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Abstract
Chordal graphs are characterized as the intersection graphs of subtrees in a tree and
such a representation is known as the tree model. Restricting the characterization
results in well-known subclasses of chordal graphs such as interval graphs or split
graphs. A typical example of a problem that does not behave computationally the
same in all subclasses of chordal graphs is the Subset Feedback Vertex Set

(SFVS) problem: given a vertex-weighted graph G = (V , E) and a set S ⊆ V , we
seek for a vertex set of minimumweight that intersects all cycles containing a vertex of
S. SFVS is known to be polynomial-time solvable on interval graphs, whereas SFVS
remains np-complete on split graphs and, consequently, on chordal graphs. Towards
a better understanding of the complexity of SFVS on subclasses of chordal graphs,
we exploit structural properties of a tree model in order to cope with the hardness
of SFVS. Here we consider the leafage, which measures the minimum number of
leaves in a tree model. We show that SFVS can be solved in polynomial time for
every chordal graph with bounded leafage. In particular, given a chordal graph on
n vertices with leafage �, we provide an algorithm for solving SFVS with running
time nO(�), thus improving upon nO(�2), which is the running time of an approach
that utilizes the previously known algorithm for graphs with bounded mim-width.
We complement our result by showing that SFVS is w[1]-hard parameterized by �.
Pushing further our positive result, it is natural to also consider the vertex leafage,
which measures the minimum upper bound on the number of leaves of every subtree
in a tree model. However, we show that it is unlikely to obtain a similar result, as we
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prove that SFVS remains np-complete on undirected path graphs, i.e., chordal graphs
having vertex leafage at most two. Lastly, we provide a polynomial-time algorithm
for solving SFVS on rooted path graphs, a proper subclass of undirected path graphs
and graphs with mim-width one, which is faster than the approach of constructing a
graph decomposition of mim-width one and applying the previously known algorithm
for graphs with bounded mim-width.

1 Introduction

Several fundamental optimization problems are known to be intractable on chordal
graphs, however they admit polynomial-time algorithms when restricted to a proper
subclass of chordal graphs such as interval graphs. Typical examples of problems that
exhibit this behavior are domination and induced path problems [2, 5, 13, 25, 27, 34].
Towards a better understanding of why many intractable problems on chordal graphs
admit polynomial-time algorithms on interval graphs, we consider the algorithmic
usage of a structural parameter named leafage. Leafage, introduced by Lin et al. [32],
is a graph parameter that captures how close a chordal graph is to being an interval
graph. As it concerns chordal graphs, leafage essentiallymeasures the smallest number
of leaves in a clique tree, an intersection representation of the given graph [21]. Here
we are concerned with the Subset Feedback Vertex Set problem, SFVS for
short: given a vertex-weighted graph and a set S of its vertices, compute a vertex
set of minimum weight that intersects all cycles containing a vertex of S. Although
Subset Feedback Vertex Set does not fall under the themes of domination or
induced path problems, it is known to be np-complete on chordal graphs [18], whereas
it becomes polynomial-time solvable on interval graphs [36]. Thus our research study
investigates towhat extent the structure of the underlying tree representation influences
the computational complexity of Subset Feedback Vertex Set.

An interesting remark concerning Subset Feedback Vertex Set is the fact
that the computational complexities of its unweighted and weighted variants do not
align on hereditary graph classes. For example, Subset Feedback Vertex Set is
np-complete on H -free graphs for some fixed graphs H , while its unweighted variant
admits a polynomial-time algorithm on the same class of graphs [8, 37]. Subset
Feedback Vertex Set remains np-complete on bipartite graphs [41] and planar
graphs [20], as a generalization of Feedback Vertex Set. Notable differences
between the two latter problems regarding their complexity status concern the classes
of split graphs and 4P1-free graphs on which Subset Feedback Vertex Set is
np-complete [18, 37], whereas the Feedback Vertex Set problem is polynomial-
time solvable [8, 12, 40]. Inspired by the np-completeness on chordal graphs, Subset
Feedback Vertex Set restricted on (subclasses of) chordal graphs has attracted
several researchers to obtain fast, still exponential-time, algorithms [23, 38].

On the positive side, Subset Feedback Vertex Set can be solved in polyno-
mial time when restricted on a number of other graph classes [7, 8, 36, 37]. Cygan et
al. [15] and Kawarabayashi and Kobayashi [31] independently showed that Subset
Feedback Vertex Set is fixed-parameter tractable (fpt) parameterized by the solu-
tion size, while Hols and Kratsch [26] provided a randomized polynomial kernel for
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the problem. Related to the structural parameter mim-width, Bergougnoux et al. [1]
recently proposed an nO(w2)-time algorithm that solves Subset Feedback Vertex

Set given a decomposition of the input graph of mim-width w. As leaf power graphs
are a subclass of chordal graphs that admit a decomposition of mim-width one [28],
via the latter algorithm Subset Feedback Vertex Set can be solved in polynomial
time on leaf power graphs if an intersection model is given as input. However, to the
best of our knowledge, it is not known whether an intersection model of a leaf power
graph can be constructed in polynomial time.Moreover, even for graphs of mim-width
one that do admit an efficient construction of the corresponding decomposition, the
exponent of the running time of the algorithm proposed by Bergougnoux et al. [1] is
relatively high.

Habib and Stacho [24] showed that the leafage of a connected chordal graph can
be computed in polynomial time. Their described algorithm also constructs a corre-
sponding clique tree with the minimum number of leaves. Regarding other problems
that behave well with the leafage, we mention theMinimum Dominating Set prob-
lem for which Fomin et al. [19] showed that the problem is fpt parameterized by the
leafage of the given graph. Here we show that Subset Feedback Vertex Set is
polynomial-time solvable for every chordal graph with bounded leafage. In particular,
we provide an algorithm that given a chordal graph and a tree model of it with � leaves
solves the problem in O(n2�+1) time. Thus, by combining the algorithm of Habib and
Stacho [24] with our algorithm, we deduce that Subset Feedback Vertex Set is
in xp parameterized by the leafage.

One advantage of leafage over mim-width is that we can compute the leafage of
a chordal graph in polynomial time, whereas we do not know how to compute the
mim-width of a chordal graph in polynomial time. However we note that a graph of
bounded leafage implies a graph of bounded mim-width and, further, a decomposition
of bounded mim-width can be computed in polynomial time [19]. This can be seen
through the notion of H -graphs. For some fixed graph H , a graph is an H -graph if
it is the intersection graph of connected subgraphs of some subdivision of H . The
intersection model of subtrees of a tree T having � leaves is a T ′-graph where T ′ is
obtained from T by contracting nodes of degree two. Thus the size of T ′ is at most 2�,
since T has � leaves. Moreover, given an H -graph and its intersection model, a (linear)
decomposition of mim-width at most 2|E(H)| can be computed in polynomial time
[19]. Therefore, given a graph of leafage �, there is a polynomial-time algorithm that
computes a decomposition ofmim-widthO(�). Combinedwith the algorithmviamim-
width [1], one can solve Subset Feedback Vertex Set in time nO(�2) on graphs
having leafage �. Notably, our nO(�)-time algorithm is a non-trivial improvement on
the running time obtained from the mim-width approach.

We complement our algorithmic result by showing that Subset Feedback Ver-

tex Set is W[1]-hard parameterized by the leafage of a chordal graph. Thus we can
hardly avoid the dependence of the exponent in the stated running time. Our reduc-
tion is inspired by the W[1]-hardness of Feedback Vertex Set parameterized by
the mim-width given by Jaffke et al. [29]. However we note that our result holds on
graphs with arbitrary vertex weights and we are not aware if the unweighted variant
of Subset Feedback Vertex Set admits the same complexity behavior.

123



Algorithmica (2024) 86:874–906 877

Our algorithm works on an expanded tree model that is obtained from the given
tree model and maintains all intersecting information without increasing the number
of leaves. Then in a bottom-up dynamic programming fashion, we visit every node of
the expanded tree model in order to compute partial solutions. At each intermediate
step, we store all necessary information of subsets of vertices that are of size O(�).
As a byproduct of our dynamic programming scheme and the expanded tree model,
we show how our approach can be extended in order to handle rooted path graphs.
Rooted path graphs are the intersection graphs of directed paths in a rooted tree. They
form a subclass of leaf powers and we observe that they form a class of unbounded
leafage. Although rooted path graphs admit a decomposition of mim-width one [28]
and such a decomposition can be constructed in polynomial time [16, 22], the running
time obtained through the bounded mim-width approach is rather impractical as it
requires to store a table of size O(n13) even in this particular case [1]. By analyzing
further subsets of vertices at each intermediate step, we manage to derive an algorithm
for Subset Feedback Vertex Set on rooted path graphs that runs in O(n2m)

time. Observe that the stated running time is comparable to the O(nm) time of the
previously known algorithm on interval graphs [36]. Interval graphs form a proper
subclass of rooted path graphs.

Inspired by the algorithm on bounded leafage graphs, we also consider the natural
relaxation of the leafage that is the vertex leafage of a graph. Chaplick and Stacho [11]
introduced the vertex leafage of a graph G as the smallest number k such that there
exists a tree model for G in which every subtree corresponding to a vertex of G has at
most k leaves.As leafagemeasures the closeness to interval graphs (graphswith leafage
atmost two), vertex leafagemeasures the closeness to undirected path graphswhich are
the intersection graphs of paths in a tree (graphs with vertex leafage at most two). We
prove that the unweighted variant of Subset Feedback Vertex Set isnp-complete
on undirected path graphs and, thus, the problem is para-np-complete parameterized
by the vertex leafage. An interesting trait of our np-completeness proof is that our
reduction comes from the Max Cut problem as opposed to known reductions for
Subset Feedback Vertex Setwhich are usually based on, more natural, covering
problems [18, 37]. From our results for rooted path graphs and undirected path graphs,
we obtain a complexity dichotomy of the problem with respect to the vertex leafage:
if the vertex leafage is at most one (i.e., rooted path graphs) then Subset Feedback

Vertex Set is polynomial-time solvable; otherwise, if the vertex leafage is at least
two, Subset Feedback Vertex Set is np-complete. Our findings are summarized
in Fig. 1.

2 Preliminaries

All graphs considered here are finite undirected graphs without loops and multiple
edges. We refer to the textbook by Bondy and Murty [4] for any undefined graph
terminology and to the book of Cygan et al. [14] for an introduction to Parameter-
ized Complexity. For a positive integer p, we use [p] and −[p] to denote the sets
{1, 2, . . . , p} and {−1,−2, . . . ,−p} respectively. For a graph G = (VG, EG), we use
VG and EG to denote the sets of vertices and edges respectively. We use n to denote
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Fig. 1 Computational complexity of the SFVS problem parameterized by leafage and vertex leafage

the number of vertices of the graph and use m for its number of edges. Given x ∈ VG ,
we denote by NG(x) the neighborhood of x . The degree of x is the number of edges
incident to x . Given X ⊆ VG , we let N (X) = ⋃

v∈X N (v)\X and N [X ] = N (X)∪X .
We denote by G − X the graph obtained from G by the removal of the vertices of X .
If X = {u}, we also write G − u. The subgraph induced by X is denoted by G[X ],
and has X as its vertex set and {uv ∈ EG | u, v ∈ X} as its edge set.

A clique is a set K ⊆ VG such that G[K ] is a complete graph. An �-star is an
undirected tree that has exactly � + 1 nodes, � of which are leaves. Notice that this
implies that all � leaves of an �-star are adjacent to its remaining node.

Given a collectionC of sets, the graphG = (C, {{X ,Y } | X ,Y ∈ C and X∩Y �= ∅})
is called the intersection graph of C. Structural properties and recognition algorithms
are known for intersection graphs of (directed) paths in (rooted) trees [10, 33, 35].
Depending on the collection C, we say that a graph is

• Chordal if C is a collection of subtrees of a tree,
• Undirected path if C is a collection of paths of a tree,
• Rooted path if C is a collection of directed paths of a rooted tree, and
• Interval if C is a collection of subpaths of a path.

Let T be a rooted tree. We use r(T ) to denote its root. We assume that the edges of T
are directed away from r(T ). We denote the unique directed path from a node s to a
node t by s → t . If s → t exists in T , we say that t is a descendant of s and that s is
an ancestor of t . The leaves of an undirected tree T are exactly the nodes of T having
degree at most one. The leaves of a rooted tree T are exactly the nodes of T having
in-degree at most one and out-degree zero. For any tree T , we use L(T ) to denote the
set of its leaves. Observe that for an undirected tree T we have |L(T )| = 1 if and only
if T has no edges, whereas for a rooted tree T we have |L(T )| = 1 if and only if T is
a directed path.

A binary relation defined on a set is called a partial order if it is transitive and anti-
symmetric. Let X be a set and ≤ be a partial order on X . We say that two elements
u and v of X are comparable with respect to ≤ if u ≤ v or v ≤ u; otherwise, u and
v are called incomparable with respect to ≤. If u ≤ v and u �= v, then we simply
write u < v. For all X ′ ⊆ X , we write min≤ X ′ and max≤ X ′ to denote the sets of all
minimal and maximal elements of X ′ with respect to ≤ respectively. Given a rooted
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tree T = (VT , ET ), we define a partial order on the nodes of T as follows: for every
x, y ∈ VT , x ≤T y ⇔ y → x exists in T . Regarding ≤T we make the following
observations.

Observation 1 Let T = (VT , ET ) be a rooted tree. For every x, y, y′ ∈ VT , if x ≤T y
and x ≤T y′, then y and y′ are comparable with respect to ≤T .

Proof Let x ≤T y and x ≤T y′. Then by definition y → x and y′ → x exist in T .
Since T is a rooted tree, every node has at most one parent in T . By induction, for
every k ∈ N, every node has at most one ancestor at distance k in T . We set yc and
y f to be the nodes among y, y′ which are the closest and the farthest away from x
respectively. Then observe that y f → x contains yc and in particular y f → yc exists
in T , which implies that yc ≤T y f by definition, so y and y′ are comparable with
respect to ≤T . �
Observation 2 Let T be a rooted tree and let T ′ be a subtree of T . For every l, r ∈
V (T ′) such that l < r , every node b ∈ V (T ) such that l < b < r is also in V (T ′).

Proof By definition, l < b < r implies that r → b and b → l exist in T . In other
words, r → l exists in T and contains b. Since T ′ is connected and l, r ∈ V (T ′), we
conclude that all the nodes in r → l are in V (T ′). In particular b ∈ V (T ′). �
Observation 3 Let T be a rooted tree and let V be a set of pairwise incomparable
nodes of T with respect to ≤T . Then |V | ≤ |L(T )|.
Proof Notice that for every node x of T , there exists a leaf l of T such that l ≤T x .
Assume that |L(T )| < |V |. Then there exists a leaf l of T and two distinct nodes
x, y ∈ V such that l ≤T x, and l ≤T y. By Observation 1, the nodes x and y are
comparable with respect to ≤T , a contradiction. We conclude that |V | ≤ |L(T )|. �
Leafage and Vertex Leafage A tree model of a graph G = (VG , EG) is a pair
(T , {Tv}v∈VG ) such that (1) T is a tree, called a host tree,1, (2) for each v ∈ VG , Tv

is a subtree of T , and (3) for each u, v ∈ VG such that u �= v, uv ∈ EG if and only
if V (Tu) ∩ V (Tv) �= ∅. It is known that a graph is chordal if and only if it admits a
tree model [9, 21]. The tree model of a chordal graph is not necessarily unique. The
leafage of a chordal graph G, denoted by �(G), is the minimum number of leaves of
the host tree among all tree models of G,that is, �(G) is the smallest integer � such
that there exists a tree model (T , {Tv}v∈VG ) of G with |L(T )| = � [32]. Moreover,
every chordal graph G admits a tree model for which its host tree T has the minimum
|L(T )| and |V (T )| ≤ n [11, 24]; such a tree model can be constructed in O(n3) time
[24]. Thus the leafage �(G) of a chordal graph G is computable in polynomial time.

A relaxation of the leafage is the vertex leafage introduced by Chaplick and Stacho
[11]. The vertex leafage of a chordal graphG, denoted by v�(G), is the smallest integer
v� such that there exists a tree model (T , {Tv}v∈VG ) of G where |L(Tv)| ≤ v� for all
v ∈ VG . Clearly, we have v�(G) ≤ �(G). Unlike the leafage, deciding whether the

1 The host tree is also known as a clique tree usually when we are concerned with the maximal cliques of
a chordal graph [21].
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vertex leafage of a chordal graph is at most v� is np-complete for every fixed integer
v� ≥ 3 [11].

Notice that for any tree model (T , {Tv}v∈VG ) and for any �, v� ∈ N
∗ such that

|L(T )| ≤ � and |L(Tv)| ≤ v� for all v ∈ VG , after rooting T in an arbitrary node,
the same conditions still hold.Henceforth, we will only consider tree models with host
trees that are rooted trees unless otherwise stated. Under these terms, observe that
(1) �(G) ≤ 1 ⇔ G is an interval graph,2 (2) v�(G) ≤ 1 ⇔ G is a rooted path graph,
and (3) v�(G) ≤ 2 if G is an undirected path graph.
S-forests and S-triangles By an induced cycle of G we mean a chordless cycle.
A triangle is a cycle on 3 vertices. Chordal graphs are exactly the graphs that do not
contain induced cycles onmore than 3 vertices. In this work, we consider graph classes
that are subclasses of chordal graphs.

Given a graphG and S ⊆ V (G), we say that a cycle ofG is an S-cycle if it contains a
vertex in S. Moreover, we say that an induced subgraph F ofG is an S-forest if F does
not contain an S-cycle. Thus an induced subgraph F of a chordal graph is an S-forest
if and only if F does not contain any S-triangle. A set of vertices such that its removal
results in an S-forest is referred to as a subset feedback vertex set. In these terms, the
(unweighted) Subset Feedback Vertex Set problem asks for a subset feedback
vertex set of minimum weight (size).In our dynamic programming algorithms, we
focus on the equivalent formulation of computing a maximum-weighted S-forest.

For a collection C of sets, we write max
weight

{C ∈ C} to denote argmax{weight(C) |
C ∈ C}, whereweight(C) is the sumofweights of all vertices inC . LetG = (VG , EG)

be a graph and let S ⊆ VG .The collection of all S-forests of G is denoted by FS .For
any X ,Y ⊆ VG such that X ∩ Y = ∅ and G[Y ] ∈ FS , we write AY

X to denote an
arbitrary element of the collection max

weight
{U ⊆ X | G[U∪Y ] ∈ FS}. As the sets AY

X are

not necessarily unique, we use the↔ operator between any two expressions involving
such sets to denote that for any particular evaluation of one there exists an evaluation
of the other such that both yield the same result. Our desired optimal solution is any
element A∅

VG
of max

weight
{U ⊆ VG | G[U ] ∈ FS}. We will subsequently show that in

order to compute A∅
VG

, if G is a chordal graph with leafage � for any fixed � ∈ N
∗ or

a rooted path graph, then it is sufficient to compute AY
X for a polynomial number of

sets X and Y .
Let G = (VG, EG) be a chordal graph, let S ⊆ VG and let X ,Y ⊆ VG such that

X ∩ Y = ∅ and G[Y ] ∈ FS . A partition P of X is called nice if for any S-triangle St
of G[X ∪ Y ], there is a part P ∈ P such that V (St ) ∩ X ⊆ P . In other words, any
S-triangle of G[X ∪ Y ] is involved with at most one part of any nice partition of X .
With respect to the defined optimal solutions AY

X , we observe the following:

Observation 4 Let G = (VG , EG) be a chordal graph, let S ⊆ VG and let X ,Y ⊆ VG
such that X ∩ Y = ∅ and G[Y ] ∈ FS . Then the following hold:

(1) AY
X ↔

⋃

P∈P
AY
P for any nice partition P of X .

2 If the host tree T is an undirected tree, then �(G) ≤ 2 ⇔ G is an interval graph [11].
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(2) AY
X ↔ AY ′

X where Y ′ = Y ∩N (X ′) for any X ⊇ X ′ ⊇ X\{u ∈ X\S | Y ∩N (u) ⊆
Y\S}.

Proof For the first statement, assume that there is an S-triangle St in G[X ∪ Y ]. Then
it must contain a vertex of some part P of P , as G[Y ] is an S-forest. By the definition
of a nice partition, we have V (St ) ∩ X ⊆ P . Therefore, we deduce AY

X ∩ P ↔ AY
P ,

which shows the claim.
For the second statement, observe that G[Y ′] ∈ FS , as Y ′ ⊆ Y and G[Y ] ∈ FS .

Also, notice that any S-triangle in G[X ∪ Y ′] remains an S-triangle in G[X ∪ Y ].
Consider an S-triangle in G[X ∪ Y ] induced by {x, y, z} where x ∈ X and y ∈ Y .
We show that y ∈ Y ′ and z ∈ X ∪ Y ′. If x ∈ X ′, then y ∈ Y ′ and z ∈ X ∪ Y ′ by
the fact that Y ′ = Y ∩ N (X ′). Suppose that x ∈ X\S such that Y ∩ N (x) ⊆ Y\S.
Then y ∈ Y\S and z ∈ X ∪ (Y\S). This means that z must be in S and in particular
z ∈ X ∩ S ⊆ X ′. By the fact that Y ′ = Y ∩ N (X ′), we conclude that y ∈ Y ′. Thus,
any S-triangle in G[X ∪ Y ] remains an S-triangle in G[X ∪ Y ′], which concludes the
proof.

�
Observation 4 suggests how to reduce the computation of AY

X to the computation
of optimal solutions to smaller instances. More precisely, by Observation 4 (1), if we
obtain a nice partition P of the vertex set X , then we can reduce the computation of
AY
X to the computation of AY

P for every P ∈ P , which are optimal solutions to smaller
and pairwise-independent instances, and Observation 4 (1) states that for computing
AY
X , it is sufficient to consider only the vertices y of Y which have neighbours x in X

such that at least one of x and y is in S.

3 Expanded TreeModel

Given a tree model of a chordal graph, we are interested in defining a partial order on
the vertices of the graph that takes advantage of the underlying tree structure. For this
purpose, it is necessary that each of the subtrees of the tree model corresponds to at
most one vertex of the graph. Here we show how a tree model can be altered in order
to obtain this property in a formal way. Assume that G is a chordal graph.

Definition 1 A tree model (T , {Tv}v∈VG ) of G is called expanded tree model if the
sets of the collection {{r(Tv)}}v∈VG ∪ {L(Tv)}v∈VG are paiwise-disjoint.

We show that for any tree model M of a chordal graph G, there exists an expanded
tree model M ′ of G that is structurally close to M . In fact, we provide an algorithm
that, given a tree model of G, constructs such an expanded tree model of G.

Lemma 5 For any tree model (T , {Tv}v∈VG ) of G and for any �, v� ∈ N
∗ such that

|L(T )| = � and |L(Tv)| ≤ v� for all v ∈ VG, there is an expanded tree model
(T ′, {T ′

v}v∈VG ) of G such that:

• |L(T ′)| = |L(T )| = � and |L(T ′
v)| = |L(Tv)| ≤ v� for all v ∈ VG, and

• |V (T ′)| ≤ |V (T )| + (1 + v�)n.
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Fig. 2 We replace node x of T by the directed path 〈x−kr , . . . , x0, . . . , xkl 〉 such that in T ′ the node of

N−
T (x) points to x−kr and all nodes of N+

T (x) are pointed by xkl instead

Moreover, given (T , {Tv}v∈VG ), the expanded tree model can be constructed in time
O(n2).

Proof Consider a node x of T . Assume that x is the root of kr subtrees Tv−1, . . . , Tv−kr

and a leaf of kl subtrees Tv1, . . . , Tvkl
of {Tv}v∈VG where kr + kl ≥ 2.

We replace the node x in T by the gadget shown in Fig. 2. We also modify every
subtree Tv of {Tv}v∈VG as follows:

• If there exists an i ∈ −[kr ] such that Tv = Tvi and Tv �= Tv j for all j ∈ [kl ], thenwe
replace x in Tv by the part of the gadget involving the vertices xi , . . . , x0, . . . , xkl .

• If Tv �= Tvi for all i ∈ −[kr ] and there exists a j ∈ [kl ] such that Tv = Tv j , then we
replace x in Tv by the part of the gadget involving the vertices x−kr , . . . , x0, . . . , x j .

• If there exists an i ∈ −[kr ] such that Tv = Tvi and a j ∈ [kl ] such that Tv =
Tv j , then we replace x in Tv by the part of the gadget involving the vertices
xi , . . . , x0, . . . , x j .

• If Tv �= Tvi for all i ∈ −[kr ] and Tv �= Tv j for all j ∈ [kl ], then
– if x is a (necessarilly internal) node of Tv , we replace x in Tv by the whole
gadget, otherwise T ′

v = Tv .

To see that (T ′, {T ′
v}v∈VG ) is indeed a tree model ofG, observe that for every Tu, Tw ∈

{Tv}v∈VG :
• if x ∈ V (Tu) ∩ V (Tw), then x0 ∈ V (T ′

u) ∩ V (T ′
w), and

• if x /∈ V (Tu) ∩ V (Tw), then x−kl , . . . , xkr /∈ V (T ′
u) ∩ V (T ′

w).

Thus the intersection graph of (T ′, {T ′
v}v∈VG ) is isomorphic to G. Observe that among

the sets {r(Tv−kr
)}, …, {r(Tv−1)}, L(Tv1), …, L(Tvkl

), the node xi is only in {r(Tvi )}
for all i ∈ −[kr ] and only in L(Tvi ) for all i ∈ [kr ].Iteratively applying the above
modifications to (T , {Tv}v∈VG ) results in an tree model of G that satisfies Definition
1 for being an expanded tree model.

Observe that the iterative procedure described above preserves the number of leaves
of the tree and of all subtrees in the collection of the tree model.Let us now bound
|V (T ′)|. Recall that every subtree in {Tv}v∈VG has at most v� leaves. In the worst case,
every subtree in {Tv}v∈VG has exactly v� leaves and no node of T is the root of one
subtree and a leaf of no subtree of {Tv}v∈VG or vice versa. In this case, the iterative
procedure described above will add

∑
v∈VG (|{r(Tv)}| + |L(Tv)|) = (1 + v�)n nodes

to T . We conclude that the procedure adds at most (1+ v�)n nodes to T as well as to
the n subtrees in {Tv}v∈VG , resulting in the total running time of O(n2). �

An example of an expanded tree model produced by the iterative procedure
described in the proof of Lemma 5 is shown in Fig. 3. Hereafter we assume that
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Fig. 3 Illustration of a chordal graph G (top left), a tree model of G (top center) and an expanded tree
model of G obtained via the iterative procedure described in the proof of Lemma 5 (bottom). The paths of
the two models corresponding to each vertex of G are the ones formed from the nodes containing the color
of that vertex

(T , {Tv}v∈VG ) is an expanded tree model of G. For any vertex u of G, we denote the
node r(Tu) by r(u) for simplicity. We define the following partial order on the vertices
of G: for all u, v ∈ VG , u ≤G v ⇔ r(u) ≤T r(v). In other words, two vertices of
G are comparable with respect to ≤G if and only if there is a directed path between
their corresponding roots in T . Since we defined ≤G and ≤T on disjoint sets, we will
subsequently omit mentioning the relevant partial order explicitly.

Observation 6 Let u, v, w, z ∈ VG . Then, the following hold:

(1) If uv ∈ EG , then u and v are comparable.
(2) If u ≤ v, z ≤ w, and u and z are comparable, then v and w are comparable.
(3) If u < v < w and uw ∈ EG , then vw ∈ EG .

Proof For thefirst statement, assume that x ∈ V (Tu)∩V (Tv),which exists asuv ∈ EG .
Then the paths r(u) → x and r(v) → x exist in T . Equivalently, x ≤ r(u) and
x ≤ r(v) hold. By Observation 1, we get that r(u) and r(v) are comparable, which
implies that u and v are also comparable.

For the second statement, assume first that u ≤ z. Then r(u) ≤ r(z) ≤ r(w)

because also z ≤ w. Additionally r(u) ≤ r(v) because u ≤ v. Just as before, by
Observation 1, we get that r(v) and r(w) are comparable, which implies that v and w

are also comparable. The case for z ≤ u is completely symmetrical.
For the third statement, observe that u < v < w implies that r(u) < r(v) <

r(w). We show that r(v) ∈ V (Tw). Since u and w are adjacent, there exists a node
x ∈ V (Tu) ∩ V (Tw). Then the paths r(u) → x and r(w) → x exist in T , implying
that x ≤ r(u) and x ≤ r(w). Since x, r(w) ∈ V (Tw) and x < r(v) < r(w), by
Observation 2, we get that r(v) ∈ V (Tw), so v and w are adjacent.

�
For all u ∈ VG , we define Vu to be the set {u′ ∈ VG | u′ ≤ u}. We also define �u

to be the set max{u′ ∈ VG | u′ < u} = max(Vu \ {u}). Moreover, for all uv ∈ EG , we
define �uv to be the set max{u′ ∈ VG | u′ < u, v and (u′u /∈ EG or u′v /∈ EG)} =
max((Vu ∩ Vv)\(N [u] ∩ N [v])). Recall that for any edge uv ∈ EG , either u < v or
v < u by Observation 6 (1). If u < v holds, then �uv = max(Vu \ (N [u] ∩ N (v))).
For allU ⊆ VG , we define VU to be the collection {Vu}u∈U . For the example of Fig. 3,
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denoting the red, green, blue, cyan, magenta and yellow vertices by r , g, b, c, m and
y respectively, the following hold:

Vr = {r ,m, y} �r = {m, y} �rg = {m} �gb = {m, y} �bc = {r}
Vg = {r , g,m, y} �g = {r} �rb = {y} �gc = {r} �bm = ∅
Vb = {r , g, b, c,m, y} �b = {c} �rm = ∅ �gy = ∅
Vc = {r , g, c,m, y} �c = {g} �r y = ∅
Vm = {m} �m = ∅
Vy = {y} �y = ∅

Having defined all the primary components, we can now provide a brief outline of
our dynamic programming algorithms.

Step 1: Construction of expanded tree model. From a tree model of the chordal
graph G that we are given as input, we produce an expanded tree model
(T , T ) as described in the proof of Lemma 5.

Step 2: Computation of auxiliary vertex sets. Traversing T from its leaves to its
root, upon reaching each node v ∈ VT , if there exists a vertex u ∈ VG such
that r(u) = v, then we compute the set �u. Similarly for all other auxiliary
vertex sets that are necessary for each algorithm.

Step 3: Computation of optimal solutions to subproblems.Traversing T again from
its leaves to its root, upon reaching each node v ∈ VT , if there exists a
vertex u ∈ VG such that r(u) = v, then we compute the optimal solution
A∅
Vu

from previously computed optimal solutions to smaller subproblems.
Similarly for optimal solutions to all other subproblems that are necessary for
each algorithm.

The following two lemmas provide nice partitions of X , to be used in the application
of Observation 4 (1), in certain cases of X that are considered by both our algorithms.

Lemma 7 For every u ∈ VG, the collection V�u is a partition of Vu \ {u} into pair-
wise disconnected sets. For every u, v ∈ VG such that u < v and uv ∈ EG, the
collectionV�uv is a partition of Vu \ (N [u] ∩ N (v)) into pairwise disconnected sets.

Proof We prove the first statement. The proof of the second statement is completely
analogous. Firstly notice that, by definition, the vertices of �u are pairwise incompa-
rable. Consider two vertices u′

1 and u
′
2 such that u

′
1 ≤ u1 and u′

2 ≤ u2 where u1 and u2
are two vertices of �u. Clearly, u′

1 ∈ Vu1 and u
′
2 ∈ Vu2 . By Observation 1 and Obser-

vation 6 (1)–(2), it follows that the vertices u′
1 and u′

2 are distinct and non-adjacent.
�

Lemma 8 For every u ∈ VG, the collection V�u is a nice partition of Vu \ {u}. For
every u, v ∈ VG such that u < v and uv ∈ EG, the collection V�uv is a nice partition
of Vu \ (N [u] ∩ N (v)).

Proof We prove the first statement. The proof of the second statement is completely
analogous. Let X = Vu\{u} and Y ⊆ VG such that X ∩ Y = ∅. Suppose that St is
an S-triangle of G[X ∪ Y ] for which the intersection of V (St ) and a part of V�u is
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non-empty for at least two such parts. Assume that P1 and P2 are two of those parts
and let u1 ∈ V (St ) ∩ P1 and u2 ∈ V (St ) ∩ P2. Then u1 and u2 must be adjacent,
which is in contradiction to Lemma 7. �

The following Lemma simplifies the calculation of Y ′ in Observation 4 (1) in the
case of X = Vu for some u ∈ VG .

Lemma 9 Let u ∈ VG and Y ⊆ VG\Vu. Then Y ∩ N (Vu) = Y ∩ N (u).

Proof From the facts that u ∈ Vu and Y ⊆ VG\Vu , it directly follows that Y ∩N (u) ⊆
Y ∩ N (Vu). We will now show that also Y ∩ N (Vu) ⊆ Y ∩ N (u). It suffices to show
that N (Vu) ⊆ N (u). Let w ∈ N (Vu). Then there exists a vertex v ∈ Vu such that
vw ∈ EG . It suffices to show that w ∈ N (u). Assume that u �= v, as otherwise
the claim trivially holds. Then v < u, because v ∈ Vu . Moreover, Observation 6 (1)
implies that eitherw < v or v < w. Sincew < v < u contradicts the fact thatw /∈ Vu ,
we conclude that v < w. Then by applying Observation 6 ((2)) we obtain that u andw

are comparable. Since w /∈ Vu , it must be that v < u < w and by Observation 6 ((3))
we conclude that uw ∈ EG . �

We are now ready to show the first recursive expressions of optimal solutions to
subproblems, to be used for the computation of AY

X in certain cases of X and Y that
are considered by both our algorithms. Both statements involve the application of
Observation 4 in combination with Lemma 8 and Lemma 9.

Lemma 10 Let u ∈ VG and Y ⊆ VG\Vu. If u /∈ AY
Vu
, then AY

Vu ↔
⋃

u′∈�u

AY∩N (u′)
Vu′ .

Proof Since u /∈ AY
Vu
, we have AY

Vu
↔ AY

Vu\{u}. According to Lemma 8, the collection

V�u is a nice partition of Vu \ {u}. By Observation 4 and Lemma 9, we get AY
Vu\{u} ↔

⋃
u′∈�u AY

Vu′ ↔ ⋃
u′∈�u A

Y∩N (Vu′ )
Vu′ ↔ ⋃

u′∈�u AY∩N (u′)
Vu′ .

�
Lemma 11 Let u ∈ VG. If u ∈ A∅

Vu
, then A∅

Vu
↔ {u} ∪

⋃

u′∈�u

A{u}∩N (u′)
Vu′ .

Proof Assume that u ∈ A∅
Vu
. Then A∅

Vu
↔ {u} ∪ A{u}

Vu\{u}. Recall that the collection
V�u is a nice partition of Vu \ {u}. By Observation 4 and Lemma 9, we get A{u}

Vu\{u} ↔
⋃

u′∈�u A{u}
Vu′ ↔ ⋃

u′∈�u A
{u}∩N (Vu′ )
Vu′ ↔ ⋃

u′∈�u A{u}∩N (u′)
Vu′ .

�

4 SFVS on Graphs with Bounded Leafage

In this section our goal is to show that SFVS can be solved in polynomial time on
chordal graphs with bounded leafage. In particular, we consider chordal graphs that
have an intersection model tree with at most � leaves and we show that SFVS can be
solved in nO(�) time.
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We subsequently assume that we are given a chordal graph G that admits an
expanded tree model (T , {Tv}v∈VG ) with |L(T )| = � due to Lemma 5.

Given a set of vertices of G, we collect the nodes and the leaves and of their
corresponding subtrees: for every U ⊆ VG , we define V (U ) = ⋃

u∈U V (Tu) and
L(U ) = ⋃

u∈U L(Tu). Notice that for any non-empty U ⊆ VG , the sets V (U ) and
L(U ) are also non-empty, and the nodes of L(U ) admit a partial order ≤T . Moreover,
given a set of nodes of T , we collect the vertices corresponding to the subtrees of
which they are leaves: for every V ⊆ VT , we define L−1(V ) to be the set {u ∈ VG |
L(Tu) ∩ V �= ∅}.
Observation 12 Let U ⊆ VG and V ⊆ L(U ). Then L−1(V ) ⊆ U .

Proof The fact that V ⊆ L(U ) yields L−1(V ) ⊆ L−1(L(U )). We will show that
L−1(L(U )) ⊆ U . Let u be a vertex of G such that u /∈ U . Then, since (T , {Tv}v∈VG )

is an expanded tree model, Definition 1 implies that L(Tu) ∩ L(U ) = ∅. Thus u /∈
L−1(L(U )). �

For every U ⊆ VG , we define the representation of U to be the set R≤2(U ) =
R1(U )∪R2(U )where R1(U ) = L−1(min L(U )) and R2(U ) = L−1(min L(U\R1(U ))).
Observation 12 implies that R≤2(U ) ⊆ U for every U ⊆ VG . Observe that for any
V ⊆ VT , the set min V ofminimal nodes of V is a set of pairwise-incomparable nodes,
so |min V | ≤ |L(T )| = � by Observation 3. This implies that |R≤2(U )| ≤ 2� for all
U ⊆ VG . Representations have the following property.

Observation 13 Let u ∈ VG and let Y ⊆ VG\Vu . Then V (Y )∩V (Vu) = V (R1(Y ))∩
V (Vu) and V (Y\R1(Y )) ∩ V (Vu) = V (R2(Y )) ∩ V (Vu).

Proof We show that the first equation holds. Showing that the second equation holds
is completely analogous. By Observation 12, we get R1(Y ) ⊆ Y ⇒ V (R1(Y )) ⊆
V (Y ) ⇒ V (R1(Y ))∩V (Vu) ⊆ V (Y )∩V (Vu).Wewill show that alsoV (Y )∩V (Vu) ⊆
V (R1(Y )) ∩ V (Vu). Let b ∈ V (Y ) ∩ V (Vu). Then there exist u′ ∈ Vu and v ∈ Y
such that b ∈ V (Tu′) ∩ V (Tv). Since b ∈ V (Tu′), we get b ≤ r(u′). Since b ∈ V (Tv),
there exists an l ∈ L(Tv) ⊆ L(Y ) such that l ≤ b. Then there exists an l ′ ∈ min L(Y )

such that l ′ ≤ l. By definition of R1(Y ), there exists a vertex v′ ∈ R1(Y ) such that
l ′ ∈ L(Tv′). Putting it all together yields l ′ ≤ l ≤ b ≤ r(u′) ≤ r(u) < r(v′). By
Observation 2, we conclude that b ∈ V (Tv′) ⊆ V (R1(Y )). �

We subsequently show that for computing AY
X , the vertex set Y can be substituted

by its representation R≤2(Y ) in certain cases of X and Y that are considered by the
algorithm of this section.

Lemma 14 Let u ∈ VG and W ⊆ VG\Vu such that W �= ∅, G[W ] ∈ FS and {u} ∪W
is a clique, and let u ∈ AW

Vu
.

• If ({u} ∪W )∩ S �= ∅, then W = {w} and no vertex of Vu ∩ N (u)∩ N (w) belongs
to A{w}

Vu
.

• If ({u}∪W )∩ S = ∅, then A({u}∪W )∩N (u′)
Vu′ ↔ A

R≤2(({u}∪W )∩N (u′))
Vu′ for every vertex

u′ ∈ �u.
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Proof Assume that some vertex of {u}∪W is in S. Further assume that |W | ≥ 2. Then
there arew1, w2 ∈ W such that {u, w1, w2}∩S �= ∅. Since {u}∪W is a clique, we have
that {u, w1, w2} induces an S-triangle, contradicting the fact that u belongs to AW

Vu
. We

deduce that W = {w} because W �= ∅. Observe that for any u′ ∈ Vu ∩ N (u) ∩ N (w),
the vertex set {u′, u, w} induces an S-triangle, since u and w are adjacent. Thus, no
vertex of Vu ∩ N (u) ∩ N (w) is in A{w}

Vu
.

Assume that no vertex of {u}∪W is in S. Consider a vertex u′ ∈ �u. Observe that for
any two vertices a ∈ Vu′ and b ∈ VG \ Vu′ to be adjacent, since r(a) ≤ r(u′) < r(b)
already holds, there must exist an l ∈ L(Tb) such that l < r(a) also holds. Let
W ′ = ({u} ∪ W ) ∩ N (u′) and R = R≤2(W ′). We will show that AW ′

Vu′ ↔ AR
Vu′ .

• Assume there are two vertices u′′
1, u

′′
2 ∈ Vu′ and a vertex w′ ∈ W ′ such that

{u′′
1, u

′′
2, w

′} induces an S-triangle. Then u′′
1, u

′′
2 are adjacent and consequently, by

Observation 6 (1), comparable, so without loss of generality we may assume that
r(u′′

1) < r(u′′
2). Let l

′ ∈ L(Tw′) such that l ′ < r(u′′
1). By definition of R,there is

a vertex w′′ ∈ R for which there is a node l ′′ ∈ L(Tw′′) such that l ′′ ≤ l ′. This
implies that the set {u′′

1, u
′′
2, w

′′} also induces an S-triangle.
• Assume there is a vertex u′′ ∈ Vu′ and two vertices w′

1, w
′
2 ∈ W ′ such that

{u′′, w′
1, w

′
2} induces an S-triangle. Let l ′1 ∈ L(Tw′

1
) and l ′2 ∈ L(Tw′

2
) such that

l ′1, l ′2 < r(u′′). By definition of R, there are two distinct vertices w′′
1 , w

′′
2 ∈ R for

which there are nodes l ′′1 ∈ L(Tw′′
1
) and l ′′2 ∈ L(Tw′′

2
) such that l ′′1 ≤ l ′1 and l ′′2 ≤ l ′2.

This implies that the set {u′′, w′′
1 , w

′′
2} also induces an S-triangle.

�
Wenext show that Lemma10, Lemma11 andLemma14 suffice for the development

of a dynamic programming scheme. As the size of the representation of any subset of
VG is bounded by 2�, we need to store only a bounded number of optimal solutions to
subproblems. In particular, we show that we need to compute AY

X only for O(n) cases
of X and only for cases of Y such that |Y | ≤ 2� holds.

Theorem 15 There is an algorithm that, given a connected chordal graph G and an
expanded tree model (T , T ) of G with |L(T )| = �, solves the weighted Subset

Feedback Vertex Set problem in O(n2�+1) time.

Proof Let umax denote the (unique) vertex of max VG . Our task is to solve SFVS on
G by computing A∅

Vumax
. For doing so, we device a dynamic programming algorithm

that visits the nodes of T in a bottom-up fashion starting from its leaves and moving
towards its root. At each node v ∈ VT , if there exists a vertex u ∈ VG such that
r(u) = v, we store the values of A∅

Vu
and AW

Vu
for every W ⊆ VG\Vu such that

W �= ∅, G[W ] ∈ FS and {u} ∪ W is a clique. In order to compute A∅
Vu
, we apply

Lemma 10 and Lemma 11. In particular, after retrieving all necessary values being
stored on the corresponding descendants of v, we apply the formula

A∅
Vu

= max
weight

⎧
⎨

⎩

⋃

u′∈�u

A∅
Vu′ , {u} ∪

⋃

u′∈�u

A{u}∩N (u′)
Vu′

⎫
⎬

⎭
.
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Proof Thefirst case in the above formula is the case ofu /∈ A∅
Vu

and is due toLemma10,

whereas the second case is the case of u ∈ A∅
Vu

and is due to Lemma 11. �
For computing AW

Vu
, we apply Lemma 10 and Lemma 14. In particular, depending on

W , after retrieving all necessary values being stored on the corresponding descendants
of v, we apply the appropriate formula, as follows:

• If ({u} ∪ W ) ∩ S �= ∅ and |W | ≥ 2, then we apply AW
Vu

=
⋃

u′∈�u

AW∩N (u′)
Vu′ .

Proof Lemma 14 implies that u /∈ AW
Vu
. By Lemma 10 we get the above formula.

• If ({u} ∪ W ) ∩ S �= ∅ and W = {w}, then we apply AW
Vu

= max
weight⎧

⎨

⎩

⋃

u′∈�u

A{w}∩N (u′)
Vu′ , {u} ∪

⋃

u′∈�uw

A{u,w}∩N (u′)
Vu′

⎫
⎬

⎭
.

Proof The first case in the above formula is the case of u /∈ A{w}
Vu

and is due to

Lemma 10. For the second case, assume that u ∈ A{w}
Vu

. Lemma 14 implies that A{w}
Vu

↔
{u} ∪ A{u,w}

Vu\(N [u]∩N (w)). According to Lemma 8, the collection V�uw is a nice partition

of Vu \ (N [u] ∩ N (w)). By Observation 4 and Lemma 9 we get A{u,w}
Vu\(N [u]∩N (w)) ↔

⋃
u′∈�uw A{u,w}

Vu′ ↔ ⋃
u′∈�uw A

{u,w}∩N (Vu′ )
Vu′ ↔ ⋃

u′∈�uw A{u,w}∩N (u′)
Vu′ . �

• If ({u} ∪ W ) ∩ S = ∅, then we apply AW
Vu

= max
weight⎧

⎨

⎩

⋃

u′∈�u

AW∩N (u′)
Vu′ , {u} ∪

⋃

u′∈�u

A
R≤2(({u}∪W )∩N (u′))
Vu′

⎫
⎬

⎭
.

Proof The first case in the above formula is the case of u /∈ A{w}
Vu

and is due to

Lemma 10. For the second case, assume that u ∈ AW
Vu
. Then AW

Vu
↔ {u} ∪ A{u}∪W

Vu\{u} .
According to Lemma 8, the collection V�u is a nice partition of Vu \ {u}. By
Observation 4, Lemma 9 and Lemma 14 we get A{u}∪W

Vu\{u} ↔ ⋃
u′∈�u A{u}∪W

Vu′ ↔
⋃

u′∈�u A
({u}∪W )∩N (Vu′ )
Vu′ ↔ ⋃

u′∈�u A({u}∪W )∩N (u′)
Vu′ ↔ ⋃

u′∈�u A
R≤2(({u}∪W )∩N (u′))
Vu′ .

Regarding the correctness of the algorithm, we show that applying any of the above
recursive formulas requires only sets that can also be computed via these formulas.
Notice that an induced subgraph of a graph in FS is also a graph in FS and that
a subset of a clique is also a clique. Now observe that applying any of the above
recursive formulas requires only sets A∅

Vu′ and AW ′
Vu′ where u

′ ∈ VG andW ′ ⊆ VG\Vu′

such that W ′ �= ∅, G[W ′] ∈ FS and {u′} ∪ W ′ is a clique. We conclude that all sets
AY
X that are required for the application of any of these formulas can also be computed

via these formulas.
We now analyze the running time of our algorithm. We begin by determining for

every pair (x, y) of distinct nodes of the host tree T whether x < y or not. As the act
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of discovering all nodes x that precede a node y in ≤T takes O(n) time by traversing
T once, we complete this task in O(n2) time.

We then compute the sets �u and �uv for all u ∈ VG and for all v ∈ VG such that
uv ∈ EG . Since any such set can be computed in O(n) time by traversing T once,
we compute all such sets in O(n(n + m)) time, which is simply O(nm) time as G
is connected. Let us also bound the size of such sets. Observe that by definition any
such setU is a set of pairwise-incomparable vertices. By definition of≤G , this implies
that the set V = {r(u) | u ∈ U } is a set of pairwise-incomparable nodes, yielding
|V | ≤ |L(T )| = � by Observation 3. We conclude that any such set U contains at
most � vertices.

We proceed with the computation of the sets AY
X where X ,Y ⊆ VG such that X ∩

Y = ∅ and G[Y ] ∈ FS . According to the recursive formulas shown above and due to
the fact that |R≤2(U )| ≤ 2� for allU ⊆ VG , it is sufficient to compute for every u ∈ VG
the sets AY

X where X = Vu and either Y = ∅ or Y ⊆ N (u) \ Vu such that G[Y ] ∈ FS ,
{u} ∪ Y is a clique and |Y | ≤ 2�. Therefore, it suffices to compute O(n2�+1) sets
AY
X . Now consider such a set AY

X . Its computation requires the retrieval of a number
of stored values. Due to the bound on the size of the auxiliary sets shown above, that
number is at most 2�. If the set AY

X is computed via the last of the formulas shown
above, we must also compute at most � representations R≤2(U ) = R1(U ) ∪ R2(U )

of sets U ⊆ VG such that |U | ≤ 2� + 1. Consider one such set U . Computing R1(U )

(resp. R2(U )) requires the computation ofmin L(U ) (resp.min L(U \ R1(U ))), which
in turn requires determining for every pair (x, y) of distinct nodes in L(U ) (resp. L(U \
R1(U ))) whether x < y or not. Since all these are predetermined, it suffices to retrieve
a number of stored values. Recall that |L(Tv)| ≤ � for all v ∈ VG . We get that
|L(U\R1(U ))| ≤ |L(U )| = ∑

v∈U |L(Tv)| ≤ (2� + 1)�, which implies that the
number of stored values to be retrieved is O(�4). We conclude that the running time
for computing the set AY

X is O(�5), which is constant time. Thus the total running time
of our algorithm is O(n2�+1). �

Notice that in the special case of � = 1, the number of sets AY
X that the algorithm

of Theorem 15 computes is actually O(nm) and consequently its total running time
is O(nm). If we let the leafage of a chordal graph be the maximum leafage over all of
its connected components, then we obtain the following result.

Corollary 16 The weighted Subset Feedback Vertex Set problem can be solved
on chordal graphs with leafage at most � in nO(�) time.

Proof Let G be a chordal graph. For every connected component C of G, we first
recongize if C is an interval graph and if so construct a tree model M(C) of C in
linear time [6], otherwise we determine the leafage of C and construct a tree model
M(C) ofC via the O(n3)-time algorithm of Habib and Stacho [24]. We then construct
an expanded tree model M ′(C) from M(C) in O(n2) time by Lemma 5. Applying
Theorem 15 on M ′(C), we compute A∅

V (C) in n
O(�) time. It is not difficult to see that

the collection {V (C) | C is a connected component of G} is a nice partition of V (G).
Thus by Observation 4 the set A∅

V (G) is the union of A∅
V (C) over all of the connected

components C of G. Therefore, all above steps result in solving SFVS on G and can
be carried out in nO(�) time. �
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Fig. 4 The subtree T ({x+
i , x−

i , yi j , x
+
j , x−

j }) of T for some i, j ∈ [k] such that i < j

Notice that in the special case of the input graph being an interval graph, the
algorithm of Corollary 16 actually runs in O(nm) time, which is also the running time
of the previously known algorithm for solving SFVS on interval graphs [36]. We next
prove that we can hardly avoid the dependence of the exponent in the stated running
time, since we show that weighted Subset Feedback Vertex Set is W[1]-hard
parameterized by the leafage of a chordal graph. Our reduction is inspired by the
W[1]-hardness of Feedback Vertex Set parameterized by the mim-width given
by Jaffke et al. [29].

Theorem 17 The weighted Subset Feedback Vertex Set decision problem on
chordal graphs is W[1]-hard when parameterized by its leafage.

Proof We provide a reduction from the Multicolored Clique problem. Given a
graph G = (V , E) and a partition {Vi }i∈[k] of V into k parts, the Multicolored

Clique (MCC) problem asks whether G has a clique that contains exactly one vertex
of Vi for every i ∈ [k]. It is known that MCC is W[1]-hard when parameterized by k
[17, 39].

Let (G = (V , E), {Vi }i∈[k]) be an instance of MCC. We assume that k ≥ 10 and

without loss of generality that there exists p ∈ N such that Vi = {v j
i } j∈[p] for every

i ∈ [k]. We consider the k
2 (k + 3)-star T with internal node r and leaves x+

i , x−
i for

every i ∈ [k] and yi j for every i, j ∈ [k] such that i < j . We modify the star T
as follows: for every i ∈ [k], through a series of edge subdivisions, we replace the
edge 〈r , x+

i 〉 bythe path 〈r = x0i , x
1
i , . . . , x

p
i = x+

i 〉 and the edge 〈r , x−
i 〉 by the path

〈r = x0i , x
−1
i , . . . , x−p

i = x−
i 〉. Given a set X of nodes of T , we write T (X) to denote

the minimal subtree of T containing all nodes of X .The subtree T (X) for a particular
choice of X is depicted in Fig. 4. We define the following subtrees of T :

• For every i, j ∈ [k] such that i < j and for every a, b ∈ [p] such that vai v
b
j ∈ E ,

we define eabi j = T ({xai , xa−p
i , yi j , xbj , x

b−p
j }). We denote by R the collection of

all these subtrees.

– For all i ∈ [k], we denote by Ri the collection {eabi j ∈ R | j ∈ [k] and a, b ∈
[p]} ∪ {ebaji ∈ R | j ∈ [k] and a, b ∈ [p]}.

– For all i ∈ [k] and for all a ∈ [p], we denote by Ra
i the collection {eabi j ∈ R |

j ∈ [k] and b ∈ [p]} ∪ {ebaji ∈ R | j ∈ [k] and b ∈ [p]}.
– For all i, j ∈ [k] such that i < j , we denote by Ri j the collection {eabi j ∈ R |
a, b ∈ [p]}.
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• For every i ∈ [k] and a ∈ [p], we define sa,1
i = sa,2

i = T [{xai }] and s−a,1
i =

s−a,2
i = T [{x−a

i }]. We denote by SV the collection of all these subtrees.

– For all i ∈ [k], we denote by Si the collection {sa,c
i ∈ SV | a ∈ −[p] ∪

[p] and c ∈ {1, 2}}.
– For all i ∈ [k] and for all a ∈ [p], we denote by Sai the collection {sa′,c

i ∈ SV |
a′ ∈ −[p − a] ∪ [a] and c ∈ {1, 2}}.

• For every i, j ∈ [k] such that i < j , we define si j = T [{yi j }]. We denote by SE
the collection of all these subtrees.

We further denote by S the collection SV ∪ SE and by T the collection R ∪ S. We
construct a graph G ′ that is the intersection graph of the undirected tree model (T , T ).
Notice that G ′ is a chordal graph of leafage at most k

2 (k + 3). We identify the vertices
ofG ′ with their corresponding subtrees in T . By the construction of (T , T ), regarding
the adjacencies between vertices of G ′ we observe the following:

• R is a clique, because all its elements contain the node r .
• For every i ∈ [k] and a ∈ −[p] ∪ [p], we have N (sa,1

i ) ∩ S = {sa,2
i } and

N (sa,2
i ) ∩ S = {sa,1

i }.
• For every i ∈ [k] and a ∈ [p], we have N (e) ∩ Si = Sai for all e ∈ Ra

i .• For every i, j ∈ [k] such that i < j , we have N (si j ) = Ri j .

We set the weight of all vertices of R, SV and SE to be p
2 , 1 and p

2m, respectively.
We will show that (G, {Vi }i∈[k]) is a Yes-instance of MCC if and only if there exists
a solution to SFVS on (G ′, S) having weight p

2 (m − k
2 (k − 9)).

For the forward direction, let {va11 , . . . , v
ak
k } be a solution ofMCC on (G, {Vi }i∈[k]).

We set RC to be the collection {eai a j
i j ∈ R | i, j ∈ [k]}. Observe that RC contains

exactly one element of Ri j for each i, j ∈ [k] such that i < j . We further set U =
(R\RC ) ∪ ⋃

i∈[k] S
ai
i . Now observe that in G − U each of the remaining vertices of

S has exactly one neighbour. Thus U is a solution to SFVS on (G ′, S) having weight
p
2 (m − k

2 (k − 1)) + 2pk = p
2 (m − k

2 (k − 9)).
For the reverse direction, let U be a solution to SFVS on (G ′, S) having weight

p
2 (m − k

2 (k − 9)). Notice that no element of SE can be in U . Consequently, for every
i, j ∈ [k] such that i < j , we have |Ri j \U | ≤ 1, since any two elements of Ri j along
with si j form an S-triangle of G ′. Any remaining S-triangle of G ′ is formed by either

• an element of Ra
i and two adjacent elements of Sai or

• an element of Ra
i , an element of Ra′

i and an element of Sai ∩ Sa
′

i

for a particular choice of i ∈ [k] and a, a′ ∈ [p]. Let i ∈ [k].
Claim 17.1 If |Ri \U | ≥ 1, then |Si ∩U | ≥ p.

Proof Assume that e ∈ Ri \ U . Then there exists an a ∈ [p] such that e ∈ Ra
i . We

conclude that for every a′ ∈ −[p − a] ∪ [a], at least one of sa′,1
i , sa

′,2
i must be in U ,

yielding |Si ∩U | ≥ p.

Claim 17.2 If |Ri \U | ≥ 2, then |Si ∩U | ≥ 2p.
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Proof Assume that e, e′ are two distinct elements of Ri\U .Then there exist a, a′ ∈ [p]
such that e ∈ Ra

i and e′ ∈ Ra′
i . Without loss of generality, assume that a ≤ a′. We

conclude that

• for every a′′ ∈ −[p − a′] ∪ [a] both sa′′,1
i and sa

′′,2
i must be in U and

• for every a′′ ∈ (−[p − a] ∪ [a′]) \ (−[p − a′] ∪ [a]) at least one of sa′′,1
i , sa

′′,2
i

must be in U ,

yielding |Si ∩U | ≥ 2((p − a′) + a) + 1(((p − a) + a′) − ((p − a′) + a)) = 2p.

Claim 17.3 If |Ri \U | ≥ 3, then |Si ∩U | = 2p only if there exists a ∈ [p] such that
Ri\U ⊆ Ra

i .

Proof Assume that e, e′, e′′ are three distinct elements of Ri\U . Then there exist
a, a′, a′′ ∈ [p] such that and e ∈ Ra

i , e
′ ∈ Ra′

i and e′′ ∈ Ra′′
i . Without loss of

generality, assume that a ≤ a′ ≤ a′′. We conclude that

• for every a′′′ ∈ −[p − a′] ∪ [a′] both sa
′′′,1

i and sa
′′′,2

i must be in U and

• for every a′′′ ∈ (−[p − a] ∪ [a′′]) \ (−[p − a′] ∪ [a′]) at least one of sa′′′,1
i , sa

′′′,2
i

must be in U ,

yielding |Si ∩ U | ≥ 2p + 1(((p − a) + a′′) − ((p − a′) + a′)) = 2p + (a′′ − a).
Therefore, for |Si ∩ U | to be 2p, it must hold that a = a′ = a′′, so it must hold that
e, e′, e′′ ∈ Ra

i .
Assume that |{i ∈ [k] | |Ri \ U | = 1}| = k′ and |{i ∈ [k] | |Ri \ U | ≥ 2}| = k′′.

Then notice that |R \U | ≤ k′ + k′′
2 (k′′ − 1), so |R ∩U | ≥ m − k′ − k′′

2 (k′′ − 1). Also,
according toClaims 17.1 and 17.2,we have |SV ∩U | = ∑

i∈[k] |Si ∩U | ≥ p(k′+2k′′).
Lastly, recall that |SE ∩U | = ∅. Consequently, the weight of U must be at least

p

2

(

m − k′ − k′′

2
(k′′ − 1)

)

+ p(k′ + 2k′′) = p

2

(

m + k′ − k′′

2
(k′′ − 9)

)

= B(k′, k′′).

Clearly, k′, k′′ ∈ {0, 1, . . . , k}. Regarding the values of B, we observe the following:

• B(k′, k′′) < B(k′ + 1, k′′) for all k′ ∈ {0, 1, . . . , k − 1} and for all k′′ ∈
{0, 1, . . . , k},

• B(k′, k′′) ≥ B(k′, 9) for all k′ ∈ {0, 1, . . . , k} and for all k′′ ∈ {0, 1, . . . , 8}, and
• B(k′, k′′) > B(k′, k′′+1) for all k′ ∈ {0, 1, . . . , k} and for all k′′ ∈ {9, 10, . . . , k−
1}.

These imply that B(k′, k′′) is minimum if and only if k′ = 0 and k′′ = k. Therefore,
a weight of p

2 (m − k
2 (k − 9)) = B(0, k) is within bounds for U only if k′ = 0 and

k′′ = k. Furthermore, the weight of U is B(0, k) only if |R\U | = k
2 (k − 1) and

|Si ∩U | = 2p for all i ∈ [k]. Now recall that |Ri j\U | ≤ 1 for all i, j ∈ [k] such that
i < j . We deduce that |Ri j\U | = 1 for all i, j ∈ [k] such that i < j , which implies
that |Ri\U | = k − 1 for all i ∈ [k]. Then, by Claim 17.3, for every i ∈ [k], there
exists an ai ∈ [p] such that Ri\U ⊆ Rai

i . We conclude that the set {va11 , . . . , v
ak
k } is a

solution to MCC on (G, {Vi }i∈[k]). �
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5 SFVS on Rooted Path Graphs

Here we show how to extend our previous approach to solving SFVS to rooted path
graphs.Recall that rooted path graphs are exactly the intersection graphs of directed
paths on a rooted tree. We observe that rooted path graphs are a graph class of
unbounded leafage.

Proposition 18 There are rooted path graphs on n vertices having leafage �(n).

Proof Let G be the graph obtained from the �-star with � ≥ 2 by subdividing all of its
edges. Notice that n = 2� + 1. We show that G is a rooted path graph having leafage
� − 1.

Let v1, . . . , v� be the leaf vertices ofG, let u1, . . . , u� be the vertices ofG such that
uivi ∈ E(G) for every i ∈ [�] and let t be the remaining vertex of G. To show that G
is a rooted path graph, we construct a tree model (T , {Tv}v∈V (G)) of G as follows. We
obtain the host tree T as the union of paths P0 = (x�, x�−1, . . . , x1), P� = (y�, x�)

and Pi = (xi , yi ), i ∈ [� − 1]. We choose the subtrees to be Tt = P0, Tui = Pi and
Tvi = (yi ), i ∈ [�]. Notice that T is a tree rooted on y� such that L(T ) = �− 1 and all
Tv , v ∈ V (G) are directed subpaths of T . It is not difficult to see that (T , {Tv}v∈V (G))

is a tree model of G, which shows that G is indeed a rooted path graph.
Let us now show that for every tree model (T ′, {T ′

v}v∈V (G)) of G, it holds that
|L(T ′)| ≥ � − 1. The maximal cliques of G are Ci = {t, ui } and Di = {ui , vi },
i ∈ [�]. For every maximal clique C of G, there exists a node c ∈ V (T ′) such that
for every v ∈ V (G), it holds that c ∈ V (T ′

v) ⇔ v ∈ C . Moreover, all these nodes are
pairwise distinct. For every Ci and for every Di , we select one such node and denote
it by ci and di respectively. For all V ⊆ V (T ′), we define �V to be the (unique) node
of the set min{y ∈ V (T ′) | ∀x ∈ V : x ≤ y}. Observe that for every v ∈ V (G),
for every V ⊆ V (T ′

v), the node �V is also in V (T ′
v) because T

′
v is connected. For all

i ∈ [�], we denote by bi the node�{ci , di }where {ci , di } ⊆ V (T ′
ui ). For all i, j ∈ [�],

we denote by ai j the node �{ci , c j } where {ci , c j } ⊆ V (T ′
t ).

Claim 18.1 For every i, j ∈ [�], if di < d j holds, then di < ai j < d j holds.

Proof For every i, j ∈ [�], we have that the following relations hold:

ci ≤ bi di ≤ bi c j ≤ b j d j ≤ b j ci ≤ ai j c j ≤ ai j

By Observation 1, we obtain that ai j is comparable to both bi and b j . Assume that
di < d j holds. By Observation 1, we obtain that bi is comparable to both b j and d j .
If di < d j ≤ bi holds, then by Observation 2, we obtain that d j ∈ V (Tui ), which is a
contradiction, so di ≤ bi < d j ≤ b j must hold. Now by Observation 1, we obtain that
ai j is comparable to d j . If ci ≤ bi < d j ≤ ai j holds, then by Observation 2, we obtain
that d j ∈ V (T ′

t ), which is a contradiction, so ai j < d j must hold. Assume ai j ≤ bi
holds. Then both ci ≤ ai j ≤ bi and c j ≤ ai j < b j hold. By Observation 2, we obtain
that ai j ∈ V (T ′

ui ) ∩ V (T ′
u j

), which is a contradiction to (T ′, {T ′
v}v∈V (G)) being a tree

model of G. We conclude that di < ai j < d j holds.
Wewill show that there are at least �−1 pairwise incomparable nodes in D = {di }i∈[�].
Assume that there exist i, j, k ∈ [�] such that di < d j < dk holds. Then byClaim18.1,
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we obtain that di < ai j < d j < a jk < dk holds, and by Observation 2, we obtain that
d j ∈ V (T ′

t ), a contradiction. Now assume that there exist i, j, k, l ∈ [�] such that both
di < d j and dk < dl hold and d j and dl are incomparable. Then by Claim 18.1, we
obtain that both di < ai j < d j and dk < akl < dl hold. Let a be the node �{ai j , akl}
where {ai j , akl} ⊆ V (T ′

t ). By Observation 1, we obtain that a is comparable to both
d j and dl . If both a ≤ d j and a ≤ dl hold, then by Observation 1 we obtain that d j and
dl are comparable, a contradiction, so at least one of d j < a and dl < a holds.Without
loss of generality, assume that d j < a holds. Then by Observation 2, we obtain that
d j ∈ V (T ′

t ), a contradiction. We conclude that there exists at most one node in D that
succeeds another node in D, which implies that at least � − 1 nodes in D are pairwise
incomparable. By Observation 3, we obtain that |L(T ′)| ≥ � − 1, which concludes
the proof. �

Our goal in this section is to device an algorithm for solving SFVS on rooted
path graphs in polynomial time. Just as for the algorithm of Sect. 4, we will derive
recursive formulas for optimal solutions AY

X and subsequently bound the number of
optimal solutions to subproblems that the algorithm requires for solving the complete
problem.

Assume that G = (VG , EG) is a rooted path graph, S ⊆ VG and (T , {Tv}v∈VG ) is
an expanded tree model ofG. For every u ∈ VG , we denote by l(u) the (unique) leaf of
its corresponding directed path Tu . For devicing the algorithm of this section, further
special vertices and subsets are required. For every u, v ∈ VG such that u < v, we
define u�v to be the (unique) vertex of max({u} ∪ {u′ ∈ VG\S | u < u′ < v and u′ ∈
N (u)}) = max({u} ∪ {u′ ∈ VG\S | l(u′) < r(u) < r(u′) < r(v)}. Moreover, for
every V1, V2, V3 ⊆ VG , we define the following subsets of VG \ S:

V [V1; ; ] = {u ∈ VG \ S | �v1 ∈ V1 : l(u) < r(v1)} V [V1; V2; ] = V [V1; ; ] ∩ V [; V2; ]
V [; V2; ] = {u ∈ VG \ S | ∃v2 ∈ V2 : l(u) < r(v2) < r(u)} V [V1; ; V3] = V [V1; ; ] ∩ V [; ; V3]
V [; ; V3] = {u ∈ VG \ S | ∃v3 ∈ V3 : r(u) ≤ r(v3)} V [; V2; V3] = V [; V2; ] ∩ V [; ; V3]

V [V1; V2; V3] = V [V1; ; ] ∩ V [; V2; ] ∩ V [; ; V3]

For any u, v ∈ VG , we denote the set Vu ∪V [; {u}; {v}] by Vu,v for simplicity. Observe
that the set Vu,u is simply Vu .

Lemma 19 Let u, w ∈ VG such that u < w and uw ∈ EG. Then the collection
V = {V [�uw; ;�u]}∪{Vu′,u′�u}u′∈�uw is a nice partition of X = (Vu\{u})\(N (u)∩
N (w) ∩ S) for every Y ⊆ VG\X such that Y ∩ S = ∅.
Proof We first show that V is a partition of X . Recall that �uw is a set of pairwise
incomparable vertices by definition. Consider a vertex u′′ ∈ X . Then exactly one of
the following statements holds:

⎧
⎨

⎩

∃u′ ∈ �uw : r(u′′) ≤ r(u′)
∃u′ ∈ �uw : l(u′′) < r(u′) < r(u′′)
�u′ ∈ �uw : l(u′′) < r(u′)

⇔
⎧
⎨

⎩

∃u′ ∈ �uw : u′′ ∈ Vu′
∃u′ ∈ �uw : u′′ ∈ V [; {u′}; {u′�u}]
u′′ ∈ V [�uw; ;�u]
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By Observation 1 and the definition of ≤G , the vertex u′ ∈ �uw in the first two cases
above is unique, otherwise we obtain a contradiction to the vertices of �uw being
pairwise incomparable. This fact implies our claim.

Now let Y ⊆ VG\X such that Y ∩ S = ∅ and consider an S-triangle St ofG[X ∪Y ].
Then there exists a vertex u′ ∈ �uw such that V (St ) ∩ Vu′ ∩ S �= ∅. Since St is a
triangle, every vertex in V (St ) \ Vu′ is adjacent to every vertex in V (St ) ∩ Vu′ . Then
by Lemma 9, for every vertex u′′ ∈ V (St ) \ Vu′ , the vertex u′′ is adjacent to u′, which
implies that l(u′′) < r(u′) < r(u′′) holds. We conclude that V (St ) ⊆ Vu′,u′�u . �
Observation 20 Let X ,Y ⊆ VG such that X ∩Y = ∅ and G[Y ] ∈ FS and let X ′ ⊆ X .
If P is a nice partition of X for Y , then P ′ = {P ∩ X ′ | P ∈ P : P ∩ X ′ �= ∅} is a
nice partition of X ′ for Y .

Proof The fact that P ′ is a partition of X ′ follows trivially from the definition. For
showing that P ′ is a nice partition of X ′ for Y , it suffices to notice that any S-triangle
in G[X ′ ∪ Y ] remains an S-triangle in G[X ∪ Y ]. �

We are now ready to show the recursive expressions that hold exclusively for G
being a rooted path graph and are required by the algorithm of this section. First we
obtain an expression to be used for the computation of sets AY

X in case of X = Vu and
Y = {w} where u, w ∈ VG such that u < w and uw ∈ EG .

Lemma 21 Let u, w ∈ VG such that u < w and uw ∈ EG, and let u ∈ A{w}
Vu

.

• If u ∈ S or w ∈ S, then A{w}
Vu

↔ {u} ∪
⋃

u′∈�uw

A{u,w}∩N (u′)
Vu′ .

• If u, w /∈ S, then A{w}
Vu

↔ {u} ∪ V [�uw; ;�u] ∪
⋃

u′∈�uw

A{u,w}∩N (u′)
Vu′,u′�u

.

Proof Observe that A{w}
Vu

↔ {u}∪A{u,w}
Vu\{u} by definition. Regarding triangles ofG[Vu∪

{w}], we observe the following property:

(P1) By the hypothesis, the vertices u and w are adjacent. Thus, for any u′ ∈ Vu ∩
N (u) ∩ N (w), the vertex set {u′, u, w} induces a triangle.

If u ∈ S or w ∈ S, then no vertex of Vu ∩ N (u) ∩ N (w) is in A{w}
Vu

because of

(P1). By definition, we get A{u,w}
Vu\{u} ↔ A{u,w}

Vu\(N [u]∩N (w)). According to Lemma 8, the
collection V�uw is a nice partition of Vu \ (N [u] ∩ N (w)). By Observation 4 and

Lemma 9, we get A{u,w}
Vu\(N [u]∩N (w)) ↔ ⋃

u′∈�uw A{u,w}
Vu′ ↔ ⋃

u′∈�uw A
{u,w}∩N (Vu′ )
Vu′ ↔

⋃
u′∈�uw A{u,w}∩N (u′)

Vu′ .

If u, w /∈ S, then no vertex of Vu ∩ N (u) ∩ N (w) ∩ S is in A{w}
Vu

because of (P1).

Let X = (Vu\{u})\(N (u) ∩ N (w) ∩ S). By definition, we get A{u,w}
Vu\{u} ↔ A{u,w}

X .
According to Lemma 19, the collection {V [�uw; ;�u]} ∪ {Vu′,u′�u}u′∈�uw is a nice

partition of X for Y = {u, w}. By Observation 4 and Lemma 9, we get A{u,w}
X ↔

A{u,w}
V [�uw;;�u] ∪ ⋃

u′∈�uw A{u,w}
Vu′,u′�u

↔ V [�uw; ;�u] ∪ ⋃
u′∈�uw A

{u,w}∩N (Vu′ )
Vu′,u′�u

↔
V [�uw; ;�u] ∪ ⋃

u′∈�uw A{u,w}∩N (u′)
Vu′,u′�u

. �
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We next obtain recursive expressions to be used for the computation of sets AY
X

in case of X = Vu,v where u ∈ VG and v ∈ VG\S such that u < v and uv ∈ EG .
The first two Lemmas follow directly from the definition of sets AY

X and the fact that
Vu,v \ {v} = Vu,u�v for every u, v ∈ VG such that u < v.

Lemma 22 Let u ∈ VG and v ∈ VG\S such that u < v and uv ∈ EG and let
Y ⊆ VG\Vu,v . If v /∈ AY

Vu,v
, then AY

Vu,v
↔ AY

Vu,u�v
.

Lemma 23 Let u ∈ VG and v ∈ VG\S such that u < v and uv ∈ EG. If v ∈ A∅
Vu,v

,

then A∅
Vu,v

↔ {v} ∪ A{v}
Vu,u�v

.

Lemma 24 Let u ∈ VG and v,w ∈ VG\S such that u < v < w and {u, v, w}
is a clique and let v ∈ A{w}

Vu,v
. Then A{w}

Vu,v
↔ {v} ∪ V [�vw; {u}; {u�v}] ∪

⋃

u′∈Vu∩�vw

A{v,w}∩N (u′)
Vu′,u′�v

.

Proof Observe that A{w}
Vu,v

↔ {v}∪ A{v,w}
Vu,v\{v} ↔ {v}∪ A{v,w}

Vu,u�v
by definition. Regarding

triangles of G[Vu,v ∪ {w}], we observe the following property:

(P2) By the hypothesis, the vertices v and w are adjacent. Thus, for any u′ ∈ Vu,v ∩
N (v) ∩ N (w), the vertex set {u′, v, w} induces a triangle.

Since v,w /∈ S, no vertex of Vu,v ∩ N (v) ∩ N (w) ∩ S is in A{w}
Vu,v

because of (P2). Let
X = (Vv \ {v}) \ (N (v) ∩ N (w) ∩ S) and X ′ = Vu,u�v\(N (v) ∩ N (w) ∩ S). By def-
inition, we get A{v,w}

Vu,u�v
↔ A{v,w}

X ′ . Now notice that X ′ ⊆ X . According to Lemma 19
and Observation 20, the collection {V [�vw; {u}; {u�v}]} ∪ {Vu′,u′�v}u′∈Vu∩�vw is
a nice partition of X ′ for Y = {v,w}. By Observation 4 and Lemma 9, we get
A{v,w}
X ′ ↔ A{v,w}

V [�vw;{u};{u�v}] ∪ ⋃
u′∈Vu∩�vw A{v,w}

Vu′,u′�v
↔ V [�vw; {u}; {u�v}] ∪

⋃
u′∈Vu∩�vw A

{v,w}∩N (Vu′ )
Vu′,u′�v

↔ V [�vw; {u}; {u�v}] ∪ ⋃
u′∈Vu∩�vw A{v,w}∩N (u′)

Vu′,u′�v
. �

Nowweare in position to state our claimed result,which is obtained via an algorithm
similar to the one in the proof of Theorem 15.

Theorem 25 The weighted Subset Feedback Vertex Set problem can be solved
on rooted path graphs in O(n2m) time.

Proof We first describe the algorithm. Given a rooted path graph G = (VG , EG),
we construct a tree model (T , {Tv}v∈VG ) of G such that all subtrees Tv , v ∈ VG are
directed paths in O(n +m) time [16, 22]. We apply the iterative procedure described
in the proof of Lemma 5 and obtain an expanded tree model (T ′, {T ′

v}v∈VG ) of G such
that all subtrees T ′

v , v ∈ VG are directed paths in O(n2) time. As the host tree T of
G has at most n nodes [11, 24], the expanded host tree T ′ has O(n) nodes. If G is an
interval graph, then SFVS can be solved via the algorithm described in the proof of
Corollary 16 in O(nm) time. Otherwise, we solve SFVS by computing A∅

Vumax
where

umax is the (unique) vertex of max VG .
For this purpose, we device a dynamic programming algorithm for computing

A∅
Vumax

. The algorithm works on T ′ traversing it in a bottom-up fashion starting from
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its leaves and moving towards its root. It maintains tables for storing the values of
computed sets AY

X in the following four cases of X and Y :

• X = Vu and Y = ∅ for every u ∈ VG .
• X = Vu and Y = {w} for every u, w ∈ VG such that u < w and uw ∈ EG .
• X = Vu,v and Y = ∅ for every u ∈ VG and v ∈ VG\S such that u < v and
uv ∈ EG .

• X = Vu,v and Y = {w} for every u ∈ VG and v,w ∈ VG\S such that u < v < w

and {u, v, w} is a clique.
For computing these sets, we derive the following recursive formulas:

• Let u ∈ VG . Lemma 10 and Lemma 11 imply that

– A∅
Vu

= max
weight

⎧
⎨

⎩

⋃

u′∈�u

A∅
Vu′ , {u} ∪

⋃

u′∈�u

A{u}∩N (u′)
Vu′

⎫
⎬

⎭
.

• Let u, w ∈ VG such that u < w and uw ∈ EG . Lemma 10 and Lemma 21 imply
the following:

– If u ∈ S or w ∈ S, then A{w}
Vu

= max
weight

⎧
⎨

⎩

⋃

u′∈�u

A{w}∩N (u′)
Vu′ , {u} ∪

⋃

u′∈�uw

A{u,w}∩N (u′)
Vu′

⎫
⎬

⎭
.

– If u, w /∈ S, then A{w}
Vu

=

max
weight

⎧
⎨

⎩

⋃

u′∈�u

A{w}∩N (u′)
Vu′ , {u} ∪ V [�uw; ;�u] ∪

⋃

u′∈�uw

A{u,w}∩N (u′)
Vu′,u′�u

⎫
⎬

⎭
.

• Let u ∈ VG and v ∈ VG\S such that u < v and uv ∈ EG . Lemma 22 and
Lemma 23 imply that

– A∅
Vu,v

= max
weight

{
A∅
Vu,u�v

, {v} ∪ A{v}
Vu,u�v

}
.

• Let u ∈ VG and v,w ∈ VG\S such that u < v < w and {u, v, w} is a clique.
Lemma 22 and Lemma 24 imply that

– A{w}
Vu,v

= max
weight

{
A{w}
Vu,u�v

, {v} ∪ V [�vw; {u}; {u�v}]

∪
⋃

u′∈Vu∩�vw

A{v,w}∩N (u′)
Vu′,u′�v

⎫
⎬

⎭
.

Regarding the correctness of the algorithm, observe that applying any of the above
recursive formulas requires only sets AY

X that can also be computed via these formulas.
To evaluate the running time of the algorithm, we assume that the input graph

is a connected rooted path graph. If not, observe that we can simply run our algo-
rithm on each connected component of the input graph and subsequently combine all
output solutions into a solution for the input graph. Notice that the number of sets
AY
X described above that the algorithm computes and subsequently stores their values
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in corresponding table entries is O(nm). Computing a single such set AY
X via any

of the recursive formulas shown above requires the retrieval of stored values from
O(n) entries. These entries are determined via precomputed auxiliary objects. For
some of these formulas, their application additionally requires the computation of a
set V [V1; V2; V3]. It is not difficult to see that any such set can be computed via a
single transversal of the host tree T ′. As there are O(n) nodes in T ′, traversing it
once takes O(n) time. Thus the total processing time is O(n2m). Now consider the
aforementioned auxiliary objects: they are the vertex sets�v,�vw and Vu ∩�vw and
the vertices u�v for appropriate u, v, w ∈ VG .For computing the vertex sets �v, it is
sufficient the traverse T ′ once for every v ∈ VG . Similarly, for computing the vertex
sets �vw, it is sufficient to traverse T ′ once for every v,w ∈ VG such that v < w

and vw ∈ EG , and for computing the vertices u�v, it is sufficient to traverse T ′ once
for every u, v ∈ VG such that u < v and uv ∈ EG . We also determine for every pair
(x, y) of distinct nodes of T ′ whether x < y or not. As mentioned in the proof of The-
orem 15, this can be accomplished in O(n2) time. Then for every u, v, w ∈ VG such
that u < v < w and {u, v, w} is a clique, we compute the vertex set Vu ∩�vw in O(n)

time by checking for every u′ ∈ �vw whether u′ ≤ u. Thus the total preprocessing
time is O(n2m). Therefore, the total running time of our algorithm is O(n2m). �

6 SFVS on Undirected Path Graphs

The results of Theorem 15 and Corollary 16 motivate us to investigate whether our
approach can be further extended to provide similar results on larger classes of chordal
graphs. The class of graphs with bounded vertex leafage is a natural candidate to
consider for such an investigation.Howeverwe show that Subset Feedback Vertex

Set is np-complete on undirected path graphs which are a subclass of graphs with
vertex leafage at most two. In particular, we provide a polynomial reduction from the
np-complete Max Cut problem. Given a graph G, theMax Cut problem concerns
the finding of a partition of V (G) into two sets A and A such that the number of
edges with one endpoint in A and the other one in A is maximum among all such
partitions. For two disjoint sets of vertices X and Y , we denote by E(X ,Y ) the set
{{x, y} | x ∈ X and y ∈ Y }. The cut-set of a set A ⊆ V (G) in G is the set of
edges of G with exactly one endpoint in A, which is E(A, V (G)\A) ∩ E(G). In such
terminology, Max Cut concerns the finding of a set A ⊆ V (G) such that its cut-set
in G is of maximum size.The Max Cut problem is known to be np-hard on general
graphs [30] and to remain np-hard even when the input graph is restricted to be a split
or 3-colorable or undirected path graph [3]. We mention that our reduction is based
on Max Cut on general graphs.

Towards the claimed reduction, to any graph G on n vertices and m edges, we will
associate a graph HG on 12n2 + 4n + 2m vertices. First we describe the vertex set of
HG . For every vertex v ∈ V (G), we consider the following sets:

• X(v) = {x1v , x2v , . . . , x2nv } and X(v) = {x1v, x2v, . . . , x2nv },
• Y (v) = {y1v , y2v , . . . , y2n+1

v } and Y (v) = {y1v, y2v, . . . , y2n+1
v },

• Z(v) = {z1v, z2v, . . . , z2n+1
v , z1v, z

2
v, . . . , z

2n+1
v }, and
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• W (v) = {(v, v′) | {v, v′} ∈ E(G)}.
We consider all these sets to be pairwise-disjoint. The vertex set of HG is precisely
the union of all these sets. Notice that for every edge {u, v} ∈ E(G), the ordered
pairs (u, v) and (v, u) are both vertices of HG . We denote by W (v) the set {(v′, v) |
{v′, v} ∈ E(G)}. The edge set of HG contains precisely the following:

• all edges required for the set
⋃

v∈V (G)(Y (v) ∪ Y (v) ∪ W (v)) to be a clique and
• for every vertex v ∈ V (G):

– all elements of the sets E(X(v),Y (v)), E(X(v),Y (v)), E(X(v),W (v)),
E(X(v),W (v)),

– for every i ∈ [n], the edges {xiv, xn+i
v }, {xiv, xn+i

v }, and
– for every j ∈ [2n + 1], the edges {y j

v , z jv}, {y j
v , z jv}, {y j

v, z
j
v}, {y j

v, z
j
v}.

Observe that xiv, x
n+i
v are true twins and xiv, x

n+i
v are true twins, whereas z jv, z

j
v are

false twins. This completes the construction of HG . An example of a graph G and its
associated graph HG is given in Fig. 5.

Lemma 26 For any graph G, the graph HG is an undirected path graph.

Proof In order to show that HG is an undirected path graph, we construct an undirected
tree T (HG) such that the vertices of HG correspond to particular paths of T (HG). To
distinguish the vertex sets between G and T (HG), we refer to the vertices of T (HG)

as nodes. In order to construct T (HG), starting from a particular node r , for every
vertex v ∈ V (G), we consider the following paths:

• PX (v) = 〈r , x (v)
1 , . . . , x (v)

n 〉 and PX (v) = 〈r , x (v)
1 , . . . , x (v)

n 〉 and
• for every j ∈ [2n + 1], PZ (v, j) = 〈r , z(v, j)

1 , z(v, j)
2 〉.

Notice that the initial node r is contained in all these paths. We consider them to be
otherwise pairwise-disjoint. The tree.T (HG) is precisely the union of all these paths.
Next, we describe the paths of T (HG) that correspond to the vertices of HG .

• For every v ∈ V (G) and i ∈ [n], to each of the vertices xiv, x
n+i
v (resp. xiv, x

n+i
v )

we correspond the path 〈x (v)
i 〉 (resp. 〈x (v)

i 〉).
• For every v ∈ V (G) and j ∈ [2n + 1],

– to the vertices y j
v and y

j
v wecorrespond thepaths 〈x (v)

n , . . . , x (v)
1 , r , z(v, j)

1 , z(v, j)
2 〉

and 〈x (v)
n , . . . , x (v)

1 , r , z(v, j)
1 , z(v, j)

2 〉 respectively, and
– to the vertices z jv and z jv we correspond the paths 〈z(v, j)

1 〉 and 〈z(v, j)
2 〉 respec-

tively.

• For every {u, v} ∈ E(G), to the vertices (u, v) and (v, u) we correspond
the paths 〈x (u)

n , . . . , x (u)
1 , r , x (v)

1 , . . . , x (v)
n 〉 and 〈x (v)

n , . . . , x (v)
1 , r , x (u)

1 , . . . , x (u)
n 〉

respectively.

Now it is not difficult to see that the intersection graph of the collection that contains
precisely all these paths is isomorphic to HG . Observe thatall paths containing node
r correspond to the vertices of the clique

⋃
v∈V (G) Y (v) ∪ Y (v) ∪W (v) and for every
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Fig. 5 Illustration of a graph G on three vertices (top left) and its associated undirected path graph HG
(bottom). We also show the tree T (HG ) described in the proof of Lemma 26 (top right). The vertices of
HG that lie in the gray area form a clique

v ∈ V (G), all paths that are subpaths of PX (v) and PX (v) correspond to the vertices of
X(v) and X(v) respectively, and all paths that are subpaths of PZ (v, j), j ∈ [2n + 1]
correspond to the vertices of Z(v). Therefore, HG is an undirected path graph. �

Let us now show that to any cut-set in G, there is an associated subset feedback
vertex set in HG . We first introduce some additional notation: X = ⋃

v∈V (G) X(v),

X = ⋃
v∈V (G) X(v), Y = ⋃

v∈V (G) Y (v), Y = ⋃
v∈V (G) Y (v), Z = ⋃

v∈V (G) Z(v),

W = ⋃
v∈V (G) W (v) = ⋃

v∈V (G) W (v) and for every A, B ⊆ V (G), W (A, B) =
(
⋃

a∈A W (a))∩(
⋃

b∈B W (b)). For every A ⊆ V (G), we denote by A the set V (G)\A
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for simplicity. We also define the vertex set

U (A) =
(

⋃

v∈A

(X(v) ∪ Y (v))

)

∪
⎛

⎝
⋃

v∈A

(X(v) ∪ Y (v))

⎞

⎠ ∪ (W \ W (A, A)).

Observe that |U (A)| = n(2n + (2n + 1)) + (2m − |W (A, A)|) = 4n2 + n + 2m −
|W (A, A)| and |W (A, A)| is the size of the cut-set of A in G.

Lemma 27 Let G be a graph and let A ⊆ V (G). Then U (A) is a subset feedback
vertex set of (HG , S) where S = X ∪ X ∪ Z.

Proof We show that the undirected path graph HG −U (A) is an S-forest. Assume for
contradiction that there is an S-triangle St in HG − U (A). Then St contains at least
one vertex of S. We consider the following three cases:

• Let x ∈ V (St )∩X . Then there exists v ∈ V (G) such that x ∈ X(v). Since X(v′) ⊆
U (A) for every v′ ∈ A, the vertex v must be in A. By the construction of HG , any
vertex of X(v) has exactly one neighbor in X(v). Thus there exists y ∈ V (St ) such
that y /∈ X(v). Again by the construction of HG , the neighborhood of any vertex
of X(v) in HG − X(v) is Y (v) ∪ W (v), which implies that y ∈ Y (v) ∪ W (v).
Hence we reach a contradiction to the definition ofU (A), since Y (v) ⊆ U (A) and
W (v) ⊆ W\W (A, A) ⊆ U (A).

• Let x ∈ V (St ) ∩ X . Arguments that are completely symmetrical to the ones
employed in the previous case yield a contradiction to the definition of U (A).

• Let z ∈ V (St ) ∩ Z . Then there exists v ∈ V (G) such that z ∈ Z(v) and by
the construction of HG , there exist y ∈ Y (v) and y ∈ Y (v) such that N (z) =
{y, y}. Thus V (St ) must be {z, y, y}, which implies that y, y /∈ U (A). Hence we
reach a contradiction to the definition of U (A), since either Y (v) ⊆ U (A) and
Y (v) ∩U (A) = ∅ or vice versa.

Since we obtained a contradiction in all three cases, we conclude that there is no
S-triangle in HG −U (A). �

Now we are ready to show the main result of this section. Its forward direction
follows from the previous lemma. Its reverse direction is obtained through a series of
claims. These claims imply a procedurewhich progressively reconfigures any arbitrary
initial subset feedback vertex set of HG until it becomes one that is associated to a
cut-set of G.

Theorem 28 The unweighted Subset Feedback Vertex Set decision problem is
np-complete on undirected path graphs.

Proof We provide a polynomial reduction from the np-completeMax Cut problem.
Given a graph G on n vertices and m edges for the Max Cut problem, we construct
the graph HG . Observe that the size of HG is polynomial and the construction of HG

can be done in polynomial time. By Lemma 26, HG is an undirected path graph. We
set S = X ∪ X ∪ Z . We claim that G admits a cut-set of size at least k if and only if
(HG, S) admits a subset feedback vertex set of size at most 4n2 + n + 2m − k.
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Lemma 27 provides the forward direction. Here we show the reverse direction. For
every U ⊆ V (HG), we denote by U the set V (HG)\U for simplicity. We also define
the vertex set AU = {v ∈ V (G) | X(v) ⊆ U }. Let U be a subset feedback vertex
set of (HG, S). Then it is not difficult to see that U (AU ) = U holds if and only if U
satisfies the following four properties:

(1) Z ⊆ U .
(2) For all v ∈ V (G), either X(v) ⊆ U or X(v) ⊆ U , and either X(v) ⊆ U or

X(v) ⊆ U .
(3) For all v ∈ V (G), either X(v) ∪ Y (v) ⊆ U and X(v) ∪ Y (v) ⊆ U , or vice versa.
(4) W \ W (AU , AU ) ⊆ U and W (AU , AU ) ⊆ U .

For every i ∈ {0, 1, . . . , 4}, we say that a subset of V (HG) is a tier-i sfvs if it is a subset
feedback vertex set of (HG , S) that satisfies the first i properties listed above. Notice
that if a subset of V (HG) is a tier-i sfvs, then it is a tier- j sfvs for all j ∈ {0, 1, . . . , i}.
Also notice that any subset feedback vertex set of (HG, S) is a tier-0 sfvs. We will
now show through a series of claims that for every tier-0 sfvs, there exists a tier-4 sfvs
of at most equal size.

Claim 28.1 For every tier-0 sfvs U , there exists a tier-1 sfvs U ′ such that |U ′| ≤ |U |.
Proof Let U be a tier-0 sfvs. If Z ∩ U = ∅, then U is already a tier-1 sfvs. Assume
otherwise. Then there exist v ∈ V (G) and j ∈ [2n + 1] such that {z jv, z jv} ∩ U �= ∅.
We construct the set U ′ = (U \ {z jv, z jv}) ∪ {y j

v}. Notice that |{z jv, z jv} ∩ U | ≥ 1 and
|{y j

v} \ U | ≤ 1, yielding |U ′| ≤ |U |. Observe that by the construction of HG , the
neighborhoods of z jv and z jv in HG − U ′ are the same subset of {y j

v }, thus neither z jv
nor z jv is a vertex of any triangle of HG −U ′. As z jv and z jv are the only vertices being
removed from a tier-0 sfvs, this implies thatU ′ is also a tier-0 sfvs. Iteratively following
this argumentation for every v ∈ V (G) and j ∈ [2n + 1] such that {z jv, z jv} ∩U �= ∅,
we obtain a tier-1 sfvs U ′ such that |U ′| ≤ |U |.
Claim 28.2 For every tier-1 sfvsU and v ∈ V (G), it holds that |(Y (v)∪Y (v))∩U | ≥
2n + 1.

Proof Let U be a tier-1 sfvs. Consider a vertex v ∈ V (G). Then Z(v) ⊆ U . Since
Z(v) ⊂ S also holds, the triangles induced by the sets {y j

v , y j
v, z

j
v}, j ∈ [2n + 1]

are 2n + 1 vertex-disjoint S-triangles of HG . Therefore, at least 2n + 1 vertices of
Y (v) ∪ Y (v) must be in U , because HG −U is an S-forest.

Claim 28.3 For every tier-1 sfvs U , there exists a tier-2 sfvs U ′ such that |U ′| ≤ |U |.
Proof LetU be a tier-1 sfvs. Consider a vertex v ∈ V (G) such that both X(v)∩U �= ∅
and X(v)∩U �= ∅. Assume that x ∈ X(v)∩U . By the construction of HG , we have that
N (x)\X(v) = Y (v)∪W (v) is a clique. Since X(v) ⊂ S and HG −U is an S-forest, at
most one vertex ofY (v)∪W (v) is inU .We construct the setU ′ = (U \X(v))∪(Y (v)∪
W (v)). Notice that |X(v)∩U | ≥ 1 and |(Y (v)∪W (v))\U | ≤ 1, yielding |U ′| ≤ |U |.
The set U ′ is a tier-1 sfvs. This follows from the fact that by the construction of
HG , there are no triangles in HG[X(v)] and N (X(v)) = Y (v) ∪ W (v) ⊆ U ′. Now
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consider a vertex v ∈ V (G) such that both X(v) ∩ U �= ∅ and X(v) ∩ U �= ∅. Via
completely symmetrical arguments, the set U ′′ = (U ′ \ X(v)) ∪ (Y (v) ∪ W (v)) is a
tier-1 sfvs such that |U ′′| ≤ |U ′|. Iteratively following the argumentations regarding all
applicable cases for every v ∈ V (G), we obtain a tier-2 sfvs U ′ such that |U ′| ≤ |U |.

Before we continue with our claims, we observe that for every tier-0 sfvsU and v ∈
V (G), if X(v) ⊆ U , thenY (v)∪W (v) ⊆ U , and if X(v) ⊆ U , thenY (v)∪W (v) ⊆ U .
This follows from the facts that HG −U is an S-forest, X(v) ∪ X(v) ⊂ S and by the
construction of HG , for every y ∈ Y (v) ∪ W (v) (resp. y ∈ Y (v) ∪ W (v)), the set
{x1v , xn+1

v , y} (resp. {x1v, xn+1
v , y}) induces a triangle of HG . In proving our remaining

claims, we implicitly apply this observation.

Claim 28.4 For every tier-2 sfvs U , there exists a tier-3 sfvs U ′ such that |U ′| ≤ |U |.
Proof Let U be a tier-2 sfvs. Consider a vertex v ∈ V (G). Then exactly one of the
following holds:

(1) X(v) ∪ X(v) ⊆ U
(2) X(v) ⊆ U and X(v) ⊆ U
(3) X(v) ⊆ U and X(v) ⊆ U
(4) X(v) ∪ X(v) ⊆ U

Assume that (1) holds. Then Y (v) ∪ Y (v) ⊆ U holds. We construct the set U ′ =
(U \ Y (v)) ∪ X(v). Notice that |Y (v) ∩ U | = 2n + 1 and |X(v)\U | = 2n, yielding
|U ′| < |U |. It is not difficult to show that the set U ′ is a tier-2 sfvs.

Now assume that (2) holds. Then Y (v) ⊆ U holds. We construct the set U ′ =
U \ Y (v). Clearly, |U ′| ≤ |U |. It is not difficult to show that the set U ′ is a tier-2
sfvs. Assuming that (3) holds, completely symmetrical arguments yield that the set
U ′ = U \ Y (v) is a tier-2 sfvs such that |U ′| ≤ |U |.

Lastly assume that (4) holds. By Claim 28.2, we have |(Y (v)∪Y (v))\U | ≤ 2n+1.
Without loss of generality, assume that |Y (v) \ U | ≤ n. We construct the set U ′ =
(U\(X(v)∪Y (v)))∪ (Y (v)∪W (v)). Notice that |(X(v)∪Y (v))∩U | ≥ 2n+0 = 2n
and |(Y (v) ∪ W (v))\U | ≤ n + (n − 1) < 2n, yielding |U ′| < |U |. It is not difficult
to show that the set U ′ is a tier-2 sfvs.

Iteratively following the argumentation regarding the appropriate case for every
v ∈ V (G), we obtain a tier-3 sfvs |U ′| such that |U ′| ≤ |U |.
Claim 28.5 For every tier-3 sfvs U , there exists a tier-4 sfvs U ′ such that |U ′| ≤ |U |.
Proof Let U be a tier-3 sfvs. Consider a vertex w ∈ W . Then there exist u, v ∈
V (G) such that w = (u, v) is the (unique) vertex of W (u) ∩ W (v). Assume that
w ∈ W\W (AU , AU ). Then u /∈ AU or v /∈ AU , which implies that X(u) ⊆ U or
X(v) ⊆ U . In both cases, it follows that w ∈ U . Now assume that w ∈ W (AU , AU ).
Then u ∈ AU and v ∈ AU , which implies that X(u) ⊆ U and X(v) ⊆ U . By the
construction of HG , we have that N (w) ∩ S = X(u) ∪ X(v). It follows that the set
U ′ = U\W (AU , AU ) is a tier-4 sfvs such that |U ′| ≤ |U |.

To conclude our proof, we assume thatU is a tier-0 sfvs such that |U | ≤ 4n2 +n+
2m−k.Due toClaims28.1, 28.3–28.5, there exists a tier-4 sfvsU ′ such that |U ′| ≤ |U |.
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Then U (AU ′) = U ′ holds. Recall that |U (AU ′)| = 4n2 + n + 2m − |W (AU ′ , AU ′)|
and |W (AU ′ , AU ′)| is the size of the cut-set of AU ′ in G. All of the above imply that
the size of the cut-set of AU ′ in G is at least k. �

7 Concluding Remarks

We provided a systematic and algorithmic study towards the classification of the
complexity of Subset Feedback Vertex Set on subclasses of chordal graphs.
We considered the structural parameters of leafage and vertex leafage as natural tools
to exploit insights of the corresponding tree representation. Our proof techniques
revealed a fast algorithm for the class of rooted path graphs. Naturally, it is interesting
to settle whether the unweighted Subset Feedback Vertex Set problem is fpt
when parameterized by the leafage of a chordal graph. We note that it is not unlikely
for the unweighted and weighted variants of the problem to behave computationally
differently in this case, since they do so in other cases [8, 37]. We also believe that our
np-hardness proof on undirected path graphs carries along the class of directed path
graphs which are the intersection graphs of directed paths taken from a directed tree
that has no constraint on the directions of its edges. Towards a more complete picture
on the behavior of the problem on subclasses of chordal graphs, strongly chordal
graphs are a candidate subclass for further investigation as they are incomparable to
the subclasses of bounded leafage.

Furthermore, it would be interesting to consider the closely related Subset Odd

Cycle Transversal problem in which the task is to hit all odd S-cycles. Notice that
all of our results for Subset Feedback Vertex Set are still valid for Subset Odd

Cycle Transversal, as in chordal graphs any induced cycle is a triangle which
is an odd induced cycle. Preliminary results indicate that the two problems align on
particular hereditary classes of graphs [7, 8]. Finally, an interesting direction for further
research involving the parameters of leafage and vertex leafage is to consider induced
path problems that are polynomially solvable and np-hard on interval graphs and split
graphs respectively [2, 25, 27, 34].
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