
Algorithmica (2024) 86:735–756
https://doi.org/10.1007/s00453-023-01125-z

Computing Longest Lyndon Subsequences and Longest
Common Lyndon Subsequences

Hideo Bannai1 · Tomohiro I.2 · Tomasz Kociumaka3 ·
Dominik Köppl1,4 · Simon J. Puglisi5

Received: 29 September 2022 / Accepted: 6 April 2023 / Published online: 6 May 2023
© The Author(s) 2023

Abstract
Given a string T of length n whose characters are drawn from an ordered alphabet of
size σ , its longest Lyndon subsequence is a maximum-length subsequence of T that is
a Lyndon word. We propose algorithms for finding such a subsequence inO(n3) time
with O(n) space, or online in O(n3) space and time. Our first result can be extended
to find the longest common Lyndon subsequence of two strings of length at most n in
O(n4σ) time using O(n2) space.

Keywords Lyndon word · Subsequence · Lexicographic order · Dynamic
programming

Parts of this work have already been presented at the 33rd International Workshop on Combinatorial
Algorithms [4].

B Dominik Köppl
dominik.koeppl@uni-muenster.de

Hideo Bannai
hdbn.dsc@tmd.ac.jp

Tomohiro I.
tomohiro@ai.kyutech.ac.jp

Tomasz Kociumaka
tomasz.kociumaka@mpi-inf.mpg.de

Simon J. Puglisi
simon.puglisi@helsinki.fi

1 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

2 Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Japan

3 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

4 Department of Computer Science, University of Münster, Münster, Germany

5 Department of Computer Science, Helsinki University, Helsinki, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01125-z&domain=pdf
http://orcid.org/0000-0002-6856-5185
http://orcid.org/0000-0001-9106-6192
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-8721-4444
http://orcid.org/0000-0001-7668-7636

736 Algorithmica (2024) 86:735–756

1 Introduction

A recent theme in the study of combinatorics on words has been the generalization of
regularity properties from substrings to subsequences. For example, given a string T
over an ordered alphabet, the longest increasing subsequence problem is to find the
longest subsequence of increasing symbols in T [11, 33]. Several variants of this
problem have been proposed [14, 28]. These problems generalize to the task of finding
such a subsequence that is not only present in one string, but common to two given
strings [21, 31, 34],which can also be viewed as a specialization of the longest common
subsequence problem [23, 27, 35].

More recently, the problem of computing the longest square word that is a subse-
quence [30], the longest palindrome that is a subsequence [9, 25], the lexicographically
smallest absent subsequence [29], and longest rollercoasters [6, 16, 18] have been con-
sidered.

Here, we focus on subsequences that are Lyndon words, i.e., strings that are lexi-
cographically smaller than all of their non-empty proper suffixes [32]. Lyndon words
are objects of longstanding combinatorial interest (see, e.g., [19]), and they have also
proved to be useful algorithmic tools in various contexts (see, e.g., [3]). The longest
Lyndon substring of a string is the longest factor of the Lyndon factorization of the
string [8], and it can be computed in linear time [13]. The longest Lyndon subsequence
of a unary string is just one letter, which is also the only Lyndon subsequence of a
unary string. A (naive) solution to find the longest Lyndon subsequence is to enumer-
ate all distinct Lyndon subsequences and pick the longest one. However, the number
of distinct Lyndon subsequences can be as large as 2n , e.g., for a string of increasing
numbers T = 1 · · · n. In fact, there are no bounds known (except when σ = 1) that
bring this number in a polynomial relation with the text length n and the alphabet
size σ [22], and thus deriving the longest Lyndon subsequence from all distinct Lyn-
don subsequences can be infeasible. In this article, we focus on the algorithmic aspects
of computing this longest Lyndon subsequence in polynomial time without the need to
consider all Lyndon subsequences. Specifically, we study the problems of computing:

1. the lexicographically smallest (common) subsequence of each length (in Sect. 3),
and

2. the longest Lyndon subsequence (in Sect. 4),with twovariations considering online
computation (in Sect. 4.3) and the restriction that this subsequence has to be com-
mon to two given strings (in Sect. 5).

The first problem serves as an appetizer. Although the notions of Lyndon and lexi-
cographically smallest subsequences share common traits, our solutions to the two
problems are mostly independent (except for some tools shared by the online algo-
rithms for both problems).

Compared to an earlier conference version of this paper [4], we describe here an
algorithm with significantly improved time complexity for the online setting. Addi-
tionally, we added more illustrations, examples, and the analysis of special cases with
simpler algorithmic ideas to ease the understanding of the article. Last but not least
(in Sect. 6), we evaluate the implementation of one of our proposed algorithms on
commonly studied datasets.

123

Algorithmica (2024) 86:735–756 737

2 Preliminaries

Let � denote a totally ordered set of symbols called the alphabet. An element of �∗
is called a string. The alphabet � induces the lexicographic order ≺ on the set of
strings �∗. We denote the empty string with ε. Given a string S ∈ �∗, we denote its
length with |S| and its i-th symbol with S[i] for i ∈ [1..|S|].1 Further, for integers
1 ≤ i ≤ j ≤ |S|, we write S[i .. j] = S[i] · · · S[j] to denote the substring of |S|
starting at position i and ending at position j and S[i ..] = S[i ..|S|] to denote the
suffix of S starting at position i . The empty string is a substring of every string S and
can be referred to as S[j + 1.. j] for any j ∈ [0..|S|]. For � ∈ [0..|S|], a length-�
subsequence of a string S is a string S[i1] · · · S[i�] with i1 < · · · < i�. For a string V ,
we denote posS(V) = min{i ∈ [0..|S|] : V is a subsequence of S[1..i]}; in particular,
posS(V) = 0 if V = ε and, following the convention that min ∅ = ∞, we assume
posS(V) = ∞ if V is not a subsequence of S.

A non-empty string is a Lyndon word [32] if it is lexicographically smaller than all
its non-empty proper suffixes. Equivalently, a string is a Lyndon word if and only if it
is smaller than all its proper cyclic rotations.

The algorithms we present in the following assume that the input consists of strings
of length at most n whose characters are drawn from an integer alphabet � := [1..σ]
of size σ = O(n).2

3 Lexicographically Smallest Subsequence

As a starter,we propose a solution for the following related problem:Maintain, for each
length �, the lexicographically smallest length-� subsequence of T as the characters
of T arrive online one at a time (in the left-to-right order).

3.1 Dynamic Programming Approach

The idea is to apply dynamic programming that computes, for all lengths 0 ≤ � ≤ i ≤
n, the lexicographically smallest length-� subsequence of T [1..i], denoted by D[i, �].
We observe that D[i, 0] = ε is the empty word and D[i, i] = T [1..i]. In the remaining
cases, our algorithm considers D[i − 1, �] or D[i − 1, � − 1] · T [i] as candidates for
D[i, �]; see Algorithm 1 for a pseudocode and Fig. 1 for an example.

Lemma 1 For all 0 ≤ � ≤ i ≤ n, Algorithm 1 correctly computes D[i, �], the
lexicographically smallest subsequence of T [1..i] of length �.

1 For arbitrary integers p, q, we write [p..q] = {i ∈ Z : p ≤ i ≤ q}.
2 One can reduce the alphabet to an integer alphabet by sorting the characters of the input string with a
comparison-based sorting algorithm takingO(n lg n) time andO(n) space, removing duplicate characters,
and finally assigning each distinct character a unique rank within [1..min(σ, n)]. However, such a reduction
does not work for online algorithms, and it would constitute a bottleneck for algorithms running in o(n lg n)

time.

123

738 Algorithmica (2024) 86:735–756

Algorithm 1: Computing the lexicographically smallest subsequence D[i, �] in
T [1..i] of length �.
1 D[0, 0] ← ε

2 for i ← 1 to n do 	 Deduce D[i, ·] from D[i − 1, ·]
3 D[i, 0] ← ε

4 for � ← 1 to i − 1 do
5 D[i, �] ← min(D[i − 1, �], D[i − 1, � − 1] · T [i])
6 D[i, i] ← D[i − 1, i − 1] · T [i]

T = b c c a d b a c c b c d

� i 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
...

b b b a a a a a a a a a

⊥ bc bc ba ad ab aa aa aa aa aa aa

⊥ ⊥ bcc bca bad adb aba aac aac aab aab aab

⊥ ⊥ ⊥ bcca bcad badb adba abac aacc aacb aabc aabc

⊥ ⊥ ⊥ ⊥ bccad bcadb babda adbac abacc aaccb aacbc aabcd

Fig. 1 The lexicographically smallest subsequences of the prefixes of the example string T =
bccadbaccbcd. We only show the output for � ∈ [1..5] and denote the undefined values D[i, �] (for
i < �) with ⊥

Fig. 2 Sketch of the proof of
Lemma 1. We can easily fill the
fields shaded in blue (the 0-th
row and the main diagonal).
Further, the entries to the left of
the diagonal are all undefined
(denoted ⊥). A cell to the right
of it (red) is based on its
left-preceding and
diagonal-preceding cell (green)
(Color figure online)

⊥
⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

� i 0 1 2 3 4 5 6 · · ·
0 · · ·
1 · · ·
2 · · ·
3 · · ·
4 · · ·
5 · · ·
6 · · ·
...

. . .

Proof The proof is done by induction over the prefix length i . We first observe that
D[i, 0] = ε (the only length-0 subsequence of any string) and D[i, i] = T [1..i] (the
only length-i subsequence of T [1..i]).

In what follows, we show that the claim also holds for D[i, �] with 0 ≤ � < i
assuming that all entries D[i−1, ·] have been computed correctly. Note that D[i−1, �]
and D[i −1, �−1] ·T [i] are both length-� subsequences of T [1..i]. Hence, it suffices
to prove that one of these two subsequences is the lexicographically smallest one.
For a proof by contradiction, suppose that T [1..i] has a length-� subsequence L with
L ≺ D[i, �].

123

Algorithmica (2024) 86:735–756 739

If L[�] �= T [i], then L is a subsequence of T [1..i−1], and therefore D[i−1, �] � L
according to the induction hypothesis.However, D[i, �] � D[i−1, �]; a contradiction.

If L[�] = T [i], then L[1..� − 1] is a subsequence of T [1..i − 1], and therefore
D[i − 1, � − 1] � L[1..� − 1] according to the induction hypothesis. However,
D[i, �] � D[i − 1, � − 1] · T [i] � L[1..� − 1] · T [i] = L; a contradiction. Hence,
D[i, �] is indeed the lexicographically smallest subsequence of T [1..i] of length �. �

Let us analyze the complexity of Algorithm 1. If we stored the subsequences explic-
itly, the entries of our two-dimensional table D[0..n, 0..n] would occupyO(n3) space
in total. However, in order to reduce the space consumption to O(n2), we just store a
flag that determines whether we built D[i, j] from D[i−1, �] or D[i−1, �−1] ·T [i].
To restore the string represented by D[i, j], we backtrack with the help of the stored
flagswhile readingO(n) cells and characters. In this setting, the initialization of entries
D[i, 0] and D[i, i] costs O(n2) time. Line 5, where we compute the lexicographical
minimum of two subsequences, is executed O(n2) times. If we perform this compu-
tation with naive character comparisons, for which we need to checkO(n) characters
(which we first need to restore by readingO(n) previous cells), we payO(n3) time in
total, which is the bottleneck of this algorithm.

Lemma 2 We can compute the lexicographically smallest subsequence of T for each
length � online in O(n3) time with O(n2) space.

Unfortunately, the lexicographically smallest subsequence of a given length is not
a Lyndon word in general, so this dynamic programming approach does not solve our
problem of finding the longest Lyndon subsequence. In fact, if T has a longest Lyndon
subsequence of length �, then there can be a lexicographically smaller subsequence
of the same length. For instance, T = aba has the longest Lyndon subsequence ab,
while the lexicographically smallest length-2 subsequence is aa.

3.2 Speeding Up String Comparisons

Below, we improve the time bound of Lemma 2 by maintaining the entries of the
D[0..n, 0..n] table in a trie [15]. Mathematically, the trie of a string family is defined
as a rooted tree whose nodes represent all the prefixes of the strings in the family.
(Multiple strings may share the same prefix.) The root represents the empty prefix
and, for every non-empty prefix P , the parent of the node representing P is the node
representing P[1..|P|−1] and the edge to the parent is labeled by the character P[|P|];
see Fig. 3 for an example. We develop a custom trie implementation which supports
the following methods in constant time:

– insert(v, c): inserts a new leaf attached to a node v using an edge labeled with
character c, and returns a handle to the created leaf; the node v cannot already
have an outgoing edge labeled with c.

– parent(v): returns the handle to the parent of a node v (or ⊥ if v is the root).
– edge-label(v): returns the label of the incoming edge of a node v (or ⊥ if v is the
root).

– precedes(u, v): decides whether the string represented by a node u is lexicograph-
ically smaller than the string represented by a node v.

123

740 Algorithmica (2024) 86:735–756

b

c

c

a

d

a

d

a

d

b

a

d

b

b

Fig. 3 A trie described in Sect. 3.2 speeding up comparisons. The trie is a snapshot of the example compu-
tation shown in Fig. 1, where we are at i = 6 and � = 4. There, we want to decide whether D[5, 4] = bcad
or D[5, 3] · T [6] = badb is lexicographically smaller. For that, we take the LCA v of the nodes (high-
lighted by black circles) representing D[5, 4] and D[5, 3]; v is the child of the root with label b. Next, we
compare the labels of v’s two children leading to D[5, 4] and D[5, 3], respectively (these two children are
marked in yellow). It suffices to compare the labels of these children to determine that D[5, 3] · T [6] is
lexicographically smaller than D[5, 4]

Implementation of the trie For each node v, we explicitly store its parent parent(v),
label edge-label(v), anddepthdepth(v).Wedonot keeppointers fromv to its children,
and thus each node occupies constant space. Moreover, we maintain the underlying
(unlabeled) tree using the dynamic data structures of [2, 10], answering lowest common
ancestor (LCA) and level ancestor queries (level-anc(u, d) returns the ancestor of a
node u on depth d), respectively, in constant time. Both data structures support the
insertion of leaves in constant time and, consequently, their space consumption is
proportional to the tree size. In order to implement precedes(u, v), we first compute
the lowest common ancestor w of u and v. For the special case that u is an ancestor of
v, or vice versa, we return false if v = w and true if u = w �= v. Otherwise, we use
level ancestor queries level-anc(u,depth(w) + 1) and level-anc(v,depth(w) + 1),
to select the children u′ and v′ of w on the paths towards u and v, respectively. In
that case, we return true if edge-label(u′) ≺ edge-label(v′) and false otherwise;
see Fig. 3.

Application of the trie Instead of a flag, each cell of D now stores a handle to its
respective trie node. The root node of the trie represents the empty string ε, so we
associate D[i, 0] = ε with the root node for all i .

To implement Line 5 of Alg 1, we first retrieve the handles to nodes u and v

representing D[i − 1, � − 1] and D[i − 1, �], respectively. We proceed as follows for

123

Algorithmica (2024) 86:735–756 741

deciding whether D[i − 1, � − 1] · T [i] ≺ D[i − 1, �]: If u = parent(v), we only
have to compare T [i] with edge-label(v), which is the last character of D[i − 1, �].
Otherwise, we know that D[i − 1, � − 1] is not a prefix of D[i − 1, �], and hence
D[i −1, �−1] · T [i] ≺ D[i −1, �] holds if and only if D[i −1, �−1] ≺ D[i −1, �],
which we determine using precedes(u, v); see Fig. 3 for an example. If D[i, �] =
D[i − 1, �], we store the handle to v at D[i, �]. Otherwise, we call insert(u, T [i])
and store the resulting handle at D[i, �]. This insertion is valid (meaning that u has
no outgoing edge with label T [i] yet) because all trie nodes at depth � correspond to
D[j, �] for j ∈ [�..i−1], and all these subsequences are at least as large as D[i−1, �]
in the lexicographic order.

As for Line 6, we retrieve the handle to node u representing D[i − 1, i − 1], call
insert(u, T [i]), and store the resulting handle at D[i, i]. This insertion is valid because
the trie does not yet have any node at depth i .

Complexity Analysis The number of trie operations is O(n2) (constantly many for
each entry D[i, �]), and each of them is implemented in constant time. Hence, the
overall time and space complexities become O(n2).

Theorem 3 We can compute the table D[0..n, 0..n] online inO(n2) time usingO(n2)
space.

3.3 Most Competitive Subsequence

If we want to find only the lexicographically smallest subsequence of the whole string
T for a fixed length �, this problem is also called Find the Most Competitive Subse-
quence.3 It admits a folklore linear-time solution that scans T from left to right and
maintains, in a stack S, a subsequence of T [1..i] of length between � + i − n and �

chosen to minimize S · $ in the lexicographic order, where $ � max� is a sentinel
character. Here, the lower bound �+ i−n guarantees that, when we are near the end of
the text, we have enough characters to extend S to a length-� subsequence of T [1..n].
Let top denote the top element of S. When processing text position i , we recursively
pop top as long as (a) S is not empty, (b) T [top] � T [i], and (c) |S| ≥ � + i − n.
Finally, we push T [i] on top of S if |S| < �. Since a text position gets inserted into S
and removed from S at most once, the algorithm runs in linear time.

Observe that we can repeatedly use this solution to compute the lexicographically
smallest subsequences of T ofmultiple lengths. The overall running time for all lengths
� ∈ [1..n] isO(n2) and the algorithm usesO(n)working space, but it does not produce
intermediate answers for the prefixes of T (as online algorithms do).

Given T = cba as an example, for � = 3, we push all three characters of T onto S
and output cba. For � = 2, we first push T [1] = c onto S, but then pop it and push b
onto S. Finally, although T [3] ≺ T [2], we do not discard T [2] = b stored on S since
we need to produce a subsequence of length � = 2. A more elaborate execution on
our running example is given in Fig. 4.

3 https://leetcode.com/problems/find-the-most-competitive-subsequence/.

123

https://leetcode.com/problems/find-the-most-competitive-subsequence/

742 Algorithmica (2024) 86:735–756

T = b c c a d b a c c b c d

|S| i 1 2 3 4 5 6 7 8 9 10 11 12
6
5 d

4 c c c

3 c c c b b b

2 c c d b a a a a a a

1 b b b a a a a a a a a a

Fig. 4 Computing the most competitive subsequence of length � = 5 of the example string T =
bccadbaccbcd. The stack is shown vertically below of T for each step of the algorithm of Sect. 3.3.
For � = 6, our stack would first differ at text position i = 10, where we would discard only the topmost
c (instead of both of them). Then, the stack would store the subsequences aacb for i = 10, aacbc for
i = 11, and aacbcd for i = 12

3.4 Lexicographically Smallest Common Subsequence

Another variation is to ask for the lexicographically smallest subsequence of each
distinct length that is commonwith two strings X andY . Luckily, our ideas of Sects. 3.1
and 3.2 can be straightforwardly translated. For that, our matrix D becomes a cube
D3[0..L, 0..|X |, 0..|Y |], where L := LCS[|X |, |Y |] and LCS[x, y] denotes the length
of a longest common subsequence of X [1..x] and Y [1..y]. The entries D3[�, x, y]
are well-defined for � ≤ LCS[x, y] and computed by taking the lexicographically
smallest string among at most three candidates for �, x, y ≥ 1:

D3[�, x, y] = min

⎧
⎪⎨

⎪⎩

D3[� − 1, x − 1, y − 1] · X [x] if X [x] = Y [y],
D3[�, x − 1, y] if � ≤ LCS[x − 1, y],
D3[�, x, y − 1] if � ≤ LCS[x, y − 1].

Moreover, D3[0, x, y] = ε for all x ∈ [0..|X |] and y ∈ [0..|Y |], which gives us an
induction basis similar to the one used in the proof of Lemma 1, so that we can use
its induction step analogously. The table D3 has O(n3) cells, and filling each cell
can be done in constant time by representing each cell as a handle to a node in the
trie data structure proposed in Sect. 3.2. For that, we ensure that we never insert a
subsequence of D3 into the trie twice. To see that, let L ∈ �+ be a subsequence
computed in D3, and let D3[�, x, y] = L be the entry at which we called insert
to create a trie node for L (for the first time). By monotonicity of D3 (that is, due
to D3[�, x, y] = minx ′∈[0..x],y′∈[0..y]:LCS[x ′,y′]≥� D3[�, x ′, y′]) and since L is already
a common subsequence of X [1..posX (L)] and Y [1..posY (L)], we must have x =
posX (L) and y = posY (L). Moreover, the monotonicity of D3 further implies that
all other entries D3[�, x ′, y′] = L satisfy D3[�, x ′ − 1, y′] = L (if x ′ > x) or
D3[�, x ′, y′ − 1] = L (if y′ > y), so we copy the handle to the trie node representing
L instead of calling insert when filling out D3[�, x ′, y′] = L .

Theorem 4 Given two strings X ,Y of length at most n, we can compute the lexico-
graphically smallest common subsequence for each length � ∈ [1..n] in O(n3) time
using O(n3) space.

123

Algorithmica (2024) 86:735–756 743

1 2 3 4 5 6 7 8 9 10 11 12

T = b c c a d b a c c b c d

Fig. 5 Longest Lyndon subsequences of selected prefixes of a text T . The i-th row of bars below T depicts
the selection of characters forming a Lyndon subsequence. In particular, the i-th row corresponds to the
longest Lyndon subsequence of T [1..9] for i = 1 (green), T [1..11] for i = 2 (blue), and of T [1..12] for
i = 3 (red). The first row (green) also corresponds to a longest Lyndon subsequence of T [1..10] and T [1..11]
(when extended with T [11]). Extending the second Lyndon subsequence (blue) with T [12] also gives a
Lyndon subsequence, but shorter than the third Lyndon subsequence (red). Having only the information of
the Lyndon subsequences in T [1..i] at hand seems not to give us a solution for T [1..i + 1] (Color figure
online)

4 Computing the Longest Lyndon Subsequence

In the following, we want to compute the longest Lyndon subsequence of T . See
Fig. 5 for examples of longest Lyndon subsequences. As a starter, let us consider the
following special case.

Theorem 5 Given a string of length n, in which each character only appears once, we
can compute its longest Lyndon subsequence in (a) O(n2) time using O(1) space, or
(b) O(n

√
lg n) time using O(n) space.

Proof For each text position i ∈ [1..n], we consider all characters in T [i ..n] that
are at least as large as T [i]. These characters form the longest Lyndon subsequence
starting at T [i]. Our answer is the longest among these n candidates. We can compute
the length of each candidate in O(n) time, and thus obtain our first solution. For the
second solution, we use the offline orthogonal range counting procedure of Chan and
Pătraşcu [7, Corollary 2.3]. Specifically, we apply it for points (j, T [j]) for j ∈ [1..n]
and rectangles [i + 1..n] × [T [i] + 1..σ] for i ∈ [1..n]. This call takes O(n

√
lg n)

time and outputs the number of input points located in each rectangle, which is |{ j ∈
[i + 1..n] : T [j] > T [i]}| for the i-th rectangle. �

For the general case, compared to the dynamic programming approach for the
lexicographically smallest subsequences introduced above, we follow the sketched
solution for the most competitive subsequence using a stack, which here simulates
a traversal of the trie τ storing all pre-Lyndon subsequences of T , where a word is
pre-Lyndon if it is a prefix of a Lyndon word. The trie τ is a subgraph of the trie storing
all subsequences of T , sharing the same root. This subgraph is connected since, by
definition, if S is a pre-Lyndon word, then all prefixes of S are also pre-Lyndon (if S
is a prefix of a Lyndon word V , then all prefixes of S are also prefixes of V). We say
that the string label of a node v is the string read from the edges on the path from the
root to v. For every node v of T , we store posT (V), where V is the string label of
v. Observe that, unless v is the root, the label of the incoming edge, which is the last
character of V , equals T [posT (V)].

123

744 Algorithmica (2024) 86:735–756

4.1 Basic Trie Traversal

Problems already emerge when considering the construction of τ since there are texts
like T = 1 · · · n for which τ has �(2n) nodes. Instead of building τ , we simulate a
preorder traversal on it. With simulation, we mean that we enumerate the pre-Lyndon
subsequences of T in lexicographic order. For that, we maintain a stack S storing the
text positions (i1, . . . , i�) associated with the path from the root to the node v we
currently visit, i.e., if V is the string label of v, then i j = posT (V [1.. j]) and thus
V [j] = T [i j]. At each node v, we first check whether V is a Lyndon word (if so, it is
considered as an answer). Then, we recursively traverse the subtree of v. For this, we
need to iterate, in the lexicographic order, over all characters c such that Vc is a pre-
Lyndon word. For each such character, we determine posT (Vc), which is the smallest
text position i�+1 > i� with T [i�+1] = c. If there is such position i�+1, we push it
onto S, recurse, and then pop i�+1. We apply the following facts to check whether a
given subsequence is a Lyndon or a pre-Lyndon word.

Facts aboutLyndonWordsALyndonword cannot have a border, that is, a non-empty
proper prefix that is also a suffix of the string [13, Prop. 1.1]. Given a string S of length
n, an integer p ∈ [1..n] is a period of S if S[i] = S[i + p] for all i ∈ [1..n − p]. We
use the following facts:

(Fact 1) The shortest period of a Lyndon word S is the length |S|.
(Fact 2) (Fact The prefix S[1..p] of a pre-Lyndon word S with shortest period p is a

Lyndon word. In particular, a pre-Lyndon word S is a Lyndon word if and
only if its shortest period is |S|.

(Fact 3) Consider a pre-Lyndon word S with shortest period p and a character c ∈ �.
Then:

– If c � S[|S| − p + 1], then Sc is a Lyndon word.
– If c = S[|S| − p + 1] and S is not the largest character of �,4 then Sc is a
pre-Lyndon word with shortest period p.

– Otherwise, Sc is not a pre-Lyndon word.

Proof

Fact 1. If S has a period smaller than |S|, then S is bordered.
Fact 2. If S[1..p] was not Lyndon, then there would be a suffix X of S with X ≺

S[1..|X |]; hence, X Z ≺ SZ for every Z ∈ �∗, so S cannot be pre-Lyndon.
Fact 3. Follows from Fact 2 and [13, Lemma 1.6].

�
Checking pre-Lyndon Words Now, suppose that our stack S stores the text posi-
tions (i1, . . . , i�). To check whether T [i1] · · · T [i�] · c for a character c ∈ � is a
pre-Lyndon word or a Lyndon word, we augment each position i j stored in S with the
shortest period of T [i1] · · · T [i j], for j ∈ [1..�], so that we can apply Fact 3 to check

4 There is no Lyndon word longer than 1 that starts with the largest character of �.

123

Algorithmica (2024) 86:735–756 745

L = U W Lyndon

≺

V W not Lyndon

�

S = V ′ W

Fig. 6 Sketch of the second case in proof of Lemma 7, where the suffix S is assumed to be longer than W

whether T [i1] · · · T [i j] · c is a pre-Lyndon word and, if so, retrieve its shortest period,
both in constant time for any c ∈ �.

Trie Navigation To find the next text position i�+1, we may need to scan O(n)

characters in the text, and hence need O(n) time for walking down from a node to
any of its children. However, for each text position i and each character c ∈ �, we
can store the leftmost occurrence i ′ ≥ i of the smallest character c′ � c that occurs
in T [i ..n]. As a result, we can traverse the trie in constant time per node during our
preorder traversal.

This already gives an algorithm that computes the longest Lyndon subsequence
with O(nσ) space and time linear in the number of nodes in τ . However, since the
number of nodes can be exponential in the text length, we develop ways to omit nodes
that do not lead to the solution. Our aim is to find a rule to prune trie nodes that
surely do not contribute to the longest Lyndon subsequence of T . For that, we use the
following notion of irrelevance:

Definition 6 Consider a pre-Lyndon subsequenceU of T .We say thatU is irrelevant if
T has a Lyndon subsequence V of length |V | = |U | such that V ≺ U and posT (V) ≤
posT (U). Otherwise, U is relevant.

Lemma 7 If L is the lexicographically smallest length-� Lyndon subsequence of T
(for some � ∈ [1..n]), then all prefixes of L are relevant.

Proof For a proof by contradiction, suppose that L = UW for an irrelevant prefix U .
Consider an integer i such thatU is a subsequence of T [1..i] and W is a subsequence
of T [i + 1..n]. By definition of irrelevance, T [1..i] contains a Lyndon subsequence
V ≺ U of length |V | = |U |. These conditions imply that VW is a subsequence of
T that satisfies VW ≺ UW . By definition of L = UW , this means that VW is not a
Lyndon word, i.e., it contains a proper suffix S ≺ VW . We consider two cases:

– If S is a suffix of W , then S is also a suffix of the Lyndon word UW , and hence
S � UW � VW , a contradiction.

– Otherwise (|S| > |W |, see Fig. 6 for a visualization), S is of the form V ′W for a
proper suffix V ′ of V . Since V is a Lyndon word, we have V ′ � V . Moreover, V
is not a prefix of V ′, so this implies S = V ′W � V ′ � VW , a contradiction.

�
Due to Lemma 7, we do not omit the solution if we skip the subtrees rooted at

irrelevant nodes, i.e., nodes whose string labels are irrelevant. Algorithmically, we
exploit this observation as follows: We maintain an array L[1..n], where L[�] is the

123

746 Algorithmica (2024) 86:735–756

smallest position posT (V) among the length-� Lyndon subsequences V explored so
far. We initialize all entries of L with ∞. Now, whenever we visit a node u whose
string label is a length-� pre-Lyndon subsequence U , then U is irrelevant if and only
if L[�] ≤ posT (U): indeed, since we traverse the trie in the lexicographic order, the
condition L[�] ≤ posT (U) is equivalent to the existence of a Lyndon subsequence
V ≺ U of length � with posT (V) ≤ posT (U).

Time Complexity Next, we analyze the complexity of this algorithm. For that, we
say that a string is immature if it is pre-Lyndon but not Lyndon. Let us first bound
the number of relevant Lyndon nodes visited. Whenever the algorithm processes a
relevant Lyndon subsequence U of length �, it decreases L[�] from a value strictly
larger than posT (U) (if L[�] ≤ posT (U), then U would be irrelevant) to posT (U).
We can decrease an individual entry of L at most n times, so there are at most n2

relevant Lyndon subsequences in total. While each node can have at most σ children,
due to Fact 3, at most one child can be immature. Since the depth of the trie is at most
n, we therefore visit at most n3 immature nodes, and at most O(n3) relevant nodes
in total. All irrelevant nodes are leaves in the pruned tree, so the overall number of
visited nodes isO(n3σ). As noted above, our trie navigation infrastructure allows for
traversing the pruned trie in constant time per node.

Theorem 8 We can compute the longest Lyndon subsequence of a string of length n
in O(n3σ) time using O(nσ) space.

4.2 Improving Time Bounds

We further improve the time bounds by avoiding visiting irrelevant nodes. For that,
we make use of the following queries:

Range maximum query: Given an interval [i .. j] ⊆ [1..n], retrieve the position of the
largest character of the substring T [i .. j], i.e., return argmaxk∈[i .. j] T [k];

Range successor query: Given an interval [i .. j] ⊆ [1..n] and a character c, retrieve
the position k ∈ [i .. j] of the lexicographically smallest character T [k] in T [i .. j]
with T [k] � c, i.e., return argmink∈[i .. j]: T [k]�c T [k].

Each query returns a text position. In case of ties, they return the leftmost among
candidate positions.

Now, suppose we are at a relevant node u with string labelU of length � and period
p. Then, we want to consider all characters c such that Uc is a relevant pre-Lyndon
subsequence of T . By Fact 3, all these characters satisfy c � U [�− p+1] (so thatUc is
pre-Lyndon) and occur in T [posT (U)+1..L[�+1]−1] (so thatUc is relevant). In the
context of our preorder traversal, each such child can be found iteratively using range
successor queries: starting fromb = U [�−p+1], wewant to find the lexicographically
smallest character c � b such that c occurs in T [posT (U)+1..L[�+1]−1] and locate
the leftmost such occurrence. This task can be accomplished using the wavelet tree
[20] of T , which can be constructed in O(n log σ) time and answers range successor
queries in O(lg σ) time [17, Theorem 7]. In particular, we can use the wavelet tree

123

Algorithmica (2024) 86:735–756 747

0

4

7

10

11

12

12

8

10

11

12

9

10

11

12

6

7

10 8

10 9

10

11

12

8 5

7

12

6

7

12

8

8

1

6 2

6 3

6

10 8

9

10

11

12

11

8 5

6

8

9

12

8

9

10

11

12

11

2 5

a

a

b

c

d

d

c

b

c

d

c

b

c

d

b

a

b c

b c

b

c

d

c d

a

d

b

a

d

c

c

b

b c

b c

b

b c

c

b

c

d

c

c d

b

c

c

d

c

c

b

c

d

c

c d

Fig. 7 The trie τ traversed by the algorithm of Theorem 8, with each node labeled by the value posT (V)

computed for its string label V . Irrelevant nodes (whose subtrees are pruned) are drawn in gray and have a
dashed incoming edge. For simplification, we sometimes omit irrelevant nodes representing subsequences
ending with the last character of the text (every node which does not yet have an outgoing edge with label d
should have such an irrelevant child). Each immature node is surrounded by a rectangle box. Remembering
that immature nodes do not contribute to our pruning technique, we cannot prune bccdc with its leftmost
occurrence ending at text position 8, since all formerly found subsequences with the same length ending at
or before 8 are immature. The relevant Lyndon nodes have the property that, when fixing a depth, reading
the Lyndon nodes from left to right gives a decreasing sequence of text positions. When pruning the node
with string label abab and label 10, we have L = [4, 6, 8, 9, 10, 11, 12, ∞, . . .] and can prune this node
because L[|abab|] = 9 does not exceed the label 10

instead of the O(nσ) pointers to the subsequent characters to arrive at O(n) space.
The time complexity reduces to O(n3 log σ).

In order to bring the time down to O(n3), we do not want to query the wavelet
tree each time, but only whenever we are sure that u has at least one relevant Lyndon
child. For that, we build a data structure of [5], which can be constructed inO(n) time
and answers range maximum queries (RMQ) on T in O(1) time.5 When we are at
the relevant node u, we issue an RMQ to locate the leftmost occurrence of the largest
character c in T [posT (U)+1..L[�+1]−1]. Then, we analyze the sequenceUc using
Fact 3:

5 Recall that if a character has multiple occurrences in T , then we rank these occurrences by their positions
so that an RMQ on interval [i .. j] retrieves the leftmost position of the largest character in T [i .. j].

123

748 Algorithmica (2024) 86:735–756

– If Uc is not pre-Lyndon, then u has no relevant children.
– If Uc is immature, then u has no relevant Lyndon children. Moreover, posT (Uc)
is the position reported by the range maximum query. Hence, we do not need to
use the wavelet tree.

– Finally, if Uc is Lyndon, we know that u has at least one relevant Lyndon child:
while Uc might still be irrelevant if L[� + 1] is decreased before we visit Uc, the
only nodes that may decrease L[� + 1] before we visit Uc are relevant Lyndon
children of u.

This observation allows us to find all relevant children of u (including the single
immature child, if any) by iteratively conductingO(k) range successor queries, where
k is the number of relevant Lyndon children of u. Thus, the total number of wavelet
tree queries asked is O(n2) and the overall runtime is O(n3 + n2 lg σ) = O(n3).

Theorem 9 We can compute the longest Lyndon subsequence of a string of length n
in O(n3) time using O(n) space.

We remark that, by Lemma 7, our algorithm can be easily modified to compute, for
each length �, the lexicographically smallest length-�Lyndon subsequence of T (if one
exists). For this, it suffices to output, for each �, the first visited Lyndon subsequence
of length �.

4.3 Online Computation

If we allow for more space to maintain the trie data structure introduced in Sect. 3.2,
we can modify our O(n3σ)-time algorithm of Sect. 4.1 to perform the computation
online, i.e., with T given as a text stream. To this end, let us recall the trie τ of all
pre-Lyndon subsequences introduced at the beginning of Sect. 4. In the online setting,
when reading a new character c, for each subsequence S given by a path from τ ’s root
(S may be empty), we add a new node for Sc if Sc is a pre-Lyndon subsequence that
is not yet represented by such a path. Again, storing all nodes of τ explicitly would
cost us too much, so we prune irrelevant nodes obtaining a trie τ ′ of sizeO(n3σ). The
problem is that we can no longer perform the traversal in lexicographic order, so we
instead keep multiple fingers in the trie τ ′ constructed up so far and use these fingers
to advance the trie traversal in text order.

With a different traversal order, we need an updated definition of L[1..n]: Now,
once the algorithm starts processing T [i], the entry L[�] stores the lexicographically
smallest length-� Lyndon subsequence of T [1..i − 1] (represented by a pointer to
the corresponding node of τ ′) or is empty if no such subsequence exists. Further, we
maintain σ lists Pc (c ∈ [1..σ]) storing pointers to nodes of τ ′. Once the algorithm
starts processing T [i], the list Pc contains pointers to all relevant nodes with string
label U such that Uc is a pre-Lyndon word that is not a subsequence of T [1..i − 1]
(i.e., posT (Uc) ≥ i). Initially, τ ′ consists only of the root node, and each list Pc stores
only the root node. Whenever we read a new character T [i] from the text stream, for
each node v with string label V in PT [i], we insert a leaf with string label S := V ·T [i]
(as a child of v). The characterization of PT [i] guarantees that posT (S) = i , so such
a node does not exist yet. In order to keep the table L[1..n] up-to-date, we also check

123

Algorithmica (2024) 86:735–756 749

⊥

1

2

3

5

7

8

4

6

11

12

b

c

c

d

b

b

a

d

b

b

Pa 4, 6, 11, 12
Pb

Pc 7, 8
Pd

� L[�] W[�, a] W[�, b] W[�, c] W[�, d]

0 ⊥ ⊥ ⊥ ⊥
1 4 4 1
2 12 12 2
3 11 11 3
4 5 5 8
5 7

Fig. 8 Online computation on the prefix bccadb of our running example. The trie on the left shows τ ,
where nodes are labeled by a rank reflecting the order at which a node has been created. This rank is used
in the lists P and the table W as pointers to the trie nodes. Like before, nodes with rectangular boxes have
immature string labels. On the right, we show the non-empty entries of L andW, where each row corresponds
to one length �. On reading the first d from the text, we do not create a node for bd since we already have
bc, which also needs a character larger or equal to c to be extended to a Lyndon subsequence of length
three

whether S is a Lyndon word satisfying S ≺ L[|S|] (which can be tested using the data
structure of Sect. 3.2) and, if so, we further set L[|S|] := S. Next, we clear PT [i] and
iterate again over the newly created leaves. For each such leaf λwith label S, we check
whether λ is relevant by performing a comparison S � L[|S|]. If λ is relevant, we put
λ into Pc for each character c ∈ � such that Sc is a pre-Lyndon word. By doing so,
we effectively create new events that trigger a call-back to the point where we stopped
the trie traversal.

Overall,wegenerate exactly the nodes visited by the algorithmofSect. 4.1 (although
in a different order). In particular, there areO(n3) relevant nodes, and we issueO(σ)

events for each such node. The operations of Sect. 3.2 take constant time, so the total
time and space complexity of the algorithm are O(n3σ).

Theorem 10 We can compute the longest Lyndon subsequence online inO(n3σ) time
using O(n3σ) space.

We can improve space and time bounds by treating immature subsequences and
Lyndon subsequences separately. First, we only add a leaf λ with string label S into
Pc if Sc is immature (i.e., we no longer store λ in Pc if Sc is Lyndon). Second,
we treat Sc being Lyndon now differently with a table W[0..n, 1..σ] of size O(nσ).
Throughout the execution of the algorithm,W[0, c] stores (a pointer to) the root node
for each c ∈ [1..σ]. For each length � ≥ 1 and character c ∈ [1..σ], the entry
W[�, c] stores a pointer to a relevant node with string label S of length � such that Sc
is immature. If there is no such node, the entry W[�, c] remains empty. If there are
multiple candidates, we pick the one with the lexicographically smallest string label
S. This choice is dictated by the following corollary:

Corollary 11 (of Lemma 7) Consider two nodes u and v of τ ′ with string labels U and
V , respectively, such that |U | = |V | (u and v are on the same depth), V ≺ U, and Uc
and V c are immature. Assume that we construct, later on, a child of u whose string
label is Lyndon. Then this child is actually irrelevant.

123

750 Algorithmica (2024) 86:735–756

Proof Suppose that we read a character T [i] � c such that we can create a child node
u′ of u with string label U · T [i]. Then V · T [i] is also a Lyndon word, and we can
apply Lemma 7. �

When reading character T [i], for each length � ∈ [1..i], wemight create atmost one
relevant Lyndon node of length � (the string label S of this node satisfies posT (S) =
i). By Lemma Corollary 11, the parent of this Lyndon word is among the nodes
W[�−1, 1..T [i]−1]. For each node v with string label V inW[�−1, 1..T [i]−1], the
string V · T [i] is a Lyndon subsequence of T [1..i]. If there are multiple candidates, it
suffices to consider one with the lexicographically smallest label V . If V ·T [i] ≺ L[�]
holds for this label, then V · T [i] is relevant and satisfies posT (V · T [i]) = i . Hence,
we create a new leaf linked with v using an edge with label T [i]. Moreover, we
set L[�] := V · T [i]. This way, we add all the new relevant Lyndon nodes. As for
the immature nodes, we scan PT [i]: given a node v in PT [i] with string label V , if
V · T [i] ≺ L[�], we create a new leaf linked with v using an edge with label T [i].
Before we complete processing T [i], we need to update the lists P and the table W.
Thus, we clear PT [i] and, for each newly created leaf λ with string label S, we use
Fact 3 to compute the character c such that Sc is immature. We then append λ to Pc
and, if W[|S|, c] is empty or Sc is lexicographically smaller than the string label of
W[|S|, c], we also put λ at W[|S|, c].

Per read character T [i], we scan W in O(nσ) time, which results in insertion of
O(n) relevant Lyndon nodes. Moreover, we process PT [i] (in time proportional to its
length), which results in insertion of some relevant immature nodes. The total number
of relevant nodes is O(n3) and, for each such node, we issue one event into the lists
P. Hence, the total running time is O(n3).

Theorem 12 We can compute the longest Lyndon subsequence online in O(n3) time
using O(n3) space.

5 Longest Common Lyndon Subsequence

Given two strings X and Y , we want to compute the longest common subsequence
(LCS) of X and Y that is Lyndon. In the special case that all characters in X and Y are
unique, we can make use of an algorithm computing the LCS of two strings of length
O(n) with unique letters in O(n log log n) time and O(n) space [24, Theorem 2(b)]:
Similar to Theorem 5, we scan X from left to right, and compute, for each visited
character X [i], the LCS of πX [i](X [i + 1..]) and πX [i](Y [posY (X [i]) + 1..]), where
πX [i] discards all characters that are smaller than X [i]; if X [i] does not occur in Y , we
omit text position i and directly continuewith i+1. If we take themaximumof all these
at most n LCS lengths and increment this maximum by one for the matched character,
we obtain the longest common Lyndon subsequence of X and Y in O(n2 log log n)

total time using O(n) space.
For the general case, we can extend our algorithm finding the longest Lyndon

subsequence of a single string as follows. First, we explore, in lexicographic order, the
trie of all common pre-Lyndon subsequences of X and Y . A node with string label L
of length � is represented by a stack (x1, y1), . . . , (x�, y�) with x j = posX (L[1.. j])

123

Algorithmica (2024) 86:735–756 751

and y j = posY (L[1.. j]). The depth-first search works like an exhaustive search in
that it tries to extend L with subsequent characters c ∈ � such that Lc is pre-Lyndon
and c occurs in both X [x� + 1..] and Y [y� + 1..]. For each such character c, the pair
(x�+1, y�+1) consists of the positions of the leftmost occurrences of Lc in X and Y ,
respectively, which can be precomputed in O(nσ) time and space.

The algorithm uses again the array L to check, while processing a pre-Lyndon
subsequenceU , whether we have already found a Lyndon subsequence V of the same
length satisfying V ≺ U , posX (V) ≤ posX (U), and posY (V) ≤ posY (U). For that,
L[�] stores not only one position, but a list of positions (x, y) such that X [1..x] and
Y [1..y] have a common Lyndon subsequence of length �. Although there can be n2

such pairs of positions, we only store those that are pairwise non-dominated. A pair
of positions (x1, y1) is called dominated by a pair (x2, y2) �= (x1, y1) if x2 ≤ x1 and
y2 ≤ y1. A set storing pairs in [1..n] × [1..n] can have at most n elements that are
pairwise non-dominated, and hence |L[�]| ≤ n.

At the beginning, all lists of L are empty. Suppose that we visit a node v with
pair (x�, y�) representing a common Lyndon subsequence of length �. We then query
whether L[�] has a pair dominating (x�, y�). In that case, we can skip v and its subtree.
Otherwise, we insert (x�, y�) and remove pairs in L[�] that are dominated by (x�, y�).
Such an insertion can happen at most n2 times. Since L[1..n] maintains n lists, we can
update L at most n3 times in total. Checking for domination and insertion into L takes
O(n) time. The former can be accelerated to constant time by representing L[�] as an
array R� storing in R�[i] the value y of the tuple (x, y) ∈ L[�] with x ≤ i and the
lowest possible y, for each i ∈ [1..n]. Then, a pair (x, y) /∈ L[�] is dominated if and
only if R�[x] ≤ y.

Example 13 For n = 10, let L� = [(3, 9), (5, 4), (8, 2)]. Then, all elements in L�

are pairwise non-dominated, and R� = [∞,∞, 9, 9, 4, 4, 4, 2, 2, 2]. Inserting (3, 2)
would remove all elements of L�, and decrease all finite entries of R� to 2.Alternatively,
inserting (7, 3) would only involve updating R�[7] ← 3; since the subsequent entry
R�[8] = 2 is less than R�[7], no further entries need to be updated.

An update in L[�] involves changing O(n) entries of R�, but that cost is dwarfed
by the cost for finding the next common Lyndon subsequence that updates L. Such a
subsequence can be found while visitingO(nσ) irrelevant nodes during a naive depth-
first search (cf. the solution of Sect. 3.1 computing the longest Lyndon sequence of a
single string). Hence, the total time isO(n4σ). The space complexity is dominated by
the representation of the array L with the arrays R�. Since each R� uses O(n) space
for � ∈ [1..n], the total space is bounded by O(n2).

Theorem 14 We can compute the longest common Lyndon subsequence of a string of
length n in O(n4σ) time using O(n2) space.

6 Experiments

We implemented our algorithm computing the longest Lyndon subsequence of The-
orem 8 and benchmarked this implementation on various texts. Our implementation,

123

752 Algorithmica (2024) 86:735–756

100 150 200 250 300

0

50

100

150

prefix length

co
m
pu

ta
ti
on

ti
m
e
[s
]

100 150 200 250 300

100

150

200

250

300

prefix length

ou
tp
ut

le
ng

th

dblp.xml dna
english fibonacci

perioddoubling pitches
proteins random.16
random.2 random.32
random.4 random.8
sources thuemorse

Fig. 9 Computing the longest Lyndon subsequence on prefixes of various texts. Left: Computation time.
Right: Lengths of the longest Lyndon subsequence

written in Rust, is publicly available.6 We evaluated our implementation on a server
with an Intel i3-9100 CPU, running Debian 11. Since the time complexity of our
algorithm is far from linear, we only benchmarked the computation on a few hundred
numbers of characters. For such short strings, the task of the RMQ data structure
and the wavelet tree can be performed by a linear scan on the text without degrading
the performance too much (in fact, linear scan on such short strings is particularly
fast due to data locality and its cache-friendly nature). We tested our algorithm on
prefixes of the datasets of the Pizza&Chili corpus,7 and on artificial random datasets
random.x , where x ∈ {2, 4, 16, 32} denotes the alphabet size. Additionally, we took
the Thue–Morse, Fibonacci, and the period-doubling sequence. Figure9 depicts the
evaluation results. We observe that the running time is super-linear on all instances.
The time also depends on the alphabet size since we need more time for random.x
than for random.y with x > y. Another observation is that the lengths of the longest
Lyndon subsequences we output grow linearly with the input size. Here, the dataset
pitches has a slightly shorter output. Despite the fact that the length-300 prefixes of
pitches and english have 126 and 44 distinct characters, respectively, the running time
on both datasets for these two prefixes is roughly the same. We therefore conclude
that the distribution of the characters has also an impact on the running time.

6 https://github.com/koeppl/longestlyndonsubsequence.
7 http://pizzachili.dcc.uchile.cl/.

123

https://github.com/koeppl/longestlyndonsubsequence
http://pizzachili.dcc.uchile.cl/

Algorithmica (2024) 86:735–756 753

Table 1 Algorithmic complexities for computing subsequences of various kinds studied in this article

Subsequence type Time Space Reference Speciality

Lexicographically smallest
(all lengths)

O(n2) O(n2) Theorem 3 Online

Lexicographically smallest
(fixed length)

O(n) O(n) Folklore

Lexicographically smallest
common (all lengths)

O(n3) O(n3) Theorem 4

Longest Lyndon O(n2) O(1) Theorem 5 All characters distinct

O(n
√
lg n) O(n) Theorem 5 All characters distinct

O(n3) O(n) Theorem 9

O(n3) O(n3) Theorem 12 Online

Longest common Lyndon O(n2 log log n) O(n) Sect. 5 All characters distinct

O(n4σ) O(n2) Theorem 14

7 Conclusion

This article has shed light, for the very first time, on the computation of the longest
Lyndon subsequence. We began by studying the lexicographically smallest subse-
quence and the most competitive subsequence. Both problems are related to Lyndon
subsequences in that they are all based on the lexicographic order. In the main part
of this article, we focused on the computation of the longest Lyndon subsequence,
for which we proposed algorithms for the offline and the online case. Finally, we
extended our offline algorithm to compute the longest common Lyndon subsequence
of two strings. Different but much easier solutions can be obtained in the special
case when all characters are unique. Table 1 summarizes the algorithmic complex-
ities we obtained or observed during the analysis of our algorithms computing the
subsequences we studied.

Open Problems

It is known that the longest common subsequence of two strings of length n cannot be
computed inO(n2−ε) time for any ε > 0 unless the strong exponential time hypothesis
(SETH) is false [1]. This conditional lower boundhas been translated to other variations
like finding the longest square subsequence [26, Section 4]. Unfortunately, we do not
see whether we can find similar (conditional) lower bounds for the problems studied
in this article. Lower bounds would either justify our time and space complexities, or
give hope in finding better algorithms.

For the online computation studied in Sect. 4.3, the current bottleneck is the trie
representation used, which represents O(n3) nodes explicitly, and therefore needs
O(n3) time and space. We wonder whether we can find an implicit representation for
the immature and irrelevant nodes that improves both complexities.

123

754 Algorithmica (2024) 86:735–756

On the practical side, it is possible to enhance our implementation of Sect. 6 to
cover also the algorithmic improvements described in Sect. 4.2. To be competitive with
the current implementation, efficient implementations of range minimum queries and
range successor queries need to be used. However, we are not aware of any optimized
implementation of range successor queries.

Finally, we remark that we can extend our techniques for a special case of so-called
Galois words [12, Section 6]. Galois words are defined in the setting of the alternating
order ≺alt , which is given by ranking odd positions with the classic lexicographic
order, but even positions in the opposite order, when comparing two strings character
by character. For instance, ab ≺alt aa ≺alt bb ≺alt ba. A Galois word is then
a word that is strictly smaller than all its cyclic rotations. A major difference to the
lexicographic order is that a prefix of a string S is only smaller than S if its length
is even, e.g., ab ≺alt a. Now, if we stipulate that a prefix P of a string S always
exhibits P ≺alt S (so we slightly modify the standard definition), then we can directly
translate our techniques to compute the longest non-bordered Galois subsequence.
This is because a non-bordered string is Galois if all its proper suffixes are ≺alt -larger
than itself. However, it is not clear to us how to find the longest bordered one, because
our modified definition of ≺alt for the prefixes does not make sense when regarding
bordered Galois subsequences. For instance, aba is a bordered Galois word in the
standard definition of the ≺alt -order.

Acknowledgements This work was supported by JSPS KAKENHI Grants Number JP20H04141 (HB),
JP19K20213 (TI), JP21K17701, JP22H03551, and JP23H04378 (DK). While preparing the preliminary
version of this work, TK was at University of California, Berkeley, supported by NSF 1652303, 1909046,
andHDRTRIPODS 1934846 grants, and anAlfred P. Sloan Fellowship. SJPwas supported by theAcademy
of Finland via grant 339070. We are grateful to Gabriele Fici for suggesting the problem addressed in 5,
and to Marinella Sciortino for introducing us to Galois words.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other sequence similarity
measures. In: Guruswami, V. (ed.) Proceedings of FOCS. pp. 59–78. IEEE Computer Society (2015).
https://doi.org/10.1109/FOCS.2015.14

2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Proceedings
of ICALP. LNCS, vol. 1853, pp. 73–84 (2000). https://doi.org/10.1007/3-540-45022-x_8

3. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs” theorem.
SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/10.1137/15m1011032

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1007/3-540-45022-x_8
https://doi.org/10.1137/15m1011032

Algorithmica (2024) 86:735–756 755

4. Bannai,H., Tomohiro, I.,Kociumaka,T.,Köppl,D., Puglisi, S.J.: Computing longest (common)Lyndon
subsequences. In: Proceedings of IWOCA. LNCS, vol. 13270, pp. 128–142. Springer (2022). https://
doi.org/10.1007/978-3-031-06678-8_10

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors
in trees and directed acyclic graphs. J. Algor. 57(2), 75–94 (2005). https://doi.org/10.1016/j.jalgor.
2005.08.001

6. Biedl, T.C., Biniaz, A., Cummings, R., Lubiw,A.,Manea, F., Nowotka, D., Shallit, J.O.: Rollercoasters:
Long sequences without short runs. SIAM J. Discret. Math. 33(2), 845–861 (2019). https://doi.org/10.
1137/18m1192226

7. Chan, T.M., Patrascu,M.:Counting inversions, offline orthogonal range counting, and related problems.
In: SODA. pp. 161–173. SIAM (2010). https://doi.org/10.1137/1.9781611973075.15

8. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient groups of the lower
central series. Annals of Mathematics, pp. 81–95 (1958). https://doi.org/10.1007/978-1-4612-2096-
1_10

9. Chowdhury, S.R., Hasan, M.M., Iqbal, S., Rahman, M.S.: Computing a longest common palindromic
subsequence. Fundam. Informaticae 129(4), 329–340 (2014). https://doi.org/10.3233/fi-2014-974

10. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4), 894–923 (2005).
https://doi.org/10.1137/s0097539700370539

11. de Beauregard Robinson, G.: On the representations of the symmetric group. Am. J. Math. 60(3),
745–760 (1938). https://doi.org/10.2307/2371609

12. Dolce, F., Restivo, A., Reutenauer, C.: On generalized Lyndon words. Theor. Comput. Sci. 777, 232–
242 (2019). https://doi.org/10.1016/j.tcs.2018.12.015

13. Duval, J.: Factorizing words over an ordered alphabet. J. Algor. 4(4), 363–381 (1983). https://doi.org/
10.1016/0196-6774(83)90017-2

14. Elmasry, A.: The longest almost-increasing subsequence. Inf. Process. Lett. 110(16), 655–658 (2010).
https://doi.org/10.1016/j.ipl.2010.05.022

15. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960). https://doi.org/10.1145/367390.
367400

16. Fujita, K., Nakashima,Y., Inenaga, S., Bannai, H., Takeda,M.: Longest common rollercoasters. In: Pro-
ceeding of SPIRE. LNCS, vol. 12944, pp. 21–32 (2021). https://doi.org/10.1007/978-3-030-86692-
1_3

17. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and applications to information
retrieval. Theor. Comput. Sci. 426, 25–41 (2012). https://doi.org/10.1016/j.tcs.2011.12.002

18. Gawrychowski, P., Manea, F., Serafin, R.: Fast and longest rollercoasters. In: Proceeding of STACS.
LIPIcs, vol. 126, pp. 30:1–30:17 (2019). https://doi.org/10.1007/s00453-021-00908-6

19. Glen, A., Simpson, J., Smyth, W.F.: Counting Lyndon factors. Electron. J. Comb. 24(3), P3.28 (2017).
https://doi.org/10.37236/6915

20. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proceeding of
SODA. pp. 841–850 (2003), http://dl.acm.org/citation.cfm?id=644108.644250

21. He, X., Xu, Y.: The longest commonly positioned increasing subsequences problem. J. Comb. Optim.
35(2), 331–340 (2018). https://doi.org/10.1007/s10878-017-0170-9

22. Hirakawa, R., Nakashima, Y., Inenaga, S., Takeda,M.: Counting Lyndon subsequences. In: Proceeding
of PSC, pp. 53–60 (2021), http://www.stringology.org/event/2021/p05.html

23. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675
(1977). https://doi.org/10.1145/322033.322044

24. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subsequences. Commun. ACM
20(5), 350–353 (1977). https://doi.org/10.1145/359581.359603

25. Inenaga, S., Hyyrö, H.: A hardness result and new algorithm for the longest common palindromic
subsequence problem. Inf. Process. Lett. 129, 11–15 (2018). https://doi.org/10.1016/j.ipl.2017.08.006

26. Inoue, T., Inenaga, S., Hyyrö, H., Bannai, H., Takeda, M.: Computing longest common square sub-
sequences. In: Proceeding of CPM. LIPIcs, vol. 105, pp. 15:1–15:13 (2018). https://doi.org/10.4230/
LIPIcs.CPM.2018.15

27. Kiyomi, M., Horiyama, T., Otachi, Y.: Longest common subsequence in sublinear space. Inf. Process.
Lett. 168, 106084 (2021). https://doi.org/10.1016/j.ipl.2020.106084

28. Knuth, D.: Permutations, matrices, and generalized Young tableaux. Pac. J. Math. 34, 709–727 (1970).
https://doi.org/10.2140/pjm.1970.34.709

123

https://doi.org/10.1007/978-3-031-06678-8_10
https://doi.org/10.1007/978-3-031-06678-8_10
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1137/18m1192226
https://doi.org/10.1137/18m1192226
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1007/978-1-4612-2096-1_10
https://doi.org/10.1007/978-1-4612-2096-1_10
https://doi.org/10.3233/fi-2014-974
https://doi.org/10.1137/s0097539700370539
https://doi.org/10.2307/2371609
https://doi.org/10.1016/j.tcs.2018.12.015
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1016/j.ipl.2010.05.022
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/978-3-030-86692-1_3
https://doi.org/10.1007/978-3-030-86692-1_3
https://doi.org/10.1016/j.tcs.2011.12.002
https://doi.org/10.1007/s00453-021-00908-6
https://doi.org/10.37236/6915
http://dl.acm.org/citation.cfm?id=644108.644250
https://doi.org/10.1007/s10878-017-0170-9
http://www.stringology.org/event/2021/p05.html
https://doi.org/10.1145/322033.322044
https://doi.org/10.1145/359581.359603
https://doi.org/10.1016/j.ipl.2017.08.006
https://doi.org/10.4230/LIPIcs.CPM.2018.15
https://doi.org/10.4230/LIPIcs.CPM.2018.15
https://doi.org/10.1016/j.ipl.2020.106084
https://doi.org/10.2140/pjm.1970.34.709

756 Algorithmica (2024) 86:735–756

29. Kosche, M., Koß, T., Manea, F., Siemer, S.: Absent subsequences in words. In: Proceeding of RP.
LNCS, vol. 13035, pp. 115–131 (2021). https://doi.org/10.1007/978-3-030-89716-1_8

30. Kosowski, A.: An efficient algorithm for the longest tandem scattered subsequence problem. In: Pro-
ceeding of SPIRE. LNCS, vol. 3246, pp. 93–100 (2004). https://doi.org/10.1007/978-3-540-30213-
1_13

31. Kutz, M., Brodal, G.S., Kaligosi, K., Katriel, I.: Faster algorithms for computing longest common
increasing subsequences. J. Discrete Algor. 9(4), 314–325 (2011). https://doi.org/10.1016/j.jda.2011.
03.013

32. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215 (1954). https://doi.org/
10.2307/1990868

33. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13, 179–191 (1961).
https://doi.org/10.1007/978-0-8176-4842-8_21

34. Ta, T.T., Shieh, Y., Lu, C.L.: Computing a longest common almost-increasing subsequence of two
sequences. Theor. Comput. Sci. 854, 44–51 (2021). https://doi.org/10.1016/j.tcs.2020.11.035

35. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974).
https://doi.org/10.1145/321796.321811

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-89716-1_8
https://doi.org/10.1007/978-3-540-30213-1_13
https://doi.org/10.1007/978-3-540-30213-1_13
https://doi.org/10.1016/j.jda.2011.03.013
https://doi.org/10.1016/j.jda.2011.03.013
https://doi.org/10.2307/1990868
https://doi.org/10.2307/1990868
https://doi.org/10.1007/978-0-8176-4842-8_21
https://doi.org/10.1016/j.tcs.2020.11.035
https://doi.org/10.1145/321796.321811

	Computing Longest Lyndon Subsequences and Longest Common Lyndon Subsequences
	Abstract
	1 Introduction
	2 Preliminaries
	3 Lexicographically Smallest Subsequence
	3.1 Dynamic Programming Approach
	3.2 Speeding Up String Comparisons
	3.3 Most Competitive Subsequence
	3.4 Lexicographically Smallest Common Subsequence

	4 Computing the Longest Lyndon Subsequence
	4.1 Basic Trie Traversal
	4.2 Improving Time Bounds
	4.3 Online Computation

	5 Longest Common Lyndon Subsequence
	6 Experiments
	7 Conclusion
	Open Problems

	Acknowledgements
	References

