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Abstract
We study opinion formation games based on the famous model proposed by Friedkin
and Johsen (FJ model). In today’s huge social networks the assumption that in each
round agents update their opinions by taking into account the opinions of all their
friends is unrealistic. So, we are interested in the convergence properties of simple
and natural variants of the FJ model that use limited information exchange in each
round and converge to the same stable point. As in the FJ model, we assume that
each agent i has an intrinsic opinion si ∈ [0, 1] and maintains an expressed opinion
xi (t) ∈ [0, 1] in each round t . To model limited information exchange, we consider an
opinion formation process where each agent i meets with one random friend j at each
round t and learns only her current opinion x j (t). The amount of influence j imposes
on i is reflected by the probability pi j with which i meets j . Then, agent i suffers a
disagreement cost that is a convex combination of (xi (t)−si )2 and (xi (t)−x j (t))2. An
important class of dynamics in this setting are no regret dynamics, i.e. dynamics that
ensure vanishing regret against the experienced disagreement cost to the agents. We
show an exponential gap between the convergence rate of no regret dynamics and of
more general dynamics that do not ensure no regret. We prove that no regret dynamics
require roughly Ω(1/ε) rounds to be within distance ε from the stable point of the FJ
model. On the other hand, we provide an opinion update rule that does not ensure no
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regret and converges to x∗ in Õ(log2(1/ε)) rounds. Finally, in our variant of the FJ
model, we show that the agents can adopt a simple opinion update rule that ensures
no regret to the experienced disagreement cost and results in an opinion vector that
converges to the stable point x∗ of the FJ model within distance ε in poly(1/ε) rounds.
In view of our lower bound for no regret dynamics this rate of convergence is close to
best possible.

Keywords Opinion dynamics · Opinion formation games · No-regret dynamics ·
Game theory

1 Introduction

The study ofOpinion Formation has a long history (see e.g. [29]). Opinion Formation
is a dynamic process in the sense that socially connected people (e.g. family, friends,
colleagues) exchange information and this leads to changes in their expressed opinions
over time. Today, the advent of the internet and social media makes the study of
opinion formation in large social networks even more important; realistic models of
how people form their opinions by interacting with each other are of great practical
interest for prediction, advertisement etc. In an attempt to formalize the process of
opinion formation, several models have been proposed over the years (see e.g., [13,
14, 18, 28]). The common assumption underlying all these models, which dates back
to DeGroot [13], is that opinions evolve through a form of repeated averaging of
information collected from the agents’ social neighborhoods.

Our work builds on the model proposed by Friedkin and Johnsen [18]. The FJ
model is a variation on the DeGroot model capturing the fact that consensus on the
opinions is rarely reached. According to FJ model each person i has a public opinion
xi ∈ [0, 1] and an internal opinion si ∈ [0, 1], which is private and invariant over time.
There also exists a weighted graph G(V , E) representing a social network where V
stands for the persons (|V | = n) and E their social relations. Initially, all nodes start
with their internal opinion and at each round t , update their public opinion xi (t) to a
weighted average of the public opinions of their neighbors and their internal opinion,

xi (t) =
∑

j∈Ni
wi j x j (t − 1) + wi i si

∑
j∈Ni

wi j + wi i
, (1)

where Ni = { j ∈ V : (i, j) ∈ E} is the set of i’s neighbors, the weight wi j associated
with the edge (i, j) ∈ E measures the extent of the influence that j poses on i and the
weight wi i > 0 quantifies how susceptible i is in adopting opinions that differ from
her internal opinion si .

The FJ model is one of most influential models for opinion formation. It has a
very simple update rule, making it plausible for modeling natural behavior and its
basic assumptions are aligned with empirical findings on the way opinions are formed
[1, 32]. At the same time, it admits a unique stable point x∗ ∈ [0, 1]n to which
it converges with a linear rate [23]. The FJ model has also been studied under a
game theoretic viewpoint. Bindel et al. considered its update rule as the minimizer
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of a quadratic disagreement cost function and based on it they defined the following
opinion formation game [5]. Each node i is a selfish agent whose strategy is the public
opinion xi that she expresses incurring her a disagreement cost

Ci (xi , x−i ) =
∑

j∈Ni

wi j (xi − x j )
2 + wi i (xi − si )

2 (2)

Note that the FJ model is the simultaneous best response dynamics and its stable
point x∗ is the unique Nash equilibrium of the above game. In [5] they quantified its
inefficiency with respect to the total disagreement cost. They proved that the Price
of Anarchy (PoA) is 9/8 in case G is undirected and wi j = w j i . They also provided
PoA bounds in the case of unweighted Eulerian directed graphs. We remark that in
[5] an alternative framework for studying the way opinions evolve was introduced.
The opinion formation process can be described as the dynamics of an opinion for-
mation game. This framework is much more comprehensive since different aspects
of the opinion formation process can be easily captured by defining suitable games.
Subsequent works [3, 4, 15] considered variants of the above game and studied the
convergence properties of the best response dynamics.

1.1 Motivation and Our Setting

Many recent works study the Nash equilibrium x∗ of the opinion formation game
defined in [5] under various perspectives. In [10] they extended the bounds for PoA
in more general classes of directed graphs, while many recently introduced influence
maximization problems [2, 24, 33], which are defined with respect to x∗. The reason
for this scientific interest is evident: the equilibrium x∗ is considered as an appropriate
way to model the final opinions formed in a social network, since the well established
FJ model converges to it.

Our work is motivated by the fact that there are notable cases in which the FJ model
is not an appropriate model for the dynamic of the opinions, due to the large amount of
information exchange that it implies. More precisely, at each round its update rule (1)
requires that every agent learns all the opinions of her social neighbors. In today’s
large social networks where users usually have several hundreds of friends it is highly
unlikely that, each day, they learn the opinions of all their social neighbors. In such
environments it is far more reasonable to assume that individuals randomly meet a
small subset of their acquaintances and these are the only opinions that they learn.
Such information exchange constraints render the FJ model unsuitable for modeling
the opinion formation process in such large networks and therefore, it is not clear
whether x∗ captures the limiting behavior of the opinions. In this work we ask:

Question 1 Is the equilibrium x∗ an adequate way to model the final formed opinions
in large social networks? Namely, are there simple variants of the FJmodel that require
limited information exchange and converge fast to x∗? Can they be justified as natural
behavior for selfish agents under a game-theoretic solution concept?

To address these questions, one could define precise dynamical processes whose
update rules require limited information exchange between the agents and study their
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convergence properties. Instead of doing so, we describe the opinion formation pro-
cess in such large networks as dynamics of a suitable opinion formation game that
captures these information exchange constraints. This way we can precisely define
which dynamics are natural and, more importantly, to study general classes of dynam-
ics (e.g. no regret dynamics) without explicitly defining their update rule. The opinion
formation game that we consider is a variant of the game in [5] based on interpreting
the weight wi j as a measure of how frequently i meets j .

Definition 1 For a given opinion vector x ∈ [0, 1]n , the disagreement cost of agent i
is the random variable Ci (xi , x−i ) defined as follows:

– Agent i meets one of her neighbors j with probability pi j = wi j/
∑

j∈Ni
wi j .

– Agent i suffers cost Ci (xi , x−i ) = (1 − ai )(xi − x j )2 + ai (xi − si )2, where

αi = wi i
∑

j∈Ni
wi j + wi i

.

Note that the expected disagreement cost of each agent in the above game is the
same as the disagreement cost in [5] (scaled by

∑
j∈Ni

wi j + wi i ). Moreover its Nash
equilibrium, with respect to the expected disagreement cost, is x∗. This game provides
us with a general template of all the dynamics examined in this paper. At round t , each
agent i selects an opinion xi (t) and suffers a disagreement cost based on the opinion of
the neighbor that she randomly met. At the end of round t , she is informed only about
the opinion and the index of this neighbor and may use this information to update her
opinion in the next round. Obviously different update rules lead to different dynamics,
however all of these respect the information exchange constraints: at every round
each agent learns the opinion of just one of her neighbors. Question 1 now takes the
following more concrete form.

Question 2 Can the agents update their opinions according to the limited information
that they receive such that the produced opinion vector x(t) converges to the equilib-
rium x∗? How is the convergence rate affected by the limited information exchange?
Are there dynamics that ensure that the cost that the agents experience is minimal?

In what follows, we are mostly concerned about the dependence of the rate of
convergence on the distance ε from the equilibrium x∗. Thus, we shall suppress the
dependence on other parameters such as the size of the graph, n. We remark that the
dependence of our dynamics on these constants is in fact rather good (see Sect. 2), and
we do this only for clarity of exposition.

Definition 2 (Informal)We say that a dynamics converges slowly resp. fast to the equi-
librium x∗ if it requires poly(1/ε) resp. poly(log(1/ε)) rounds to be within (expected)
error ε of x∗.

1.2 Contribution

Themajor contribution of the paper is proving an exponential separation on the conver-
gence rate of no regret dynamics and the convergence rate of more general dynamics
produced by update rules that do not ensure no regret.
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No regret dynamics are produced by update rules that ensure no regret to any agent
that adopts them. Namely, the total disagreement cost of an agent that follows such
a rule is close to the total disagreement cost that she would experience by selecting
the best fixed opinion in hindsight. The latter must hold regardless of the way the
other agents update their opinions and of the neighbors that the agent gets to meet.
This powerful property renders no regret dynamics natural dynamics for describing
the behavior of agents [8, 16, 31, 37]. We prove that if all the agents adopt an update
rule that ensures no regret, then there exists an instance of the game such that the
produced opinion vector x(t) requires roughly Ω(1/ε) rounds to be ε-close to x∗. No
regret comes at the price of slow convergence because it provides robust guarantees.
Agents who adopt no regret update rules suffer minimal total disagreement cost even
if the other agents play irrationally or adversarially. In order to provide such strong
guarantees, no regret rules must only depend on the opinions that the agent observes
and not take into account the weights wi j of the outgoing edges (see Sect. 5). We call
the update rules with the latter property, graph oblivious. In Sect. 5 we use a novel
information theoretic argument to prove the aforementioned lower bound for this more
general class.

In Sect. 6, we present a simple update rule whose resulting dynamics converges
fast, i.e. the opinion vector x(t) is ε-close to x∗ in O(log2(1/ε)) rounds. The reason
that the previous lower bound doesn’t apply is that this rule does not ensure no regret
to the agents that adopt it. In fact there is a very simple example with two agents, in
which the first follows the rule while the second selects her opinions adversarially,
where the first agent experiences regret (see Example 1 in Sect. 6).

We introduce an intuitive no regret update rule and we show that if all agents adopt
it, the resulting opinion vector x(t) converges to x∗. Our rule is a Follow the Leader
algorithm, meaning that at round t , each agent updates her opinion to the minimizer
of total disagreement cost that she experienced until round t − 1. It also has a very
simple form: it is roughly the time average of the opinions that the agent observes. In
Sect. 3, we bound its convergence rate and show that in order to achieve ε distance
from x∗, poly(1/ε) rounds are sufficient. In view of our lower bound this rate is close
to best possible. In Sect. 4, we prove its no regret property. This can be derived by the
more general results in [25]. However, we give a short and simple proof that may be
of interest.

In conclusion, our results reveal that the equilibrium x∗ is a robust choice for
modeling the limiting behavior of the opinions of agents since, even in our limited
information setting, there exist simple and natural dynamics that converge to it. The
convergence rate crucially depends on whether the agents act selfishly, i.e. they are
only concerned about their individual disagreement cost. We present an update rule
that selfish agents can adopt (no regret update rule) and show that the resulting opinion
vector converges to x∗ but with a slow rate, while, for non selfish agents, the update
rule in Sect. 6 leads to a dynamics with fast convergence rate.
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1.3 RelatedWork

There exists a large amount of literature concerning the FJ model. Many recent works
[3, 4, 12, 15] bound the inefficiency of equilibrium in variants of opinion formation
game defined in [5]. In [23] they bound the convergence time of the FJ model in
special graph topologies. In [3], a variant of the opinion formation game, in which
social relations depend on the expressed opinions, is studied. They prove that the dis-
cretized version of the above game admits a potential function and thus best-response
converges to the Nash equilibrium. Convergence results in other discretized variants
of the FJ model can be found in [17, 40]. In [19] they provide convergence results for
limited information variants of the Heglesmann-Krause model [28] and the FJ model.
Although the considered limited information variant of the FJ model is very similar
to ours, their convergence results are much weaker, since they concern the expected
value of the opinion vector.

Other works that relate to ours concern the convergence properties of dynamics
based on no regret learning algorithms. In [20, 21, 36, 37] it is proved that in a finite
n-person game, if each agent updates her mixed strategy according to a no regret
algorithm, the resulting time-averaged strategy vector converges to Coarse Correlated
Equilibrium. The convergence properties of no regret dynamics for games with infinite
strategy spaces were considered in [16]. They proved that for a large class of games
with concave utility functions (socially concave games), the time-averaged strategy
vector converges to Pure Nash Equilibrium (PNE). More recent work investigates a
stronger notion of convergence of no regret dynamics. In [11] they show that, in n-
person finite generic games that admit unique Nash equilibrium, the strategy vector
converges locally and fast to it. They also provide conditions for global convergence.
Our results fit in this line of research since we show that for a game with infinite
strategy space, the strategy vector (and not the time-averaged) converges to the Nash
equilibrium x∗.

No regret dynamics in limited information settings have recently received substan-
tial attention from the scientific community since they provide realistic models for
the practical applications of game theory. Perfect payoff information is rare in prac-
tice; agents act based on random or noisy past-payoff observations. Kleinberg et al.
in [30] treated load-balancing in distributed systems as a repeated game and analyzed
the convergence properties of no regret learning algorithms under the full information
assumption that each agent learns the load of every machine. In a subsequent work
[31], the same authors consider the same problem in a limited information setting
(“bulletin board model”), in which each agent learns the load of just the machine that
served him. Most relevant to ours are the works [6, 11, 27, 35], where they examine
the convergence properties of no regret learning algorithms when the agents observe
their payoffs with some additive zero-mean random noise. In our limited information
setting the agents experience random disagreement cost with expected value equal
to the actual cost. The main difference is that our noise is not additive but due to a
sampling process.
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2 Our Results and Techniques

We have adopted the convention of using ln to denote the natural logarithm. We
will also use the notation log freely without specifying a base when inside the big-O
notation or when we have a constant C that is arbitrary. As previously mentioned, an
instance of the game in [5] is also an instance of the game of Definition 1. Following
the notation introduced earlier we have that pi j = wi j/

∑
j∈Ni

wi j if j ∈ Ni and
0 otherwise. Moreover, αi = wi i/(

∑
j∈Ni

wi j + wi i ) > 0 since wi i > 0 by the
definition of the game in [5]. If an agent i does not have outgoing edges (Ni = ∅) then
pi j = 0 for all j . Therefore

∑n
j=1 pi j = 0, αi = 1 if Ni = ∅ and

∑n
j=1 pi j = 1,

αi ∈ (0, 1) otherwise. For simplicity we adopt the following notation for an instance
of the game of Definition 1.

Definition 3 We denote an instance of the opinion formation game of Definition 1 as
I = (P, s, α), where P is a n×n matrix with non-negative elements pi j , with pii = 0
and

∑n
j=1 pi j is either 0 or 1, s ∈ [0, 1]n is the internal opinion vector, α ∈ (0, 1]n

the self confidence vector.

An instance I = (P, s, α) is also an instance of the FJ model, since by the update
rule (1) xi (t) = (1−αi )

∑
j∈Ni

pi j x j (t − 1)+ ai si . It also defines the opinion vector
x∗ ∈ [0, 1]n which is the stable point of the FJ model and the Nash equilibrium of the
game in [5].

Definition 4 For a given instance I = (P, s, α) the equilibrium x∗ ∈ [0, 1]n is the
unique solution of the following linear system, for every i ∈ V :

x∗
i = (1 − αi )

∑

j∈Ni

pi j x
∗
j + ai si .

The fact that the above linear system always admits a solution follows by matrix norm
properties. Throughout the paper we study dynamics of the game of Definition 1. We
denote as Wt

i the neighbor that agent i met at round t , which is a random variable
whose probability distribution is determined by the instance I = (P, s, α) of the
game, P

[
Wt

i = j
] = pi j . Another parameter of an instance I that we often use is

ρ = mini∈V αi .
In Sect. 3, we examine the convergence properties of the opinion vector x(t) when

all agents update their opinions according to the Follow the Leader principle. Since
each agent i must select xi (t), before knowingwhich of her neighbors shewillmeet and
what opinion her neighbor will express, this update rule says “play the best according
to what you have observed”. For a given instance (P, s, a) of the game the Follow the
Leader dynamics x(t) is defined in Dynamics 1 and Theorem 1 shows its convergence
rate to x∗.
Theorem 1 Let I = (P, s, α) be an instance of the opinion formation game of Defi-
nition 1 with equilibrium x∗ ∈ [0, 1]n. The opinion vector x(t) ∈ [0, 1]n produced by
update rule (3) after t rounds satisfies

E
[‖x(t) − x∗‖∞

] ≤ C
√
log n

(ln t)3/2

tmin(1/2,ρ)
,
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Algorithm 1 Follow the Leader dynamics
1: Initially xi (0) = si for all agents i .
2: At round t ≥ 0 each agent i :

3: Meets neighbor with index Wt
i , P

[
Wt
i = j

] = pi j .

4: Suffers cost (1 − αi )(xi (t) − xWt
i
(t))2 + ai (xi (t) − si )

2 and learns the opinion xWt
i
(t).

5: Updates her opinion

xi (t + 1) = argmin
x∈[0,1]

t∑

τ=0

(1 − αi )(x − xW τ
i
(τ ))2 + αi (x − si )

2 (3)

where ρ = mini∈V ai and C is a universal constant and t ≥ 6.

In Sect. 4 we argue that, apart from its simplicity, update rule (3) ensures no regret
to any agent that adopts it and therefore the FTL dynamics can be considered as
natural dynamics for selfish agents. Since each agent i selfishly wants to minimize the
disagreement cost that she experiences, it is natural to assume that she selects xi (t)
according to a no regret algorithm for the online convex optimization problem where
the adversary chooses a function ft (x) = (1 − αi )(x − bt )2 + αi (x − si )2 at each
round t . In Theorem 2 we prove that Follow the Leader is a no regret algorithm for
the above OCO problem. We remark that this does not hold, if the adversary can pick
functions from a different class (see e.g. chapter 5 in [26]).

Theorem 2 Consider the function f : [0, 1]2 	→ [0, 1] with

f (x, b) = (1 − α)(x − b)2 + α(x − s)2,

for some constants s, α ∈ [0, 1]. Let (bt )∞t=0 be an arbitrary sequence with bt ∈ [0, 1].
If

xt = argmin
x∈[0,1]

t−1∑

τ=0

f (x,bτ )

then for all t ,

t∑

τ=0

f (xτ , bτ ) ≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + O (log t) .

On the positive side, the FTL dynamics converges to x∗ and its update rule is
simple and ensures no regret to the agents. On the negative side, its convergence rate
is outperformed by the rate of FJ model. For a fixed instance I = (P, s, α), the FTL
dynamics converges with rate Õ(1/tmin(ρ,1/2)) while FJ model converges with rate
O(e−ρt ) [23].

Question 3 Can the agents adopt other no regret update rules such that the resulting
dynamics converges fast to x∗?
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The answer is no. In Sect. 5, we prove that fast convergence cannot be established
for any no regret dynamics. The reason that FTL dynamics converges slowly is that
rule (3) only depends on the opinions of the neighbors that agent i meets, αi , and si .
This is also true for any update rule that ensures no regret to the agents (see Sect. 5).
As already mentioned, we call this larger class of update rules graph oblivious, and
we prove that fast convergence cannot be established for graph oblivious dynamics.

Definition 5 (graph oblivious update rule) A graph oblivious update rule A is a
sequence of functions (At )

∞
t=0 where At : [0, 1]t+2 	→ [0, 1].

Definition 6 (graph oblivious dynamics) Let A be a graph oblivious update rule. For
a given instance I = (P, s, α) the rule A produces a graph oblivious dynamics xA(t)
defined as follows:

– Initially each agent i selects her opinion x A
i (0) = A0(si , αi )

– At round t ≥ 1, each agent i selects her opinion

x A
i (t) = At

(
xW 0

i
(0), . . . , xWt−1

i
(t − 1), si , αi

)
,

where Wt
i is the neighbor that i meets at round t .

Theorem 3 states that for any graph oblivious dynamics there exists an instance I =
(P, s, α), where roughly Ω(1/ε) rounds are required to achieve convergence within
error ε.

Theorem 3 Let A be a graph oblivious update rule, which all agents use to update
their opinions. For any c > 0 there exists an instance I = (P, s, a) such that

E
[‖xA(t) − x∗‖∞

] = Ω(1/t1+c),

where xA(t) denotes the opinion vector produced by A for the instance I = (P, s, α).

To prove Theorem 3, we show that graph oblivious rules whose dynamics converge
fast imply the existence of estimators for Bernoulli distributions with “small” sample
complexity. The key part of the proof lies in Lemma 6, in which it is proven that such
estimators cannot exist. We also briefly discuss two well-known sample complexity
lower bounds from the statistics literature and explain why they do not work in our
case.

In Sect. 6, we present a simple update rule that achieves error rate e−Õ(
√
t). This

update rule is a function of the opinions and the indices of the neighbors that i met,
si , αi and the i-th row of the matrix P . Obviously this rule is not graph oblivious,
due to its dependency on the i-th row and the indices, and thus does not ensure no
regret to an agent that adopts it (see Example 1 in Sect. 6). However it reveals that
slow convergence is not a generic property of the limited information dynamics, but
comes with the assumption that agents act selfishly.
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3 Convergence Rate of FTL Dynamics

In this section we prove Theorem 1 which bounds the convergence time of FTL
dynamics to the unique equilibrium point x∗. Notice that for an instance I = (P, s, α),
the opinion vector x(t) ∈ [0, 1]n of the FTL dynamics (see Dynamics 1) can bewritten
equivalently as follows:

– Initially all agents adopt their internal opinion, xi (0) = si .
– At round t ≥ 1, each agent i updates her opinion

xi (t) = (1 − αi )

t−1∑

τ=0

xW τ
i
(τ )

t
+ αi si ,

where W τ
i is the neighbor that i met at round t .

Since the opinion vector x(t) is a random vector, the convergence metric used in The-
orem 1 is E

[‖x(t) − x∗‖∞
]
where the expectation is taken over the random meeting

of the agents. At first we present a high level idea of the proof. We remind that the
unique equilibrium x∗ ∈ [0, 1]n of the instance I = (P, s, α) satisfies the following
equations for each agent i ∈ V ,

x∗
i = (1 − αi )

∑

j∈Ni

pi j x
∗
j + αi si

Since our metric is E
[‖x(t) − x∗‖∞

]
, we can use the above equations to bound

|xi (t) − x∗
i |.

|xi (t) − x∗
i | = (1 − αi )

∣
∣
∣
∣
∣
∣

∑t−1
τ=0 xW τ

i
(τ )

t
−
∑

j∈Ni

pi j x
∗
j

∣
∣
∣
∣
∣
∣

= (1 − αi )

∣
∣
∣
∣
∣
∣

∑

j∈Ni

∑t−1
τ=0 1

[
W τ

i = j
]
x j (τ )

t
−
∑

j∈Ni

pi j x
∗
j

∣
∣
∣
∣
∣
∣

≤ (1 − αi )
∑

j∈Ni

∣
∣
∣
∣
∣

∑t−1
τ=0 1

[
W τ

i = j
]
x j (τ )

t
− pi j x

∗
j

∣
∣
∣
∣
∣

Now assume that

|
∑t−1

τ=0 1
[
W τ

i = j
]

t
− pi j | = 0

for all t ≥ 1, then with simple algebraic manipulations one can prove that ‖x(t) −
x∗‖∞ ≤ e(t) where e(t) satisfies the recursive equation

e(t) = (1 − ρ)

∑t−1
τ=0 e(τ )

t
,
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where ρ = min ai . It follows that ‖x(t)−x∗‖∞ ≤ 1/tρ meaning that x(t) converges to
x∗. Obviously the latter assumption does not hold, however sinceW τ

i are independent
random variables with P

[
W τ

i = j
] = pi j , the quantity

|
∑t−1

τ=0 1
[
W τ

i = j
]

t
− pi j |

tends to 0 with probability 1. In Lemma 1 we use this fact to obtain a similar recursive
equation for e(t) and then in Lemma 2 we upper bound its solution.

Lemma 1 Let e(t) be the solution of the recursion

e(t) = δ(t) + (1 − ρ)

∑t−1
τ=0 e(τ )

t
,

where e(0) = ‖x(0) − x∗‖∞, δ(t) = √
ln(π2nt2/6p)/t and ρ = mini∈V αi . Then,

P
[
for all t ≥ 1, ‖x(t) − x∗‖∞ ≤ e(t)

] ≥ 1 − p

Proof At first we prove that with probability at least 1− p, for all t ≥ 1 and all agents
i :

∣
∣
∣
∣
∣
∣

∑t−1
τ=0 x

∗
W τ

i

t
−
∑

j∈Ni

pi j x
∗
j

∣
∣
∣
∣
∣
∣
≤
√
ln(π2nt2/(6p))

t
:= δ(t). (4)

Since W τ
i are independent random variables with P

[
W τ

i = j
] = pi j and E

[
x∗
W τ

i

]
=

∑
j∈Ni

pi j x∗
j . By the Hoeffding’s inequality we get

P

⎡

⎣

∣
∣
∣
∣
∣
∣

∑t−1
τ=0 x

∗
W τ

i

t
−
∑

j∈Ni

pi j x
∗
j

∣
∣
∣
∣
∣
∣
> δ(t)

⎤

⎦ < 6p/(π2nt2).

To bound the probability of error for all rounds t ≥ 1 and all agents i , we apply the
union bound

∞∑

t=1

P

⎡

⎣max
i

∣
∣
∣
∣
∣
∣

∑t−1
τ=0 x

∗
W τ

i

t
−
∑

j∈Ni

pi j x
∗
j

∣
∣
∣
∣
∣
∣
> δ(t)

⎤

⎦ ≤
∞∑

t=1

6

π2

1

t2

n∑

i=1

p

n
= p

As a result with probability at least 1 − p we have that inequality (4) holds for all
t ≥ 1 and all agents i .We now prove our claim by induction. Let ‖x(τ )−x∗‖∞ ≤ e(τ )

for all τ ≤ t − 1. Then
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xi (t) = (1 − αi )

∑t−1
τ=0 xW τ

i
(τ )

t
+ αi si

≤ (1 − αi )

∑t−1
τ=0 x

∗
W τ

i
+∑t−1

τ=0 e(τ )

t
+ αi si

≤ (1 − αi )

⎛

⎝

∑t−1
τ=0 x

∗
W τ

i

t
+
∑t−1

τ=0 e(τ )

t

⎞

⎠+ αi si (5)

≤ (1 − αi )

⎛

⎝
∑

j∈Ni

pi j x
∗
j + δ(t) +

∑t−1
τ=0 e(τ )

t

⎞

⎠+ αi si

≤ x∗
i + δ(t) + (1 − ρ)

(∑t−1
τ=0 e(τ )

t

)

(6)

We get (5) from the induction step and (6) from inequality (4). Similarly, we can prove
that

xi (t) ≥ x∗
i − δ(t) − (1 − ρ)

∑t−1
τ=0 e(τ )

t
.

As a result ‖x(t) − x∗‖∞ ≤ e(t) and the induction is complete. Therefore, we have
that with probability at least 1 − p, ‖x(t) − x∗‖∞ ≤ e(t) for all t ≥ 1. � �

Now that we have obtained the recursive equation for the error, we can solve it using
straightforward computation. The idea is to express the term e(t + 1) in terms of the
previous term e(t) and to apply this expression repeatedly to obtain a formula for
e(t). The main technical difficulty is upper bounding the sums that arise during this
computation. This is done in the following lemma.

Lemma 2 Let e(t) be a function satisfying the recursion

e(t) = δ(t) + (1 − ρ)

t−1∑

τ=0

e(τ )/t and e(0) = ‖x(0) − x∗‖∞,

where δ(t) = √
ln(Dt5/2)/t , δ(0) = 0, and D > e5/2 is a positive constant. Then

e(t) ≤ 2
√
5
(ln(Dt))3/2

tmin(ρ, 1/2)
.

Therefore, for all t ≥ 6:

e(t) ≤ 2
√
5(ln D)3

(ln(t))3/2

tmin(ρ, 1/2)
.
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Proof Observe that for all t ≥ 0 the function e(t) satisfies the following recursive
relation

e(t + 1) = e(t)

(

1 − ρ

t + 1

)

+ δ(t + 1) − δ(t) + δ(t)

t + 1
. (7)

For t = 0 we have that

e(1) = (1 − ρ)e(0) + δ(1) = (1 − ρ)e(0) + √
ln D. (8)

Observe that for D > e2.5, δ(t) is decreasing for all t ≥ 1. Therefore,

δ(t + 1) − δ(t) + δ(t)

t + 1
≤ δ(t)

t + 1
.

Also, note that

δ(t)

t + 1
=
√
ln
(
Dt2.5

)

t1/2(t + 1)
≤

√
5 ln (D(t + 1))

(t + 1)3/2

where in the last inequality we used the fact that (t + 1)/t ≤ 2 for all t and ln t ≤
ln(t + 1). Thus, from equations (7) and (8) we get that for all t ≥ 0

e(t + 1) ≤ e(t)

(

1 − ρ

t + 1

)

+
√
5 ln (D(t + 1))

(t + 1)3/2
. (9)

Now that we have expressed e(t + 1) in terms of e(t), we can apply this expression to
obtain a formula for e(t). We denote by Ht the t-th partial sum of the harmonic series.
To simplify notation, we define

g(t) =
√
5 ln(Dt)

t3/2
.

In the following, wewillmake heavy use of the following elementary inequality, which
holds for all p > 0:

(1 − p)
(
1 − p

2

)
· · ·

(
1 − p

t

)
≤ e−pHt ≤ 1

t p
(10)

By “unrolling” the recurrence of Eq.9 we obtain:

e(t) ≤
(
1 − ρ

t

)
e(t − 1) + g(t)

≤
(
1 − ρ

t

)(

1 − ρ

t − 1

)

e(t − 2) +
(
1 − ρ

t

)
g(t − 1) + g(t)
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=
(
1 − ρ

t

)
· · · (1 − ρ)e(0) +

t∑

τ=1

g(τ )

t∏

i=τ+1

(
1 − ρ

i

)
.

Next, by using (10) we obtain that

e(t) ≤ e(0)

tρ
+

t∑

τ=1

g(τ )e−ρ
∑t

i=τ+1
1
i = e(0)

tρ
+

t∑

τ=1

g(τ )e−ρ(Ht−Hτ ) .

We now use the following well known upper and lower bounds for Ht , which holds
for all t and can be found in page 2 of [22]

1

2(n + 1)
< Hn − ln n − γ <

1

2n
(11)

for all n, where γ is the Euler number. This immediately gives for n = t

γ + ln t ≤ Ht

Also, by (11) for n = t + 1 we have

Ht+1 = Ht + 1

t + 1
≤ ln(t + 1) + γ + 1

2(t + 1)

which implies that

Ht ≤ ln(t + 1) + γ + 1

2(t + 1)
− 1

t + 1
< ln(t + 1) + γ

Putting everything together, we have obtained the following for all t

γ + ln t ≤ Ht ≤ γ + ln(t + 1),

This implies that for all t and τ ≤ t , we have

eρHτ ≤ eγρ(τ + 1)ρ , e−ρHt ≤ e−γρ

tρ

Thus, we obtain:

e(t) ≤ e(0)

tρ
+ e−ρHt

t∑

τ=1

g(τ )eρHτ ≤ e(0)

tρ
+

√
5

tρ

t∑

τ=1

(τ + 1)ρ
√
ln(Dτ)

τ 3/2

Now observe that

(τ + 1)ρ = (τ + 1)ρ

τρ
τρ ≤ 2ρτρ ≤ 2τρ
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Putting all these together, we obtain

e(t) ≤ e(0)

tρ
+

√
5

tρ

t∑

τ=1

(τ + 1)ρ
√
ln(Dτ)

τ 3/2
≤ e(0)

tρ
+

√
5

tρ

t∑

τ=1

√
ln(Dτ)

τ 3/2−ρ
.

Now the remaining task is to bound the sum on the right hand side. A standard way
of bounding a sum of decreasing terms is with the corresponding Riemann integral.
Indeed, we observe that

t∑

τ=1

√
ln(Dτ)

τ 3/2−ρ
≤
∫ t

τ=1

√
ln(Dτ)

τ 3/2−ρ
dτ (12)

since, τ 	→
√
ln(Dτ)

τ 3/2−ρ is a decreasing function of τ for all ρ ∈ [0, 1]. To see that, notice
that the derivative of this function is

1
2τ

√
ln(Dτ)

τ 3/2−ρ − ( 3
2 − ρ

)
τ 1/2−ρ

√
ln(Dτ)

τ 3−2ρ <

τ 1/2−ρ

2
√
ln(Dτ)

− τ 1/2−ρ

2

√
ln(Dτ)

τ 3−2ρ

where the inequality holds since ρ < 1. Now, for any τ ≥ 1 we have that

ln(Dτ) = ln D + ln τ ≥ ln D >
5

2
> 1

which implies that

τ 1/2−ρ

2
√
ln(Dτ)

− τ 1/2−ρ

2

√
ln(Dτ) = τ 1/2−ρ

2

(
1√

ln(Dτ)
−√

ln(Dτ)

)

< 0,

meaning that the function is indeed decreasing for all τ ≥ 1. To bound the integral
in (12), we have to distinguish cases for ρ. Intuitively, if ρ is small, then the fraction
decays faster than 1/t , which translates to the overall integral being polylogarithmic. If
ρ is large, then a polynomial termwith a small exponent might arise in the calculation.

– If ρ ≤ 1/2 then

∫ t

τ=1
τρ

√
ln(Dτ)

τ 3/2
dτ ≤ √

ln(Dt)
∫ t

τ=1

1

τ
dτ = √

ln(Dt) ln t ≤ (ln(Dt))3/2,

since ln(Dt) > ln t for all t ≥ 1. Hence

e(t) ≤ e(0)

tρ
+

√
5

tρ

t∑

τ=1

√
ln τ

τ 3/2−ρ

≤ e(0)

tρ
+

√
5

tρ
(ln(Dt))3/2 ≤ 2

√
5
(ln(Dt))3/2

tρ
, (13)
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where we used the fact that e(0) ≤ 1 and
√
5(ln(Dt))3/2 ≥ √

5(ln(D))3/2 > 1
for all t ≥ 1.

– If ρ > 1/2 then

∫ t

τ=1
τρ

√
ln(Dτ)

τ 3/2
dτ =

∫ t

τ=1
τρ−1/2

√
ln(Dτ)

τ
dτ

= 2

3

∫ t

τ=1
τρ−1/2((ln(Dτ))3/2)′dτ

= 2

3
tρ−1/2(ln(Dt))3/2 − (ρ − 1/2)

2

3

∫ t

τ=1
τρ−3/2(ln(Dτ))3/2dτ

≤ 2

3
tρ−1/2(ln(Dt))3/2 .

Hence

e(t) ≤ e(0)

tρ
+

√
5

tρ

t∑

τ=1

√
ln(Dτ)

τ 3/2−ρ

≤ e(0)

tρ
+

√
5

tρ
2

3
tρ−1/2(ln(Dt))3/2 ≤ 4

√
5

3

(ln(Dt))3/2

t1/2
. (14)

For the last inequality, we used the fact that ln D > 0 to conclude that

e(0) ≤ 1 <
2
√
5

3
≤ 2

√
5

3
(ln(Dt))3/2

for all t ≥ 1. Combining inequalities 13 and 14 yields that for all t ≥ 1

e(t) ≤ 2
√
5
(ln(Dt))3/2

tmin(ρ, 1/2)
,

which proves the first claim of the lemma. We would like the following inequality to
be satisfied:

ln(Dt) ≤ ln D ln t,

which is equivalent to

ln t ≥ ln D

ln D − 1

If ln D > 2.5, the right hand side is at most 1+ 2/3. Numerically, we observe that for
t ≥ 6, ln t ≥ 1 + 2/3. Thus, the second inequality of the lemma follows for t ≥ 6.

�
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An interesting consequence of Lemma 2 is that the rate of convergence is never bet-
ter than 1/

√
t regardless of the value of ρ. In Sect. 5 we provide evidence that no

reasonable protocol can achieve a better convergence rate.
We are now ready to prove Theorem 1.

Theorem 1 Let I = (P, s, α) be an instance of the opinion formation game of Defi-
nition 1 with equilibrium x∗ ∈ [0, 1]n. The opinion vector x(t) ∈ [0, 1]n produced by
update rule (3) after t rounds satisfies

E
[‖x(t) − x∗‖∞

] ≤ C
√
log n

(ln t)3/2

tmin(1/2,ρ)
,

where ρ = mini∈V ai and C is a universal constant and t ≥ 6.

Proof By Lemma 1 we have that for all t ≥ 1 and p ∈ [0, 1],

P
[‖x(t) − x∗‖∞ ≤ ep(t)

] ≥ 1 − p

where ep(t) is the solution of the recursion

ep(t) = δ(t) + (1 − ρ)

∑t−1
τ=0 ep(τ )

t

with δ(t) =
√

ln(π2nt2/(6p))
t . Setting p = 1

12
√
t
we have that

P
[‖x(t) − x∗‖∞ ≤ e(t)

] ≥ 1 − 1

12
√
t

where e(t) is the solution of the recursion

e(t) = δ(t) + (1 − ρ)

∑t−1
τ=0 ep(τ )

t

with δ(t) =
√

ln(2π2nt2.5)
t . Since 2π2 ≥ e2.5, Lemma 2 applies and

e(t) ≤ C
√
log n

log t3/2

tmin(ρ,1/2)
,

for some universal constant C and for all t ≥ 6. Finally,

E
[‖x(t) − x∗‖∞

] ≤ 1

12
√
t

+ (1 − 1

12
√
t
)C
√
log n

(log t)3/2

tmin(ρ,1/2)

≤ (C + 1

12
)
√
log n

(log t)3/2

tmin(ρ,1/2)

�
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Hence, FTL dynamics converges to the same equilibrium point as the original
FJ-model, albeit slower. In the next section we provide justification about why this
strategy is a natural one for players to adopt, given that they operate in an adversarial
environment.

4 Follow the Leader Ensures No Regret

In this section we provide rigorous definitions of no regret algorithms and explain
why update rule (3) ensures no regret to any agent that repeatedly plays the game of
Definition 1. Based on the cost that the agents experience, we consider an appropriate
Online ConvexOptimization problem. This problem can be viewed as a “game” played
between an adversary and a player. At round t ≥ 0,

1. the player selects a value xt ∈ [0, 1].
2. the adversary observes the xt and selects a bt ∈ [0, 1]
3. the player receives cost f (xt , bt ) = (1 − α)(xt − bt )2 + α(xt − s)2.

where s, α are constants in [0, 1]. The goal of the player is to pick xt based on the
history (b0, . . . , bt−1) in a way that minimizes her total cost. Generally, different OCO
problems can be defined by a set of functions F that the adversary chooses from and
a feasibility set K from which the player picks her value (see [26] for an introduction
to the OCO framework). In our case the feasibility set is K = [0, 1] and the set of
functions is

Fs,α = {x 	→ (1 − α)(x − b)2 + α(x − s)2 : b ∈ [0, 1]}.

As a result, each selection of the constants s, α leads to a different OCO problem.

Definition 7 An algorithm A for the OCO problem with Fs,α and K = [0, 1] is a
sequence of functions (At )

∞
t=0 where At : [0, 1]t 	→ [0, 1].

Definition 8 An algorithm A is no regret for the OCO problem with Fs,α and K =
[0, 1] if and only if for all sequences (bt )∞t=0 that the adversary may choose, if xt =
At (b0, . . . , bt−1) then for all t ,

t∑

τ=0

f (xτ , bτ ) ≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + o(t).

Informally speaking, if the player selects the value xt according to a no regret algorithm
then she does not regret not playing any fixed value no matter what the choices of the
adversary are. Theorem 2 states that Follow the Leader i.e.

xt = argmin
x∈[0,1]

t−1∑

τ=0

f (x, bτ )

is a no regret algorithm for all the OCO problems with Fs,α .
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Returning to the dynamics of the game in Definition 1, it is reasonable to assume
that each agent i selects xi (t) according to no regret algorithm Ai for theOCOproblem
with Fsi ,αi , since by Definition 8,

1

t

t∑

τ=0

fi (xi (τ ), xW τ
i
(τ )) ≤ 1

t
min

x∈[0,1]

t∑

τ=0

fi (x, xW τ
i
(τ )) + o(t)

t

The latter means that the time averaged total disagreement cost that she suffers is close
to the time averaged cost by expressing the best fixed opinion and this holds regardless
of the opinions of the neighbors that i meets. Meaning that even if the other agents
selected their opinions maliciously, her total experienced cost would still be in a sense
minimal. Under this perspective update rule (3) is a rational choice for selfish agents
and as a result FTL dynamics is a natural limited information variant of the FJ model.
We would like to prove the following.

Theorem 2 Consider the function f : [0, 1]2 	→ [0, 1] with

f (x, b) = (1 − α)(x − b)2 + α(x − s)2,

for some constants s, α ∈ [0, 1]. Let (bt )∞t=0 be an arbitrary sequence with bt ∈ [0, 1].
If

xt = argmin
x∈[0,1]

t−1∑

τ=0

f (x,bτ )

then for all t ,

t∑

τ=0

f (xτ , bτ ) ≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + O (log t) .

We now present the key steps for proving Theorem 2. We first prove that a similar
strategy that also takes into account the value bt admits no regret (Lemma 3). Obvi-
ously, knowing the value bt before selecting xt is in direct contrast with the OCO
framework, however proving the no regret property for this algorithm easily extends
to establishing the no regret property of Follow the Leader. Theorem 2 follows by
direct application of Lemma 4.

Lemma 3 Let (bt )∞t=0 be an arbitrary sequence with bt ∈ [0, 1]. Let yt =
argmin
x∈[0,1]

∑t
τ=0 f (x,bτ ) then for all t ,

t∑

τ=0

f (yτ , bτ ) ≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ).
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Proof By definition of yt ,
∑t

τ=0 f (yt , bτ ) = minx∈[0,1]
∑t

τ=0 f (x, bτ ), so

t∑

τ=0

f (yτ , bτ ) − min
x∈[0,1]

t∑

τ=0

f (x, bτ ) =
t∑

τ=0

f (yτ , bτ ) −
t∑

τ=0

f (yt , bτ )

=
t−1∑

τ=0

f (yτ , bτ ) −
t−1∑

τ=0

f (yt , bτ ) ≤
t−1∑

τ=0

f (yτ , bτ ) −
t−1∑

τ=0

f (yt−1, bτ )

The last inequality follows by the fact that yt−1 = argmin
x∈[0,1]

∑t−1
τ=0 f (x,bτ ) Inductively,

we prove that
∑t

τ=0 f (yτ , bτ ) ≤ minx∈[0,1]
∑t

τ=0 f (x, bτ ). �
Now we can understand why Follow the Leader admits no regret. Since the cost
incurred by the sequence yt is at most that of the best fixed value, we can compare the
cost incurred by xt with that of yt . Since the functions in Fs,α are quadratic, the extra
term f (x, bt ) that yt takes into account doesn’t change dramatically the minimum of
the total sum. Namely, xt , yt are relatively close. Hence, the costs incurred by the two
sequences are not very different.

Lemma 4 For all t ≥ 0, f (xt , bt ) ≤ f (yt , bt ) + 21−α
t+1 + (1−α)2

(t+1)2
.

Proof We first prove that the two sequences are close. Namely, for all t ,

|xt − yt | ≤ 1 − α

t + 1
. (15)

By definition xt = αs + (1 − α)

∑t−1
τ=0 bτ

t and yt = αs + (1 − α)
∑t

τ=0 bτ

t+1 .

|xt − yt | = (1 − α)

∣
∣
∣
∣
∣

∑t−1
τ=0 bτ

t
−
∑t

τ=0 bτ

t + 1

∣
∣
∣
∣
∣

= (1 − α)

∣
∣
∣
∣
∣

∑t−1
τ=0 bτ − tbt
t(t + 1)

∣
∣
∣
∣
∣

≤ 1 − α

t + 1

The last inequality follows from the fact that bτ ∈ [0, 1]. We now use inequality (15)
to bound the difference f (xt , bt ) − f (yt , bt ). Since f is a quadratic function, the
bound follows easily from calculations.

f (xt , bt ) = α(xt − s)2 + (1 − α)(xt − bt )
2

≤ α(yt − s)2 + 2α |yt − s| |xt − yt | + α |xt − yt |2
+ (1 − α)(yt − bt )

2 + 2(1 − α) |yt − bt | |xt − yt | + (1 − α) |xt − yt |2
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≤ f (yt , bt ) + 2 |xt − yt | + |yt − xt |2

≤ f (yt , bt ) + 2
1 − α

t + 1
+ (1 − α)2

(t + 1)2

�
We are now ready to prove that FTL-dynamics has the no regret property.

Theorem 2 Consider the function f : [0, 1]2 	→ [0, 1] with

f (x, b) = (1 − α)(x − b)2 + α(x − s)2,

for some constants s, α ∈ [0, 1]. Let (bt )∞t=0 be an arbitrary sequence with bt ∈ [0, 1].
If

xt = argmin
x∈[0,1]

t−1∑

τ=0

f (x,bτ )

then for all t ,

t∑

τ=0

f (xτ , bτ ) ≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + O (log t) .

Proof Theorem 2 easily follows by Lemma 3

t∑

τ=0

f (xτ , bτ ) ≤
t∑

τ=0

f (yτ , bτ ) +
t∑

τ=0

2
1 − α

τ + 1
+

t∑

τ=0

(1 − α)2

(τ + 1)2

≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + 2(1 − α)(ln t + 1) + (1 − α)
π2

6

≤ min
x∈[0,1]

t∑

τ=0

f (x, bτ ) + O(log t)

�
In the next section, we are going to prove that FTL dynamics is the fastest possible no
regret protocol to solve the problem of opinion formation.

5 Lower Bound for Graph Oblivious Dynamics

In this section we prove that any no regret dynamics cannot converge much faster than
FTL dynamics (Dynamics 1).
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Definition 9 (no regret dynamics) Consider a collection of no regret algorithms such
that for each (s, α) ∈ [0, 1]2 a no regret algorithm As,α

1for the OCO problem with
Fs,α and K = [0, 1], is selected. For a given instance I = (P, s, α) this selection
produces the no regret dynamics x(t) defined as follows:

– Initially each agent i selects her opinion xi (0) = Asi ,αi
0 (si , αi )

– At round t ≥ 1, each agent i selects her opinion

xi (t) = Asi ,αi
t

(
xW 0

i
(0), . . . , xWt−1

i
(t − 1), si , αi

)

where Wt
i is the neighbor that i meets at round t .

Such a selection of no regret algorithms can be encoded as a graph oblivi-
ous update rule. Specifically, the function At : {0, 1}t+2 	→ [0, 1] is defined as
At (b0, . . . , bt−1, s, α) = At

s,α(b0, . . . , bt−1). Theorem 3 applies and establishes the
existence of an instance I = (P, s, α) such that the produced x(t) converges at best
slowly to x∗.

The rest of the section is dedicated to prove Theorem 3. In Lemma 5 we show
that any graph oblivious update rule A can be used as an estimator of the parameter
p ∈ [0, 1] of a Bernoulli randomvariable. Sincewe prove Theorem 3 using a reduction
to an estimation problem, we shall first briefly introduce some definitions and notation.
For simplicity we will restrict the following definitions of estimators and risk to the
case of estimating the parameter p of Bernoulli random variables. Given t independent
samples from aBernoulli randomvariable B(p), an estimator is an algorithm that takes
these samples as input and outputs an answer in [0, 1].
Definition 10 An estimator θ = (θt )

∞
t=1 is a sequence of functions, θt : {0, 1}t 	→

[0, 1].
Perhaps the first estimator that comes to one’s mind is the sample mean, that is
θt = ∑t

i=1 Xi/t . To measure the efficiency of an estimator we define the risk, which
corresponds to the expected error of an estimator.

Definition 11 Let P be a Bernoulli distribution with mean p and Pt be the cor-
responding t-fold product distribution. The risk of an estimator θ = (θt )

∞
t=1 is

E(X1,...,Xt )∼Pt [|θt (X1, . . . , Xt ) − p|], which we will denote by

Ep [|θt (X1, . . . , Xt ) − p|] or Ep [|θt − p|]
for brevity.

The risk Ep [|θt − p|] quantifies the error rate of the estimated value p̂ =
θt (Y1, . . . ,Yt ) to the real parameter p as the number of samples t grows. Since
p is unknown, any meaningful estimator θ = (θt )

∞
t=1 must guarantee that

limt→∞ Ep [|θt − p|] = 0 for all p. For example, sample mean has error rate

Ep [|θt − p|] ≤ 1

2
√
t
.

1 These s, α are scalars in [0, 1] and should not be confused with the internal opinion vector s and the self
confidence vector α of an instance I = (P, s, α).
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Fig. 1 This is an instance of an opinion formation game, where any algorithm for approximating the
equilibrium can be used to construct an estimator for the mean of a Bernoulli random variable

Lemma 5 Let A be a graph oblivious update rule such that for all instances I =
(P, s, α),

lim
t→∞ t1+cE

[‖xA(t) − x∗‖∞
] = 0.

Then there exists an estimator θA = (θ A
t )∞t=1 such that for all p ∈ [0, 1],

lim
t→∞ t1+cEp

[
|θ A
t − p|

]
= 0.

Proof We construct an estimator θA = (θ A
t )∞t=1 using the update rule A. Consider

the instance Ip described in Fig. 1. By straightforward computation, we get that the
equilibrium point of the graph is x∗

c = p/3, x∗
1 = p/6+1/2, x∗

0 = p/6. Now consider
the opinion vector xA(t) produced by the update rule A for the instance Ip. Note that
for t ≥ 1,

– x A
1 (t) = At (xc(0), . . . , xc(t − 1), 1, 1/2)

– x A
0 (t) = At (xc(0), . . . , xc(t − 1), 0, 1/2)

– x A
c (t) = At (xW 0

c
(0), . . . , xWt−1

c
(t − 1), 0, 1/2)

The key observation is that the opinion vector xA(t) is a deterministic function of the
index sequence W 0

c , . . . ,Wt−1
c and does not depend on p. Thus, we can construct the

estimator θA with θ A
t (W 0

c , . . . ,Wt−1
c ) = 3x A

c (t). For a given instance Ip the choice
of neighborWt

c is given by the value of the Bernoulli random variable with parameter
p (P

[
Wt

c = 1
] = p). As a result,

Ep

[
|θ A
t − p|

]
= 3E

[
|x A

c (t) − p/3|
]

≤ 3E
[‖xA(t) − x∗‖∞

]
.

Since for any instance Ip, we have that

lim
t→∞ t1+cE

[‖xA(t) − x∗‖∞
] = 0,

it follows that

lim
t→∞ t1+cEp

[
|θ A
t − p|

]
= 0
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for all p ∈ [0, 1]. �
In order to prove Theorem 3 we just need to prove the following claim.

Claim For any estimator θ = (θt )
∞
t=1 there exists a p ∈ [0, 1] such that

limt→∞ t1+cEp [|θt − p] > 0.

The above claim states that for any estimator θ = (θt )
∞
t=1, we can inspect the func-

tions θt : {0, 1}t 	→ [0, 1] and then choose a p ∈ [0, 1] such that the function
Ep [|θt − p|] = Ω(1/t1+c). As a result, we have reduced the construction of a lower
bound concerning the round complexity of a dynamical process to a lower bound
concerning the sample complexity of estimating the parameter p of a Bernoulli dis-
tribution. The claim follows by Lemma 6, which we present at the end of the section.

At this point we should mention that it is known that Ω(1/ε2) samples are needed
to estimate the parameter p of a Bernoulli random variable within additive error ε.
Another well-known result is that taking the average of the samples is the best way
to estimate the mean of a Bernoulli random variable. These results would indicate
that the best possible rate of convergence for an graph oblivious dynamics would be
O(1/

√
t). However, there is some fine print in these results which does not allow us

to use them. In order to explain the various limitations of these methods and results
we will briefly discuss some of them. We remark that this discussion is not needed to
understand the proof of Lemma 6.

The oldest sample complexity lower bound for estimation problems is the well-
known Cramer-Rao inequality. Let θt : {0, 1}t 	→ [0, 1] be a function such that
Ep [θt ] = p for all p ∈ [0, 1], then

Ep

[
(θt − p)2

]
≥ p(1 − p)

t
. (16)

SinceEp [|θt − p|] can be lower bounded byEp
[
(θt − p)2

]
we can apply the Cramer-

Rao inequality and prove our claim in the case of unbiased estimators, Ep [θt ] = p
for all t . Obviously, we need to prove it for any estimator θ , however this is a first
indication that our claim holds.

Sample complexity lower bounds without assumptions about the estimator are usu-
ally given as lower bounds for the minimax risk, which was defined2 by Wald in [39]
as

min
θt

max
p∈[0,1]Ep [|θt − p|] .

Minimax risk captures the idea that after we pick the best possible algorithm, an
adversary inspects it and picks the worst possible p ∈ [0, 1] to generate the samples
that our algorithm will get as input. The methods of Le’Cam, Fano, and Assouad are
well-known information-theoretic methods to establish lower bounds for the minimax
risk. For more on these methods see [38, 41]. As we stated before, it is well known

2 Although the minimax risk is defined for any estimation problem and loss function, for simplicity, we
write the minimax risk for estimating the mean of a Bernoulli random variable.
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that the minimax risk for the case of estimating the mean of a Bernoulli is lower
bounded by Ω(1/

√
t) and this lower bound can be established by Le Cam’s method.

In order to showwhy such results do nowork for our purposes we shall sketch how one
would apply Le Cam’s method to get this lower bound. To apply Le Cam’s method,
one typically chooses two Bernoulli distributions whose means are far but their total
variation distance is small. Le Cam showed that when two distributions are close in
total variation then given a sequence of samples X1, . . . , Xt it is hard to tell whether
these samples were produced by P1 or P2. The hardness of this testing problem implies
the hardness of estimating the parameters of a family of distributions. For our problem
the two distributions would be B(1/2 − 1/

√
t) and B(1/2 + 1/

√
t). It is not hard to

see that their total variation distance is at most O(1/t), which implies a lower bound
Ω(1/

√
t) for the minimax risk. The problem here is that the parameters of the two

distributions depend on the number of samples t . The more samples the algorithm
gets to see, the closer the adversary takes the 2 distributions to be. For our problem
we would like to fix an instance and then argue about the rate of convergence of any
algorithm on this instance. Namely, having an instance that depends on t does not
work for us.

Trying to get a lower boundwithout assumptions about the estimatorswhile respect-
ing our need for a fixed (independent of t) p we prove Lemma 6. In fact, we show
something stronger: for almost all p ∈ [0, 1], any estimator θ cannot achieve rate
o(1/t1+c).

Lemma 6 Let θ = (θt )
∞
t=1 be a Bernoulli estimator with error rate Ep [|θt − p|]. For

any c > 0, if we select p uniformly at random in [0, 1] then

lim
t→∞ t1+cEp [|θt − p|] > 0

with probability 1.

Proof Since θt is a function from {0, 1}t to [0, 1], θt can have at most 2t different
values. Without loss of generality, we assume that θt takes the same value θt (x) for all
x ∈ {0, 1}t with the same number of 1’s. For example, θ3({1, 0, 0}) = θ3({0, 1, 0}) =
θ3({0, 0, 1}). This is due to the fact that for any p ∈ [0, 1], by Jensen’s inequality, we
have

∑

0≤i≤t

∑

‖x‖1=i

|θt (x) − p| pi (1 − p)t−i ≥
∑

0≤i≤t

(
t

i

) ∣∣
∣
∣
∣

∑
‖x‖1=i θt (x)

(t
i

) − p

∣
∣
∣
∣
∣
pi (1 − p)t−i .

Therefore, for any estimator θ with error rate Ep [|θt − p|] there exists another
estimator θ ′ that satisfies the above property and

Ep
[|θ ′

t − p|] ≤ Ep [|θt − p|]

for all p ∈ [0, 1]. Thus, we can assume that θt takes at most t + 1 different values.
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Let A denote the set of p for which the estimator has error rate o(1/t1+c), that is

A = {p ∈ [0, 1] : lim
t→∞ t1+cEp [|θt − p|] = 0}.

We show that if we select p uniformly at random in [0, 1] then P [p ∈ A] = 0. We
also define the set

Ak = {p ∈ [0, 1] : for all t ≥ k, t1+cEp [|θt − p|] ≤ 1}.

Observe that if p ∈ A then there exists tp such that p ∈ Atp , meaning that A ⊆⋃∞
k=1 Ak . As a result,

P [p ∈ A] ≤ P

[

p ∈
∞⋃

k=1

Ak

]

≤
∞∑

k=1

P [p ∈ Ak] .

To complete the proof we show that P [p ∈ Ak] = 0 for all k. Notice that p ∈ Ak

implies that for t ≥ k, the estimator θ must always have a value θt (i) close to p. Using
this intuition we define the set

Bk = {p ∈ [0, 1] : for all t ≥ k, t1+c min
0≤i≤t

|θt (i) − p| ≤ 1}.

We now show that Ak ⊆ Bk . Since p ∈ Ak we have that for all t ≥ k

t1+c min
0≤i≤t

|θt (i) − p|
t∑

i=0

(
t

i

)

pi (1 − p)t−i ≤ t1+c
t∑

i=0

(
t

i

)

|θt (i) − p| pi (1 − p)t−i

= t1+cEp [|θt − p|] ≤ 1.

Thus, P [p ∈ Ak] ≤ P [p ∈ Bk]. We write the set Bk as

Bk =
∞⋂

t=k

{p ∈ [0, 1] : min
0≤i≤t

|θt (i) − p| ≤ 1/t1+c}.

As a result,

P [p ∈ Bk] ≤ P
[

min
0≤i≤t

|θt (i) − p| ≤ 1/t1+c
]

, for all t ≥ k.

Each value θt (i) “covers” length 1/t1+c from its left and right, as shown in Fig. 2,
and since there are at most t + 1 such values,

by the union boundwe getP [p ∈ Bk] ≤ 2(t+1)/t1+c, for all t ≥ k.More formally,
for a fixed i we get

P
[

|θt (i) − p| ≤ 1

t1+c

]

≤ 2

t1+c
,
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Fig. 2 Estimator output at time t

since p is picked uniformly at random. By the union bound, we have that

P
[

min
0≤i≤t

|θt (i) − p| ≤ 1/t1+c
]

= P
[
∪0≤i≤t {|θt (i) − p| ≤ 1/t1+c}

]

≤
t∑

i=0

P
[
|θt (i) − p| ≤ 1/t1+c

]
≤ 2(t + 1)

t1+c

We conclude that P [p ∈ Bk] = 0. �
Lemma 6 essentially shows that we cannot construct a protocol that is graph-

oblivious and converges exponentially fast to the equilibrium, as the dynamics of the
original FJ model does. However, as we show in the next section, even a small amount
of information about the topology of the graph results in faster protocols.

6 Limited Information Dynamics with Fast Convergence

We already discussed that the reason that graph oblivious dynamics suffer slow con-
vergence is that the update rule depends only on the observed opinions. Based on
works for asynchronous distributed minimization algorithms [7, 9], we provide an
update rule showing that information about the graph G combined with agents that
do not act selfishly can restore the fast convergence rate. Our update rule depends not
only on the expressed opinions of the neighbors that an agent i meets, but also on the
i-th row of matrix P .

In update rule (6), each agent stores the most recent opinions of the random neigh-
bors that shemeets in an array and then updates her opinion according to their weighted
sum (each agent knows row i of P). For a given instance I = (P, s, α) we call the
produced dynamics Row Dependent dynamics (Dynamics 2). We have already men-
tioned that while this update rule guarantees fast convergence it does not guarantee no
regret to the agents. To make this concrete we include a simple example.

Example 1 The purpose of this example is to illustrate that the update rule (6) does
not ensure the no regret property. If some agents for various reasons exhibit irrational
or adversarial behavior, agents that adopt update rule (6) may experience regret. That
is the reason that Row Dependent dynamics converge exponetially faster that any no
regret dynamics incluing the FTL dynamics.

Consider the instance of the game of Definition 1 consisting of two agents. Agent
1 adopts update rule (6) and has s1 = 0, α1 = 1/2, p12 = 1 and agent 2 plays
adversarially. Thus, s2, α2, p21 don’t need to be specified. By update rule (6), x1(t) =
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x2(t − 1)/2 and thus total disagreement cost that agent 1 experiences until round t is

t∑

τ=0

1

2
x1(τ )2 + 1

2
(x1(τ ) − x2(τ ))2 =

t∑

τ=0

1

8
x2(τ − 1)2 + 1

2

(
1

2
x2(τ − 1) − x2(τ )

)2

.

Since agent 2 plays adversarially, she selects x2(t) = 0 if t is even and 1 otherwise. As
a result, the total cost that agent 1 experiences is

∑t
τ=0

1
2 x1(τ )2+ 1

2 (x1(τ )−x2(τ ))2 �
3t/8. Now agent 1 regrets for not adopting the fixed opinion 1/3 during the whole
game play. Selecting x1(t) = 1/3 for all t would incur her total disagreement cost

t∑

τ=0

1

2
(1/3)2 + 1

2
(1/3 − x2(t))

2 � 7t/36,

which is less than 3t/8.

The problem with the approach of Row Dependent Dynamics is that the opinions
of the neighbors that she keeps in her array are outdated, i.e. the opinion of a neighbor
of agent i has changed since their last meeting. The good news are that as long as this
outdatedness is bounded we can still achieve fast convergence to the equilibrium. By
bounded outdatedness we mean that there exists a number of rounds B such that all
agents have met all their neighbors at least once from t − B to t . The latter is formally
stated in Lemma 7, which states that if such a B exists, then the protocol converges
exponentially fast to x∗. For convenience, we call such a sequence of B rounds an
epoch.

Remark 1 Update rule (6), apart from the opinions and the indices of the neighbors
that an agent meets, also depends on the exact values of the weights pi j and that is
why Row Dependent dynamics converge fast. We mention that the lower bound of
Sect. 5 still holds even if the agents also use the indices of the neighbors that they meet
to update their opinion, since Lemma 5 can be easily modified to cover this case. The
latter implies that any update rule that ensures fast convergence would require from
each agent i to be aware of the i-th row of matrix P .

The idea behind the proof of Lemma 7 is simple: if during each epoch B an agent
meets all his neighbors at least once, then certainly at the end of the epoch a full step
of the original FJ dynamics will have been computed. This means that the running
time will be slower than that of the FJ model by a factor of B.

Lemma 7 Let ρ = mini ai , and πi j (t) be the most recent round before round t, that
agent i met her neighbor j . If for all t ≥ B, t − B ≤ πi j (t) then, for all t ≥ kB,

‖x(t) − x∗‖∞ ≤ (1 − ρ)k .

Proof To prove our claim we use induction on k. For the induction base k = 1,

|xi (t) − x∗
i | =

∣
∣
∣
∣
∣
∣
(1 − αi )

∑

j∈Ni

pi j (x j (πi j (t)) − x∗
j )

∣
∣
∣
∣
∣
∣
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Algorithm 2 Row Dependent dynamics
1: Initially xi (0) = si for all agent i .

2: Each agent i keeps an array Mi of length |Ni |, randomly initialized.

3: At round t ≥ 0 each agent i :

4: Meets neighbor with index Wt
i , P

[
Wt
i = j

] = pi j .

5: Suffers cost (1 − αi )(xi (t) − xWt
i
(t))2 + ai (xi (t) − si )

2 and learns (xWt
i
(t),Wt

i ).

6: Updates her array Mi and opinion:

Mi [Wt
i ] ← xWt

i
(t) xi (t + 1) = (1 − αi )

∑

j∈Ni
pi j Mi [ j] + αi si (17)

≤ (1 − αi )
∑

j∈Ni

pi j |x j (πi j (t)) − x∗
j |

≤ (1 − ρ)

Assume that for all t ≥ (k−1)B we have that ‖x(t)− x∗‖∞ ≤ (1−ρ)k−1. For k ≥ 2,
we again have that

|xi (t) − x∗
i | ≤ (1 − ρ)

∑

j∈Ni

pi j |x j (πi j (t)) − x∗
j |

Since t − B ≤ πi j (t) and t ≥ kB we obtain that πi j (t) ≥ (k − 1)B. As a result,
the inductive hypothesis applies, |x j (πi j (t)) − x∗

j | ≤ (1 − ρ)k−1 and |xi (t) − x∗
i | ≤

(1 − ρ)k . �
In Row Dependent dynamics there does not exist a fixed length window B that

satisfies the requirements of Lemma 7. However we can select a length value such that
the requirements hold with high probability. To do this observe that agent i should
collect the opinions of all of her neighbors, which resembles the process of the coupons
collector problem. We first state a useful fact concerning this problem, whose proof
uses just elementary probability.

Lemma 8 (see e.g. [34]) Suppose that the collector picks coupons with different prob-
abilities, where n is the number of distinct coupons. Let w be the minimum of these
probabilities. If he selects ln n/w + c/w coupons, then:

P
[
collector hasn’t seen all coupons

] ≤ 1

ec

It is now clear that each agent i simply needs to wait to meet the neighbor j with the
smallest weight pi j . Therefore, after log(1/δ)/min j∈Ni pi j rounds we have that with
probability at least 1 − δ agent i met all her neighbors at least once. Since we want
this to be true for all agents, we shall roughly take B = 1/mini∈V , j∈Ni pi j . These
calculations become precise in the following lemma.
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Lemma 9 Let πi j (t) be the most recent round before round t that agent i met agent j
and B = 2 ln( nt

δ
)/w where w = mini∈V min j∈Ni pi j . Then with probability at least

1 − δ, for all τ ≥ B and for all i ∈ V and all j ∈ Ni

τ − B ≤ πi j (τ ) ≤ τ − 1.

Proof Consider an agent i at round τ ≥ B where B = 2 ln( nt
δ
)/w and assume that

there exists an agent j ∈ Ni such that πi j (τ ) < τ − B. Agent i can be viewed as a
coupon collector that has buyed B coupons but has not found the coupon corresponding
to agent j . Since Ni < n and min j∈Ni pi j ≥ w by Lemma 8 we have that

P
[
there exists j ∈ Ni s.t. πi j (τ ) < τ − B

] ≤ δ

nt

The proof follows by a union bound for all agents i and all rounds B ≤ τ ≤ t .
�

Our goal is to prove Theorem 4, showing that the convergence rate of update rule (6)
is exponentially fast in expectation (although not as fast as the original FJ dynamics).

Theorem 4 Let I = (P, s, α) be an instance of the opinion formation game of Defi-
nition 1 with equilibrium x∗ ∈ [0, 1]n. Then for all rounds t ≥ 6 ln n/w + 36/w2 +
9ρ2/ ln2 n,

E
[‖x(t) − x∗‖∞

] ≤
(

1

1 − ρ
+ 1

)

exp
(
−ρw

√
t/(4 ln(nt))

)
,

where x(t) ∈ [0, 1]n is the opinion vector produced by update rule (6), ρ = mini∈V ai ,
w = mini∈V min j∈Ni pi j .

By direct application of Lemma 7 and Lemma 9, we obtain the following corollary
that will be useful in proving Theorem 4.

Corollary 1 Let x(t) be the opinion vector produced by update rule (6) for the instance
I = (P, s, α), then with probability at least 1 − δ, for all t ≥ 2 ln( nt

δ
)/w,

‖x(t) − x∗‖∞ ≤ 1

1 − ρ
· exp

(

− ρwt

2 ln( nt
δ
)

)

where ρ = mini∈V αi and w = mini∈V , j∈Ni pi j .

Proof Let B = 2 ln( nt
δ
)/w. By Lemma 9 we have that with probability at least 1− δ,

for all i ∈ V , j ∈ Ni and for all τ ≥ B,

τ − B ≤ πi j (τ )
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As a result, with probability at least 1− δ the requirements of Lemma 7 are satisfied.
Thus for all t ≥ B,

‖x(t) − x∗‖∞ ≤ (1 − ρ)
t
B −1 ≤ 1

1 − ρ
· exp

(

− ρwt

2 ln( nt
δ
)

)

�
Corollary 1 states that the convergence happens with high probability. We want

to translate this result into one involving the expected error after t iterations of the
dynamic. The standard way of doing that is by using the conditional expectations
identity. The proof of Theorem 4 is now reduced to choosing a suitable value for the
probability δ of the protocol not working. We would like δ to be as small as possible,
without blowing up the upper bound on ‖x(t) − x∗‖∞ of Corollary 1.

6.1 The Proof of Theorem 4

Proof Let u(t) = ‖x(t) − x∗‖∞. From Corollary 1 we obtain that for any δ ∈ (0, 1),
for all rounds t ≥ 2 ln( nt

δ
)/w,

P

[

u(t) >
1

1 − ρ
· exp

(

− ρwt

2 ln( nt
δ
)

)]

≤ δ.

Since all the parameters of the problem lie in [0, 1], we have E [u(t)|u(t) > r ] ≤ 1.
Now, by conditioning on the event that u(t) > r , we get:

E [u(t)] = E [u(t)|u(t) > r ]P [u(t) > r ] + E [u(t)|u(t) ≤ r ]P [u(t) ≤ r ]

≤ δ + r ,

where r = 1
1−ρ

exp
(
− ρwt

2 ln( nt
δ

)

)
. If we set δ = exp

(
− ρw

√
t

2 ln(nt)

)
, then:

E [u(t)] ≤ 1

1 − ρ
· exp

(

− ρw
√
t

2 ln(nt)

)

+ exp

(

− ρwt

2 ln( nt
δ
)

)

.

We now evaluate r for our choice of probability δ:

r = 1

1 − ρ
· exp

(

− ρwt

2 ln
( nt

δ

)

)

= 1

1 − ρ
· exp

⎛

⎜
⎜
⎜
⎜
⎝

− ρwt

2 ln

(

nt

exp
(
− ρw

√
t

2 ln(nt)

)

)

⎞

⎟
⎟
⎟
⎟
⎠

= 1

1 − ρ
· exp

⎛

⎝− ρwt

2 ln(nt) + 2 ρw
√
t

2 ln(nt)

⎞

⎠ ≤ 1

1 − ρ
· exp

(

− ρwt

4 ln(nt)
√
t

)
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= 1

1 − ρ
· exp

(

− ρw
√
t

4 ln(nt)

)

.

Using the previous calculation, we obtain:

E [u(t)] ≤ 1

1 − ρ
· exp

(

− ρw
√
t

2 ln(nt)

)

+ exp

(

− ρw
√
t

4 ln(nt)

)

≤
(

1

1 − ρ
+ 1

)

exp

(

− ρw
√
t

4 ln(nt)

)

.

To this end we have established that for t ≥ 2 ln( nt
δ
)/w with δ = exp

(
− ρw

√
t

2 ln(nt)

)

E [u(t)] ≤
(

1

1 − ρ
+ 1

)

exp

(

− ρw
√
t

4 ln(nt)

)

The inequality t ≥ 2 ln( nt
δ
)/w with δ = exp

(
− ρw

√
t

2 ln(nt)

)
can be rewritten as

t ≥ 2
ln n

w
+ 2

ln t

w
+ ρ

√
t

ln(nt)

Notice that

– t
3 ≥ 2 ln n

w
in case t ≥ 6 ln n

w

– t
3 ln t ≥

√
t
3 ≥ 2

w
in case t ≥ 36

w2

– t
3 ≥ ρ

√
t

ln n ≥ ρ
√
t

ln(nt) in case t ≥ 9ρ2

ln2 n

As a result, for all t ≥ 6 ln n
w

+ 36
w2 + 9ρ2

ln2 n
we get that t ≥ 2 ln( nt

δ
)/w with δ =

exp
(
− ρw

√
t

2 ln(nt)

)
and thus

E [u(t)] ≤
(

1

1 − ρ
+ 1

)

exp

(

− ρw
√
t

4 ln(nt)

)
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