
Algorithmica (2023) 85:1805–1823
https://doi.org/10.1007/s00453-023-01133-z

Better Distance Labeling for Unweighted Planar Graphs

Paweł Gawrychowski1 · Przemysław Uznański1

Received: 28 January 2022 / Accepted: 14 January 2023 / Published online: 15 May 2023
© The Author(s) 2023

Abstract
A distance labeling scheme is an assignment of labels, that is, binary strings, to all
nodes of a graph, so that the distance between any two nodes can be computed from
their labelswithout any additional information about the graph. The goal is tominimize
the maximum length of a label as a function of the number of nodes. A major open
problem in this area is to determine the complexity of distance labeling in unweighted
planar (undirected) graphs. It is known that, in such a graph on n nodes, some labels
must consist of Ω(n1/3) bits, but the best known labeling scheme constructs labels of
length O(

√
n log n) (Gavoille, Peleg, Pérennes, and Raz in J Algorithms 53:85–112,

2004). For weighted planar graphs with edges of length polynomial in n, we know
that labels of length Ω(

√
n log n) are necessary (Abboud and Dahlgaard in FOCS,

2016). Surprisingly, we do not know if distance labeling for weighted planar graphs
with edges of length polynomial in n is harder than distance labeling for unweighted
planar graphs. We prove that this is indeed the case by designing a distance labeling
scheme for unweighted planar graphs on n nodes with labels consisting of O(

√
n)

bits with a simple and (in our opinion) elegant method. We also show how to extend
this to graphs with small weight and (unweighted) graphs with bounded genus. We
augment the construction for unweighted planar graphs with a mechanism (based
on Voronoi diagrams) that allows us to compute the distance between two nodes in
only polylogarithmic time while increasing the length to O(

√
n log n). The previous

scheme required Ω(
√
n) time to answer a query in this model.

Keywords Distance labeling · Planar graphs · Voronoi diagrams

An extended abstract appeared at WADS 2021 [20].

B Paweł Gawrychowski
gawry@cs.uni.wroc.pl

Przemysław Uznański
puznanski@cs.uni.wroc.pl

1 University of Wrocław, Wrocław, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01133-z&domain=pdf
http://orcid.org/0000-0002-6993-5440

1806 Algorithmica (2023) 85:1805–1823

1 Introduction

An informative labeling scheme is an elegant formalization of the idea that identifiers
of nodes in a network can be chosen to carry some additional information. Peleg [33]
defined such a scheme for a function f defined on subsets of nodes to consist of two
components: an encoder and a decoder. First, the encoder is given a description of the
whole graph G and assigns a binary string to each of its nodes. The string assigned to
a node is called its label. Second, the decoder is given the labels assigned to a subset
of nodes W and needs to calculate f (W). This must be done without any information
about the graph except for the given labels and the fact that G belongs to a specific
family G . The main goal is to make the labels as short as possible, that is, to minimize
the maximum length of a label assigned to a node in G. A particularly clean example
of a function f that one might want to consider in this model is adjacency. Kannan et
al. [25] observed that an adjacency labeling scheme is related (in fact, equivalent) to a
so-called vertex-induced universal graph, a purely combinatorial object that has been
considered already in the 60s [32]. By now,we have a rich body ofwork concerning not
only adjacency labeling [3, 4, 8–10, 13, 34], but also flowand connectivity labeling [22,
26, 28], Steiner tree labeling [33] and, most relevant to this paper, distance labeling.

Distance labeling. A distance labeling scheme is an assignment of labels, that is,
binary strings, to all nodes of a graph G, so that the distance δG(u, v) between any
two nodes u, v can be computed from their labels. Unless specified otherwise, we
consider unweighted graphs, so δG(u, v) is the smallest number of edges on a path
between u and v. The main goal is to make the labels as short as possible, that is,
to minimize the maximum length of a label. The secondary goal is to optimize the
query time, that is, the time necessary to compute δG(u, v) given the labels of u and
v. Distance labeling for general unweighted undirected graphs on n nodes was first
considered by Graham and Pollak [21], who obtained labels consisting of O(n) bits.
The decoding time was subsequently improved to O(log log n) by Gavoille et al. [17],
then to O(log∗ n) by Weimann and Peleg [35], and finally Alstrup et al. [6] obtained
O(1) decoding time with labels of length log 3

2 n + o(n).1 It is known that, for every
labeling scheme, some labels must consist of at least n

2 bits [25, 32], so achieving
sublinear bounds is not possible in the general case.

Better schemes for distance labeling are known for restricted classes of graphs.
As a prime example, trees admit a distance labeling scheme with labels of length
1
4 log

2 n + o(log2 n) bits [16], and this is known to be tight up to lower-order terms
[7]. In fact, any sparse graph admits a sublinear distance labeling scheme [5] (see also
[18] for a somewhat simpler construction). However, the best known upper bound is
still rather far away from the best known lower bound of Ω(

√
n) [17], and recently

Kosowski et al. [29] showed that, for a natural class of schemes based on storing the
distances to a carefully chosen set of hubs, the best achievable hub-label size and
distance-label size in sparse graphs may be Θ(n/2(log n)c) for some 0 < c < 1.

Planar graphs. An important subclass of sparse graphs are planar graphs, for which
Gavoille et al. [17] constructed a scheme with labels of length O(

√
n log n). They

1 All logarithms are in base 2.

123

Algorithmica (2023) 85:1805–1823 1807

also proved that in any such scheme some label must consist of Ω(n1/3) bits. In fact,
their upper bound of O(

√
n log n) bits is also valid for weighted planar graphs, under

a natural assumption that the weights are bounded by a polynomial in n. The lower
bound is based on designing a family of grid-like graphs on k×k nodes and each edge
being of length O(k). The family consists of 2Θ(k2) graphs and admits the following
property: the pairwise distances of O(k) nodes on the boundaries uniquely determine
the graph. This construction immediately implies that, for weighted planar graphs,
there must be a node with label consisting of Ω(

√
n) bits. However, for unweighted

planar graphs, this only implies a lower bound of Ω(n1/3), as one needs to replace
an edge of length � with � edges, thus increasing the size of the graph to k3. Abboud
and Dahlgaard [1] extended this construction to show that, in fact, for graphs with the
length of each edge bounded by a polynomial in n, there must be a node with label
consisting ofΩ(

√
n log n) bits. Interestingly, theywere able to use essentially the same

construction to establish a strong conditional lower bound for dynamic planar graph
algorithms. Unfortunately, there has been no progress in improving the construction
for unweighted planar graphs.

Abboud et al. [2] provided a reasonable explanation for the lack of progress
on improving the unweighted grid-like construction. They showed that for any
unweighted planar graph G with k distinguished nodes, there is an encoding con-
sisting of Õ(min{k2,√k · n}) bits that allows calculating the distance between any
pair of distinguished nodes. This implies that the approach based on fixing a family
G of unweighted planar graphs, with each graph containing k distinguished nodes
such that their pairwise distance uniquely determine G ∈ G , cannot result in a higher
lower bound than Õ(min{k2,√k · n})/k = Õ(n1/3). This indicates that we should
seek a significantly different proof technique or a better upper bound. Determining the
complexity of distance labeling in unweighted planar graphs remains to be a major
open problem in this area.

Our contribution. We present an improved upper bound for distance labeling of
unweighted planar graphs on n nodes. We design a distance labeling scheme with
labels consisting of O(

√
n) bits. While this might be seen as “only” a logarithmic

improvement, it provides a separation for distance labeling between unweighted and
weighted planar graphs. Furthermore, we believe that lack of any progress on resolving
the complexity of distance labeling in unweighted planar graphs in the last 16 years
makes any asymptotic decrease desirable. Our method easily extends to undirected
planar graphs with edges of length from [1,W], allowing us to decrease the label
length from O(

√
n log(nW)) to O(

√
n logW), and (unweighted) undirected graphs

with genus g, decreasing the label length from O(
√
ng log n) to O(

√
ng log g) for

graphs of genus at most g. Decoding time in our construction for planar unweighted
graphs is O(

√
n) (as in the previously known scheme of Gavoille et al. [17]), but we

augment it with amechanism that computes the distance in polylogarithmic time, how-
ever at the expense of increasing the label length to O(

√
n log n). Table 1 summarizes

the current state of knowledge concerning this problem.

Techniques and roadmap. As in the previous scheme of Gavoille et al. [17], we apply
a recursive separator decomposition. This scheme is presented in detail in Sect. 2. Our

123

1808 Algorithmica (2023) 85:1805–1823

Table 1 Summary of known results concerning distance labeling of planar (and related) graphs on n nodes

Class of graphs Lower bound Upper bound

Planar, lengths polynomial in n Ω(
√
n log n) [1] O(

√
n log n) [17]

Planar, unweighted Ω(n1/3) [17] O(
√
n log n) [17]

O(
√
n) (here)

O(
√
n log n) with efficient decoding (here)

Planar, lengths from [1,W] O(
√
n logW) (here)

Genus g, unweighted O(
√
ng log n) [17]

O(
√
ng log g) (here)

improvement is based on the following observation: if each separator is, in fact, a cycle,
then we can shave off a factor of log n by appropriately encoding the stored distances.
For a triangulated graph, one can indeed always find a balanced cycle separator, but
our graph does not have to be triangulated. In some applications, the solution to this
problem is to simply triangulatewith edges of sufficiently large length (as to not change
the distance), but we need to keep the graph unweighted. In Sect. 3, we overcome this
difficulty by designing a novel method of replacing each face of the original graph G
with an appropriately chosen gadget to obtain a new unweighted graph G ′ with every
face of length at most 4. The crucial property is that, for any two nodes that exist in
both G and G ′, their distance in G ′ is at least the logarithm of their distance in G.
So, while inserting the gadgets may decrease the distances, we are able to control this
decrease. We believe that this might be of independent interest. To facilitate efficient
decoding, in Sect. 5 we build on the distance oracle of Gawrychowski et al. [19]. This
requires some tweaks in their point location structure to make it smaller at the expense
of increasing the query time (but still keeping it polylogarithmic) and adjusting our
scheme to balance the lengths of different parts of the label.

Computational model. When discussing the decoding timewe assume theWord RAM
model with words of length log n. A label of length � is packed in ��/ log n� words,
and the decoder computing the distance between u and v can access in constant time
any word from their labels. Standard arithmetic and Boolean operations on words are
assumed to take constant time.

2 Previous Scheme

We briefly recap the scheme of Gavoille et al. [17]. Their construction is based on the
notion of separators, that is, sets of nodes which can be removed from the graph so that
every remaining connected component consists of at most 2

3n nodes. By the classical
result of Lipton and Tarjan [30] any planar graph on n nodes has such a separator
consisting of O(

√
n) nodes. Now the whole construction for a connected graph G

proceeds as follows: find a separator S of G, and let G1,G2, . . . be the connected
components of G \ S. The label of v ∈ Gi in G, denoted �G(v), is composed of i ,
recursively constructed �Gi (v), and the distances from v to every u ∈ S in G, denoted

123

Algorithmica (2023) 85:1805–1823 1809

δG(v, u), written down in the same order for every v ∈ G. A label of v ∈ S consists
of only the distances δG(v, u) for all u ∈ S (also written down in the same order).

The space complexity of the whole scheme is dominated by the space required to
store |S| distances, each consisting of log n bits, resulting in O(

√
n log n) bits in total.

The bound of O(
√
n) on the size of a separator is asymptotically tight. However, the

total length of the label of v ∈ G (in bits) depends not on the size of the separator,
but on the number of bits necessary to encode the distances from v to the nodes of
the separator. If one can write S = (u1, u2, . . . , u|S|), where every ui and ui+1 are
adjacent (we implicitly assume u|S|+1 = u + 1), then |δG(v, ui) − δG(v, ui+1)| ≤ 1,
for every i = 1, 2, . . . , |S| − 1, and consequently writing down δG(v, u1) explicitly
and then storing all the differences δG(v, ui) − δG(v, ui+1) takes only O(

√
n) bits in

total. It is known that if the graph is triangulated, there always exists a simple cycle
separator [31], so for such graphs labels of length O(

√
n) are enough. We show that,

in fact, for any planar graph it is possible to select a separator so that the obtained
sequence of differences is compressible. This is done by inserting some gadgets into
every face of the graph.

3 Improved Scheme

We use the notion of weighted separators, as introduced in [31]. Consider a planar
graph, where every node has a non-negative weight and all these weights sum up to
1. Then a set of nodes is a weighted separator if after removing these nodes the total
weight of every remaining connected component is at most 2

3 . We have the following
well-known theorem (the result is in fact more general and allows assigning weights
also to edges and faces, but this is not needed in our application):

Lemma 1 ([31]) For every planar graph on n nodes having assigned non-negative
weights summing up to 1, either there exists a node that is a weighted separator or
there exists a simple cycle of length at most 2

√
2	d/2
n which is a weighted separator,

where d is the maximum face size.

We will use the above tool to show our main technical lemma.

Lemma 2 Any planar graph G has a separator S, such that

|S|−1∑

i=1

(1 + log δG(ui , ui+1)) = O(
√
n)

for some ordering u1, u2 . . . , u|S| of all nodes of S.

Before proving the lemma, we first describe a family of subdivided cycles. A sub-
divided cycle on s ≥ 3 nodes, denoted Ds , consists of a cycle Cs = (v1, . . . , vs)

and possibly some auxiliary nodes. D3 and D4 are simply C3 and C4, respectively.
For s > 4, we add � s

2� auxiliary nodes u1, . . . , u� s
2 �, and connect every vi with u� i

2 �.
To complete the construction, we recursively build D� s

2 � and identify its cycle with

123

1810 Algorithmica (2023) 85:1805–1823

Fig. 1 A face of size 10 is transformed by replacing C10 with D10 containing 8 new auxiliary nodes

(u1, . . . , u� s
2 �). (An example of such a subdivided cycle on 10 nodes is shown in

Fig. 1.) We have the following property.

Lemma 3 For any distinct u, v ∈ Cs, δDs (u, v) ≥ 1 + log δCs (u, v).

Proof We apply induction on s. It is easy to check that the lemma holds when s ≤ 4, so
we assume s ≥ 5. Let us denote δDs (u, v) = d ′ and δCs (u, v) = d. We proceed with
another induction on d ′. When d ′ = 1 then u and v must be neighbors onCs , so d = 1
and the claim holds. When d = 1 then d ′ = 1 (because we always have d ′ ≤ d) and
the claim also holds. Now assume d ′, d ≥ 2 and consider a shortest path connecting
u and v in Ds . If it consists of only auxiliary nodes except for the endpoints u and v,
then we consider the immediate neighbors of u and v on the path, denoted u′ and v′,
respectively. As u′ and v′ are auxiliary nodes, they both must belong to the cycle C� s

2 �
of D� s

2 �, as no other auxiliary nodes are neighbours of non-auxiliary nodes. Next, we
analyze the distance between u′ and v′ on C� s

2 �. Every node of C� s
2 � is connected to

at most two nodes of Cs . Consequently, if there are t nodes strictly between u′ and v′
on C� s

2 �, then there are at most 2t + 2 nodes strictly between u and v on Cs . Thus,

the distance between u′ and v′ on C� s
2 � must be at least 	 d

2
, as otherwise the distance
between u and v on Cs would be at most 2(d

2
 − 2) + 3 < d. This allows us to apply
the inductive assumption applied with smaller � s

2� < s (and using d ≥ 2):

d ′ ≥ 2 + 1 + log	d/2
 = 1 + log(4	d/2
) > 1 + log d.

Otherwise, let w be an intermediate node of the path that belongs to the cycle Cs .
Let δDs (u, w) = d ′

0 and δCs (u, w) = d0 and δDs (w, v) = d ′
1 and δCs (w, v) = d1.

Because w is an intermediate node, we can apply the inductive assumption with the

123

Algorithmica (2023) 85:1805–1823 1811

same s but smaller d ′
0, d

′
1 < d ′ to obtain d ′

0 ≥ 1 + log d0 and d ′
1 ≥ 1 + log d1. Then:

d ′ = d ′
0 + d ′

1

≥ 1 + log d0 + 1 + log d1 by the inductive assumption

= 1 + log(2d0d1)

≥ 1 + log(d0 + d1) 2xy ≥ x + y for any x, y ≥ 1

≥ 1 + log d by the triangle inequality

as required. �
of Lemma 2 Let G ′ be the graph constructed from G by replacing every face (includ-
ing the external face) with a subdivided cycle of appropriate size. More precisely,
let (v1, v2, . . . , vs) be a boundary walk of a face of G. Note that nodes vi are not
necessarily distinct. We create a subdivided cycle Ds and identify its cycle Cs with
(v1, v2, . . . , vs). Clearly G ′ is also planar and each of its faces is either a triangle or a
square. Since any subdivided cycle has at most twice as many auxiliary nodes as cycle
nodes and the lengths of all boundary walks sum up to twice the number of edges,
which is at most 3n − 6 (as G is planar, and without losing the generality simple), G ′
contains at most n′ = n + 4 · (3n − 6) < 13n nodes.

We assign weights to nodes ofG ′ so that every node also appearing inG has weight
1 and every new node has weight 0. By Lemma 1 either there exists a single node s
that is a weighted separator or there exists a weighted simple cycle separator S′ in G ′
of size at most 2

√
52n. In the former case, s is also a weighted separator inG and there

is nothing to prove. In the latter case, let S = S′ ∩ G be a separator in G. Because S′
is a simple cycle separator, S = (u1, u2, . . . , uc), and ui and ui+1 are incident to the
same face f of G. The boundary walk of f , consisting of si nodes, has been identified
with the cycle Csi of a copy of the subdivided cycle Dsi such that S′ connects ui and
ui+1 either directly or by visiting some auxiliary nodes of the copy of Dsi , for every
i = 1, 2, . . . , c (we assume uc+1 = u1). In either case, S′ connects ui and ui+1 with
a path from vi to v′

i in the copy of Dsi , thus:

∑

i

δDsi
(vi , v

′
i) ≤ |S′| = O(

√
n).

By Lemma 3, δDsi
(vi , v

′
i) ≥ 1 + log δCsi

(vi , v
′
i), so altogether:

∑

i

(1 + log δG(ui , ui+1)) ≤
∑

i

(1 + log δCsi
(vi , v

′
i)) = O(

√
n)

as required. �
While not relevant in this section, later we will need to verify that G ′ obtained from

G in the proof of Lemma 2 is biconnected.

Lemma 4 If n ≥ 4 then G ′ is biconnected.

123

1812 Algorithmica (2023) 85:1805–1823

Proof It is straightforward to verify that removing an auxiliary node cannot disconnect
the graph. Consider a node u of G, and let v0, v1, . . . , vd−1 be its neighbors arranged
in a clockwise order. We claim that vi and v(i+1) mod d are still connected in G ′ after
removing u from G ′. Consider the face containing vi , u, v(i+1) mod d as a part of the
boundary walk. If the boundary walk is of size at least 5 then the artificial nodes guar-
antee the connectivity.When the boundary walk contains just one occurrence of u then
the non-auxiliary nodes guarantee the connectivity after removing the only occurrence
of u. The only remaining case is that the boundary walk is u, vi , u, v(i+1) mod d , but
then there are no other edges in G and n ≤ 3. �

Now we proceed to the main result of this section:

Theorem 1 Any planar graph on n nodes admits a distance labeling scheme of length
O(

√
n).

Proof We proceed as in the previously known scheme of size O(
√
n log n), except that

in every stepwe apply our Lemma 2. Inmore detail, to construct the label of every node
v ∈ G we proceed as follows. First, we find a separator S = (u1, u2 . . . , uc) using
Lemma 2. We have

∑
i (1+ log δG(ui , ui+1)) = O(

√
n), so in particular c = O(

√
n)

and
∑c

i=2 log δG(ui−1, ui) = O(
√
n). For every v ∈ G we encode its distances to

all nodes of the separator as follows. We use the Elias γ code [14], which gives a
prefix-free encoding of a number x using 2�log x� + 1 bits. Formally, this encoding
assigns a bitstring code(x) to every number x . For every x , the length of code(x) is at
most 2�log x� + 1. Additionally, for every x �= y, code(x) is not a prefix of code(y)
(nor vice versa). We first encode δG(v, u1) using the Elias γ code. Then we encode
the differences δG(v, ui) − δG(v, ui−1), for all i = 2, . . . , c, also using the Elias γ

code and an extra bit to denote the sign. All encodings are concatenated, and by the
prefix-free property given the concatenation we can recover all the distances. The total
length of the concatenation is:

O(
√
n +

c∑

i=2

log |δG(v, ui) − δG(v, ui−1)|).

Consequently, by |δG(v, ui) − δG(v, ui−1)| ≤ δG(ui−1, ui) and the properties of our
separator the encoding takes O(

√
n) bits. Second, for every node we store the name

of its connected component of G \ S in O(log n) ⊆ O(
√
n) bits. Third, we recurse

on every connected component of G \ S and append the obtained labels to the current
labels. To calculate δG(u, v), we first compute d = minw∈S(δG(u, w) + δG(w, v)),
extracting δG(u, w) from the label of u and δG(w, v) = δG(v,w) from the label of
v. Then, if u and v belong to the same connected component of G \ S, we proceed
recursively there and return the minimum of d and the recursively found distance in
the connected component. The correctness is clear: either a shortest path between u
and v is fully within one of the connected components, or it visits some w ∈ S, and
in such case we can recover δG(u, w) + δG(w, v) from the stored distances. The final

size of every label is O(
√
n +

√
2
3n + . . .) = O(

√
n) bits. �

123

Algorithmica (2023) 85:1805–1823 1813

4 Simple Extensions

In this section, we describe two simple extensions of Theorem 1. First, consider a
planar graph G with edges of length from [1,W], for some W ≥ 2. Applying the
scheme of Gavoille et al. [17] results in labels consisting of Θ(

√
n log(nW)) bits for

this case, as on the topmost level of the recursion we need to store Θ(
√
n) distances

bounded by nW . We improve this to O(
√
n logW).

Theorem 2 Any planar graph on n nodes with edges of length from [1,W], for W ≥ 2,
admits a distance labeling scheme of length O(

√
n logW).

Proof We proceed as in proof of Theorem 1. On every level of the recursion, we find
the separator S by considering an unweighted planar graph G1 obtained from G by
disregarding the length of every edge. However, the encoded distances are computed
in the original G. On the topmost level of the recursion, the total length of all these
encoded distances is bounded by

O(
√
n + log(nW) +

c∑

i=2

log δG(ui−1, ui))

= O(
√
n + logW +

c∑

i=2

log(W · δG1(ui−1, ui)))

= O(
√
n + c logW +

c∑

i=2

log δG1(ui−1, ui)).

which, by the choice of S in G1, this is O(
√
n logW). Summing this over all levels

of the recursion, we obtain the theorem. �
The second extension concerns bounded-genus (unweighted) graphs. For a genus

g graph on n nodes, Gavoille et al. [17] showed how to construct labels consisting of
O(

√
ng log n) bits. We improve this to O(

√
ng log g).

Theorem 3 Any genus-g planar graph on n nodes admits a distance labeling scheme
of length O(

√
ng log g).

Proof Let G be such a genus-g graph on n nodes, and consider its 2-cell embedding in
a surface of genus g. Then, every face of G is homeomorphic to an open disc. We can
assume that G is simple, that is, every face is incident to at least three edges, and so
the number of edges is O(n + g). We obtain G ′ by inserting a copy of the subdivided
cycle inside every face of G as in the proof of Lemma 2 while increasing the number
of nodes to O(n+ g) (by the bound on the number of faces of G ′). Then, we apply the
theorem of Hutchinson [23] to find a short non-contractible cycle. A non-contractible
cycle is either separating and deleting it divides the graph into two graphs of strictly
smaller genus, or non-separating and deleting it decreases the genus by at least one.
The theorem states that, for any triangulated graph on n nodes, we can find such a
cycle of length O(

√
n/g log g). We cannot apply this directly, as our graph might have

123

1814 Algorithmica (2023) 85:1805–1823

faces of size four. So, we temporarily triangulate G ′ to obtain G ′′, apply the theorem
on G ′′ to find a short non-contractible cycle C ′′, and then translate it to a walk C ′ in
G ′ by routing along the faces, which increases its length only by a constant factor, so
|C ′| = O(

√
(n + g)/g log g). Finally, we consider C = C ′ ∩ G. We can encode the

distances from any v ∈ G to all nodes of C as described in the proof of Theorem 1
in O(

√
(n + g)/g log g) bits. This encoding becomes part of the label of every node

v ∈ G and allows us to compute the distance if there exists a shortest path visiting
a node of C . If C ′′ was a separating cycle then removing C from G separates it into
two graphs G1,G2 with smaller genus. We recursively construct the label of every
node of G1 and G2. The label of every node of C consists only of the encoding of the
distances to all nodes of C . The label of every node of G \ C additionally contains
its label in the corresponding G1 or G2, together with a single bit denoting whether
the node belongs to G1 or G2. If C ′′ was not separating then removing C from G
decreases the genus. We repeat the reasoning on G \ C , and obtain the label of every
node of C and G\C similarly as in the previous case, except that now there is no need
for the single bit denoting whether the node belongs to G1 or G2. In the recursion,
when g = 0 we obtain a planar graph and apply Theorem 1. To bound the overall
length of a label obtained through this recursive construction, we notice that every
node participates in at most one smaller instance of the same problem until it becomes
either a part of the separator (and does not participate further) or a planar graph (when
we apply Theorem 1). Each step of this process appends O(

√
(n + g)/g log g) bits

to the label, and then possibly we add O(
√
n) bits in the last step. The overall length

of a label is thus O(
√

(n + g)g log g). If g ≤ n then this is already O(
√
ng log g)

as desired, and otherwise we can switch to an O(n)-bit distance labeling scheme for
general unweighted graphs [6]. �

5 Efficient Decoding

The drawback of the scheme from Theorem 1 is its high decoding time. Computing
δG(u, v) given �G(u) and �G(v) is done as follows. First, we iterate over w ∈ S and
consider δG(u, w)+ δG(v,w) as a possible distance, extracting δG(u, w) from �G(u)

and δG(v,w) from �G(v). Then, we check if u and v belong to the same componentGi ,
and if so recurse on �Gi (u) and �Gi (v). Even assuming that extracting any δG(u, w)

takes constant time, it is not clear how to avoid iterating over all w ∈ S, so we cannot
hope for anything faster than O(

√
n). In this section we show how to overcome this

difficulty by applying themachinery of Voronoi diagrams on planar graphs, introduced
for computing the diameter of a planar graph in subquadratic time by Cabello [11].
Our method roughly follows the approach of Gawrychowski et al. [19] (also see [12]),
but we need to make sure that the information can be distributed among the labels, and
carefully adjust the parameters of the whole construction. We start with presenting the
necessary definitions and tools.
r -divisions. A region R of G is an edge-induced subgraph of G. An r -division of G
is a collection of regions such that each edge of G is in at least one region, there are
O(n/r) regions, each region has at most r nodes and O(

√
r) boundary nodes that

belong to more than one region. We work with a fixed planar embedding of G, and all

123

Algorithmica (2023) 85:1805–1823 1815

Fig. 2 An example of Voronoi diagram with 4 sites (denoted with different colours) based on [19]), top
left: VD(S, ω), top right: VD0, bottom left: VD1, bottom right: VD∗(S, ω)

of its subgraphs, in particular the regions, inherit this embedding. A hole of a region
R is a face that is not a face of G. An r -division with few holes has the additional
property that each edge belonging to two regions is on a hole in each of them, and
each region has O(1) holes.

Lemma 5 ([27]) For a constant s, there is a linear-time algorithm that, for any bicon-
nected triangulated planar embedded graph G and any r ≥ s, outputs an r-division
of G with few holes.

The above theoremadditionally guarantees that each region is connected and its bound-
ary nodes are exactly the nodes incident to its holes.
Voronoi diagrams. Following the description in [19], let S be the nodes (called sites)
incident to the external face h of an internally triangulated planar graph G. Note that
while our goal is to consider unweighted graphs, Voronoi diagrams can be defined for
weighted graphs, and indeed this is how we are going to use them. This allows us to
perturb the weights to ensure that all shortest paths are unique, see e.g. [15]. In our
case, we need to additionally verify that the perturbed weights are not too large, but
the standard argument based on the Isolation Lemma shows that O(log n) additional
bits of accuracy are enough to this end.

Each site u ∈ S has a weight ω(u), defined as the distance from some node v of
the larger graph to u, and the distance between a site u ∈ S and a node v, denoted
by d(u, v), is defined as ω(u)+ δG(u, v). The (additively) weighted Voronoi diagram

123

1816 Algorithmica (2023) 85:1805–1823

of (S, ω) within G, denoted VD(S, ω), is a partition of the nodes of G into pairwise
disjoint sets, one set Vor(u) for every u ∈ S. Vor(u) is called the cell of u and contains
all nodes of G that are closer to u than any other site u′. The standard perturbation as
described above allows us to assume that this is well defined, that is, for every node v

there is only one site u for which ω(u) + δG(u, v) achieves the minimum. We work
with a dual representation of VD(S, ω), denoted by VD∗(S, ω), defined as follows.
Let G∗ be the dual of G, and VD0 is the subgraph of G∗ containing the duals of all
edges (u, v) of G such that u and v belong to different cells. Then, let VD1 be obtained
from VD0 by contracting edges incident to vertices of degree 2 one-by-one as long as
possible. A vertex of VD1 is called aVoronoi vertex, and is dual to a face f such that the
nodes incident to f belong to at least three Voronoi cells. In particular, h∗ is a Voronoi
vertex. Finally, VD∗(S, ω) is obtained from VD1 by replacing h∗ by multiple copies,
one for each incident edge. See Fig. 2 for an example. The complexity of VD∗(S, ω) is
O(|S|) and, assuming that every node belongs to its cell is a tree. This assumption is
not necessarily true in the general case, as we could have ω(si) > ω(s j) + δG(s j , si)
for some different sites si , s j . However, in our case the weighs ω(si) will be actually
distances from the same node u in a larger graph, and hence before the perturbation
we will necessarily have ω(si) ≤ ω(s j) + δG(s j , si). Therefore, assuming that we
perturb the weight of every edge by adding a strictly positive value, we will indeed
guarantee that si ∈ Vor(si). We will also assume that the graph is biconnected, so that
the boundary walk of the external face is simple.
Point location. The main technical contribution of [19] is a point location structure
for VD(S, ω) that, given a node v, finds its cell in O(log |S|) time, assuming constant-
time access to certain primitives. We briefly describe the required primitives and then
the high-level idea of this structure, but the reader is strongly advised to consult the
original description.

For any site u, let Tu be the shortest path tree rooted at u. Additionally, for each
face f other than h we add an artificial node v f whose embedding coincides with the
embedding of f ∗. In Tu , v f is a leaf connected with a zero-length edge to the node
y f incident to f that is closest to u. For any site u and node v, we might need to have
access to the following information:

1. d(u, v),
2. for any face f , is v on the path in in Tu from u to v f , or left/right2 of this path.

If the goal is to build a global structure of size O(n1.5), such queries can be supported
by storing, for every site u separately, the pre- and postorder number of every node
in Tu (in particular, for v and v f), together with the value of d(u, v) for every node
v. In our case this is not possible, and we will explicitly describe which queries are
required and how implement them.

Let s1, s2, . . . , s|S| be the boundary walk of the external face containing every site.
Recall that VD∗(S, ω) is a tree with no vertices of degree 2. A centroid decomposition
of such a tree T on n nodes is recursively defined as follows: we find a centroid
u ∈ T such that removing u from T and replacing it with copies, one for each edge

2 Left/right is defined using a fixed planar embedding by considering how the path from u to v emanates
from the path from u to y f . The tree inherits the embedding from the graph, and for two nodes of a tree we
can check being on the path or left/right by operating on their pre- and post-order number.

123

Algorithmica (2023) 85:1805–1823 1817

incident to u, results in a set of trees, each with at most (n + 1)/2 edges, and repeat
the reasoning on each of these trees. The construction terminates when the tree has
no nodes of degree 3 or more (i.e. it consists of a single edge by the assumption of no
degree-2 vertices). The point location structure consists of a centroid decomposition
of VD∗(S, ω).

In the query, the centroid decomposition of VD∗(S, ω) is traversed starting from the
root. In every step, we consider a centroid f ∗ of the current connected subtree T ∗ of
VD∗(S, ω). Removing f ∗ partitions T ∗ into T ∗

0 , T
∗
1 and T ∗

2 . Assuming that the graph
is triangulated, there are three nodes y0, y1, y2 incident to f , where yi ∈ Vor(si j). Let
e∗
j be the edge of VD

∗(S, ω) incident to f ∗ that is on the boundary of the cells of si j
and si j+1 , and let T

∗
j contain e∗

j . Finally, let p j be the shortest path from site s j to yi .
We first need to find site si j such that v is closer to site si j than to sites si j−1 and si j+1 .
Next, we need to determine if v is to the left/right of pi j . The first possibility is that
the sought site s such that v ∈ Vor(s) is in fact si j . Otherwise, depending on whether
v is to the left/right of pi j , we recurse on T ∗

j+1 or T
∗
j , respectively. The depth of the

recursion is of course O(log |S|).
As explained in [19, Lemma 5], the invariant of the traversal is that all the boundary

edges of the soughtVor(s) are contained in the current T ∗. This implies that the number
of remaining possible sites s is bounded by the number of edges of T ∗. Further, let
k be the depth of the current vertex in the centroid decomposition. We claim that all
remaining possible sites s constitute O(k) contiguous segments in the natural cyclic
order around h. This is proven by induction on k. Assume that the claim holds for the
previous vertex at depth k − 1, and consider the next step. As described above, we
recurse on either T ∗

j+1 or T ∗
j , for concreteness assume the latter case. We eliminate

from further consideration all sites s such that not all boundary edges of Vor(s) are
contained in T ∗

j . All such sites are between si0 and si1 in the natural cyclic order around
h (note that some of these sites might have been already eliminated). Thus, at depth
k the eliminated sites constitute at most k contiguous segments in the natural cyclic
order around h, and the claim follows.
Bitvectors.Recall that in the proof of Theorem 1 we stored the differences δG(v, ui)−
δG(v, ui−1), for i = 2, 3, . . . , c, by concatenating their Elias γ encodings. Now we
need to compute any prefix sum δG(v, ui) − δG(v, u1) in constant time. We will
augment the concatenation of all Elias γ encodings with some small extra information
and a rank structure allowing us to access the appropriate position in constant time.
We first recall the interface of a rank/select structure.

Lemma 6 ([24]) A bitvector B[1..n] can be augmented with o(n) extra bits so that the
following queries can be answered in constant time: rankb(i) that returns |{ j ≤ i :
B[j] = b}| for b ∈ {0, 1} and selectb(i) that returns the position of the i-th occurrence
of b ∈ {0, 1} in B[1..n].

This allows us to implement the following mechanism.

Lemma 7 For any ε > 0, given any sequence of integers Δ1,Δ2, . . . , Δs , such that∑ j
i=1 Δi ∈ [−n, n] for every j , we can construct a structure consisting of O(nε +

∑s
i=1(1 + logΔi)) bits that returns

∑ j
i=1 Δi , for any j , in constant time.

123

1818 Algorithmica (2023) 85:1805–1823

Proof We start with concatenating the Elias γ encodings of all numbers Δi to obtain
a bitvector E[1..�], where � = O(

∑s
i=1(1 + logΔi)). Additionally, we construct a

bitvector B[1..�] in which we mark with a 1 the starting position of the encoding
of every Δi , and apply Lemma 6 on B. We partition the numbers into O(�/ log n)

contiguous subsequences (called groups) with the following property: either the group
consists of a single number, or theEliasγ encodings of the numbers in the group consist
of at most ε

2 log n bits in total. To see that such a partition exists, first designate every
numberwith theEliasγ encoding consisting ofmore than ε

4 log n bits to be in a separate
group, there are no more than O(�/ log n) such numbers. To partition the remaining
numbers, apply the following reasoning: a sequence of numbers Δx ,Δx+1, . . . , Δy

such that the Elias γ encoding of each number consists of at most ε
4 log n bits can

be greedily partitioned into a number of groups with the total length of the Elias γ

encodings in each group belonging to [ε
4 log n, ε

2 log n], and possibly one group with
the total length less than ε

4 log n.
Wecreate another bitvectorC[1..�] inwhichwemarkwith a 1 the startingpositionof

the encoding of the first number in every group, and applyLemma6onC . Additionally,
we store a precomputed table for every possible group consisting of numbers with the
total length of the Elias γ encodings not exceeding ε

2 log n. A description of such a
group consists of at most ε

2 log n bits, and can be represented with two numbers: the
length � and an �-bit number. The table is first indexed by � ∈ {0, . . . , ε

2 log n} and
then a number from {0, 2 ε

2 log n − 1} corresponding to a possible group. For each such
group, the table stores the prefix sums of all its prefixes in an array of at most ε

2 log n
numbers consisting of log n bits each. This allows us to retrieve the prefix sum of any
prefix in constant time, assuming that we have � and the �-bit number corresponding to
the concatenated Elias γ encodings. The table is stored in O(ε

2 log n ·nε/2 · ε
2 log

2 n) =
O(nε) bits.

Finally, we store the binary encoding of every
∑ j

i=1 Δi such that Δ j is the last
number of its group. Each encoding consists of 1 + log n bits, and the encodings are
concatenated one after another using O(�/ log n)(1+ log n) = O(�) bits in total. This
finishes the description of the structure.

To compute
∑ j

i=1 Δi , we first use rank/select queries on B[1..�] and C[1..�] to
determine which group contains Δ j , and the offset of Δ j in its group. In more detail,
we first use a select query on B[1..�] to determine the starting position of the encoding
of Δ j . Next, we use a rank query on C[1..�] to determine its group, and with another
select query on C[1..�] we determine the starting position of the encoding of the first
number in that group. Finally, a rank query on B[1..�] allows us to translate the starting
position to the index of the first number in the group, and consequently the offset of
Δ j in its group. Then, ifΔ j is the last number in its group, we return the precomputed

partial sum. Otherwise, we retrieve the precomputed prefix sum
∑ j ′

i=1 Δi , where Δ j ′
is the last number in the previous group. This needs to be increased by the appropriate
prefix sum of the group of Δ j , which can be retrieved from the precomputed table in
constant time. �

Having gathered all the technical ingredients, we are now ready to describe amodifi-
cation of the proof of Theorem 1 that allows us to guarantee polylogarithmic decoding

123

Algorithmica (2023) 85:1805–1823 1819

time.We first describe the high-level idea, then highlight two technical difficulties and
proceed with a detailed description.

We would like to apply reasoning from the proof of Theorem 1 to find a balanced
Jordan curve separator S = (u1, u2, . . . , uc) in G with the property that the distances
in G from a node u to all nodes in S can be encoded in O(

√
n) bits. S partitions

G into the external part Gext and the internal part Gint , and we want to augment
the labels with enough information so that, given �G(v) and �G(v′), we can compute
δG(v, v′) in polylogarithmic time if there is a shortest path from v to v′ that visits
some node of S (this is always the case when v ∈ Gint and v′ ∈ Gext). By repeating
the reasoning on Gext and Gint recursively, this allows us to compute any δG(v, v′).
The natural idea would be to proceed as follows when constructing the label �G(v).
First, define a Voronoi diagram of Gint by setting the weight of each node ui to be
δG(v, ui). Then, store its point location structure that allows us to efficiently minimize
δG(v, ui) + δGext (ui , v

′) (which is equal to the sought δG(v, v′)). However, this takes
too much space, as the point location structure is a tree on c = Θ(

√
n) nodes, and

it appears that we need to store in �G(v) a constant number of integers consisting of
log n bits for each node of this tree. To overcome this, one might try to store only the
top part of the centroid decomposition corresponding to subtrees of sufficiently large
size, say log n. Then we can afford to store a description of this top part in �G(v), and
it can be used to either find the nearest site, or narrow down the set of remaining sites
to O(log n). However, this still requires some information about v′, and in particular
we need its position in every Tui (there is no clear way of how to restrict the number
of sites ui for which such information needs to be stored, as v′ is oblivious to v, and
different nodes v might need to access different sites when traversing their top parts of
the centroid decomposition). Therefore, we need a more complex approach that adds
O(

√
n log n) bits to every label.

The modified construction proceeds as follows. G ′ is biconnected but not neces-
sarily triangulated, as there might be faces of length 4. We triangulate G ′ to obtain
G ′′, and then apply Lemma 5 to obtain an r -division, with some r that will be cho-
sen at the end as to optimise the overall size of the labels. By the properties of an
r -division, there are O(n/r) regions. Each region R contains O(

√
r) boundary nodes

incident to O(1) holes. The boundary walk (u1, u2, . . . , uc) of every hole h of R is
a (not necessarily simple) cycle in G ′′, and by the construction of G ′′ we can find
a walk (u′

1, u
′
2, . . . , u

′
c′) in G ′ that contains (u1, u2, . . . , uc) as a subsequence, and

c′ = O(c) = O(
√
r). The r -division of G ′′ naturally induces an r -division of G ′, and

we will refer to (u′
1, u

′
2, . . . , u

′
c′) as a boundary walk of h. Note that because we have

defined the r -division by applying Lemma 5 to G ′′, some nodes u′
i might not belong

to R, and we do not guarantee that all nodes incident to a hole are boundary nodes.
The label of every node v of G consists of two asymmetric parts. Let h be a

hole of a region R, and (u′
1, u

′
2, . . . , u

′
c′) a boundary walk of h, where c′ = O(

√
r).

Furthermore, let (u′′
1, u

′′
2, . . . , u

′′
c′′) be a subsequence of (u′

1, u
′
2, . . . , u

′
c′) consisting

of the nodes of G. By the reasoning from the proof of Theorem 1, we have
∑

i (1 +
log δG(u′′

i , u
′′
i−1)) = O(

√
r). The first part of the label of v in G encodes δG(v, u′′

1) in
O(log n) bits, and then the differences δG(v, u′′

i) − δG(v, u′′
i−1) using Lemma 7. This

takes O(log n+√
r) bits for every hole by setting ε < 1/2, so O(n/

√
r) bits in total for

123

1820 Algorithmica (2023) 85:1805–1823

all R and h. If v′ is a boundary node of R incident to a hole h then we store the identity
of R and h in the label of v′ (there could be multiple such pairs R and h, we choose
any of them), together with the position of any occurrence of v′ in (u′′

1, u
′′
2, . . . , u

′′
c′′).

This is already enough to determine δG(v, v′) in constant time for any boundary node
v′. Otherwise, v′ belongs to exactly one region R, and either v is not a boundary node
and belongs to the same region R or a shortest path from v to v′ goes through one of
the boundary nodes of R. To take the former case into the account, we consider the
connected components of the subgraph of G consisting of the non-boundary nodes of
R. Each such node stores the identity of its component in O(log n) bits, so that we
can verify if v and v′ belong to the same connected component and recurse there if
so (that is, the whole construction is repeated on every connected component, and the
resulting label is a concatenation of the labels defined in the subsequent steps of the
recursion). To deal with the latter case, we need to show how to find the shortest path
in G from v to v′ that first goes from v to a boundary node u of R and then goes to v′
without visiting any other boundary node (note that this might happen even when v

and v′ belong to the same connected component). We focus on this in the remaining
part of the description.

Consider a region R and its hole h. We make h the external face, triangulate the
non-external faces, and make the weight of every edge that does not belong to G
infinite to obtain a weighted graph R′ (we also perturb the weights of all edges in R′ to
make the shortest paths unique). Let u1, u2, . . . be the boundary nodes of R incident
to h. We construct the Voronoi diagram of the obtained weighted graph R′ with sites
u1, u2, . . ., setting the weight of every ui to be its distance from v in G. Storing the
centroid decomposition of this Voronoi diagram would take O(

√
r) words, which is

too much. Instead, we store its top part obtained by stopping as soon as the size of
the current subtree is less than B, for some B = polylog (n) that will be chosen at
the end as to optimise the overall size of the labels (while keeping the query time
polylogarithmic). The size of this top part is O(

√
r/B) by the following lemma.

Lemma 8 Consider the centroid decomposition of a bounded-degree tree T and a
parameter b. The decomposition contains O(|T |/b) subtrees of size less than b
obtained by choosing a centroid in a subtree of size at least b.

Proof The decomposition can be naturally interpreted as a tree T , with every node
corresponding to a subtree obtained during the process. The leaves of T correspond
to single edges of T , and internal nodes of T correspond to larger subtrees. The
weight w(u) of u ∈ T is the number of leaves in its subtree (equal to the size of the
corresponding subtree of T), and for each child v we have w(v) ≤ (w(u) + 1)/2.
Because the degree of T is bounded by a constant, it is enough to count u ∈ T such that
w(u) ≥ b; we call such nodes heavy. There are clearly at most (|T |+1)/b heavy nodes
with no heavy children, as their subtrees are disjoint. This also bounds the number of
heavy nodes with more than one heavy child. It remains to bound the number of heavy
nodes u with exactly one heavy child v. However, such u must have some non-heavy
children v1, v2, ... of total weight at least b−1, asw(v) ≤ (w(u)+1)/2 and b ≤ w(v)

so b − 1 ≤ w(u) − w(v) and w(u) − w(v) = w(v1) + w(v2) + so there are no
more than |T |/(b − 1) such nodes u. Overall, this is O(|T |/b) as claimed. �

123

Algorithmica (2023) 85:1805–1823 1821

For each leaf in the top part of the decomposition, we store O(log n) contiguous
segments of the sites that might be relevant.3 This takes O(

√
r/B · log2 n) bits. For

every non-leaf, we have a centroid f ∗ used for deciding where to descend. We store
the weights ω(si j) of the three relevant sites, and the preorder number of every y j in
its corresponding shortest path tree Ts j . This takes O(

√
r/B · log n) bits. Summed

over all regions R and holes h, this is O(n/(
√
r B) log2 n) bits per node.

To use the centroid decomposition, we need to store enough information in the
label of v′ as to be able to compute any δR′(ui , v′) in constant time. Recall that for
a non-boundary node v′ we have exactly one relevant R and a constant number of
Voronoi diagrams corresponding to the holes of R. Therefore, because there are only
O(

√
r) sites in every Voronoi diagram, we can afford to store every δR′(ui , v′) in

binary using O(
√
r log n) bits overall. Additionally, v′ stores its preorder number in

the shortest path tree rooted at every Tui , this also takes O(
√
r log n) bits.

To compute δG(v, v′), we consider every hole h of the unique region R containing
v′.We first navigate through the stored top part of the centroid decomposition. In every
step, we need to first determine the closest site si j . This is possible as we know every
weightω(si j) and distance δR′(si j , v

′). Next, we decide where to descend by checking
if v′ is to left/right of the path ps j , this is possible using the stored preorder numbers
of v and y j in Ts j . After reaching a leaf in the top part of the centroid decomposition,
we simply consider the remaining at most B possible sites one-by-one. In this last
step, we use the distances in the whole G, that is, δG(v, si j) and δG(v′, si j). Overall,
this takes O(log n) to traverse the top part, and then O(B) for a leaf. Finally, if v and
v′ belong to the same connected component we recurse there. Overall, the decoding
time is O(B · log n). The total length of every label is:

O(n/
√
r + n/(

√
r B) log2 n + O(

√
r log n)

which is minimized by choosing r = n/ log n and then B = log2 n to obtain the final
theorem.

Theorem 4 Any planar graph on n nodes admits a distance labeling scheme of length
O(

√
n log n) with O(log3 n) decoding time.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

3 In fact, the segments can be extracted from the information stored in the ancestors of the leaf. This reduces
the overall decoding time by one log, but makes the description somewhat more cluttered.

123

http://creativecommons.org/licenses/by/4.0/

1822 Algorithmica (2023) 85:1805–1823

References

1. Abboud, A., Dahlgaard, S.: Popular conjectures as a barrier for dynamic planar graph algorithms. In:
57th FOCS, pp. 477–486 (2016)

2. Abboud, A., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal compression for the planar
graph metric. In: 29th SODA, pp. 530–549 (2018)

3. Alon, N., Nenadov, R.: Optimal induced universal graphs for bounded-degree graphs. In: 28th SODA,
pp. 1149–1157 (2017)

4. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T.: Optimal induced universal graphs and adjacency labeling
for trees. In: 56th FOCS, pp. 1311–1326 (2015)

5. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T., Porat, E.: Sublinear distance labeling. In: 24th ESA, pp.
5:1–5:15 (2016)

6. Alstrup, S., Gavoille, C., Halvorsen, E.B., Petersen, H.: Simpler, faster and shorter labels for distances
in graphs. In: 27th SODA, pp. 338–350 (2016)

7. Alstrup, S., Gørtz, I.L., Halvorsen, E.B., Porat, E.: Distance labeling schemes for trees. In: 43rd ICALP,
pp. 132:1–132:16 (2016)

8. Alstrup, S., Kaplan, H., Thorup, M., Zwick, U.: Adjacency labeling schemes and induced-universal
graphs. In: 47th STOC, pp. 625–634 (2015)

9. Bonamy, M., Gavoille, C., Pilipczuk, M.: Shorter labeling schemes for planar graphs. In: 30th SODA,
pp. 446–462 (2020)

10. Bonichon,N.,Gavoille, C., Labourel,A.: Short labels by traversal and jumping. Electron.NotesDiscret.
Math. 28, 153–160 (2007)

11. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar
graphs. ACM Trans. Algorithms 15(2), 21:1-21:38 (2019)

12. Charalampopoulos, P., Gawrychowski, P., Mozes, S., Weimann, O.: Almost optimal distance oracles
for planar graphs. In: 51st STOC, pp. 138–151. ACM (2019)

13. Dujmovic, V., Esperet, L., Gavoille, C., Joret, G., Micek, P., Morin, P.: Adjacency labelling for planar
graphs (and beyond). In: 61st FOCS, pp. 577–588. IEEE (2020)

14. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2),
194–203 (1975)

15. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discret. Comput. Geom. 31(1),
37–59 (2004)

16. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance labeling schemes
for trees. In: 36th PODC, pp. 185–194 (2017)

17. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112
(2004)

18. Gawrychowski, P., Kosowski, A., Uznański, P.: Sublinear-space distance labeling using hubs. In: 30th
DISC, pp. 230–242 (2016)

19. Gawrychowski, P., Mozes, S., Weimann, O., Wulff-Nilsen, C.: Better tradeoffs for exact distance
oracles in planar graphs. In: 29th SODA, pp. 515–529. SIAM (2018)

20. Gawrychowski, P., Uznanski, P.: Better distance labeling for unweighted planar graphs. In: 17thWADS,
pp. 428–441. Springer (2021)

21. Graham, R., Pollak, H.: On embedding graphs in squashed cubes. In: Graph Theory and Applications.
Lecture Notes in Mathematics, vol. 303, pp. 99–110. Springer, Berlin Heidelberg (1972)

22. Hsu, T., Lu, H.: An optimal labeling for node connectivity. In: 20th ISAAC, pp. 303–310 (2009)
23. Hutchinson, J.P.: On short noncontractible cycles in embedded graphs. SIAM J. Discret. Math. 1(2),

185–192 (1988)
24. Jacobson, G.: Space-efficient static trees and graphs. In: 30th FOCS, pp. 549–554. IEEE Computer

Society (1989)
25. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discrete Math. 5(4),

596–603 (1992)
26. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM J.

Comput. 34(1), 23–40 (2004)
27. Klein, P.N., Mozes, S., Sommer, C.: Structured recursive separator decompositions for planar graphs

in linear time. In: 45th STOC, pp. 505–514. ACM (2013)
28. Korman, A.: Labeling schemes for vertex connectivity. ACM Trans. Algorithms 6(2), 39:1-39:10

(2010)

123

Algorithmica (2023) 85:1805–1823 1823

29. Kosowski, A., Uznański, P., Viennot, L.: Hardness of exact distance queries in sparse graphs through
hub labeling. In: 38th PODC, pp. 272–279 (2019)

30. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627
(1980)

31. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst.
Sci. 32(3), 265–279 (1986)

32. Moon, J.W.: On minimal n-universal graphs, pp. 32–33. Cambridge University Press (1965)
33. Peleg, D.: Informative labeling schemes for graphs. Theory Comput. Sci. 340(3), 577–593 (2005)
34. Petersen, C., Rotbart, N., Simonsen, J.G., Wulff-Nilsen, C.: Near-optimal adjacency labeling scheme

for power-law graphs. In: 43rd ICALP, pp. 133:1–133:15 (2016)
35. Weimann, O., Peleg, D.: A note on exact distance labeling. Inf. Process. Lett. 111(14), 671–673 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Better Distance Labeling for Unweighted Planar Graphs
	Abstract
	1 Introduction
	2 Previous Scheme
	3 Improved Scheme
	4 Simple Extensions
	5 Efficient Decoding
	References

