gives a cost increase (r j−1(pi ) + x + (p j −
p j ′))α − (r j−1(pi ))α , for some x ≥ 0. This is more than (p j − p j ′)α , since we must
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have r j−1(pi ) + x > 0. By a similar reasoning, and using that the balls of Opt do not
extend beyond p j ′ , we conclude that the cost increase of Opt cannot be smaller than
(p j − p j ′)α . Hence, nn and ci are optimal on a sequence of non-negative points. 	


Next, we prove that the optimality for non-negative points gives a competitive ratio
of at most 2 for any input sequence P . Let P+ and P− denote the subsequences
of P consisting of the points with non-negative and non-positive points, respec-
tively. Note that the source point p0 = 0 is included in both subsequences. We claim
that costα(Opt((P)) ≥ costα(Opt((P+)). Indeed, we canmodify the optimal solution
for P to a valid solution for P+ whose cost is at most costα(Opt((P)), as follows:
whenever the range of a point pi /∈ P+ is increased to reach a point p j ∈ P+,
we instead increase the range of p0 by the same amount. A similar argument gives
costα(Opt((P)) ≥ costα(Opt((P−)).

We now argue that costα(nn(P)) ≤ costα(nn(P+)) + costα(nn(P−)) and, simi-
larly, that costα(ci(P)) ≤ costα(ci(P+)) + costα(ci(P−)).

Imagine running nn simultaneously on P , on P+ and on P−. We claim that the
increase of costα(nn(P)) upon the arrival of a new point p j is at most the increase of
costα(nn(P+)) if p j > 0, and at most the increase of costα(nn(P−)) if p j < 0. To
see this, assume without loss of generality that p j > 0 and suppose the increase of
costα(nn(P)) is non-zero. Then p j lies to the right of the currently rightmost point, pi .
Both nn(P) and nn(P+) then increase the range of pi , and pay the same cost. The
only exception is when i = 0, that is, p j is the first point with p j > 0. In this case
nn(P)may pay less thannn(P+), sincenn(P) could already have increased the range
of p0 due to arrivals of points to the left of p0.

A similar argument works for ci. Indeed, ci(P+) and ci(P−) never extend a ball
beyond the currently rightmost and leftmost point, respectively. Hence, when the new
point p j lies, say, to the right of the currently rightmost point pi , then ci(P+) would
pay (dist(pi , p j ))

α . Since ci(P) also has the option to increase the range of pi , it will
never pay more.

Hence, for nn—a similar computation holds for ci—we get

costα(nn(P)) ≤ costα(nn(P+)) + costα(nn(P−)) ≤ 2 · OPT(P).

It remains to prove the lower bound for part (ii) of the theorem. Assume for a contra-
diction that there is a constant a such that for all inputs P we have costα(nn(P)) ≤
(2 − ε) · costα(Opt(P)) + a. Consider the input p0 = 0, p1 = δx , p2 = x , and
p3 = −x , for some δ ∈ (0, 1] and x > 0 to be determined later. The optimal solution
has r3(p0) = x and r3(p1) = r3(p2) = r3(p3) = 0, while nn has r3(p0) = x and
r3(p1) = (1 − δ)x and r3(p2) = r3(p3) = 0. Hence, the competitive ratio that nn
achieves on this instance is

c = ((1 − δ)α + 1)xα − a

xα
= (1 − δ)α + 1 − a

xα
,

which is larger than 2−εwhenwe pick δ sufficiently small and x sufficiently large. 	
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3 Online Range-Assignment inR
2

3.1 Bounds on the Competitive Ratio of nn and ciwhen˛ > 2

Asbefore, let p0, . . . , pn−1 be the sequence of inserted points,with p0 being the source
point. Consider some point pi , and some arbitrary disk D centered at pi—the disk D
need not have radius equal to the range of pi . Define S(pi , D) := {p j : j ≥ i and p j ∈
D} to be the set containing pi plus all points arriving after pi that lie in D. For a point
p j , define costα(nn, p j ) to be the cost incurred by nn when p j is inserted; in other
words, costα(nn, p j ) := 0 when p j falls into an existing disk B(pi , r j−1(pi )), and
costα(nn, p j ) := (r j (pk))α − (r j−1(pk))α otherwise, where pk := nn(p j ). Define
costα(ci, p j ) similarly for ci. Finally, for p j ∈ S(pi , D) define

Fα(p j ; pi , D) := min{dist(p j , pk)
α | pk ∈ S(pi , D) and k < j}.

(If there is no pk ∈ S(pi , D) with k < j then the minimum is +∞ by definition.)
The next lemma shows that we can use the function Fα to upper bound the cost of
nn and ci. We later apply this lemma to all disks in an optimal solution to bound the
competitive ratio. Note that for any disk D centered at pi and any p j ∈ S(D) we have
costα(nn, p j ) ≤ Fα(p j ; pi , D). Indeed, nn either pays zero (when p j already lies
inside a disk) or it expands the disk of p j ’s nearest neighbor (which may or may not lie
in D) which costs at most Fα(p j ; pi , D). Similarly costα(ci, p j ) ≤ Fα(p j ; pi , D).
Hence we have:

Lemma 1 Let pi be any input point and D a disk centered at pi . Then for any subset
S(D) ⊆ S(pi , D) \ {pi } we have:

∑

p j∈S(D)

costα(nn, p j ) ≤
∑

p j∈S(D)

Fα(p j ; pi , D)

and

∑

p j∈S(D)

costα(ci, p j ) ≤
∑

p j∈S(D)

Fα(p j ; pi , D).

Lemma 1 suggests the following strategy to bound the competitive ratio of nn (and
ci). Consider, for each point pi , the final disk D placed at pi by an optimal offline
algorithm, and let ρ be its radius. The cost of this disk is ρα . We charge the cost of the
disks placed by nn (or ci) at points p j inside D—this cost can be bounded using the
function Fα , by Lemma 1—to the cost of D. This motivates the following definition:

F∗
α := max

1

ρα

∑

p j∈S(D)

Fα(p j ; pi , D),

where the maximum is over any possible input instances P , any point pi ∈ P , any
disk D of radius ρ centered at pi , and any subset S(D) ⊆ S(pi , D)\{pi }. The value
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Fig. 2 Example showing that Fα does not converge for α = 2

F∗
α bounds the maximum total charge to any disk D in the optimal solution, relative

to D’s cost ρα . The next lemma shows that for α > 2, the value F∗
α is bounded by a

constant (depending on α).

Lemma 2 We have that F∗
α ≤ α 2α−3

2α−1−α
for any α > 2.

The formal proof of the lemma is quite technical so we sketch the intuition here before
diving into the proof, also showing why the condition α > 2 is needed. The quantity
F∗

α can be thought of in the followingway. Consider a disk D of radius ρ centered at pi ,
and imagine the points in S(D) arriving one by one. (The points in S(pi , D)\S(D) are
irrelevant.) Whenever a new point p j arrives, then F∗

α increases by dist(p j , nn(p j ))
α ,

where nn(p j ) is p j ’s nearest neighbor among the already arrived points from S(D)

including pi . Since the more points arrive in D the distances to the nearest neighbor
will decrease—more precisely, we cannot have many points whose nearest neighbor
is at a relatively large distance—the hope is that the sum of these distance to the power
α converges, and this is indeed what we can prove for α > 2. For α = 2 it does not
converge, as shown by the following example, illustrated in Fig. 2.

Let D be a unit disk centered at pi , and consider the inscribed square σ of D. Note
that the radius2 of σ—the distance from its center to its vertices—is 1. We insert a set
S(D) of n − 1 points in rounds, as follows. In the first round we partition σ into four
squares of radius 1/2, and we insert a point in the center of each of them. These four
points all have pi as nearest neighbor, and F∗

α increases by 4 · (1/2)α = (1/2)α−2.
We recurse in each of the four squares. Thus in the k-th round, we have 4k−1 squares
of radius (1/2)k−1, each of which is partitioned into four squares of radius (1/2)k ,
and we place a point inside each such subsquare. This increases F∗

α by 4k · (1/2k)α =
(1/22−α)k . The total cost is

∑t
k=1(1/2

2−α)k , where t := �(log n) is the number of
rounds.

Note that 1/22−α = 1 for α = 2, giving F∗
2 = �(log n), while for α > 2 the total

cost converges. Also note that the example only gives a lower bound on F∗
2 , it does not

show thatnn has unbounded competitive ratio forα = 2. The reason is thatnn actually

2 The radius of an arbitrary point set is the radius of the smallest ball that covers the set.
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pays less than F∗
2 , since in the example most points p j are already within range of an

existing point upon insertion, and so we do not have to pay dist(p j , nn(p j ))
α . Indeed,

in the next section we prove, using a different argument, that nn is O(1)-competitive
even for α = 2.

We now present the proof of Lemma 2.

Proof of Lemma 2 Let p	 be a point, let D be any disk centred at p	, and let ∂D denote
the boundary of D. For the sake of simplicity, we rescale D to be a unit disk and relabel
points in S(D) as p0, . . . , pk without changing the ordering and where p0 (formerly
known as p	) is the center of D. From now on, to simplify the notation, we will use
Fα(pi ) as a shorthand for Fα(pi ; p	, D). We show that

∑k
i=1 Fα(pi ) ≤ α 2α−3

2α−1−α
. To

that purpose we create a potential function � : {0, . . . , k} → R, with �(i) being the
potential when pi is inserted, with the following properties:

• �(0) = α 2α−3
2α−1−α

,

• �(i) > 0 for any i = 0, . . . , k,

• �(i − 1) − �(i) ≥ Fα(pi ) for any i = 1, . . . , k.

If such a potential function exists, we then indeed have F∗
α ≤ α 2α−3

2α−1−α
.

We now define �(i). For any point q in the plane, let nni (q) be its closest point
among p0, . . . , pi . We define the potential φ(q, i) at q at time i as follows:

φ(q, i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cα dist(q, nni (q))α−2

if q ∈ D, that is, if dist(q, p0) ≤ 1;

cα(dist(q, nni (q))α−2 − dist(q, ∂D)α−2)

if 1 < dist(q, p0) ≤ 3
2 , and dist(q, nni (q)) < dist(q, ∂D2);

cα(dist(q, ∂D2)
α−2 − dist(q, ∂D)α−2)

if 1 < dist(q, p0) ≤ 3
2 , and dist(q, nni (q)) ≥ dist(q, ∂D2);

0 otherwise;

where D2 is the disk of radius 2 centred at p0 and cα = α(α−1)2α−2

π(2α−1−α)
is a constant

depending only on α. See Fig. 3 for an illustration of the cases.
We finally define the potential function at time i as

�(i) :=
∫∫

R2
φ(q, i)dq.

This potential function can be interpreted as the volume of a certain region in R
3,

where we assume without loss of generality that the center of D lies at the origin
and the points p0, . . . , pk all lie in the plane z = 0. The region then consists of
the following. Over D it is the region above the plane z = 0 and below the lower
envelope of a set of “paraboloids”, one for each point p j ∈ {p0, . . . , pi }, defined
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Fig. 3 Outside the grey region the function φ is always 0. When q is inside D, the function φ(q, i) is
simply cα dist(q, nni (q))α−2. Finally, when q is in the grey area but not in D, that is 1 < dist(q, p0) ≤ 1.5,

we have that φ(q, i) = cα
(
min{dist(q, nni (q)), dist(q, ∂D2)}α−2 − dist(q, ∂D)α−2

)

Fig. 4 Cross section of the region Vi in gray. For clarity, we do not draw the paraboloids of points outside
the cross section

by Parα(p j ) = {(x, y, z) | z = cα dist((x, y), p j )
α−2}. Outside of D, on the other

hand, the region is defined as the region below the lower envelope of Parα(p) for
each point p ∈ {p0, . . . , pi } ∪ ∂D2 and above the paraboloids Parα(p) for each
point p ∈ ∂D. Thus the difference is that outside D, the points p ∈ ∂D2 also define
paraboloids below which Vi must stay and, in addition, Vi is bounded from below by
paraboloids defined by points p ∈ ∂D. See Fig. 4 for an illustration.

We now need to show that this potential function has the claimed properties. It is
easy to see that�(i) > 0 for each i = 0, . . . , k. Next we show that�(i −1)−�(i) ≥
Fα(pi ) for all i .

Let p j , with j < i , be a nearest neighbor of pi with d∗ := dist(pi , p j ). Upon
insertion of pi , we add a paraboloid defined at a point q ∈ D by cα dist(q, pi )α−2.
The decrease of potential is then the volume of the region Vi subtracted by this surface.
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Fig. 5 The region V ∗
i we use as a lower bound on the decrease of potential upon insertion of pi . On the left,

we have a cross section of the region, where d∗ = dist(pi , p j ) and p j is the nearest point to pi with j < i .
On the right, we have the region in 3 dimensions. All the paraboloids defined by Parα(p) for some p

Let us consider the region

V ∗
i := {q = (x, y, z) | dist((x, y, 0), pi ) ≤ d∗

and cα dist(q, pi )
α−2 ≤ z ≤ cα(d∗ − dist(q, pi ))

α−2}.

See Fig. 5 for an illustration of the region V ∗
i .

Next we argue that V ∗
i ⊆ Vi by showing that the upper boundary of V ∗

i is under the
upper boundary of Vi and the lower boundary of V ∗

i is above the lower boundary of Vi .
Since the upper boundary of V ∗

i is defined by paraboloids at distance d∗, and since d∗
is the distance to the closest point p j , the region V ∗

i is under the upper boundary
of Vi . On the other hand, since the lower boundary of V ∗

i is defined again by the same
paraboloids, even if pi is close to the boundary of D, the region V ∗

i is above the lower
boundary of Vi . Therefore V ∗

i ⊆ Vi .
We now compute the volume of V ∗

i . We do this by fixing a radius ρ, then computing
the area of the largest cylinder of radius ρ centered around the vertical axis passing
through pi and inscribed in V ∗

i and integrating that value from 0 until d∗/2. For a
certain 0 ≤ ρ ≤ d∗/2, the area of the cylinder is 2πρh(ρ) where h(ρ) is the height
of the tallest cylinder of radius ρ inscribed in V ∗

i . It remains to compute h(ρ). This is
given by the difference of height between the two paraboloids (one on pi and one on
a point at distance d∗ of pi ), i.e., h(ρ) = cα((d∗ − ρ)α−2 − ρα−2). Thus,

Vol(V ∗
i ) =

∫ d∗/2

0
2πρcα((d∗ − ρ)α−2 − ρα−2)dρ

= 2πcα

∫ d∗/2

0
ρ(d∗ − ρ)α−2 − ρα−1dρ.

We can integrate ρ(d∗ − ρ)α−2 by parts:

∫ d∗/2

0
ρ(d∗ − ρ)α−2dρ = ρ

−(d∗ − ρ)α−1

α − 1

∣
∣
∣
d∗/2

0
−

∫ d∗/2

0
1
−(d∗ − ρ)α−1

α − 1
dρ

= −ρ
(d∗ − ρ)α−1

α − 1
− (d∗ − ρ)α

α(α − 1)

∣
∣
∣
d∗/2

0
.
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Fig. 6 The region V0

It gives us the following:

Vol(V ∗
i ) = 2πcα

[

−ρ
(d∗ − ρ)α−1

α − 1
− (d∗ − ρ)α

α(α − 1)
− ρα

α

] ∣
∣
∣
d∗/2

0

= 2πcα

[

−d∗

2

(d∗/2)α−1

α − 1
− (d∗/2)α

α(α − 1)
− (d∗/2)α

α
+ (d∗)α

α(α − 1)

]

= 2πcα

[

− (d∗)α

2α(α − 1)
− (d∗)α

2αα(α − 1)
− (d∗)α

2αα
+ (d∗)α

α(α − 1)

]

= π

2α−1α(α − 1)
cα(d∗)α

[−α − 1 − (α − 1) + 2α
]

= π(2α−1 − α)

2α−2α(α − 1)
cα(d∗)α.

Recall that cα = α(α−1)2α−2

π(2α−1−α)
. We thus get

Vol(V ∗
i ) = (d∗)α.

Recall that d∗ := dist(pi , p j ), where p j is a nearest neighbor to pi with p j ∈ D and
j < i . Hence, (d∗)α = Fα(pi ) and so

�(i − 1) − �(i) = Vol(Vi ) ≥ Vol(V ∗
i ) = (d∗)α = Fα(pi ),

as required.
It remains to show that �(0) = α 2α−3

2α−1−α
. To that purpose, let V0 be a region

representing �(0), defined as

V0 :={(x, y, z) | (x, y) ∈ D and 0 ≤ z ≤ cα dist((x, y), p0)
α−2}

∪{(x, y, z) | 1 < dist((x, y), p0) ≤ 3

2
and cα(dist((x, y), p0) − 1)α−2 ≤ z ≤ cα(2 − dist((x, y), p0))

α−2}

as depicted in Fig. 6.
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We use the same technique as above to compute

Vol(V0) =
∫ 3/2

0
2πρ · h(ρ)dρ.

We have h(ρ) = cαρα−2 when ρ ≤ 1 and h(ρ) = cα[(2 − ρ)α−2 − (ρ − 1)α−2]
when 1 < ρ ≤ 3/2. We therefore get

Vol(V0) = 2πcα

(∫ 1

0
ρα−1dρ +

∫ 3/2

1
ρ(2 − ρ)α−2 − ρ(ρ − 1)α−2dρ

)

.

We again use integration by parts.

∫ 3/2

1
ρ(ρ − 1)α−2dρ = ρ

(ρ − 1)α−1

α − 1

∣
∣
∣
3/2

1
−

∫ 3/2

1
1
(ρ − 1)α−1

α − 1
dρ

=
(

ρ
(ρ − 1)α−1

α − 1
− (ρ − 1)α

α(α − 1)

) ∣
∣
∣
3/2

1

= 3

2

(1/2)α−1

α − 1
− (1/2)α

α(α − 1)

= 3

2α(α − 1)
− 1

2αα(α − 1)

= 3α − 1

2αα(α − 1)

and

∫ 3/2

1
ρ(2 − ρ)α−2dρ = ρ

−(2 − ρ)α−1

α − 1

∣
∣
∣
3/2

1
+

∫ 3/2

1
1
(2 − ρ)α−1

α − 1
dρ

=
(

−ρ
(2 − ρ)α−1

α − 1
− (2 − ρ)α

α(α − 1)

) ∣
∣
∣
3/2

1

= −3

2

(1/2)α−1

α − 1
− (1/2)α

α(α − 1)
+ 1

α − 1
+ 1

α(α − 1)

= − 3

2α(α − 1)
− 1

2αα(α − 1)
+ 1

α − 1
+ 1

α(α − 1)

= −3α − 1 + 2αα + 2α

2αα(α − 1)
.

This together with
∫ 1
0 ρα−1dρ = 1/α gives us the following:

Vol(V0) = 2πcα

(
1

α
+ −3α − 1 + 2αα + 2α

2αα(α − 1)
− 3α − 1

2αα(α − 1)

)

= πcα

2α−1α(α − 1)

(
2α(α − 1) − 3α − 1 + 2α(α + 1) − 3α + 1

)
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= πcα

2α−1α(α − 1)

(
2α(α − 1 + α + 1) − 6α

) = π(2αα − 3α)cα

2α−2α(α − 1)
.

Again, with cα = α(α−1)2α−2

π(2α−1−α)
, we obtain

Vol(V0) = πα(2α − 3)

2α−2α(α − 1)
· α(α − 1)2α−2

π(2α−1 − α)

= α
2α − 3

2α−1 − α
,

concluding the proof. 	

Using Lemma 2 we can prove a bound on the competitive ratio of nn and ci.

Theorem 3 Let F∗
α := α 2α−3

2α−1−α
. For any α > 2, the competitive ratio of nn and ci in

R
2 is at most min{F∗

β | 2 < β ≤ α}. Hence, for α ≤ α∗, where α∗ = argmin F∗
α ≈

4.3, the competitive ratio is at most α 2α−3
2α−1−α

, and for α > α∗ it is at most 12.94.

Proof Consider a sequence p0, p1, . . . , pn−1 of points in the plane. Let Dj be the
disk centered at p j in an optimal solution, after the last point pn−1 has been handled,
and let ρ j be its radius. Thus the cost of the optimal solution is OPT := ∑n−1

j=0 ρα
j .

To bound the cost of nn on the same sequence, we charge the cost of inserting pi ,
with 0 < i ≤ n − 1, to a disk Dj such that j < i and pi ∈ Dj . Such a disk
Dj exists, since after pi ’s insertion, pi is contained in a disk of an existing point
p j and so pi will also be contained in Dj , the final disk of p j . (If there are more
such points, we take an arbitrary one.) Let S(Dj ) be the set of points that charge
disk Dj . Note that {p1, . . . , pn−1} = ⋃n−2

j=0 S(Dj ). Hence, using Lemmas 1 and 2,
for any 2 < β ≤ α, for nn (and similarly for ci) we get:

costα(nn) = ∑n−2
i=0

∑
p j∈S(Di )

costα(nn, p j )

= ∑n−2
i=0 ρα

i

∑
p j∈S(Di )

costα(nn,p j )

ρα
i

≤ ∑n−2
i=0 ρα

i

∑
p j∈S(Di )

dist(p j ,nn(p j ))
α

ρα
i

≤ ∑n−2
i=0 ρα

i

∑
p j∈S(Di )

dist(p j ,nn(p j ))
β

ρ
β
i

because dist(p j , nn(p j )) ≤ ρi

= ∑n−2
i=0 ρα

i

∑
p j∈S(Di )

Fβ(p j )

ρ
β
i

by Lemma 1

≤ ∑n−2
i=0 ρα

i F
∗
β

≤ β 2β−3
2β−1−β

∑n−2
i=0 ρα

i by Lemma 2

= β 2β−3
2β−1−β

OPT .

	

The next theorem gives a lower bound on the competitive ratio of nn.
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Fig. 7 Lower bound on the
competitive ratio of nn. The
light gray disk (of radius 1)
represents the optimal solution
on the boundary of which
points p7, . . . , p18 are placed.
Points p1, . . . , p6 are placed on
the boundary of a disk of
radius ε (in dark gray). The
algorithm nn is forced to place
one first disk of radius ε

around p0, then six disks of
radius 1 − ε around p1, . . . , p6.
And finally six disks of radius
roughly 0.5 around p7, . . . , p12

Theorem 4 For any α > 1, nn has a competitive ratio of at least 6(1+ (
√
6−√

2
2 )α) ≈

6(1+ 0.52α) in the plane. In particular, for α = 2, we get a lower bound of 7.6 on the
competitive ratio.

Proof Let p0 be the source placed at the origin. The following construction is depicted
in Fig. 7. We place p1, . . . , p18 in a disk of radius 1 around p0 as explained next, such
that a possible solution is to place that single disk and pay 1. For simplicity, in the rest
of the proof we use polar coordinates. Let ε > 0 be a positive number. Let then p1 =
(ε, 0), p2(ε, π/3),..., and p6 = (ε, 5π/3) be the next six points. nn places a disk of
radius ε on p0. Let further p7 = (1, 0), p8 = (1, π/3),..., and p12 = (1, 5π/3) be the
next six points. Here nn places six disks of radius 1 − ε centered around p1, . . . , p6,
paying 6(1− ε)α . Finally, let p13 = (1, π/6− ε), p14 = (1, 3π/6− ε),..., and p18 =
(1, 11π/6−ε) be the last six points. nn is now forced to place 6 disks of radius almost
equal to the side of a 12-gon of radius 1, that is 2 sin(π/12) − δ for some δ > 0 that
tends to 0 as ε tends to 0.

Thus, we have that for any ε > 0, there is an instance on which a solution of cost 1
exists, whereas nn is forced to pay εα +6(1−ε)α +6(2 sin(π/12)−δ)α , where δ > 0
tends to 0 as ε tends to 0. We can therefore conclude that nn has to pay at least

6(1 + (2 sin(π/12))α) = 6(1 + (2
√
6−√

2
4 )α) = 6(1 + (

√
6−√

2
2 )α) ≈ 6(1 + 0.52α),

whereas OPT ≤ 1.
We can then scale this construction and thus, there is no constant a such

that cost(nn) ≤ c · OPT+a for c < 6(1 + (
√
6−√

2
2 )α). 	


3.2 Bounds on the Competitive Ratio of nn and 2-nnwhen˛ = 2

Above we proved upper bounds for nn and ci for α > 2, and we gave a lower bound
for nn for any α > 1. We now study nn and 2-nn for the case α = 2. Unfortunately,
the arguments below do not apply to ci.

An upper bound on the competitive ratio of 2-nn for α = 2. Let P :=
p0, p1, . . . , pn−1 be the input instance. Recall that nn(pi ) is the closest point to pi
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among p0, . . . , pi−1. Upon insertion of a point pi , if pi is not covered by the current
set of balls B(pi ′ , r j−1(pi ′)) with i ′ < i , then 2-nn increases the range of nn(pi )
to 2 · dist(pi , nn(pi )), and otherwise it does nothing. Suppose that upon the insertion
of some point pi , we increase the range of nn(pi ). We now define D∗

i as the disk
centered at pi (not at nn(pi )) and of radius di/2, where di := dist(pi , nn(pi )). We
call D∗

i the charging disk of pi . Note that the charging disk is a tool in the proof, it is
not a disk used by the algorithm. If 2-nn did nothing upon insertion of pi because pi
was already covered by a disk, we define D∗

i := ∅.
Lemma 3 For every pair of charging disks D∗

i and D∗
j with j �= i , we have D∗

i ∩D∗
j =

∅.
Proof Without loss of generality we assume that i < j . Suppose for a contradiction
that D∗

i ∩ D∗
j �= ∅. Let pi ′ := nn(pi ) and p j ′ := nn(p j ), and let di := dist(pi , pi ′)

and d j := dist(p j , p j ′). Since i ′ < i < j , we have dist(p j , pi ′) > 2di , otherwise p j

lies inside the disk of pi ′ when p j is inserted and we would have D∗
j = ∅. On the other

hand, di/2 + d j/2 ≥ dist(pi , p j ) because D∗
i ∩ D∗

j �= ∅. Since d j ≤ dist(pi , p j ),
which is true because we assumed i < j , this implies di ≥ dist(pi , p j ). But then
dist(p j , pi ′) ≤ di + dist(pi , p j ) ≤ 2di , a contradiction. 	

Lemma 4 For any points pi and p j with i < j , let DOPT

j (pi ) be the disk centered at pi
after p j is inserted in an optimal solution and let ρ j (pi ) be its radius. Furthermore,
let D1.5OPT

j (pi ) be the disk centered at pi of radius 1.5 ·ρ j (pi ). Then, for every point

pk , there is a point pi such that the charging disk D∗
k is contained in D1.5OPT

k (pi ).

Proof Let pi be such that pk is contained in DOPT
k (pi ). Upon insertion of pk , we

create the charging disk D∗
k of radius 1

2 dist(pk, nn(pk)) ≤ 1
2 dist(pi , pk) centered

at pk . Therefore, the point of D∗
k furthest from pi is at distance at most 3

2 dist(pi , pk).
Thus D∗

k ⊂ D1.5OPT
k (pi ). 	


Using these two lemmas, we can conclude the following.

Theorem 5 In R2 the strategy 2-nn is 36-competitive for α = 2.

Proof Recall that the charging disk D∗
i has radius dist(pi , nn(pi ))/2. Thus the cost

incurred by 2-nn upon the insertion of pi is at most (2 · dist(pi , nn(pi )))2 ≤ 16 ·
radius(D∗

i )
2. By Lemma 3, the disks D∗

i are pairwise disjoint. Let DOPT denote the
set of disks in an optimal solution, and let OPT be its cost. Then by Lemma 4 we have∑n−1

i=1 radius(D∗
i )

2 ≤ ∑
D∈DOPT

((3/2) · radius(D))2 = 9
4 OPT. Hence the total cost

incurred by 2-nn is bounded by 16 · ∑n−1
i=1 radius(D∗

i )
2 ≤ 36OPT. 	


Upper bound on the competitive ratio of nn for α = 2. We now prove an upper

bound on the competitive ratio of nn using a similar strategy as for 2-nn. The proof
uses charging disks, as above. The main difference being how the charging disks are
defined.
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Fig. 8 The gray area depicts
where pi can be. Recall
that dist(p j , p j ′ ) ≤
dist(pi , pi ′ )

Suppose that nn increases the range of nn(pi ) upon the insertion of pi . Then the
charging disk D∗

i is the disk of radius γ · di that is centered on the midpoint of the
segment pi nn(pi ), where di := dist(pi , nn(pi )) and γ is a constant to be determined
later. If nn did nothing upon insertion of pi , we define D∗

i := ∅. We now show that
the charging disks are disjoint if we pick γ suitably.

Lemma 5 Let γ < 3−√
7

4 . Then for every pair D∗
i , D

∗
j of charging disks with i �= j ,

we have D∗
i ∩ D∗

j = ∅.

Proof Let pi and p j be two points with charging disks D∗
i and D∗

j . Let pi ′ := nn(pi )
and p j ′ := nn(p j ). Let also Di ′ , respectively Di , be the disk of radius dist(pi , pi ′)
centered on pi ′ , respectively pi . We define Dj ′ and Dj similarly. Let also mi and m j

be the midpoints between pi and pi ′ , and p j and p j ′ respectively. We assume without
loss of generality that dist(pi ′ , pi ) = 1 ≥ dist(p j ′ , p j ). We distinguish two cases.

• First, if i ′ = j ′, then i > j otherwise p j ∈ Di ′ when p j is inserted and D∗
j = ∅.

Moreover, let H be the halfplane defined by the bisector of pi ′ = p j ′ and p j with
p j ∈ H . Then, pi /∈ H otherwise nn(pi ) is not pi ′ but p j . This implies that the
angle between pi ′ pi and pi ′ p j is at least π/3 (see Fig. 8). Let the two half-lines
starting at pi ′ with an angle of π/6 with pi ′ p j define a wedge w. If γ is such
that D∗

j is contained in the wedge w, the disks D∗
i and D∗

j are disjoint. That is the
case when the square triangle of hypotenuse 1/2 and angle π/6 has its short side
at most γ . Using trigonometry (see Fig. 9), we get γ ≤ sin(π/6)/2 = 1/4 which

is always the case since γ < 3−√
7

4 .
• We now deal with the case i ′ �= j ′. Suppose for a contradiction that D∗

i and D∗
j

intersect. Consider the interior of Di ′ ∩ Di . We claim that if p j is in that region,
then D∗

i and D∗
j do not intersect. Suppose p j is in the interior of Di ′ ∩ Di .

If j ≥ i , then p j ∈ Di ′ and D∗
j = ∅ which is a contradiction. If, on the

other hand j < i , when pi is inserted, we have that nn(pi ) is p j and not pi ′
since p j is in Di , which is a contradiction. Therefore, from now on, we can assume
that p j /∈ Int(Di ′ ∩ Di ). Note that this implies dist(p j ,mi ) ≥ 1/2. Therefore,
if dist(p j ,m j ) < 1/2 − 2γ , then we have that dist(mi ,m j ) > 2γ and thus D∗

i
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Fig. 9 If
γ ≤ x = sin(π/6)/2 = 1/4, the
disk centered at the midpoint is
always contained in the wedge
of angle π/3

and D∗
j can never intersect because the radius of D∗

i is γ dist(pi ′ , pi ) = γ and
the radius of D∗

j is γ dist(p j ′, p j ) ≤ γ . Hence dist(p j ,m j ) ≥ 1/2 − 2γ which
implies dist(p j , p j ′) ≥ 1 − 4γ . Moreover, we claim that p j has to be in the
disk Dmi of radius 2γ + 1/2 centered on mi for the disks D∗

i and D∗
j to inter-

sect. Suppose it is not the case. Then dist(p j ,mi ) > 2γ + 1/2 which implies
that dist(mi ,m j ) ≥ dist(p j ,mi )− dist(p j ,m j ) > 2γ and then the disks D∗

i and
D∗

j are disjoint. Figure10 shows the region A := Dmi \ Int(Di ∩ Di ′) where p j

has to be in order to have the disks intersect.
We are now interested in the maximum distance between p j and either pi ′ or pi ,
depending on which is closer, that is, in

max
p j∈A

min
(
dist(pi ′ , p j ), dist(pi , p j )

)
.

See Fig. 11.
Using Apollonius’s Theorem, we obtain x2 + 12 = 2((2γ + 1/2)2 + (1/2)2).

Hence, x = 2
√

γ (2γ + 1). Since γ < 3−√
7

4 , then 2
√

γ (2γ + 1) < 1 − 4γ .
Thus x < dist(p j , p j ′). Consequently, we have that p j is closer to either pi ′ or pi
than it is to p j ′ . We show that both these options lead to a contradiction.
Let usfirst assume that p j is in the right crescent, so p j is closer to pi than p j ′ . If i <

j , then dist(p j , pi ) ≤ x < dist(p j , p j ′) which is a contradiction. Otherwise,
if j < i then p j is closer to pi than pi ′ when pi is inserted, which is also a
contradiction.
Then, assume p j is in the left crescent, so p j is closer to pi ′ than p j ′ . That
implies j ≤ i ′ otherwise pi ′ is closer to p j than p j ′ when p j is inserted, which
is a contradiction. Note that if j = i ′, then there are only three points, but all the
following arguments hold the same way. We hence have that j ′ < j ≤ i ′ < i .
If pi ∈ Dj ′ it implies that D∗

i = ∅ leading to a contradiction. Therefore we have
that dist(pi , p j ′) > dist(p j , p j ′) ≥ 1 − 4γ . We now compute dist(pi ,m j ) using
Apollonius’s theorem on the triangle �pi p j p j ′ and the median pim j :

dist(pi , p j )
2 + dist(pi , p j ′)

2 = 2(dist(pi ,m j )
2 + dist(p j ,m j )

2)

hence 2 dist(pi ,m j )
2 = dist(pi , p j )

2 + dist(pi , p j ′)
2 − 2 dist(p j ,m j )

2
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Fig. 10 The
region A := Dmi \ Int(Di ∩ Di ′ )
in gray depicts where p j needs
to be for the disks to intersect

Fig. 11 The point q of the
triangle is defined as the
intersection of Dmi and Di ′ . We
want to compute x

> 1 + (1 − 4γ )2 − 2

(
1

2

)2

= 16γ 2 − 8γ + 3

2

whose infimum in
(
0, 3−√

7
4

)
is obtained when γ = 3−√

7
4 . We therefore have

that 2 dist(pi ,m j )
2 > 23−8

√
7

2 and so dist(pi ,m j ) > 4−√
7

2 . This implies

that dist(mi ,m j ) ≥ dist(pi ,m j )−dist(pi ,mi ) > 3−√
7

2 = 2γ . Thus D∗
i ∩D∗

j = ∅
which is a contradiction.

This concludes the lemma. 	

We also need the following lemma, whose proof is similar to that of Lemma 4.

Lemma 6 For any points pi and p j with i < j , let DOPT
j (pi ) be the disk centered at pi

of radius ρ j (pi ) after p j is inserted in an optimal solution and let D(1.5+γ )OPT
j (pi )

be the disk centered at pi of radius (1.5 + γ )ρ j (pi ). Then, for every point pk , there

is a point pi such that the disk D∗
k is contained in the disk D(1.5+γ )OPT

k (pi ).

Putting everything together we obtain the following theorem.

Theorem 6 In R2 the strategy nn is 322-competitive for α = 2.

Proof Recall that radius(D∗
i ) = γ ·dist(pi , nn(pi )). Thus the cost incurred bynn upon

the insertion of pi is at most dist(pi , nn(pi ))2 ≤ ((1/γ ) · radius(D∗
i ))

2. By Lemma 5,
the disks D∗

i are pairwise disjoint. IfDOPT denotes the set of disks used in an optimal
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solution, then by Lemma 6 we have
∑n−1

i=1 ρ(D∗
i )

2 ≤ ∑
D∈DOPT

((1.5+γ ) ·ρ(D))2 =
(1.5 + γ )2 OPT, where OPT is the cost of an optimal solution. Hence the total cost
incurred by nn is at most 1

γ 2

∑n−1
i=1 ρ(D∗

i )
2 = 1

γ 2 · (1.5 + γ )2 OPT. Since this holds

for any value of γ < 3−√
7

4 , we can conclude that the cost incurred by nn is at

most 42

(3−√
7)2

· (1.5 + 3−√
7

4 )2 OPT = (163 + 60
√
7)OPT < 322OPT.

4 Online Range-Assignment in General Metric Spaces

In this section we consider the problem in general metric spaces. We also consider
the offline variant of the problem in the next section; here we focus on the online
variant, for which we give an O(log n)-competitive algorithm. The key insight to
our algorithms is to formulate the problem as a set-cover problem and apply linear-
programming techniques. As we will see later, applying the online set cover algorithm
of Alon et al. [1] yields a competitive ratio much worse than O(log n), so we need
to exploit structural properties of the particular set cover instances arising from our
problem.

4.1 A Set Cover Formulation and its LP

Let R be the set of distances between pairs of points. Observe that we can restrict
ourselves without loss of generality to only using ranges fromR. This allows us to for-
mulate the problem in terms of set cover: The elements are the points p0, p1, . . . , pn−1,
with p0 being the source point, and for each 0 ≤ i ≤ n − 2 and r ∈ R there is a
set Si,r := {p j : j > i and dist(pi , p j ) ≤ r} with cost rα . (Note that Si,r is the set
of points arriving after pi that are within range r of pi ). In the following, we abuse
notation and also write j ∈ Si,r for points p j ∈ Si,r . We also say that Si,r is centered
at pi .

Observe that a feasible range assignment corresponds to a feasible set cover. A
set cover is minimally feasible if removing any set from it causes an element to be
uncovered. Since a minimally feasible set cover picks at most one set Si,r for each i ,
it corresponds to a feasible range assignment. (Note that applying the online set cover
algorithm of Alon et al. [1] only gives a competitive ratio of O(log2 n/ log log n) as
our set cover instance has n − 1 elements and |R|(n − 1) sets.)

We can now formulate our problem as an integer linear program. To this end we
introduce, for each range r ∈ R and each point pi a variable xi,r , where xi,r = 1
indicates we choose the set Si,r (or, in other words, that we assign range r to pi ) and
xi,r = 0 indicates we do not choose Si,r . Allowing the xi,r to take fractional values
gives us the following relaxed LP.
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Minimize
∑

0≤i≤n−2

∑

r∈R
xi,r · rα

Subject to
∑

i,r : j∈Si,r
xi,r ≥ 1 for all 1 ≤ j ≤ n − 1

xi,r ≥ 0 for all (i, r) with 0 ≤ i ≤ n − 2 and r ∈ R
(1)

The dual LP corresponding to the LP above is as follows.

Maximize
∑

1≤ j≤n

y j

Subject to
∑

j∈Si,r
y j ≤ rα for all (i, r) with 0 ≤ i ≤ n − 2 and r ∈ R

y j ≥ 0 for all 1 ≤ j ≤ n − 1

(2)

We say that the set Si,r is tight if the corresponding dual constraint is tight, that is, if∑
j∈Si,r y j = rα .

4.2 The Online Algorithm and its Analysis

Recall that in the online version, we are given the source p0 and then the points
p1, . . . , pn−1 arrive one-by-one. When a point pi arrives, its distances to previous
points and the source are revealed.

The algorithm. Let γ > 1 be a constant that we will set later. The basic idea of the
algorithm is that when a point pi arrives, we will raise its associated dual variable yi
until some set S j,r containing pi is tight and then update the range of point p j to be
ri (p j ) := γ max{r : ∑

k∈S j,r :k≤i yk = rα}. In other words, the range of p j becomes
γ times the largest radius of the tight sets centered at p j .

Here is amore precise description of the algorithm.When pi arrives, we initialize its
dual variable yi := 0. If pi ∈ S j,r for some j < i and range r with

∑
k∈S j,r :k≤i yk =

rα , then we set ri (p j ) := γ max{r : ∑
k∈S j,r :k≤i yk = rα} for one such j . (It can

happen that some S j,r is tight but that ri−1(p j ) is still smaller than r , because when
multiple sets become tight at the same time, we only increase the range of one point.)
Otherwise, we increase yi until for some j < i and range r we have

∑
k∈S j,r :k≤i yk =

rα; we then set p j ’s new range to ri (p j ) := γ r for one such j . In both cases, we
only set p j ’s range, the other ranges remain unchanged. Note that in the event that
multiple sets centered at different points become tight simultaneously, we only update
the range of one of them.
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Analysis. We begin our analysis of the algorithm by showing the feasibility of the
constructed dual solution y and the corresponding range assignment. For each point
pi , the algorithm stops raising yi once some set S j,r containing pi is tight and then
updates p j ’s radius to be γ r > r . This guarantees that no dual constraint is violated
and that pi is covered by p j .

Nextwe analyze the cost of this algorithm.Weuse the shorthand r j for thefinal range
rn−1(p j ) of the point p j . First, we argue that it suffices to bound the cost of the points
whose ranges are large enough. Let H = {0 ≤ i ≤ n − 2 : ri ≥ max0≤ j≤n−2 r j/n}.
Then, the cost of the algorithm is

∑

i

rα
i =

∑

i∈H
rα
i +

∑

i /∈H
rα
i

≤
∑

i∈H
rα
i + n(max

j
r j/n)α

≤ (1 + 1/nα−1)
∑

i∈H
rα
i

≤ 2
∑

i∈H
rα
i ,

where the second last inequality is because
∑

i∈H rα
i ≥ max j rα

j and the last is because
α > 1. In the remainder of this section we will show that

∑

i∈H
rα
i ≤ O(log n) ·

∑

1≤ j≤n−1

y j . (3)

The theorem then follows from the Weak Duality Theorem of Linear Programming
which states that value of any feasible solution to the primal (minimization) problem
is always greater than or equal to the value of any feasible solution to its associated
dual problem.

For 0 ≤ i ≤ n−2, our algorithm sets the final range ri of point pi such that ri = γ r
for some r ∈ R such that

∑
k∈Si,r yk = rα . Thus, we get

(
ri
γ

)α

=
∑

j∈Si,ri /γ
y j ,

and so

∑

i∈H
rα
i =

∑

i∈H
γ α

⎛

⎝
∑

j∈Si,ri /γ
y j

⎞

⎠ = γ α
∑

1≤ j≤n−1

y j · ∣
∣{i ∈ H : j ∈ Si,ri /γ }∣∣ ,

where the last equality follows by interchanging the sums. Thus, to prove Inequality (3)
it suffices to prove the following lemma.
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Lemma 7 For every 1 ≤ j ≤ n − 1 and any fixed γ > 3, we have |{i ∈ H : j ∈
Si,ri /γ }| = O(γ α log n).

Proof Define Hj = {i ∈ H : j ∈ Si,ri /γ }. We will show that for every i, i ′ ∈ Hj ,
either ri >

γ−1
2 ri ′ or ri ′ >

γ−1
2 ri . This implies that the t-th smallest range (among the

points in Hj ) is at least ((γ − 1)/2)t times the smallest range (among those points).

Since
maxi∈Hj ri
mini∈Hj ri

≤ n, this means that |Hj | = O(log(γ−1)/2 n) = O(log n).

Suppose i, i ′ ∈ Hj . Let pk be the last-arriving point that causes our algorithm to
update ri , and pk′ be the last-arriving point that causes our algorithm to update ri ′ .
Since the arrival of any point causes at most one point’s range to be updated, we have
that pk �= pk′ . Suppose that pk arrived before pk′ . By construction of ri ′ , we have
dist(pk′, pi ′) = ri ′/γ . Moreover, since i, i ′ ∈ Hj , we have dist(pi , p j ) ≤ ri/γ and
dist(pi ′ , p j ) ≤ ri ′/γ . Therefore, by the triangle inequality,

dist(pi , pk′) ≤ dist(pi , p j ) + dist(p j , pi ′) + dist(pi ′ , pk′) ≤ 2
ri ′

γ
+ ri

γ
.

Since pk arrived before pk′ and pk′ caused our algorithm to update ri ′ , the point pk′
must have been uncovered when it arrived, and so dist(pi , pk′) > ri . Therefore, we
get

ri < dist(pi , pk′) ≤ 2
ri ′

γ
+ ri

γ

and so ri ′ >
γ−1
2 ri as desired. In the case that pk′ arrived before pk , a similar argument

yields ri >
γ−1
2 ri ′ . 	


By setting γ = 4 we obtain the following theorem.

Theorem 7 For any power-distance gradient α > 1, there is a O(4α log n)-
competitive algorithm for the online range assignment problem in general metric
spaces.

5 On Offline Algorithm for General Metric Spaces

In the offline setting, we are given the entire sequence of points p0, . . . , pn in advance
and the goal is to assign ranges r0, . . . , rn−1 to the points p0, . . . , pn−1 so that for
every 1 ≤ i ≤ n, there exists j < i such that dist(pi , p j ) ≤ r j . We can formulate
the problem in this way because we know all points beforehand, and we are interested
in the cost of the final assignment. Thus we may immediately assign each point its
final range, and we need not specify a separate range for every point at each time
step. The stated condition on the assignment ensures that after inserting each p j ,
we have a broadcast tree on p0, . . . , p j . Thus we require the algorithm to be what
Boyar et al. [3] call an incremental algorithm: namely an algorithm that maintains a
feasible solution at any time (even though, unlike an online algorithm) it may know the
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future). We emphasise that this is different from the static broadcast range assignment
problem studied previously. To avoid confusion with the usual offline broadcast range
assignment problem, we call this the Priority Broadcast Range Assignment problem.3

Below we give a 5α-approximation algorithm for the offline version of the problem,
based on the LP formulated in Sect. 4.1.

The basic idea of the approximation algorithm is as follows. We start with a
maximally feasible dual solution y, i.e. increasing any y j would violate some dual
constraint. Since y is maximally feasible, for every j , there exists a set Si,r containing
p j that is tight. Thus, the tight sets form a feasible set cover. Let S be subset of the
tight sets that is a minimally feasible set cover. As observed above, for every i , there
is at most one set Si,r ∈ S. Thus, S corresponds to a feasible range assignment. Let
ri be the radius assigned to pi .

We now modify the range assignment r to get a range assignment r ′ so that
∑

0≤i≤n−1

r ′2
i ≤ 5α

∑

1≤ j≤n

y j .

Since y is a feasible dual solution y, weak LP duality implies that r ′ is a 5α-
approximation.

Say that i conflicts with j if there exists a point pk ∈ S j,r j ∩ Si,ri such that yk > 0.
Order the indices in decreasing order of ri , breaking ties arbitrarily, and denote by
i ≺ j if i comes before j in this ordering. We use the following algorithm to construct
r ′.

Algorithm 1 Obtaining an approximate solution from S
1: Initialize I ← ∅
2: for i in order according to ≺ do
3: if i does not conflict with any j ∈ I then
4: Define Ci = {i} ∪ { j � i : jconflicts withibut not withI }
5: Add i to I
6: end if
7: end for
8: for i ∈ I do
9: Let pi ′ be the earliest point in Ci
10: Assign radius r ′

i ′ ← 5ri and radius r
′
j ← 0 for j ∈ Ci \ {i ′}

11: end for

Analysis. We begin by proving that r ′ is a feasible range assignment.

Lemma 8 For each j > 0, there exists i < j such that dist(p j , pi ) ≤ r ′
i .

Proof Note that the sets {Ci }i∈I partition {1, . . . , n}. Consider some set Ci and let p′
i

be the earliest point in Ci . It suffices to prove that Si ′,5ri ⊇ ∪ j∈Ci S j,r j . To see this,
first observe that since pi ′ is the earliest point in Ci it can potentially cover all the

3 The priority of a point is its position in the sequence, the lower the position, the higher its priority. Each
point can only be covered by a point with a higher priority.
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points covered by any other point pk for j ∈ Ci , i.e. Si ′,r ⊇ ∪ j∈Ci S j,r j for large
enough r . Next, we show that r = 5ri suffices. Since i conflicts with every k ∈ Ci

and ri = max j∈Ci r j , we have that every point in ∪ j∈Ci S j,r j is within distance 3ri of
pi and that dist(pi ′ , pi ) ≤ 2ri . Thus, we get that Si ′,5ri ⊇ ∪ j∈Ci S j,r j , as desired. 	


Lemma 9
∑

i r
′α
i ≤ 5α

∑
j>0 y j .

Proof We have
∑

i r
′α
i = ∑

i∈I 5αrα
i . Since the sets in S are tight, we have

∑

i∈I
rα
i =

∑

i∈I

∑

j∈Si,ri
y j =

∑

j

|{i ∈ I : j ∈ Si,ri }|y j ≤
∑

j

y j

where the last inequality follows from the fact that I is conflict-free. 	


Thus, we get the following theorem.

Theorem 8 There is a 5α-approximation algorithm for the Priority Range Assignment
problem in general metric spaces for any α > 1.

6 Concluding Remarks

We introduced the online version of the broadcast range-assignment problem, and we
analyzed the competitive ratio of two natural algorithm, nn and ci, in R

1 and R
2 as

a function of the power-distance gradient α. While nn is O(1)-competitive in R2 and
for α = 2 the best competitive ratio we can prove is quite large, namely 322. The
variant 2-nn has a better ratio, namely 36, but this is still large. We conjecture that the
actual competitive ratio of nn is actually much closer to the lower bound we proved,
which is 7.61. We also conjecture that ci has a constant (and small) competitive ratio
inR2. Another approach to getting better competitive ratios might be to develop more
sophisticated algorithms. For the general (metric-space) version of the problem, the
main question is whether an algorithm with constant competitive ratio is possible.

While the requirement that we cannot decrease the range of any point in the online
setting is perhaps not necessary in practice, our algorithms have the additional benefit
that they modify the range of at most one point. Thus it can also be seen as the first
step in studying a more general version, where we are allowed to modify (increase or
decrease) the range of, say, two points. In general, it is interesting to study trade-offs
between the number of modifications and the competitive ratio. Studying deletions is
then also of interest.
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